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Abstract: Among the advanced oxidation processes (AOPs), the Fenton reaction has attracted much
attention in recent years for the treatment of water and wastewater. This review provides insight into
a particular variant of the process, where soluble Fe(II) salts are replaced by zero-valent iron (ZVI),
and hydrogen peroxide (HyO,) is replaced by persulfate (S,0g%7). Heterogeneous Fenton with ZVI
has the advantage of minimizing a major problem found with homogeneous Fenton. Indeed, the
precipitation of Fe(Ill) at pH > 4 interferes with the recycling of Fe species and inhibits oxidation in
homogeneous Fenton; in contrast, suspended ZVI as iron source is less sensitive to the increase of pH.
Moreover, persulfate favors the production of sulfate radicals (SO4° ™) that are more selective towards
pollutant degradation, compared to the hydroxyl radicals (*OH) produced in classic, HyO,-based
Fenton. Higher selectivity means that degradation of SO4°~ -reactive contaminants is less affected by
interfering agents typically found in wastewater; however, the ability of SO4* ™ to oxidize H,O/OH™
to *OH makes it difficult to obtain conditions where SO4°*~ is the only reactive species. Research
results have shown that ZVI-Fenton with persulfate works best at acidic pH, but it is often possible to
get reasonable degradation at pH values that are not too far from neutrality. Moreover, inorganic ions
that are very common in water and wastewater (C1~, HCO; ™, CO52~,NO;3~, NO, ) can sometimes
inhibit degradation by scavenging SO4*~ and/or *OH, but in other cases they even enhance the
process. Therefore, ZVI-Fenton with persulfate might perform unexpectedly well in some saline
waters, although the possible formation of harmful by-products upon oxidation of the anions cannot
be ruled out.

Keywords: Fenton chemistry; zero valent iron (ZVI); waste water treatment; water matrices; pH

1. Introduction

Advanced oxidation processes (AOPs) are emerging alternative methods for the
effective removal of organic and inorganic wastewater pollutants with high stability and /or
low biodegradability. These processes are mainly based on the generation of highly reactive
radical species, among which the most common one is the hydroxyl radical, *OH [1]. In
homogenous systems, radical species are being generated through several ways including
electron transfer during activation of oxidants by transition metals, photolysis, thermolysis,
and sonolysis [2]. The most conventional homogenous AOP is the Fenton process, in
which H,O; is activated by ferrous ions to produce *OH [3]. The AOPs operate at ambient
temperature and pressure and are often able to induce complete degradation of pollutants
into non-toxic products like CO,, H,O, and inorganic salts [4].

The Fenton process is being widely used as a common AOP for the decomposition
of organic and inorganic pollutants in wastewater [5]. As a robust, convenient, and easy
method [6], the Fenton process can be used either to lower toxicity of wastewater or
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to decontaminate wastewaters to allow for their drainage to water bodies [5,7]. In the
traditional homogeneous Fenton process, strong oxidants (*OH and/or reactive high-
valence Fe species, such as ferryl, FeO?*) are generated by reaction of HyO, with soluble
iron ions (Fe?*) that act as catalysts in acidic conditions [8]. The use of soluble Fe salts
(Fe?") in traditional Fenton gives the highest efficiency if we ignore the mass transfer
limitations between active reagents [9]. The main drawback of the classical Fenton process
is Fe(III) precipitation due to both catalyst (Fe**) oxidation and pH adjustment, which
produces a sludge waste [5,10,11]. Indeed, Fe?* remains dissolved even at neutral pH
but Fe* disappears at pH > 4 while forming ferric hydroxides sludge. Therefore, severe
acidic conditions (pH < 4) are required to maintain and carry out the process for practical
applications, which demand high cost of reagents to acidify the effluents before treatment,
and afterward neutralizing them before drainage [12].

To overcome the above-mentioned drawbacks, in the past decades many approaches
have been made to proceed with better efficacy while using heterogeneous Fenton and
Fenton-like systems. In heterogeneous Fenton reaction, different poorly soluble iron com-
pounds (Fe;O3, Fe304, FeO, FeS,, etc.) are added as catalysts with HyO, to decontaminate
or degrade pollutants in aqueous solution [4,5,9,13]. Other alternatives to increase the
efficiency of the Fenton reaction are to use supports for iron oxides or include Fe oxides into
composite porous materials (clay, zeolites, activated carbon, polymers and multiwalled
carbon nanotubes, Nafion films, pumice particles, ashes, and aluminates) [4,5,14-17]. The
overall performance of the Fenton reaction may even be increased in such conditions
because the support adsorbs the pollutant molecule and, in some cases, can also facilitate
different pathways that generate radicals for pollutants degradation [5,18-20].

In heterogeneous Fenton-like systems, the generation of free radicals and/or other
oxidizing species is achieved by using the heterogeneous catalyst together with ultrasound
energy, magnetic field, ultraviolet radiations, microwave radiation, or a combination
of them [5,21].

Zero-valent iron (ZVI) has attracted much attention by researchers among the cata-
lysts used for Fenton-like or heterogeneous Fenton processes. ZVIis a promising material
to be used for water and wastewater treatments, due to its eco-friendliness [5,22], cost-
effectiveness [23], non-toxicity, and ability to transform different pollutants such as halo-
genated compounds [5,24,25], nitrate [26,27], heavy metals [5,26,28-31], phosphate [32],
arsenic [33-36], phenol [37-39], polycyclic aromatic hydrocarbons [40,41], and dyes [7,42].
ZVI can be used either alone by exploiting its reductive (electron-donor) properties [39], or
in combination with H,O; in a heterogeneous Fenton reaction with production of oxidizing
species and especially *OH [42]. Last but not least, recent advances have focused on the
combined use of ZVI with persulfate (S,08%7) or peroxymonosulfate (SO5%7) to obtain
a heterogeneous Fenton-like process, where the main aim is to generate the sulfate radical
(50O4°7) as an alternative oxidizing agent to *OH. Compared to *OH, SO,4*~ is a bit less
reactive but it is more selective [43,44]. This means that, in well-designed systems, the
SO4°~-based processes can achieve pollutant degradation with lesser interference from
water components when compared to the *OH-based techniques (vide infra) [45].

Many water parameters have the potential to affect the performance of the ZVI-
Fenton and Fenton-like systems towards pollutant degradation. They include, among
others, solution chemistry, pH, concentration of reagents, and involvement of different
anions [5,11,46,47]. One of the most crucial operating parameters among all others is pH,
which controls the chemistry, the capacity to generate radicals, the catalyst behavior and
the overall efficiency of virtually any Fenton process [5,48,49].

This review addresses the effects of pH and of interfering ions (chloride, carbonate,
bicarbonate and nitrate /nitrite, as important components of water and wastewater) on the
Fenton-like process based on ZVI and persulfate (ZV1/PS), which has not been reviewed
so far [3,5,13,50]. Furthermore, the formation of secondary pollutants is here discussed. We
decided to focus on ZVI/PS instead of ZVI/peroxymonosulfate, which is also an effective
technique, because ZVI/PS has been the object of more numerous studies that covered
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a wider range of conditions. Moreover, by focusing on PS it was also easier to compare the
results of different studies.

ZVI1/PS is a promising process, which may combine the advantages of heterogeneous
Fenton with the selectivity of SO4°~. However, although the replacement of H,O, with
persulfate can reduce interferences by water components, it does not totally eliminate them.
Moreover, pH still plays a key role because, in addition to affecting the overall Fenton
efficiency, it also influences the reaction pathways by favoring the generation of *OH vs.
SO4°~ as the main reactive species, as explored in the next section.

2. Reactive Species: *OH vs. SO4*~ vs. *OH + SO4°~

One of the main features of the hydroxyl radical is its high reactivity towards most
compounds that occur in water and wastewater [51]. On the one side, this warrants the
possibility to degrade a wide array of contaminants in the framework of water treatment.
At the same time, however, *OH can be scavenged by many constituents of natural water
and wastewater, such as organic matter and some inorganic anions (e.g., C1~, NO, 7,
HCO3~, and CO327). Natural water constituents do not necessarily require oxidation
for water to be properly decontaminated, thus their ability to scavenge *OH will mostly
inhibit the degradation of pollutants [52]. The consequence of *OH scavenging by organic
matter and inorganic anions, which act as interfering agents, is thus increased costs and/or
a decrease in process efficiency [51].

A possible solution to the above problem is to look for alternative reactive species,
which should be more selective than *OH but, at the same time, ensure elevated reactivity
and oxidizing power. The sulfate radical, SO4°*~, has interesting features because it has
similar or even higher reduction potential compared to *OH, but at the same time it is more
selective. Figure 1 reports the available literature data about the second-order reaction rate
constants between the two radical species (*OH, n = 713, and SO4*~, n = 119) and organic
compounds, here indicated by the respective number of C atoms [43,44]. The comparison
suggests that, on average, *OH is more reactive compared to SO4°~.
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Figure 1. Second-order reaction rate constants (k) of organic compounds with SO4°*~ (e, n = 119) and
with *OH ([, n = 713), as a function of the number of carbon atoms (on average, compounds with
more carbons are more reactive, which for instance justifies the use of a group contribution method to
predict *OH reactivity) [43,44]. In the summarizing diagrams, boxes represent the 5th, 50th (median),
and 95th percentiles of the distribution, while the whiskers show the extreme values.
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Moreover, although the highest SO4°*~ reaction rate constants approach (and those of
*OH slightly surpass) the value of 10! L mol~! s~!, which is near the diffusion-control
limit in aqueous solution [43], the lowest rate constant values reach 10° L mol~! s~ in the
case of *°OH and 10° L mol~! s~ ! in the case of SO4* .

Overall, the reaction rate constants of SO4°~ span 1-2 orders of magnitude more than
those of *OH, and the equivalent percentiles correspond to lower values of the reaction rate
constants in the case of SO4°~. Therefore, SO4°~ is both less reactive and more selective
than *OH, which means that in the case of SO4*~, it would be easier to find a contaminant
or a group of contaminants having high reaction rate constant(s) with the radical transient,
in a framework of interfering agents showing (on average) much lesser reactivity. The
presence of interfering agents may thus have lesser impact on SO4°*~-based compared to
*OH-based treatments [45], for which the reaction rate constants have the tendency to be
more similar for target contaminants and interfering agents.

It is also interesting to highlight the reason why two radicals with similar reduction
potentials (E° ~ 2.6 V in both cases) [43,44] show different reactivity. The point is that SO4*~
reacts exclusively or almost exclusively via electron transfer, which is easier and faster in
the case of heteroatoms (S, N) present on aromatic or aliphatic compounds, compared to
inorganic species. This issue is depicted in Figure 2, showing that SO4°~ is usually more
reactive towards aromatics. Compared to SO4°*~, *OH can be involved in a wider range
of reactions that, apart from electron abstraction, also include H-atom abstraction and
addition to double bonds and aromatic rings [44,52]. Therefore, *OH is still able to react
fast with compounds, for which the reactivity with SO4°~ is rather poor. On this basis, the
oxidative removal of many aromatic contaminants with SO4*~ may provide a favorable
scenario, where the contaminants themselves react fast with SO4°*~ and compete favorably
with the interfering agents. Indeed, interfering agents usually include an important fraction
of aliphatic as well as inorganic compounds.
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Figure 2. Second-order reaction rate constants (k. SO;*) of inorganic (A), aliphatic (M) and aromatic
(®) compounds M with SO4°~, as a function of the number of carbon atoms. Rate constant data were
derived from the work in [44].

The above discussion accounts for the current interest in the development of SO4°*~-based
advanced oxidation processes, as an alternative or as a complement to the *OH-based
ones. Unfortunately, however, it is very difficult to devise a treatment technique that
is based exclusively on SO4°~. A first reason is that *OH and SO4°*~ have very similar
standard reduction potentials. Moreover, the reduction of *OH is strongly enhanced in
acidic conditions, while that of SO4°~ is much less dependent on pH: as a consequence,
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there is a wide pH range where SO4°~ is able to oxidize water and OH™ to *OH, or to its
conjugate base O°®~.

Therefore, even if a treatment technique is initially designed to produce SO4°*~ as the only
reactive species, in most cases the system will contain a mix of *OH and SO4°~. To explain this,
consider the thermodynamics of systems containing HyO +SO42~ + *OH + SO,4°*~, which
can be described by the following semi-reactions and equilibria [53]:

SO4* " +e” — SO42~ 1)
*OH+H" +e~ — H,O ()
*OHS O* +H* (3)
HSO,~ S H' + 5042~ (4)

By examining reactions (1)—(4) together, one gets the results shown in Figure 3 as the
trends of the reduction potentials of *OH and SO4°~ as a function of pH. The reported data
suggest that a “pure” SO4°*~-based system could be obtained only at pH < 2, where SO4*~
is unable to oxidize water and, on the contrary, one might have the oxidation of HSO4~ by
*OH (which does not apply, however, if one generates SO4°~ from the very start).

*OH + HSO;,~ — HyO +S0,4*~ [k=1.7 x 10° Lmol ' s71] (5)
300 T L e Rl e S e i B v B Bt e R e e
2.75
S0,*
2.50 Eso;- +20:H_
e

225 oo + H50;

Reduction potential E, V

SO+ 0" +iH,0
b : .
2.00 -{H,0+80;"
SO+ H,0— SO +'OH + H™
LS SO +0H™ — SO; +'0H
1.50 T \ T 1 T T T ¢ & T [T o ¥ | 1 |
0 2 4 6 8 10 12 14

pH

Figure 3. Trends of the reduction potentials of SO4*~ and *OH, as a function of pH and with standard
hydrogen electrode (SHE) as reference electrode. The highlighted pH values correspond to the pK,’s
of HSO4 ™ (~2) and *OH (~12). The thermodynamically favored reactions involving SO4*~ and *OH
are depicted in the relevant pH ranges.

The kinetics of reaction (5) [43] is consistent with the thermodynamic insight that is
reported in Figure 3. In contrast, at pH > 2, which would encompass most conditions found
in water treatment, it would be quite difficult to form SO4°*~ without also producing *OH
(or O*7) as a side process. Indeed, in such conditions one gets that SO4*~ is a stronger
oxidant than *OH/O®~, which means that SO4*~ would be able to oxidize H,O/OH™ to
*OH/O°".

Of course, apart from thermodynamics, the process kinetics is also very important,
and the oxidation of H,O by SO4°~ would be in competition with the scavenging of SO4°*~
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itself by other dissolved compounds, which depends by dissolved compound concentration
and second-order reaction rate constants with SO4°*~. Moreover, because SO4°*~ and *OH
often coexist in the same solution, the occurrence and involvement of SO4°*~ and/or *OH
in substrate transformation must be assessed on a case-by-case basis. This has often been
done in the case of pollutant degradation by ZVI + persulfate, and the studies that have
addressed the relative roles of SO4*~ and *OH will be highlighted whenever relevant in
the next section.

3. Degradation of Pollutants by ZVI-Fenton/Persulfate

The redox reactivity of ZVI is very interesting because it can be widely modulated
depending on the operational conditions. Although it is an electron donor, ZVI induces
oxidant activity in the presence of water, dissolved oxygen, and, most frequently, HyO,,
in which circumstances it can trigger the formation of the strong oxidant *OH [5,10]. By
exploiting the reductive and/or oxidative capabilities of ZVI alone, it has been possible
to use it for the removal of anions [54,55] as a reductant, but also for the treatment of
further contaminants such as heavy metals [56,57], dyes [58], and halogenated organic
compounds [5,56], where the reducing and oxidizing characters of ZVI have been exploited.
The removal of pollutants by ZVI is neither a purely physical adsorption process, nor
a purely chemical/electrochemical process. It includes a complex mixture of different
pathways like dissolution, adsorption, redox reaction, and precipitation, which happen
simultaneously or in a number of steps on the iron surface.

In particular, the mixture of ZVI with persulfate is able to trigger a series of reac-
tions (6)—(10) with generation of reactive radicals (*OH, SO4°~), which can be extensively
exploited for the decontamination of wastewater [59,60].

Fe’ + 2H,0 — Fe?* + 20H™ + H, (6)
Fe?* + 5,052~ — Fe3* + 504%™ +S0,4°~ 7)
Fe® + 2Fe3" — 3Fe?* 8)

Fe?* + H,O, — Fe®* + *OH + OH ™~ 9)
S0,4°~ + H,O — SO42~ + *OH + H* (10)

Note that reactions (7) and (9) describe the Fenton and Fenton-like production of
oxidizing species, the interconversion of which is depicted by reaction (10). Moreover, the
reactions of iron species with dissolved molecular oxygen (here not shown) can produce
Fenton reagents as well. The cycling of Fe species having different redox states is shown by
reactions (6)—(9).

Nanoscale ZVI (nZVI) is often used as Fe’ form in these processes [30,59], because
the favorable surface-to-volume ratio of ZVI nanoparticles enhances their reactivity [22].
The other side of the coin is the fact that nZVI undergoes fast surface oxidation that may
hamper its reuse [61]. However, at least in the case of ZVI/H;05, it has been found that
passivated nZVI (i.e., nZVI covered with a layer of Fe oxides) retains significant Fenton
reactivity that would be an advantage in the case of possible reuse [62]. Furthermore, again
in the framework of ZVI/H,0; it has been shown that the nZVI doses needed to degrade
contaminants are quite low and do not affect much the process economics, even in the
case of difficult reuse [63]. It is clear that the above findings reported for ZVI/H;0O, need
confirmation in the case of ZVI/PS. Moreover, a family of promising composite materials
based on amorphous Fe (metallic glasses) has also been developed recently, with the ability
to activate HyO,, PS, and SOs2~ and with an interesting performance as far as reuse is
concerned [64-67].

To make some examples of the application of ZVI/PS to decontamination processes, Deng
et al. [68] have chosen acetaminophen (APAP) as representative pollutant for pharmaceutical-
industry wastewater, applying the iron/persulfate (Fe” /PS) Fenton-like process to APAP
degradation. They studied the effects of pH, iron dosage, and addition of chelating agents
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over the Fe'/PS system. The highest efficiency (~93%) was achieved with a 1:1 molar ratio
between iron and PS. Effective degradation (>90%) was observed in a broad pH range
(3-8.5), while the presence of Fe was assumed to be important for the regeneration of
Fe?* by reaction (8) with Fe3*. Both SO,*~ and *OH were found to be involved in APAP
degradation. Herein, the production and interconversion of radicals have been observed.
Zhang et al. [59] have synthesized nanosized ZVI (nZVI) to carry out nZVI/PS degradation
of Norfloxacin (NOR). The highest degradation efficiency (93.8%) of 100 mg L~! NOR
was achieved with 100 mg L~! nZVI, 12 mM PS and pH 7.0. The reaction followed the
pseudo-first-order kinetic model. From both quenching experiments and EPR analysis it
was derived that both SO4°*~ and *OH were involved in NOR degradation, but *OH played
the main role. It was found an optimum nZVI dosage for degradation [59], above which it
can be assumed that nZVI would scavenge *OH to a significant extent [69]. Moreover, high
temperature and PS concentration favored the degradation process. Jiang et al. suggested
that Fe® is an efficient source of Fe?* to activate persulfate (S,05%7) to SO4*~ for the
degradation of bisphenol A (BPA). High initial persulfate or Fe’ concentration decreased
the BPA removal, but the degradation efficiency increased from 49 to 97% with sequential
additions [70]. The use of sequential additions of reagents, which are then consumed in the
Fenton reaction, is useful to prevent the reagents to reach excessive concentration values
at any time point, differently from a large, single initial addition. Indeed, excess reagents
may be detrimental to degradation because they scavenge reactive species (*OH and/or
SO4°7) [69]. The pH where the system works at its best efficiency is pH 3, but maintaining
this pH value is problematic due to the high cost of the needed reagents.

It is quite clear from the above discussion that pH and reagent dosage have significant
effects over the degradation efficiency. The following section describes the effect of pH
over the ZVI/PS process, including the formation of different reactive radicals.

3.1. Effect of pH

Apart from the intrinsic properties of iron, some other operational parameters affect
the performance of ZVI-Fenton, including pH, iron dosage, dissolved oxygen, iron pretreat-
ment, temperature, and PS/Fe® ratio [5,50,71]. Among all of the above factors, pH plays
a crucial role because it affects both the rate of generation of radicals and the speciation of
many contaminants, thereby highly affecting the degradation performance.

Wau et al. [72] have observed higher degradation of sulfamethazine in acidic compared
to basic media. In particular, in the presence of PS the degradation efficiency decreased
from 91% to 34% as the initial pH was increased from 5 to 10. Degradation was significantly
improved (95-98%) in the whole pH range upon addition of H,O,, but it was still slightly
higher at pH 5. Overall, these data suggest that acidic pH may be favorable to the formation
of oxidizing species such as *OH and SO4°*~.

As similar decrease in degradation efficiency with increasing pH (3-11) has been
reported by Zhang et al. [73] who used ultrasound-nZVI/PS to degrade chloramphenicol
(CAP). The effect of pH was attributed to several factors, including (i) precipitation of Fe
at alkaline pH and passivation of the ZVI surface, which gets covered by a layer of Fe
(hydr)oxides that hinder CAP decomposition; (ii) lower dissolution of ZVI at higher pH,
which reduces the availability of Fe?* that is required to activate PS; and (iii) scavenging
of SO4*~ by H,O and hydroxyl ions at basic pH. However, the replacement of SO4*~
by *OH as reactive species is not always detrimental to degradation: the effect depends
on substrate, operational conditions, and the possible occurrence of interfering agents,
thus it cannot be generalized to all circumstances. Overall, SO4*~ was shown to play
a more important role than *OH in the degradation of CAP in the studied system [73].
The elevated performance of ZVI/PS at acidic pH explains why Diao et al. used this
technique for the treatment of acid mine drainage water, to achieve the removal of atrazine
(ATZ) [30]. Maximum ATZ removal (84%) was observed at pH 4 and both radicals (SO4°~,
*OH) were involved, with a dominant role played by SO4°~. Du et al. have carried
out degradation of Acid orange 7 (AO7) with granular red mud reinforced by ZVI and
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persulfate (Fe@ GRM/PS) [74]. The study covered a very broad pH range (1-13), and
the degradation efficiency was consistently decreased from 94% down to 18% as the pH
increased. There is also evidence that adsorption of AO7 on the surface of Fef@GRM played
an important role in the degradation process.

Different quenching chemicals have been used to mask the effect of radicals or to
capture them. For instance, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was utilized to
capture SO4°*~ and *OH in case of fenitrothion [75], methanol for sulfadiazine [76], NaNO,
for acetaminophen [68], and ethanol for diuron [77].

In summary, it is indicated from the above discussion that the process triggered by
ZV1/PS has an important dependence on pH. Results from the above and additional
studies are reported in Table 1, which highlights both the effect of pH and the role of the
reactive radical species (SO4*~ and/or *OH) in substrate degradation. The table shows
that acidic conditions are favorable to the Fenton-like degradation in the vast majority of
cases, with only few exceptions. Precipitation of Fe(IlI) (hydr)oxides with increasing pH,
and enhanced dissolution of ZVI with higher occurrence of Fe2* in acidic conditions, are
the most likely general explanations for the observed pH effect.

Table 1. Summary of the effect of pH along with generation of respective radicals with different pollutants. Note that

Psi = porous silicate.

Pollutants Experimental Conditions pH (% Degradation) Main Reactive Species Reference
Pollutant concentration: 0.066 mM 3-8.5 (>90%)
Acetaminophen ZVI: 0.1-1g/L 1.5 (49.51%) SO4*~, *OH [68]
PS: 0.4 mM 10.0 (16.57%)
1.0 (93.95%)
3.0 (93.22%)
Pollutant concentration: 200 mg ™! g 5.0 (91.34%)
Acid Orange 7 Iron source: 0.1-1.4 g/L 7.0 (66.25%) SO4°*~ [74]
PS: 5-500 mM 9.0 (52.52%)
11.0 (21.62%)
13.0 (18.26%)
. Pollutant concentration: 1 mM 11.0 (40%) - o
Anisole PS: 0.25-0.5 M 12.0 (>99%) S04, "OH [47]
3.0(>99%)
Pollutant concentration: 50 uM 5.0 (98%)
Arsenic ZVI1:0.1-04 g/L 7.0 (96%) SO4°~, *OH [36]
PS: 0.5-10 mM 9.0 (60%)
11.0(51%)
Pollutant concentration: 2.5-15
Atrazine mg/L 4.0 (84%) SO4*~ (84%), *OH [30]
ZVI: 0.25-1 g/L : 4 ’ -
PS: 0.25-0.50 mM
Pollutant concentration: 25 mg/L
Atrazine ZVI/BC: 175 mg/L 3.0 (83.77%) SO4*~, *OH [78]
PS: 2 mM
3.0 (95.1)
Pollutant concentration: 0.05 M 5.0 (94.3)
Chloramphenicol ZVI: 0.12-4 mM 7.0 (93.4) SO4*~, *OH (Dominant) [79]
PS: 0.25-3 mM 8.5(93.2)
10.0 (92.5)
Diuron Pollutant concentration: 0.05 M ; 8 ((86?5‘{;))
(3-(3,4-Dichlorophenyl)- ZVI: 0.05-1 mM ’ o SO,4*~ (Dominant), *OH [77]
1,1-Dimethylurea) PS:0.5M 90 (No Degradation)
! T 11.0 (No Degradation)
Pollutant concentration: 10 mg/L 28
Fenitrothion PS:Fe®: 1:1.5 molar ratio 7' 0 SO4°~ [75]

PS: 0.1IM 9.0
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Table 1. Cont.

Pollutants Experimental Conditions pH (% Degradation) Main Reactive Species Reference
Pollutant concentration: 25 uM gg
Naproxen ZVI1:0.25-1.50 mM 7' 0 SO4°~, *OH [80]
PS: 0.1-0.5 mM ’
9.0
. Pollutant concentration: 1 mM 11.0 (40%) o ,
Nitrobenzene PS: 0.25-0.5 M 12.0 (>60%) OH [47]
Pollutant concentration: 200 mg/L
Nitrobenzene ZVI1:0.75 g/L 5.0 (100%) SO,4*~, *OH [81]
NazSzOz;: 26.8mM
3.0 (>90%)
Pollutant concentration: 100 mg/L 4.5(>90%)
Norfloxacin ZVI: 0.075-0.3 g/L 7.0 (93.8%) SO4°~, *OH [59]
PS: 3 mM 9.5 (89.9%)
11.0 (80.8%)
3.0 (99.66%)
Pollutant concentration: 100 mg/L 5.0 (98.34%)
Orange G Psi@ZVI: 0.2 g/L 6.9 (98.93%) SO4°~, *OH [82]
PS: 16 mM 8.0 (98.89%)
10.0 (96.76%)
Pollutant concentration: 40 uM 4350(5172/2/))
Propranolol ZVI: 0.15 g/L SOt SO,*~, *OH [83]
PS: 1 mM 7.0 (89.4%)
’ 11.0 (35.4%)
Pollutant concentration: 0.05 mM 4.0 (100%)
p-Chloroaniline ZVI:0.70 g/L 9.0 (43.59%) SO4°~, *OH [84]
PS: 2.5 mM 11.0 (41.52%)
Pl _S&Cﬁ?;toﬁ 31_) Pollutant concentration: 30 ppm
Lynayrmethyt), ZVI:05-3 g/L 7.0 (88%) SO,*~, *OH [85]
-N-Nitro-Imidazolidin-2-
. . PS: 2.5-15 mM
Ylideneamine
Pollutant concentration: 20 mg/L o
Sulfadiazine ZVT: 0.92 mM 3'0‘17 600(?557;38)'4 %) S0, [76]
PS: 1.84 mM SIS
Pollutant concentration: 0.3 mM 30 é909 %)
Reactive Blue 19 ZVI1: 0.8 g/L ’ SO4°~ [86]
7.0
PS: 10 mM 9.0

Another issue that is linked to pH is the fact that oxidation of HO/OH™ to *OH
by SO4°~ is favored in neutral to basic solutions as compared to acidic ones, as already
discussed in Section 2. The choice of using PS over H,O; as Fenton oxidant is usually
motivated by the desire to produce SO4°~ instead of *OH as reactive species (e.g., because
of higher SO,°~ selectivity). Therefore, a further argument in favor of operation at acidic
pH is represented by the possibility to obtain a simpler system with only one (or a strongly
prevailing) reactive species, SO4°*~. Indeed, whenever allowed in the framework of wa-
ter treatment, the operation of ZVI/PS at acidic pH would combine higher Fenton-like
reactivity with higher selectivity due to SO4* ™.

3.2. Effect of Inorganic Anions
3.2.1. Chloride

The effect of chloride ions on the ZVI/PS process has been controversial because
chloride can induce some contrasting processes in Fenton-like systems. In particular,
Cl~ can boost the corrosion of Fe [87], and it can also scavenge SO,;°*~ and/or *OH with
generation of reactive chlorine species (RCS) such as Cl,*~, C1°, and Cl, [88]. Note that
scavenging of SO4°*~ by Cl™ can take place at any pH value, while net scavenging of *OH
by C1~ occurs only at acidic pH [43,44]. Depending on the conditions, the overall effect
of chloride can be either an enhancement or an inhibition of pollutant degradation. To



Molecules 2021, 26, 4584

10 of 17

account for inhibition, it has been invoked the scavenging by chloride of strong oxidizing
species (SO4°~, *OH) that are replaced by less reactive RCS such as Cl*™ [89].

S04 +Cl~ = ClI*+S0,2~ k=27x10°M's! (11)
Cl* +Cl~ — ClL"*~ k=44 x108M1s! (12)
Cl* + H,O — HOCI*~ + H*  k=25x10°s"! (13)

ClL* +CL* — Cl +2Cl~ k=21x10"M1s! (14)
HOCI*~ — *OH + ClI~ k=6.1x10"s7! (15)

Interestingly, there is evidence that the Fenton-like systems based on ZVI/PS have
an improvement in performance in the presence of chloride when the concentration of
the latter is low (around 1 mM), while degradation worsens considerably at high chlo-
ride (>10 mM). A reasonable explanation is that C1~ at low concentration activates ZVI
corrosion and stimulates the activation of PS by FeZ* [21]. On the other hand, elevated
Cl™ concentration would rather produce scavenging of SO4°*~ (and/or *OH) [90], replaced
by less reactive RCS (Cl,*~, CI°, Clp).

Coherently, Kim et al. have reported that different concentrations of chloride have
different effects on ZVI/PS [89]. They concluded that there is an optimum value of [Cl™]
for which degradation is most efficient (170 mM CI~, equivalent to ~1% dissolved salts that
is in the range of brackish waters). Indeed, based on the obtained results, it was inferred
that pollutant degradation by ZVI/PS might be more efficient in brackish waters than in
either freshwater, or more saline waters (600 mM Cl~, equivalent to ~3.5% dissolved salts
as found in seawater).

Chlorinated by-products can be formed during the process and they may be toxic.
Although this issue has not been explored much so far, a few intermediate chlorinated
by-products have been detected as reported here in Table 2. The formation of chlorinated
by-products is quite likely in the presence of RCS and of electron-rich substrates [91].
Indeed, SO4°*~ can oxidize CI™ to produce the chlorinating agents CI1°, Cl, upon rad-
ical condensation, and Cl,*~ upon reaction between CI* and CI~ [44]. The table also
reports whether CI~ enhanced or suppressed the degradation of pollutants at the chloride
concentrations used in each relevant study.

Table 2. Effect of chloride ion over pollutant degradation (+ve: Positive effect; —ve: negative effect), and formation of

chlorinated by-products.

Pollutant pH Effect of Chloride Chlorinated by-Products Reference
(+ve/—vel=)
5-Chloroisobenzofuran-1,3-Dione, 1-Chloro-
. . +ve (1-100 mM) 2-(Dimethoxymethyl)Benzene,
Acid Orange 7 -1 —ve (>100 mM) 1-(3-Chlorophenyl) Propan-1-One [92]
2-Chlorobenzaldehyde
Bisphenol A 6-8 +ve Trichloronitromethane [93]
. Trichloromethane, Trichloroacetonitrile,
Carbamazepine -8 tve Trichloronitromethane [94]
Chloramphenicol 5-8 Absence of Chloride Dichloroacetamide [95]
Chloramphenicol 3-9 +ve (<1 mM) [79]
+ve (1 mM)
4-Chlorophenol 2-7 —ve (>5 mM) [21]
2-Chloro-4-
2-Chlorophenol 7.9 Absence of Chloride Nitrophenol (2C4NP), [96]

2-Chloro-6-Nitrophenol (2C6NP)
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Table 2. Cont.
Pollutant pH Effect of Chloride Chlorinated by-Products Reference
(+ve/—ve/=)
. Trichloromethane,
%gﬁgﬁ;g égﬂ? lﬁi‘z’g’:ﬁ‘i 7.61-8.76 +ve 1,1,3-Trichloro-2-Propanone [97]
y y 1,3-Dichloro-2-Propanone
2,4-Di-Tert-Butylphenol 7-8 +ve Trichloromethane [98]
Perchloroethylene 7 No Effect up to 28 mM [99]
Propanolol —ve (>5mM) [83]
+ve (25-200 mM)

Phenol 25 —ve (400 mM) [89]
Phenol 3944 No Effect [100]
Rhodamine B 2-12 +ve up to 50 mM C1~ [101]
Sulfadiazine 4.0 +ve up to <10 mM [102]
Sulfamethoxazole +ve [103]

3.2.2. Nitrate/Nitrite

The effect of nitrate and nitrite ions over Fenton systems based on hydroxyl and sulfate
radicals has not been explored much. However, in the presence of nitrate and especially
nitrite, one can expect scavenging of sulfate radicals as shown in equations (16,17), as well
as of *OH.

NOj3™ +50,4°" — NO3* + 504>~

NO,™ + S04~ — NO,* + SO4%~

(16)
(17)

The scavenging process is expected to produce the replacement of SO4°*~ (and *OH)
with less reactive radicals (NO3*® and especially NO,*®), which should inhibit Fenton
degradation, but the actual outcome depends on the conditions and the target substrate.
The nitrate radical would regenerate nitrate by reacting, thus nitrate is not expected to
change in concentration due to this process. Conversely, nitrite is oxidized to nitrate.

For instance, Guo et al. have recently reported the effect of nitrate on the decontami-
nation of sulfadiazine by ZVI/PS [102]. For reasons that are still to be explained, a small
amount of nitrate (<10 mM) was found to enhance the removal efficiency. In contrast,
the removal of sulfadiazine was inhibited in the presence of higher nitrate concentra-
tions (10-50 mM). The latter effect was attributed to a scavenging process (reaction (16)),
combined to the lower reactivity of NO3* when compared with SO4°*~ [44,53].

Inhibition of pollutant degradation by PS/SO4°~ has also been observed in the pres-
ence of nitrite at relatively high concentration values (>100 uM) [96]. The oxidation of
NO;™ to NO,*® by SO4°~ (reaction 17) is expected to induce a double effect: (i) inhibition
of pollutant degradation, because NO,* is considerably less reactive than SO4*~ (and
than NO3*® as well: indeed, nitrite has the potential to inhibit degradation at a higher
extent than nitrate if concentrations are comparable) [44,53], and (ii) formation of nitrated
by-products, because of the activity of NO,* as nitrating agent. Coherently, the degradation
of 2-chlorophenol in the presence of SO4°~ and nitrite has been reported to form different
chloronitrophenols, including 2C4NP and 2C6NP [96]. Because these nitro-derivatives that
are formed in the process may be toxic, their production should be considered and avoided
whenever possible.

To date, only a minority of studies that investigated the effect of nitrate/nitrite on
SO4°*~-induced degradation has focused on the formation of nitrated by-products. A short
summary of the investigated pollutants, the influence of nitrate/nitrite on their degradation
and the detected by-products is given in Table 3.
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Table 3. Effect of nitrite/nitrate ion over pollutant degradation.

Effect of . ..
Pollutant pH Nitrate/Nitrite Nitro-Derivatives as Byproducts Reference
. NO; ™~ . .
Bisphenol A 7.0 +ve Trichloronitromethane [93]
Chloramphenicol 3.12-5.4 NOs™/NO, ™ [79]
—ve/—ve
NO3~ 2-chloro-4-
2-Chlorophenol 7.0 +ve (50-100 uM) nitrophenol (2C4NP), [96]
—ve (>100 uM) 2-chloro-6-nitrophenol (2C6NP)
(2-Chloro-N-2,6-Diethylphenyl-
N-(Methoxymethyl)Acetamide No effect 571
NO3~
Propanolol —ve (>5 mM) [83]
Phenol 3.9-44 No effect [100]
. NO3™ (+ve <10 mM)
Sulfadiazine 4.0 —ve (10-50 mM) [102]
Sulfamethoxazole NOs™ [103]
+ve

3.2.3. Carbonate/Bicarbonate

Both HCO3~ and CO32~ can scavenge SO4°~ (as well as *OH) and finally produce
the carbonate radical, CO3°*~ reactions (18) and (19). Although CO3°~ reacts mainly
through electron/hydrogen transfer in a similar way as SO4*~, CO3°*~ is considerably
less reactive than SO,4°~ because of the lower one-electron reduction potential [44,53].
Because of reactions (18) and (19), one might expect that carbonate and bicarbonate inhibit
the degradation of pollutants in the presence of ZVI/PS. This is often observed, but in
several circumstances the scenario is more complex because the effects of carbonate and
bicarbonate on degradation also depend on their concentration, the pH, and the nature of
target pollutant(s).

S0,4° + CO32~ — CO3*™ + 5042 (18)

SO4*~ + HCO3~ — CO3*~ + H + SO4%~ (19)

For instance, Bennedsen et al. have investigated the influence of carbonate over
PS activation for the degradation of p-nitrosodimethylaniline as model pollutant [99].
Notably, in that case the role of CO3%~ could not be assimilated to that of a mere scavenger.
A similar, positive effect of HCO3~/CO32~ on pollutant degradation by PS activation has
been reported by Hayat et al. too [85].

Zhao et al. have studied the effect of water matrices including natural organic mat-
ter (NOM) and bicarbonates over the degradation of 2-chlorophenol by PS activation.
They found that bicarbonate inhibits degradation due to SO4°*~ scavenging. However, it
should also be considered that bicarbonate acts as a buffer for the reaction solutions [96].
Similarly, negative effects of CO32~ /HCO3~ on degradation have been reported in the
cases of propranolol and sulfamethoxazole. A short summary of the influence of carbon-
ate/bicarbonate over oxidation by SO4°~ is provided in Table 4, which also highlights their
positive/negative behavior along with the target pollutant under study.
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Table 4. Effect of carbonates/bicarbonates.

Pollutant pH Effect of Bi/Carbonate Reference
2-Chlorophenol 7.9 +ve [96]
Imidacloprid 7.0 +ve [85]
Phenol 74-11.3 +ve [100]
Propranolol —ve [83]
+ve (10-100 mM) in
p-Nitrosodimethylaniline 124 alkaline media [99]
—ve in acidic media
Sulfamethoxazole —ve [103]
Tetrabromobisphenol A 7.0-8.5 —ve [104]

As a final remark, it appears that the effect of HCO3~ and CO32~ over the degradation
of pollutants by SO4°~ needs additional investigation, because it is likely to depend on
target pollutant, reaction conditions and other parameters.

4. Conclusions

The Fenton-like process based on ZVI and persulfate (ZVI/PS) has the potential to
overcome the drawbacks of both homogeneous Fenton (production of sludge, very narrow
operational pH interval) and the *OH-based advanced oxidation processes (non-selective
behavior of the hydroxyl radical). However, it is important to consider that it is difficult to
obtain a pure SO4°*~-based oxidation, because of the ability of SO4°~ itself to oxidize water
and OH™ to *OH at pH > 2. Therefore, in most cases one will get a mixed process where
both *OH and SO,°*~ take part at different degrees in pollutant transformation.

The operational pH value plays an important role in the degradation efficiency of
pollutants by ZVI/PS. Usually the degradation is most efficient at acidic pH, for two main
reasons: (i) precipitation of Fe(III) as the pH increases, which hampers the recycling of Fe
species and decreases, as a consequence, the production of reactive radicals (SO4°*~ and
*OH); (ii) dissolution of ZVI at acidic pH, which provides more Fe species (and especially
Fe?*) for the Fenton reaction. Despite these limitations, the useful pH range for degradation
by ZVI/PS is usually wider than for homogeneous Fenton. In homogeneous Fenton
systems, when Fe?* is completely oxidized to Fe(Ill) by H,O, or PS, and Fe(1Il) precipitates,
reactivity is totally suppressed. In contrast, ZVI might still act as a source of reactive Fe
species even at relatively high pH values, despite a non-negligible loss in reactivity.

Inorganic anions that usually occur in surface waters have the potential to act as
scavengers of SO4°*~ and/or *OH, producing less reactive radical species and inhibiting
degradation as a consequence. However, in particular conditions and with some anions
(C1=, HCO3;~, CO3%7) one might observe enhanced degradation. Therefore, compared
to expectations based on radical scavenging, the degradation of pollutants by ZVI/PS
might become peculiarly fast in some saline waters. In such cases one should take into
account the possible formation of harmful by-products, however. For instance, reactive
chlorine species (Cl,*~, C1*, and Cly, produced by chloride oxidation) have the potential to
form chlorinated compounds, while NO,* (produced by nitrite oxidation) acts as nitrating
agent. The composition of wastewater may be very variable; thus, it is difficult to figure out
which anion’s effect may be the most significant. However, it appears that nitrite affects
degradations by ZVI/PS at quite high concentration values, which would be found in
water matrices in only a minority of cases. The tested concentrations of the other ions
(NO5;~, Cl~, HCO3;~, and CO3%7) are quite comparable with typical water levels, thus the
prevailing effect would largely depend on the particular composition of the matrix under
treatment. In the case of saline waters, it can be predicted that the effect of chloride would
usually be very important. Overall, it can be concluded that the use of the ZVI/PS system
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can be very beneficial to remove aromatic pollutants easily in the presence of interferents
such as aliphatic compounds and inorganic ions.
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