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3Université de Lille, CNRS, UMR 8523 — PhLAM — Physique des Lasers, Atomes et Molécules, 59000 Lille, France
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The spin-current density functional theory (SCDFT), when formulated in a basis of Pauli spinors,
provides a proper theoretical framework for the study of materials in an arbitrarily oriented exter-
nal magnetic field and/or upon inclusion of spin-dependent relativistic effects, such as spin-orbit
coupling. The SCDFT is formulated in terms of the particle-number density n, the Cartesian com-
ponents of the magnetization mx, my, mz, the orbital-current density j and the three spin-current
densities Jx, Jy and Jz, where each of these density variables depends on specific blocks of the
density matrix. Exchange-correlation (xc) functionals within the SCDFT should therefore depend
on all of these eight fundamental density variables: Fxc[n,mx,my,mz, j,J

x,Jy,Jz], which makes
their parametrization a formidable task. Here, we formulate the adiabatic connection of the SCDFT
for a treatment of exact Fock exchange in the theory. We show how the inclusion of a fraction of
Fock exchange in standard functionals of the (spin) DFT (either in their collinear or non-collinear
versions: Fxc[n], Fxc[n,mz], Fxc[n,mx,my,mz]) allows for the two-electron potential to depend on
all those blocks of the density matrix that correspond to the eight density variables of the SCDFT,
in a sensible and yet practical way. In particular, in the local-density and generalized-gradient ap-
proximations (LDA and GGA) of the SCDFT, the treatment of the current densities solely from
the Fock exchange term is formally justified by the short-range behaviour of the exchange hole.
We discuss that the adiabatic coupling strength parameter modulates the two-electron coupling of
the orbital- and spin-current densities with the particle-number density and magnetization. Formal
considerations are complemented by numerical tests on a periodic model system in the presence of
spin-orbit coupling and in the absence of an external magnetic field.

Keywords:

I. INTRODUCTION

The original density functional theory (DFT) formula-
tion of Kohn and Sham (KS-DFT)1 for treating a non-
relativistic fermionic system in an external potential is
formulated entirely from the particle-number density n.
The extension of this theory to the treatment of a sys-
tem in an external magnetic field or to the relativistic
realm requires the inclusion of additional auxiliary den-
sity variables. The first of such extensions was the spin
DFT (SDFT) of von Barth and Hedin with the additional
variable being the magnetization m, in which the one-
electron equations are expressed as Pauli-like instead of
Schrödinger-like ones.2 The current DFT (CDFT) with
the orbital-current j and current-spin DFT (CSDFT)
with both m and j of Vignale and Rasolt allows for
treating spin-(non)polarized systems in the presence of
an external magnetic field oriented along the z Carte-
sian axis.3,4 For treating instead an arbitrarily oriented
magnetic field, Vignale and Rasolt introduced the spin-
current DFT (SCDFT), including also the spin-current
densities Jx, Jy and Jz.3 This latter formulation of the
theory was then generalized to the proper description of
spin-dependent relativistic effects, such as spin-orbit cou-
pling (SOC) by Bencheikh.5 The SCDFT is formulated in
the basis of two-component Pauli spinors, which means
that it can be used in tandem with approaches that al-
low in principal to exactly reproduce the electronic states

(positive energy solutions) of the Dirac equation.6–8

The SCDFT has however so far had very limited ap-
plications in condensed matter physics, because of the
intrinsic complexity of the corresponding functionals,
whose dependence on the extended set of auxiliary den-
sity variables needs to be parametrized. The SCDFT
calculations which have been reported thus far, have
therefore made use of a functional that need not be
parametrized. This is the exact exchange functional
of the optimized effective potential method EXX-OEP,
which was applied by Trushin and Görling to the study
of topological insulators.9 This seminal work highlighted
the importance of including the spin-current densities
into the functional for a qualitatively correct description
of pressure-induced topological phase transitions in SnTe
and AlBi. At the same time, the EXX-OEP approach
lacks of a treatment of electron correlation.

In this article, we provide a way forward by formu-
lating the adiabatic connection of the SCDFT for a si-
multaneous treatment of exact Fock exchange with elec-
tron correlation. This shows how readily-available stan-
dard functionals of the (S)DFT can be extended to in-
clude a dependence on all those blocks of the density ma-
trix that correspond to the eight density variables of the
SCDFT, thus providing a formally sound and yet practi-
cal strategy for generalizing the KS-DFT to include spin-
dependent relativistic effects and/or arbitrarily-oriented
external magnetic fields. The formalism is particularly
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simple in the LDA or GGA, in which case the applica-
tion of existing (S)DFT functionals is straightforward.

II. FORMAL CONSIDERATIONS

We use the notation that bold italic latin letters are
Cartesian vectors (ex. a,A), while bold regular font capi-
tal latin letters (ex. A) are general matrices. Pauli spinor
crystalline-orbitals (COs) Ψik are expressed in terms of
Bloch functions ϕµk as follows:

Ψik (r) =
∑
µ

[
αcαµik + βcβµik

]
ϕµk (r) , (1)

where the cσµik, with σ = α or β are the associated CO
coefficients and α and β are the spin eigenfunctions. The
k are points in the first Brillouin zone, with volume Ω.
The occupied COs can be mapped to a set of density vari-
ables that allow in turn to define the exchange-correlation
(xc) fields of the SCDFT. The first is the usual particle-
number density:

n (r) =
∑
i

∫
Ω′

i

dk Ψ†ik (r) Ψik (r) , (2)

where Ω′i is the subset of k points inside Ω associated
with one-electron energies εi{k} ≤ εF below the Fermi
level εF . In systems with broken time-reversal symmetry
(TRS), the states carry a non-vanishing magnetization
m whose Cartesian components mt are defined as:

mt (r) =
∑
i

∫
Ω′

i

dk Ψ†ik (r)σtΨik (r) , (3)

in which σt are the Pauli spin matrices and t = x, y, z
is a Cartesian component. The n and m are convected
according to the orbital-current j and spin-current J t

densities, respectively:

j (r) =
1

2i

∑
i

∫
Ω′

i

dk Ψ†ik (r)
[
∇Ψik (r)

]
+ h.c. ; (4)

J t (r) =
1

2i

∑
i

∫
Ω′

i

dk Ψ†ik (r)σt
[
∇Ψik (r)

]
+ h.c. ,(5)

where h.c. denotes the Hermitian conjugate.
In the context of a relativistic fermionic system in the

absence of an external magnetic field, it is worth appre-
ciating that while a non-vanishing j and m only occur
in systems with broken TRS (i.e. open-shell systems),
the J t are present in any system with sufficiently large
SOC. This means that the basic set of density variables
for treating a closed-shell system in the presence of SOC
is n, Jx, Jy and Jz, while for an open-shell system, all
eight density variables (n, mx, my, mz, j, J

x, Jy and
Jz) are required. On the other hand, in the more gen-
eral case which also includes external magnetic fields, a
more ample discussion on the minimal set of basic density
variables is provided by Trushin and Görling.9

The need for all eight density variables (n, mx, my, mz,
j, Jx, Jy and Jz) in the SCDFT is best viewed by ex-
pressing them in terms of the elements of the momentum-
space complex single-particle density matrix:

P
σσ′⊕
	σ

′′σ′′′

µνk =
∑
i

{[
cσµik

]∗
cσ

′

νik±
[
cσ

′′

µik

]∗
cσ

′′′

νik

}
θ(εF−εi{k}) ,

in which σ, σ′, σ′′, σ′′′ = α or β and θ is the Heaviside
function. Indeed, we can identify eight distinct spin-
blocks of the density matrix (the real and imaginary parts

of Pαα⊕ββ
k , Pαα	ββ

k , Pβα⊕αβ
k and Pβα	αβ

k ). The eight
density variables of the SCDFT indeed each use one of
these eight distinct spin-blocks of the density matrix in
their definition. For the particle-number and magnetiza-
tion densities:

n (r) = Tr
{

Re
[
Pαα⊕ββ

k

]
Xk (r)

}
, (6a)

mx (r) = Tr
{

Re
[
Pβα⊕αβ

k

]
Xk (r)

}
, (6b)

my (r) = −Tr
{

Im
[
Pβα	αβ

k

]
Xk (r)

}
, (6c)

mz (r) = Tr
{

Re
[
Pαα	ββ

k

]
Xk (r)

}
, (6d)

where Tr denotes the trace operator Tr
{
PkXk (r)

}
=∑

µν

∫
Ω
dk PµνkXµνk (r) and we have defined the short-

hand notation Xµνk (r) = ϕ∗µk (r)ϕνk (r). For the cur-
rent densities:

j (r) =
1

2
Tr
{

Im
[
Pαα⊕ββ

k

]
Yk (r)

}
, (6e)

Jx (r) =
1

2
Tr
{

Im
[
Pβα⊕αβ

k

]
Yk (r)

}
, (6f)

Jy (r) =
1

2
Tr
{

Re
[
Pβα	αβ

k

]
Yk (r)

}
, (6g)

Jz (r) =
1

2
Tr
{

Im
[
Pαα	ββ

k

]
Yk (r)

}
, (6h)

in which Tr
{
PkYk (r)

}
=
∑
µν

∫
Ω
dk PµνkY µνk (r) and

we have used the following compact notation:

Y µνk (r) = ϕ∗µk (r) [∇ϕνk (r)] − [∇ϕ∗µk (r)]ϕνk (r) .

It follows from Eq. (6) that density-functional approx-
imations (DFAs) which depend on all density variables
include the dependence on all eight blocks of the den-
sity matrix (i.e. on all parts of the wavefunction). On
the other hand, conventional DFAs of the (S)DFT de-
pending only on the particle-number and magnetization
densities include only at most half (only four blocks) of
the density matrix in their definition.

Minimization of the total energy of the system w.r.t.
the eight density variables, under the constraint of or-
thonormality and N-representability leads to the Kohn-
Sham SCDFT single-particle equations (written in the
absence of external magnetic fields):3,5,10[

1

2

(
−i∇ +

1

c
A

)2

+ V

]
Ψik (r) = εikΨik (r) , (7)
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in which the potentials A and V are defined in terms of
the functional derivatives of the xc energy Exc:

3,5,10

1
cA = δExc

δj +
∑
t σ

t δExc

δJt , (8)

V = Vext + VH + δExc

δn +
∑
t σ

t δExc

δmt
− 1

2c2 A · A , (9)

where Vext is the potential from the external field cre-
ated by the presence of the nuclei (including the electron-
nuclear and nuclear-nuclear terms), while VH is the
Coulomb or Hartree potential. Hence, as usual, the prob-
lem of finding the ground state energy of the system
comes down to finding good DFAs Fxc to express Exc:

Exc[n,m, j,Jx,Jy,Jz] =

∫
dr Fxc[n,m, j,Jx,Jy,Jz] .

(10)
In Eq. (10), we can express the xc energy Exc = Ex+Ec
in terms of independent exchange Ex and correlation Ec
contributions. Let us first concentrate on approximating
the larger Ex = Ex[n,m, j,Jx,Jy,Jz] from the follow-
ing adiabatic connection formula:11,12

Ex[n,m, j,Jx,Jy,Jz] =

∫ 1

0

dλ ελ[n,m, j,Jx,Jy,Jz] .

(11)
where ελ is the exchange energy at arbitrary coupling
strength λ, ε0 is the exchange energy of the non-
interacting KS reference and ε1 is the exchange energy
of the fully-interacting system of interest. Following the
usual procedure, we approximate the integral over the
coupling strength parameter λ using a two-point quadra-
ture and write:

Ex[n,m, j,Jx,Jy,Jz] ≈ aEF[n,m, j,Jx,Jy,Jz]

+(1 − a)

∫
dr Fx[n,m, j,Jx,Jy,Jz] , (12)

where EF is the energy contribution from the exact non-
local Fock exchange operator and can in turn be written
as a sum of terms En, Emt

, Ej , EJt each depending on
one of the eight distinct spin-blocks of the density matrix
that define the density variables, as follows:

EF = En [n] + Ej [j] +
∑
t

(
Emt

[mt] + EJt

[
J t
])

= −1

8

∑
spin

∑
µν

∫
Ω

dk P
σσ′⊕
	σ

′′σ′′′

µνk K
σσ′⊕
	σ

′′σ′′′

µνk , (13)

in which K
σσ′⊕
	σ

′′σ′′′

µνk is an element of the Fock exchange
operator in the Bloch function basis and the sum over
spin indices runs over all eight distinct spin-blocks of the
density matrix as defined in Eq. (6).

For the Fx, we consider local and semi-local approxi-
mations (LDA, GGA or meta-GGA) of the SCDFT, in

which Fx depends on the value of the eight density vari-
ables at the point r in space as well as (possibly) their
first and second derivatives evaluated at r. Pittalis et
al.10 have provided the first exact constraints on the form
of the Fx in the SCDFT by studying the short range be-
haviour of the exchange hole (x hole), providing expres-
sions for the on-top x hole (containing the variables that
should enter all DFAs of the SCDFT) and the curvature
of the x hole (containing the variables that should enter
only into meta-GGA DFAs of the SCDFT). Their results
show that the current densities j and the J t only en-
ter into the functional as their square (for example j · j)
at the level of the curvature of the x hole, but not in
the on-top x hole. This means that only meta-GGA ap-
proximations to the Fx of the SCDFT should contain an
explicit dependence on j and the J t, while LDA or GGA
ones should not. From Eq. (12) we can then write in the
LDA or GGA of the SCDFT:

Ex[n,m, j,Jx,Jy,Jz] ≈ aEF[n,m, j,Jx,Jy,Jz]

+(1 − a)

∫
dr Fx[n,m] . (14)

Therefore, LDA or GGA approximations to Fx can be
built through a usual non-collinear scheme which includes
no explicit dependence on the current densities.13–17 Cru-
cially, while all eight density variables enter into the def-
inition of EF in a uniform and consistent way, this is
not the case for Fx. Indeed, the four blocks of the den-
sity matrix that define the current densities j and J t

from Eq. (6) only enter into (semi-)local approximations
to Fx in those high-order terms of the Taylor expansion
that define meta-GGA functionals.

In this article, we then disregard the contribution of
the current-densities to the smaller Ec, such that we write
Ec = Ec[n,m], and thus assume (as conventionally done)
that we can write both the exchange and correlation parts
of the functional using a common set of density variables.
This defines a practical yet formally sound strategy for
the definition of DFAs of the SCDFT, which is consis-
tent with the current state of the art. As a matter of
fact, hybrid GGAs defined through the non-relativistic
equivalent of Eq. (14) have historically formed some of
the most successful DFAs and there is no a priori reason
to expect differently for the SCDFT.12,18–25

The consequence of Eq. (14) is that — unlike in the
standard KS theory — the coupling strength parameter
λ of Eq. (11) not only “turns on” the electron-electron
1/rij interaction, but, in doing so, also modulates the

coupling of the current densities j and the J t to the
other density variables n and the mt. As we show below
in section IV, this allows to properly relax all density
variables through the self-consistent field (SCF) process
and obtain physically meaningful solutions, when applied
to the study of actual materials.
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FIG. 1: Color maps of the spatial distribution of the auxiliary density variables of the SCDFT for an infinite radical chain of
Ge2H. The periodic direction is along the x axis and the plots are provided in the xy plane. The color identifies the absolute
value of the density variables while the length and direction of the superimposed black arrows represent the magnitude and
direction of the in-plane (x and y) Cartesian components of the density variables. The spatial distribution is reported at the
start of the SCF process (“Initial”) and at the end (“Final”). The difference between the two is also reported (∆). The left
plots are from the SCDFT while the right plots are from the SDFT.

III. COMPUTATIONAL DETAILS

Relativistic two-component periodic SCDFT calcula-
tions are performed on an infinite chain of Ge2H, with
three atoms in the primitive unit cell and a lattice pa-
rameter of 2.464 Å. The chain of Ge2H provides us with
a very simple model system with both space-inversion
and time-reversal symmetries broken. Despite its sim-
plicity, it nonetheless allows us to display all of the prac-
tical benefits of the proposed approach. All calculations
are performed with our self-consistent treatment of SOC
in a two-component spinor basis,16,26,27 as implemented
in a developmental version of the Crystal17 code.28,29

Crystalline orbitals are expressed as a linear combination
of atom-centered atomic orbitals.30 Details on the used
basis set and pseudopotential, as well as the numerical
integration on the direct-space DFT grid can be found

in Ref. 27. Convergence is achieved when the differ-
ence in energy between two successive cycles does not
exceed 1×10−10 a.u. Calculations are performed using
the SVWN5 exchange-correlation (xc) functional of the
LDA in its canonical non-collinear formulation.13,31,32 In-
tegration of the density matrix and diagonalization of
the Fock matrix is performed in reciprocal space, with
sampling on 100 points. A Fermi smearing was applied
with a smearing width of 1×10−3 a.u. Truncation of the
Coulomb and exchange infinite lattice series is controlled
by five parameters, which are here set to 8 8 8 8 20 (key-
word TOLINTEG, see user’s manual for more details).33

The initial guess magnetization is obtained from a scalar
relativistic (SR) atomic Hartee-Fock calculation and ro-
tated, using an approach which we discuss elsewhere, un-
less otherwise specified.16 The orientation of the vector
w in Eq. (60) of Ref. 16 (which roughly corresponds
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to the orientation of the guess magnetization on each
atom) is along the xyz diagonal, unless explicitly stated
otherwise. Calculations were performed both with and
without the spin-dependent part of the pseudopotential
(i.e. the spin-orbit effective core potential, SOREP) to
confirm the SOC-induced origin of the orbital-current j
and spin-current Jx, Jy, Jz densities.

IV. NUMERICAL CONSIDERATIONS

To show the practical benefits of the SCDFT strategy
formally discussed in section II, it is insightful to look at
the spatial distributions of the auxiliary density variables
and how they evolve during the SCF procedure. In Fig.
1, we report color maps in the xy plane of (from top
to bottom) the m, j, Jx, Jy and Jz as obtained after
the first diagonalization (denoted by “Initial” above the
left panels), at the end of the SCF (denoted by “Final”),
along with their difference (denoted by ∆). Data are
reported from a hybrid functional of the SCDFT (Becke’s
half-and-half, BHandH, with a fraction a = 0.5 of Fock
exchange12) as well as from a reference LDA functional
of the SDFT.

While in the SCDFT calculation all density variables
evolve jointly and in a significant way during the SCF
procedure, the SDFT one provides a minor relaxation of
the density variables after the first diagonalization. With
the SCDFT, the orbital relaxation is particularly strong
on both the magnetization m (that completely rotates
from the xy direction of the initial guess to the x direc-
tion) and orbital current density j (that is very small at
the start and builds up during the SCF), as well as in
the Jx and Jz spin current densities. From the formal
arguments elaborated above, this is a manifestation of
the fact that the standard SDFT two-electron potential
only uses four of the eight blocks of the density matrix
in its definition and can therefore not couple the n and
m with the current densities through the two-electron
term. As a matter of fact, this implies that the result
of an SDFT calculation largely depends on the choice of

the initial guess for the orbitals in the SCF procedure.
This is investigated in further detail in Tables S1-S2 of
the ESI,34 (see also Refs. 35–41 therein) where we pro-
vide values of the total energies and expectation values of
the magnetization from the SDFT and SCDFT calcula-
tions as obtained by using different orbitals as a starting
guess for the SCF procedure. The tables, along with
the associated color maps in Figure S1, show that the
SDFT calculations lead to very different values for the
magnetization of the final solution, precisely because of
their inability to rotate m during the SCF procedure
(i.e. lack of local magnetic-torque) and also to relax the
other auxiliary density variables. On the other hand, con-
sistent final solutions are always obtained from SCDFT
calculations, regardless of the starting guess, so long as a
sufficiently large fraction of Fock exchange is used in the
calculation (here found to be a ≥ 0.25). The fact that we
find consistent solutions starting from the familiar value
of a = 1/4 is likely not to be a coincidence. Indeed,
the arguments formulated by Perdew et al.42 for includ-
ing such an optimal fraction of Fock exchange in the xc
energy Exc are completely independent of the particular
set of density variables that enter into the functional, and
therefore there is no reason to believe that they should
not hold in the context of the SCDFT formulation.

V. CONCLUSIONS

In conclusion, in this article we have discussed the adi-
abatic connection for exact Fock exchange in the con-
text of the SCDFT. We have shown both formally and
through numerical calculations that such a formulation:
i) allows to easily include all pieces of the wavefunction
in the two-electron potential, which ensures the proper
relaxation of the eight relevant density variables along
the SCF process, and ii) the formalism is particularly
simple within the LDA or GGA of the SCDFT, in which
case SCDFT calculations are made possible starting from
standard LDA or GGA functionals of the (S)DFT by in-
clusion of a fraction of Fock exchange.
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