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One Sentence Summary:  

A detailed transcriptomic analysis across the NAFLD spectrum elucidates pathophysiological 
processes and identifies tractable serum biomarkers.  

 

Abstract:  

The mechanisms that drive non-alcoholic fatty liver disease (NAFLD) remain incompletely 
understood. This large multicenter study characterized the transcriptional changes that occur in 
liver tissue across the NAFLD spectrum as disease progresses to cirrhosis, using these data to 
identify novel circulating biomarkers. A discovery cohort comprising 206 histologically 
characterized NAFLD samples underwent high-throughput RNA sequencing. Unsupervised 
clustering stratified NAFLD based on disease activity and fibrosis stage with differences in age, 
ALT, type 2 diabetes mellitus and carriage of the PNPLA3 rs738409 variant. Relative to early 
disease, 25 differentially expressed genes were consistently identified as fibrosing-
steatohepatitis progressed through stages F2-4. These findings were independently validated 
by logistic modelling as robust indicators of disease stage in a separate replication cohort 
(n=175) and an integrative analysis with single-cell RNA sequencing data elucidated the relative 
contribution of specific intrahepatic cell populations. Translating these findings to the protein-
level, SomaScan™ analysis in over 300 NAFLD serum samples confirmed that circulating 
concentrations of the encoded proteins (AKR1B10 and GDF15) were strongly associated with 
disease activity and fibrosis stage: serving as putative biomarkers for fibrosing-steatohepatitis. 
Supporting the biological plausibility of these data, in vitro functional studies determined that 
endoplasmic reticulum stress upregulated expression of genes AKR1B10, GDF15 and PDGFA, 
whereas GDF15 supplementation tempered the inflammatory response in macrophages upon 
lipid loading and lipopolysaccharide stimulation. This detailed study provides novel insights into 
the pathophysiology of progressive fibrosing-steatohepatitis, as well as proof of principle that 
transcriptomic changes represent potentially tractable and clinically relevant disease 
biomarkers. 
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Introduction 

Non-alcoholic fatty liver disease (NAFLD) is an increasingly common progressive disease 
characterized by excessive hepatic accumulation of triglyceride/reactive lipid species and is 
strongly associated with the metabolic syndrome, i.e. central obesity, type 2 diabetes mellitus 
(T2DM), hypertension and dyslipidemia (1). With a global increase in sedentary behavior and 
obesity, the prevalence of NAFLD is rising rapidly, and now affects approximately 25% of the 
adult population worldwide (1). NAFLD is subdivided into ‘simple’ steatosis (non-alcoholic fatty 
liver, NAFL), and non-alcoholic steatohepatitis (NASH), defined by the presence of necro-
inflammation and hepatocyte ballooning. If NASH persists, fibrosis occurs and may progress to 
cirrhosis and, ultimately, end-stage liver disease (2). NAFL was traditionally considered a stable 
and relatively benign disease state that lacked the capacity to progress. However, recent data 
from serial biopsy studies have demonstrated that NAFL may transit into NASH and onwards to 
advanced fibrosis (3). NAFLD is therefore best considered a dynamic disease with 
steatohepatitic activity waxing and waning, and fibrosis stage also progressing and regressing 
subject to the actions of a variety of genetic, epigenetic and environmental modifiers (2). Key 
management challenges for NAFLD include the lack of effective biomarkers that may be used to 
risk stratify patients and the lack of approved pharmacological therapies.  

To date, efforts to examine the transcriptomic changes that occur as NAFLD progresses have 
largely employed microarray-based techniques and so have lacked the comprehensive 
approach provided by global RNA sequencing (4-10), or have been confined to relatively small 
patient cohorts that do not adequately represent the full spectrum of disease from normal liver 
through NAFL, to NASH exhibiting progressive stages of fibrosis and cirrhosis (11-13). 
Consequently, they have been limited to dichotomous comparisons between mild and 
advanced disease, which do not provide the granularity needed to fully appreciate the complex 
transcriptomic changes as NAFLD evolves, and lack independent validation.  

We report a comprehensive transcriptomic analysis conducted using RNA sequencing 
technology across the full histological spectrum from healthy controls through to NASH-
associated cirrhosis in a large cohort of European patients. Adopting an integrative 
transcriptomic approach to unravel pathways responsible for the stepwise progression of 
NAFLD, we identified and validate the gene expression signatures associated with early stages 
of disease, subsequent progression and specific histological features. Translating our findings 
from the hepatic transcriptome to the protein level, we further validate selected gene 
expression changes associated with disease activity and fibrosis stage using 
immunohistochemistry and measurement of circulating protein as exemplar biomarkers. 

 

Results  

Unsupervised clustering stratifies NAFLD based on fibrosis and disease activity 

The current study incorporates transcriptomic data on 403 individuals, 381 NAFLD samples and 
22 control samples, representing the full histological range from normal liver tissue to NASH-
cirrhosis. 206 frozen tissue samples from patients with NAFLD were included in a discovery 
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cohort and processed for high-throughput RNA sequencing (Fig. 1). All samples were 
histologically scored by two expert liver pathologists (DT & PB) according to the widely 
accepted, semi-quantitative, NASH-CRN NASH Activity Score (NAS) and the FLIP steatosis (S), 
activity (A), and fibrosis (F) scoring systems (14, 15) and grouped according to histopathological 
disease grade and stage, i.e. NAFL, NASH with different fibrosis stages F0, -F1, F2, F3 and F4. 
Detailed phenotypic description and demographics are reported in Table 1. As indicated by the 
principal component analysis, potential confounding factors sex, batch and center were 
corrected for in the analysis (Fig. S1). 
Unsupervised clustering based on gene expression stratified the 206 NAFLD samples from the 
discovery cohort into two distinct groups, annotated as cluster A and B (Fig. 2). Histologically, 
cluster A was characterized by more advanced fibrosis (Mann-Whitney U test, p=5.15E-10), a 
higher grade of hepatic ballooning (p=1.67E-05) and lobular inflammation (Kleiner scoring 0-3, 
p=1.70E-03; SAF scoring 0-2, p=1.36E-04), with no differences in steatosis grade when 
compared to cluster B (p=4.78E-01) (Table 1). This translated into a higher number of patients 
diagnosed with NASH in cluster A (84.62%) compared to cluster B (69.5%; Chi-square p=2.11E-
02). Moreover, when stratifying based on a high disease activity using a NAS score ≥ 4 (sum of 
steatosis, ballooning and Kleiner inflammation) or a SAF activity score ≥ 2 (sum of ballooning 
and SAF inflammation), cluster A showed an enrichment compared to cluster B (NAS≥ 4 83.08% 
vs 66.67%, Chi-square p= 1.49E-02; SAF activity score ≥ 2 86.15% vs 68.79%, p=8.08E-03) (Table 
1). Compared to cluster B, patients in cluster A were slightly older (57.08 vs 52.57 years; Mann-
Whitney U test p=1.58E-02), more overweight (BMI 32.51 vs 30.8; Mann-Whitney U test 
p=1.99E-02), were more likely to have T2DM (70.77 vs 45.39%; Chi-square p= 6.90E-04), and 
exhibited higher HbA1c concentrations (52.16 vs 45.8 mmol/mol; Mann-Whitney U test p= 

4.17E-02), higher serum AST (53.23 vs 40.67 u/L; Mann-Whitney U test p= 4.62E-04) and 
reduced platelet count (212.53 vs 237.78 x 109, Mann-Whitney U test p= 2.05E-02) (Table 1). 
Although carriage of well described genetic variants that have been associated with NAFLD 
severity (16) (GCKR rs1260326, HSD17B13 rs72613567, PNPLA3 rs738409 and TM6SF2 
rs58542926) did not confer discrete gene expression profiles within the overall RNAseq dataset 
(Fig. S2), cluster A showed an increase in carriers for the PNPLA3 rs738409 polymorphism when 
compared to cluster B (Chi-square p= 3.06E-02). 

Between cluster A and B, 1,292 differentially expressed genes (DEGs) were found (Table S1). 
KEGG pathway analysis indicated an enrichment in genes correlating to pathways including 
‘Extracellular Matrix interaction’, ‘Focal adhesion’, ‘PI3k-Akt signaling’ and ‘Wnt 
signaling’(Fig.S3A-C). Moreover, cluster A showed an increased expression in cytokine genes 
such as CCL2, CCL20, CCL19 and CCL28 (Fig. S3B) and also in hepatic progenitor cell marker 
genes (TACSD2/TROP2, EPCAM, SOX9, KRT19, KRT7, CD24, JAG1), suggesting progenitor cell-
mediated regeneration. Taken together, unsupervised clustering stratified NAFLD not only 
based on fibrosis stage but also on disease activity and carriage of the PNPLA3 rs738409 
variant, transcriptionally defining a patient subgroup that shows high Wnt signaling, active 
tissue remodeling and progenitor cell-mediated regeneration.  

Nested within cluster B are further subgroups that are not accounted for by strong differences 
in histological features alone but are rather characterized by changes in gene expression 
associated with tissue remodeling and PI3K-Akt signaling pathway including mTOR signaling-
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related genes (e.g. RICTOR, LAMTOR4), and differences in nuclear factors including SP3, NR2C2 
and LCOR (Table S2 and Fig. S3D). This suggests that NAFLD is a more heterogeneous condition 
than has previously been clinically defined. 

 

Transcriptional changes apparent in NAFL are sustained as fibrosing-steatohepatitis progresses 

To further understand the pathogenesis and progression of NAFLD, we performed supervised 
clustering comparing the different stages of NAFLD with control samples. Principal component 
analysis showed a distinct separation between the NAFLD cases (n=206) and ‘healthy obese’ 
controls (histologically normal liver tissue samples obtained from obese patients, n=10) (Fig. 
S4A). Similarly, using publicly available control RNAseq data sets, a gradual shift was observed 
from healthy non-obese individuals to healthy obese patients and to NAFLD patients (Fig. S4B) 
(12). A total of 2,603 DEGs were identified between NAFLD and the control samples, and 
between 1,875 - 3,578 DEGs when comparing the individual stages, showing enrichment for 
pathways including ‘Metabolic pathways’, ‘Ribosome’ and ‘TNF signaling’(q-value<0.05, Fig. 
S4C) with certain pathways such as ‘Platelet activation’-, ‘PPAR signaling’- and ‘Extracellular 
matrix’-related genes only exhibiting enrichment at later stages of disease progression, i.e. 
NASH F3/4 (Fig. S5A).  

Considering a priori pathophysiologically relevant candidates (17), we found expression of 
several genes to be increased in early disease, i.e. NAFL, including the cellular senescence 
marker CDKN1A/p21, the inflammatory marker IKBKG/NEMO and CYP7A1, the rate-limiting 
enzyme in the classical bile acid synthesis pathway that is subject to FXR-mediated regulation 
(18), which peaked as NASH developed and remained elevated but became less so as fibrosis 
progressed (Fig. S5B). This shows that transcriptomic changes related to initiation of 
inflammation, cellular senescence and bile secretion begin to occur soon after NAFL inception, 
and prior to histologically evident steatohepatitis. 

 

Defining differentially expressed gene-sets associated with steatohepatitis and fibrosis 

In order to study mechanisms associated with disease progression, we performed pairwise 
analyses between disease phenotype categories using the RNAseq data from the 206 NAFLD 
patients in the discovery cohort. To identify modifiers of steatohepatitis we compared the 
different NASH stages with NAFL, whereas to discover modifiers of fibrosis we looked at 
different fibrosis stages within NASH. Taking NAFL as a baseline, no statistically significant DEGs 
were identified compared with NASH F0/1, whilst 50 DEGs, 907 DEGs and 1,369 DEGs were 
observed when comparing NAFL with NASH F2, NASH F3 and NASH F4 respectively (Fig. 3A and 
Table S3-5). Similarly, when using NASH F0/1 as a baseline, no genes were differentially 
expressed compared with NASH F2, whereas the comparison with NASH F3 identified 434 DEGs 
and 1,194 DEGs when comparing with NASH F4, with 393 DEGs in common between these two 
stages (Fig.3A and Table S6-7). GO annotation analyses of the different comparisons are 
described in Fig. S6.  
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To identify a core gene-set ‘signature’ associated with the progression from NAFL or NASH F0/1 
to more advanced disease, we focused on DEG commonality between the different pairwise 
comparisons (Fig. 3A). The two intersections using either NAFL or NASH F0/1 as a baseline 
shared 25 DEGs, with 24 of them showing a gradual increase with disease progression (i.e. 
AKR1B10, ANKRD29, CCL20, CFAP221, CLIC6, COL1A1, COL1A2, DTNA, DUSP8, EPB41L4A, 
FERMT1, GDF15, HECW1, IL32, ITGBL1, LTBP2, PDGFA, PPAPDC1A, RGS4, SCTR, STMN2, THY1, 
TNFRSF12A, TYMS) and one gene showing a gradual decrease (i.e. HSD17B14) (Fig. 3B). These 
25 genes were all differentially expressed when comparing NASH F2-4 to NAFL+NASH F0/1 
combined and all apart from TYMS (fold change below 1.5) were differentially expressed 
between unsupervised cluster A and cluster B (Fig. 3C and 3D). Supporting this, when we used 
the widely accepted histological thresholds for high-probability of NASH (NAS≥4 or SAF activity 
≥ 2) to stratify the discovery cohort, we identified 369 and 320 DEGs respectively (Table S8 and 
S9). All 25 genes were present within the DEGs when the cohort was stratified purely by 
histological activity (inflammation and hepatocyte ballooning) with SAF activity ≥ 2. However, 
ANKRD29, GDF15 and TYMS were omitted (and so 22 of the 25 genes were captured) when 
using the NAS≥4 threshold, which conflates degree of steatosis and grade of histological activity 
into a single index. 

Findings from the discovery analysis were replicated using nanoString® analysis in an 
independent cohort of 175 NAFLD liver biopsies (Table S10). The breakdown of relative 
expression in the different disease stages compared to the controls is presented in Fig. S7. 
When comparing NAFL and NASH F0/1 vs. NASH F2-4, we found 21 of the initial 25 gene-set to 
be significantly differentially expressed (i.e. AKR1B10, CCL20, CFAP221, CLIC6, COL1A1, COL1A2, 
DTNA, DUSP8, FERMT1, GDF15, HECW1, IL32, ITGBL1, LTBP2, PDGFA, PPAPDC1A, RGS4, SCTR, 
STMN2, THY1 and TNFRSF12A) at p<0.001 (Fig. S7). Taken together, these data identified a 
consistently differentially expressed gene signature of more advanced disease, associated with 
disease activity and correlating to the unsupervised clustering. 

 

A 25 gene-set of differentially expressed genes independently predicts features of NAFLD  

To investigate further the relationship between the changes in gene expression and the 
components of the histological phenotype, and to dissect apart the collinearity between those 
features, we performed regression analysis using the RNAseq data to generate gene signatures 
linearly associated with the severity of each specific histological feature (steatosis, 
inflammation, hepatocyte ballooning and fibrosis) (Fig. 4A). Hierarchal clustering of genes 
significantly (adj p<0.05) associated with histological criteria revealed a stronger overlap 
between inflammation, ballooning and fibrosis than with steatosis (Fig.4B). Each of the set of 25 
genes correlated strongly with increasing severity of the histological components inflammation, 
ballooning and fibrosis, with 12 genes showing additional overlap with steatosis (AKR1B10, 
CCL20, COL1A1, COL1A2, DTNA, DUSP8, GDF15, PDGFA, PPAPDC1A, STMN2, THY1 and 
TNFRSF12A) (Fig. 4A and Table S11). 

To understand the effect of the individual components of the 25 DEG gene-set on histological 
features, we evaluated the predictive value in the NAFLD discovery cohort (n=206) using 
univariate and multivariate logistic regression analysis. Table S12 summarizes the results from 
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the univariate analyses. In the multivariate models predicting steatohepatitis grade, HSD17B14 
(OR=0.5049, p =0.001), PPAPDC1A (OR=3.2079, p <0.0001), SCTR (OR=0.6891, p<0.05) and 
TNFRSF12A (OR=2.7367, p<0.0001) expression were independent factors significantly predictive 
of NAS≥4 with an AUROC of 0.85; AST level (OR= 1.1079, p<0.01) together with EPB41L4A 
(OR=2.6634, p<0.01), GDF15 (OR=1.0253, p=0.001) and ITGBL1 (OR=2.022, p<0.01) expression 
which independently predicted a SAF activity score ≥ 2 with an AUROC of 0.86 (Fig. 4C-D and 
Table S13). The presence of advanced fibrosis F3-4 was independently predicted by T2DM 
(OR=2.7481, p<0.05) combined with the expression of ANKRD29 (OR=2.5776, p<0.01), CLIC6 
(OR=2.2211, p<0.0001) and STMN2 (OR=1.6397, p =0.001) with an AUROC of 0.93 (Fig. 4E and 
Table S13). This combined model to predict fibrosis had a significantly higher AUROC than the 
FIB4 score (19) (FIB4 AUROC 0.73, DeLong test p<0.00001, Fig. 4F). In addition, the presence of 
fibrosing steatohepatitis, defined as NAS≥4 and a fibrosis stage ≥F2 (NASH+NAS≥4+F≥2) was 
predicted by the expression of EPB41L4A, HSD17B14, PPAPDC1A and TNFRSF12A (Table S13). 
The independent variables predicting the presence of lobular inflammation, hepatocyte 
ballooning and portal inflammation are summarized in Table S13. The multivariate models 
established using the discovery RNAseq data were tested in the replication cohort (n=175). 
Similar AUROCs were found in both cohorts with no significant differences (Hosmer-Lemeshow 
chi2 test) for the presence of lobular inflammation, ballooning, portal inflammation, NAS ≥ 4, 
SAF activity score ≥ 2, advanced fibrosis and NASH+NAS≥4+F≥2 (Table S14).  

 

Integrated single-cell RNA sequencing analysis identifies cell clusters based on the 25-gene 
signature 

To explore how the 25 DEG gene-set changes within specific cell populations during NAFLD 
progression, we performed an integrated single-cell RNA sequencing (scRNAseq) analysis by 
projecting publicly available scRNAseq data from healthy and cirrhotic liver disease onto the 
RNAseq data grouped by fibrosis stage (discovery cohort n=206) (20). Epithelial cells, 
macrophages, mesenchymal cells, endothelial/sinusoidal cells and lymphocytes were identified 
within the scRNAseq data based on the expression of lineage specific markers as annotated in 
Table S15 and Fig. S8. Uniform Manifold Approximation and Projection (UMAP) plots with a 
resolution of 0.7 identified eight distinct clusters within the epithelial cells from the healthy and 
cirrhotic scRNAseq data combined (Fig. 5A and S9). Looking at the expression of our 25-gene 
signature, one specific cluster within cirrhosis showed concurrent expression of ten markers 
including AKR1B10, ANKRD29, CLIC6, DTNA, GDF15, IL32, PDGFA, RGS4, SCTR and TNFRSF12A 
(epithelial cluster 5, Fig. 5A). Projecting the signatures of the different epithelial cell populations 
onto the NAFLD RNAseq data using the CIBERSORT analytical tool, the epithelial cluster 
capturing ten of our 25-gene signature showed a high expression in advanced NASH with the 
strongest enrichment in NASH F4 (Fig. 5B).  

When assessing the different macrophage populations, HSD17B14 expression was observed in 
one cluster, annotated as macrophage cluster 5, present in both healthy and end-stage liver 
disease (Fig. 5C). To further characterize this cluster, we looked at the expression of CCR2, 
CD163 and TREM2, markers for macrophages that have been reported to be relevant in fibrosis 
and NAFLD (20-23). The HSD17B14+ cluster showed expression for CD163 but was negative for 
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CCR2 and TREM2, and was enriched in NAFL within the NAFLD RNAseq data (Fig. 5D). TREM2 
expression was observed in two clusters within the macrophage populations which also showed 
positivity for CD163. The first cluster, macrophage cluster 0, was enriched in NASH F2, F3 and 
F4, while the second cluster, macrophage cluster 6, was mainly expressed in NASH F3 and F4 
(Fig. 5C and 5D). Moreover, the CD163+/TREM2- macrophage population identified only within 
the cirrhotic scRNAseq data (macrophage cluster 7) showed an enrichment in NASH F3 and 
NASH F4 stages (Fig. 5D). CCR2 expression was only observed in macrophage cluster 8, although 
this signature was not enriched within the NAFLD RNAseq data (Fig. 5D). Additionally, when 
looking at the expression of COL1A1, COL1A2, ITGBL1, LTBP2, PDGFA, PPAPDC1A, RGS4, STMN2 
and TNFRSF12A different mesenchymal populations could be identified which showed distinct 
enrichment depending on the stage of the NAFLD disease (Fig. S9). Taken together, integrated 
scRNAseq analysis identified distinct populations based on the expression of our 25-gene 
signature and suggests that dynamic changes within intrahepatic different macrophage 
populations occur during NAFLD progression. 

 

Validation of hepatic gene expression in liver tissue by immunohistochemistry  

To validate the findings from the integrated RNAseq/scRNAseq analysis, three markers were 
selected based on availability of antibodies for immunohistochemistry staining of 33 formalin-
fixed paraffin-embedded (FFPE) liver tissue cases derived from the NAFLD replication cohort 
(i.e. AKR1B10, GDF15 and STMN2). AKR1B10 protein expression was seen focally in hepatocytes 
in NAFL, showing a cytoplasmic and nuclear immunostaining pattern (Fig. S10). In NASH, 
AKR1B10 positivity was more prominent in ballooned hepatocytes and in hepatocytes located 
neighboring necro-inflammatory foci and periportal/periseptal areas. Additional, weaker 
immunostaining of sinusoidal lining cells was seen in the majority of the NAFLD cases. The 
number of AKR1B10 immunopositive hepatocytes increased with disease stage, peaking at F4. 
GDF15 staining showed a granular cytoplasmic positivity in the hepatocytes of the NAFLD 
samples (Fig. S10). Moreover, GDF15 expression was focally observed in parenchymal immune 
cells. Hepatocyte immune-positivity for GDF15 was non-zonal. In addition, STMN2 
immunopositivity was seen in macrophages in the portal inflammatory infiltrate with an 
increasing number of positive cells towards end-stage cirrhosis. Weak STMN2 expression was 
observed in sinusoidal lining cells in all the stages of NAFLD (Fig. S10).   

 

Serum AKR1B10 and GDF15 correlate with disease stage and stratify patients based on activity 

To determine whether evidence of the hepatic transcriptomic changes could also be detected 
peripherally, we assessed whether circulating protein concentrations of the 25 DEG gene-set 
accurately reflected histological disease severity as an exemplar for future potential biomarker 
development. Proteomics analysis was performed on 305 serum samples from patients with 
histologically characterized NAFLD using SomaScan® technology. 13 proteins were detectable in 
the serum samples, reflecting 14 out of the 25 genes, with COL1A being the protein for the 
genes COL1A1 and COL1A2. Assessing the different histological scores, AKR1B10 was the only 
circulating protein showing a significant increment reflecting the increase in steatosis grade 
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(Kruskal-Wallis test, p=9.66E-06; Fig. 6 and Table S16). Serum AKR1B10, COL1A and GDF15 
concentrations showed significant differences with an increase in the score for ballooning 
(Kruskal-Wallis test p=3.80E-14, p= 1.02E-02, p= 2.05E-05 respectively) whilst both AKR1B10 
and GDF15 were associated with high Kleiner and SAF inflammation scores. Conversely, HECW1 
showed a gradual decrease (Kruskal-Wallis test, p<0.05) (Fig.6 and Table S16). Serum AKR1B10 
and GDF15 were also significantly increased with the rise in fibrosis stage (Kruskal-Wallis test, 
p= 6.22E-13 and p= 3.44E-15 respectively), with AKR1B10 showing a 2.19 fold increase when 
comparing fibrosis stage F4 with F0 and GDF15 a 2.75 fold increase (post-hoc corrected 
p<0.001; Fig. 6). Furthermore, serum AKR1B10 and GDF15 were significantly increased in 
patients with NASH (1.9 and 1.35 fold change respectively), in patients with NAS≥4 (which 
conflates steatosis with activity, 2.14 and 1.35 fold change respectively) and in patients with 
SAF activity ≥2 (activity of steatohepatitis, 1.91 and 1.38 fold change respectively) (Mann-
Whitney p<0.0001), while COL1A only captured NASH and SAF activity ≥2 (Mann-Whitney 
p<0.05) (Fig.6 and Table S16). When the more severe subset of patients that would meet 
current enrolment criteria for therapeutic trials in NASH were considered (defined as 
NASH+NAS>=4+F>=2), a 2.19 fold increase in serum AKR1B10 and a 1.51 fold increase in serum 
GDF15 were observed (Mann-Whitney, p<0.05). When stratifying patients based on the 
unsupervised clustering (n=59), amongst the detectable proteins relating to the 25-gene 
signature, serum AKR1B10 and GDF15 were significantly increased in patients belonging to 
cluster A compared to the patients from cluster B (Mann-Whitney, p<0.05) (Fig. 6). 

 

Endoplasmic reticulum stress-induced GDF15 reduces the inflammatory response 

To study the functional basis of the 25 DEGs with respect to established mechanistic processes 
that underpin NAFLD progression, we first assessed gene expression changes in vitro after Hep 
G2 cells were exposed to endoplasmic reticulum (ER) stress (tunicamycin or thapsigargin) or 
lipid loading (oleic and/or palmitic acid) (n=3 per group) (Fig. 7A). After 24h thapsigargin 
treatment, a significant increase in mRNA of AKR1B10 (unpaired Student’s t-test, p<0.001), 
CCL20 (p<0.05), DUSP8 (p<0.05), GDF15 (p<0.01), PDGFA (p<0.01) and TNFRSF12A (p<0.01) was 
observed, while FERMT1 (p<0.05) and TYMS (p<0.001) were reduced. Tunicamycin treatment 
significantly induced the expression of AKR1B10 (unpaired Student’s t-test, p<0.01) and PDGFA 
(p<0.05), and reduced the expression of CCL20 (p<0.05) and TYMS (p<0.05). No significant 
differences in mRNA expression were observed after treatment with palmitic, oleic or 
combined palmitic/oleic acid. Western blotting confirmed the increase in AKR1B10 and GDF15 
protein expression, together with an increase in the ER stress marker CHOP in Hep G2 cells after 
tunicamycin and thapsigargin treatment but not after lipid loading (Fig. 7B). 

To investigate the potential role of GDF15 in the inflammatory response, THP-1 monocytes 
were differentiated into macrophages with or without recombinant human GDF15 for 48h, 
followed by either a 6h lipid or lipopolysaccharide (LPS) treatment. Supplementing GDF15 
significantly reduced the release interleukin 6 (IL6) by the macrophages into the cell culture 
medium upon palmitic acid (unpaired Student’s t-test, p<0.0001) and palmitic/oleic acid 
treatment (p<0.001) (Fig. 7C). Furthermore, GDF15 reduced the release of Tumor Necrosis 
Factor (TNFA) in untreated cells (p<0.01), palmitic acid (p<0.01) and palmitic/oleic acid 
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(p<0.001) loaded cells, and in cells treated with LPS (p<0.0001) (Fig. 7D). Additionally, a reduced 
release of C-C Motif Chemokine Ligand 2 (CCL2) was observed in LPS treated (p<0.001) and 
untreated cells (p<0.001) when conditioned with GDF15, whereas a slight increase was seen 
when the cells were loaded with lipids (p<0.05) (Fig. 7E). In sum, our functional results showed 
that ER stress is a strong inducer of several of our core signature genes and that GDF15 
tempered the inflammatory response in macrophages in vitro upon lipid loading and LPS 
stimulation. 

 

Relevance of HSD17B14 to advanced NAFLD  

Genetic polymorphisms in HSD17B13 have previously been associated with protection against 
more advanced steatohepatitis possibly due to modifying retinol metabolism (24, 25). As 
HSD17B14 expression was inversely related to an increased risk of NAS≥4 using multivariate 
predictive models in both the discovery and replication cohorts and showed expression in a 
specific hepatic macrophage population, we explored the role of HSD17B14 in retinol 
metabolism. To characterize the oxidoreductase activity of HSD17B14, we used NAD+/NADH 
luminescent assays. The recombinant protein HSD17B14 showed a 1.98-fold increase of NAD+ 
conversion into NADH in the presence of retinol as a substrate (p<0.001) and a 3.38-fold 
increase in the presence of the known substrate estradiol (as control)  (p<0.001, Fig. S11) 
compared to the enzyme in the presence of NAD+ alone. Similar results were observed using 
the recombinant protein HSD17B13 as a positive control (Fig. S11).  

 

DISCUSSION 

The patterns of hepatic gene expression during NAFLD progression provide novel insights into 
disease mechanism and may help to identify tractable therapeutic targets. Several previous 
studies have attempted to address transcriptomic changes in NAFLD, however, whilst some 
interesting findings have emerged, many previous studies have been limited by use of 
expression microarrays that restrict gene coverage, small overall sample sizes that include very 
few cases with advanced disease, and frequently, the absence of a replication cohort (4-12, 26). 
The current, more comprehensive, transcriptomic analysis used a large independent cohort 
representing the full histological range of NAFLD to detect the changes in hepatic gene 
expression as the disease progresses by RNAseq, which has a wider dynamic range to detect 
gene expression changes and sets no a priori restrictions on gene coverage. The results of this 
study share some commonality with the existing literature, for example, highlighting the 
relevance of bile acid metabolism and the FXR/ CYP7A1 axis in NASH pathogenesis, as well as 
differential expression of AKR1B10, CCL20, COL1A1, COL1A2, DUSP8, IL32, ITGBL1, STMN2, 
THY1 and TYMS (see Table S17). Crucially, these new data substantially extend knowledge of 
the transcriptomic profile of NAFL-NASH and provide greater granularity across intermediate 
grades and stages of disease. Adopting a hypothesis-generating pairwise analysis strategy, we 
have identified a 25 gene-set associated with the transition from NAFL to NASH and onward 
progression to fibrosis and cirrhosis. We also demonstrated that 21 of these 25 genes 
discriminated mild from advanced disease (NAFL-NASH F0/1 vs. NASH F≥2) in an independent 
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replication cohort, and so have transcriptionally defined a key group of high-risk patients that 
are most likely to progress to advanced disease or experience clinical events and so should 
plausibly be targeted for therapy (27). 

Interestingly, only a few of the 25 genes can be considered as true extracellular matrix genes 
(e.g. COL1A1 and COL1A2), or markers for hepatic stellate cell activation and fibrogenesis 
(ITGBL1 and STMN2) (28, 29). The inflammatory genes GDF15, CCL20 and IL32 were found to be 
increased with disease progression, even though these ligands/chemokines have been reported 
to be protective against features of advanced liver disease in animal models (30-32). In high fat 
diet-fed mice, ectopic expression of Gdf15 has been reported to reduce lipid accumulation by 
enhancing hepatic fatty-acid oxidation, whereas overexpression of Il32 ameliorates steatosis 
and inflammation in a NAFLD mouse model (30, 32). Moreover, parenchymal expression of 
Ccl20 improves hepatic fibrosis through the recruitment of gamma-delta T cells in chronic 
carbon tetrachloride mouse models (31). Similarly, our data suggest that endoplasmic reticulum 
stress-induced release of GDF15 may ameliorate the inflammatory response in macrophages.  

Other genes such as AKR1B10 or HSD17B14 have primarily been described to have a metabolic 
function (26, 33). AKR1B10 is an aldo/keto reductase that converts retinal into retinol (Vitamin 
A1) and has been reported to be critical for cell survival in vitro through modulation of lipid 
metabolism and mitochondrial function (33). Moreover, AKR1B10 expression is induced by the 
transcription factor NRF2 which activates protective pathways in response to oxidative stress 
(34). ER stress has also been reported to induce the transcriptional activity of NRF2 to promote 
cell survival (35). Our in vitro data showed that ER stress not only induced the expression of 
AKR1B10 but also GDF15, which is in line with previous reports (36, 37). This would suggest that 
some of our core signature genes are expressed by epithelial cells to deal with oxidative and/or 
ER stress, and to help resolve the inflammatory response in advanced NAFLD. Controversially, 
ER stress has been described to also induce steatosis in NAFLD, meaning that how hepatocytes 
deal with lipid-induced stress could actually further induce steatosis (38). Though the release of 
retinol during stellate cell activation has been well documented, its effect in other hepatic cells 
is less clear (39). Recently, Ma and colleagues reported that the polymorphism rs6834314, 
which is protective against NAFLD, confers a loss of enzymatic activity of HSD17B13 towards 
retinol (25). Our results showed a gradual decrease in expression of HSD17B14, another 
member of the 17-beta-hydroxysteroid dehydrogenase family as NAFLD progresses which was 
expressed in macrophages. This novel finding could indicate a role for retinol metabolism in 
hepatic macrophages during the progression of NAFLD. Importantly, increased retinol and 
decreased retinal means that less conversion of retinal to the biologically active retinoic acid 
isomers (all-trans and 9-cis retinoic acid) is possible which may affect nuclear receptor RAR/RXR 
signaling. A number of different enzymes contribute to these processes in addition to AKR1B10, 
HSD17B13 and HSD17B14 but the large increase in AKR1B10 expression as NAFLD progresses 
together with the decrease in HSD17B14 would tend to favor increased retinol. Whether a 
metabolic shift from retinal to retinol is a way for hepatocytes to survive in a background of 
chronic lipid-induced endoplasmic reticulum stress or whether it is a means of communicating 
with stellate cells and macrophages in the hepatic microenvironment, is still not clear. 

Despite the wide variety in function of the 25 genes, they all showed a strong collinearity with 
ballooning, inflammation and fibrosis, suggesting a strong connection between cell damage, 
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inflammation and tissue scarring. To understand how these genes drive the disease, we used 
predictive multivariate models, identifying independent variables associated with specific 
histological features. Interestingly, the variables predicting fibrosis were different from the 
variables predicting a high disease activity, either based on the NAS or the SAF activity score, 
meaning that these variables could be regarded as proper independent drivers of disease 
features.  

From a clinical point of view, there is a clear imperative to develop better non-invasive means 
to diagnose and stratify patients for treatment or enrolment into clinical trials without the need 
for a liver biopsy. In recent years, a great effort has been made to identify soluble serum 
markers to predict the presence of NASH and/or advanced liver fibrosis, such as collagen 
turnover biomarkers (40). Several of the markers we detected in our 25-gene signature proved 
to be candidate serum markers of advanced NAFLD, further demonstrating the robustness of 
this signature. Previous reports support these findings. Serum AKR1B10 has been shown to 
correlate with advanced disease in a small Japanese cohort of NAFLD patients, while increased 
serum GDF15 has been reported to associate with a greater risk of advanced fibrosis in a South 
Korean study (41, 42). In this study, the predictive univariate and multivariate models 
highlighted the potential of several additional genes as markers for disease activity or fibrosis 
grading. As a proof of concept, we showed that serum AKR1B10 and GDF15 not only stratified 
patients with more active steatohepatitis but also discriminated between NAFL-NASH F0/1 and 
NASH F≥2: the subset of NAFLD patients that are at greatest risk of future disease progression 
and would arguably be best targeted for therapy (27). Furthermore, serum AKR1B10 and GDF15 
were significantly elevated in the unsupervised cluster A, characterized by high disease activity 
and high fibrosis (p<0.05).  

Transcriptomic staging showed features such as senescence, DNA damage, autophagy and bile 
secretion/FXR signaling, that one might presume developed late in disease natural history once 
steatohepatitis was present, were already observed in NAFL. For example, CYP7A1, the rate-
limiting enzyme in the classical bile acid synthesis pathway that is subject to FXR-mediated 
regulation, was already up-regulated in NAFL with expression peaking during the early stages of 
steatohepatitis (18). This possibly suggests that the therapeutic window for response to FXR-
agonists may range from NAFL onwards, although this will require further validation. In 
contrast, CCL2 expression was increased in the unsupervised cluster A characterized by high 
disease activity and concordant expression of ECM/fibrosis- and hepatic progenitor cell-related 
genes (43). Therapeutic inhibition of CCR2-positive monocyte-derived macrophages has been 
reported to reduce inflammation and fibrosis in murine NASH and fibrosis in human disease 
(21, 44). Furthermore, we found that the expression of TREM2, a marker for macrophages 
reported to be involved in hepatic fibrosis, to be associated with high disease activity and in the 
comparisons NAFL with NASH F2-4 (20, 23). Although TREM2 is not part of our core gene 
signature, our integrated scRNAseq analysis indicated the importance and dynamics of specific 
macrophage cell populations during NAFLD progression. Different TREM2+ positive cell clusters, 
as well as CD163+ clusters, were enriched during different stages of NAFLD. Likewise, we 
identified different subpopulations of mesenchymal cells based on our core gene signature 
during NAFLD progression. These findings suggest that therapeutic interventions may be most 
efficacious if their use is targeted to the specific transcriptomic patterns that occurs as NAFLD 



Govaere et al 2020 Science Translational Medicine – In Press 14 

progresses; serum markers may be useful indicators to identify pathways susceptible to future 
treatments. 

There are some limitations to this study. Whilst histology remains the optimum approach and 
accepted reference standard to accurately grade steatohepatitis and stage fibrosis, it is subject 
to sampling error. Four genes out of the 25 genes were not differently expressed in our 
replication cohort (ANKRD29, EPB41L4A, TYMS and HSD17B14). This lack of replication could 
reflect subtle differences in phenotype between the cohorts, for example, minor differences in 
histological severity of the piece of biopsy core from which RNA was extracted compared to the 
part examined by microscopy given that disease is not completely homogenous within the liver. 
However, others have previously described an increased TYMS expression in advanced NASH, 
and, using a different approach to assess risk of NAFLD progression, we demonstrated that 
HSD17B14 and EPB41L4A expression are useful predictors of high NAS and SAF scores 
respectively (7, 26). In this study, we observed differences between the unsupervised clusters in 
carriage of the PNPLA3 rs738409 variant but not for the genotypes GCKR rs1260326, HSD17B13 
rs72613567 or TM6SF2 rs58542926 (16). Nevertheless, the carriage of these genotypes did not 
appear to confer distinct differences in gene expression in the RNAseq analysis. One possible 
explanation is that we are only looking within a relatively small NAFLD population, at least 
compared to GWAS studies. A more likely explanation however is that these polymorphisms 
contribute to the initial susceptibility to NAFLD but do not change the nature of the pathogenic 
processes that are in play during disease progression. Furthermore, though we confirmed that 
proteins encoded by many of the mRNAs in our 25-gene signature were detectable in serum 
and showed changes similar to those at the mRNA level during NAFLD progression, we could 
not confirm this for all 25 mRNA species. Detection limits of the technique used or limitations in 
the type of sample available could explain this.  

In conclusion, the current study has identified a number of novel changes in gene expression 
during NAFLD progression including several that may be of diagnostic and prognostic relevance 
(for example, small but functionally important changes in gene expression occur from early 
NAFL), and has confirmed that genes such as AKR1B10 and GDF15 are consistent markers for 
NAFLD progression. AKR1B10 and HSD17B14 may contribute to retinoic acid homeostasis 
which, based on recent findings such as the role for HSD17B13 in NAFLD genetic susceptibility, 
increasingly seems relevant to NAFLD progression in addition to carcinogenesis (41). These 
data, from the largest NAFLD hepatic transcriptome dataset generated to date, provide 
important new insights into disease pathophysiology, identifying both stable and dynamic 
differences in gene expression that occur during NAFLD progression.  

 



Govaere et al 2020 Science Translational Medicine – In Press 15 

Materials and Methods 

Study design 

A total of 381 NAFLD biopsies and 305 NAFLD serum samples were included in this study 
covering the full histological disease spectrum. The discovery cohort of 206 NAFLD samples was 
processed for RNAseq while the Replication/Validation cohort including 175 NALFD cases was 
used for nanoString® analysis and immunohistochemistry (Fig. 1). Detailed phenotypic 
description and demographics are reported in Table 1 and Table S10. Both cohorts were 
stratified according to histopathological disease grade and stage, i.e. NAFL, NASH-F0, -F1, -F2, -
F3 and -F4. Logistic modelling was used to correlate gene expression with histological features. 
Potentially tractable and clinically relevant disease biomarkers were tested in a cohort of 305 
serum samples. To study the functional basis of core gene signatures, we used in vitro cell line 
models. 

Patient selection 

In this multicenter study, 436 liver biopsy samples from 403 European Caucasian patients and 
305 serum samples from the same number of European Caucasian patients were included. 
Cases were derived from the European NAFLD Registry (NCT04442334). The discovery cohort 
comprised 216 snap-frozen biopsy samples from 206 patients diagnosed with NAFLD in France, 
Germany, Italy and the UK, and 10 “healthy obese” control cases without any biochemical or 
histological evidence of NAFLD from patients undergoing bariatric surgery in France. These 
patients were selected on the basis of both study participation and ability to isolate sufficient 
high quality RNA for sequencing from the liver biopsy. The replication cohort consisted of 220 
formalin-fixed paraffin-embedded (FFPE) and frozen samples from 175 NAFLD patients (59 FFPE 
and 116 frozen) diagnosed in France and the UK, and 12 ‘healthy obese’ control cases (frozen). 
All samples were centrally scored by two expert liver pathologists (DT & PB) according to the 
semiquantitative NASH-CRN Scoring System (NAS) and the FLIP steatosis (S), activity (A), and 
fibrosis (F) scoring system (14, 15). Fibrosis was staged from F0 through to F4 (cirrhosis).  Serum 
samples, collected within six months of the biopsy date, were available from 305 patients with 
histologically proven NAFLD diagnosed in France, Germany, Italy, Sweden and the UK. 59 serum 
samples out of the 305 matched with patients and biopsies enrolled in the discovery cohort. 
Patients with alternate diagnoses and etiologies were excluded, including excessive alcohol 
intake (30g per day for males, 20g for females), viral hepatitis, autoimmune liver diseases and 
steatogenic medication use. NAFL samples with a fibrosis stage of ≥2 were not included in this 
study. This study was approved by the relevant Ethical Committees in the participating 
countries.  

High-throughput RNA sequencing 

Frozen tissue samples were lysed using Trizol (Sigma-Aldrich) and mRNA was extracted with the 
Allprep DNA/RNA Micro kit (Qiagen). Concentrations and quality were assessed using the 
Agilent Pico 6000 kit on the Bioanalyzer 2100 (Agilent). Samples were processed with the 
TruSeq RNA Library Prep Kit v2 and sequenced on the NextSeq 550 System (Illumina). Data are 
available on the NCBI GEO repository (GSE135251). 
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Bioinformatics 

Fastqc (v0.11.5) and MultiQC (v1.2dev) were used to establish raw sequencing quality. 
Alignment to the reference genome (GRCh38, Ensembl release 76) was performed using STAR . 
Gene-level count tables were produced using HT-Seq. Counts were normalized using the 
trimmed mean of M values method (TMM) and transformed using limma’s voom methodology. 
Normalized and transformed counts were analyzed for differential expression using linear 
models as implemented by limma (45). Statistical significance of protein-coding genes was 
determined by an FDR corrected q-value < 0.05 and a fold change of > 1.5 (46). Confounding 
effects were corrected for by inclusion as additive effects in the linear model used for 
determining differential expression. For visualization only, additive effects were subtracted 
from the expression data using limma’s removeBatchEffects function. For each grouped 
comparison, a correction for batch effect and gender was applied; in the comparisons excluding 
the controls, an additional correction for center was implemented. PNPLA3 rs738409, TM6SF2 
rs58542926, GCKR rs1260326 were determined using the RNAseq reads, HSD17B13 rs72613567 
SNP genotypes or using TaqMan® probes (Applied Biosystems) on DNA from peripheral blood 
mononuclear cells. If a suitable assay could not be designed, a proxy SNP was chosen 
(https://ldlink.nci.nih.gov/). DAVID annotation tool was used for pathway enrichment (47, 48). 
Data were visualized with GOPlot 1.0.2 and clusterProfiler (49, 50).  

Integrated analysis was performed using single cell RNAseq data (GSE136103) from healthy liver 
and end-stage liver disease samples (20). Filtering was applied to remove any cells with greater 
30% mitochondrial genes or fewer than 300 genes. The cells were normalized and clustered 
using Seurat as described previously (20).  A clustering resolution of 0.2 was used resulting in 13 
clusters and cell types were annotated based on the expression of specific gene markers. Cell 
types were then clustered at a higher resolution of 1.2.  CIBERSORT analytical tool was used to 
determine cell type abundance within the bulk RNAseq data (51).  

nanoString®  

mRNA was isolated from FFPE samples using the High Pure FFPET RNA Isolation Kit 
(06650775001, Life Science Roche). Concentrations were determined using the QubitTM RNA HS 
Assay kit (ThermoFisher). Frozen tissue samples were processed as described above. Custom-
made assay panel (nanoString®) was used on the nanoString® nCounter system. Input was 
normalized to 100ng or a maximum of 6 µl volume was used. Quality control metrics were 
performed using the internal positive and negative control. Normalization to housekeeping 
genes was done using the nSolver 3.0 software (nanoString®). 

Proteomics 

305 serum samples (20 μl, 1 in 20 dilution) were analysed using the aptamer-based proteomic 
SomaScan® Platform (SomaLogic) as previously described (52). In brief, slow off-rate modified 
labeled aptamers (SOMAmer reagents) were added to each sample to form SOMAmer-protein 
bead complexes. After capturing of the beads and removal of nonspecifically bound reagents, 
the SOMAmers were quantified by hybridization to DNA microarrays. Relative quantity of 
SOMAmer reagents measured by the SOMAscan assay reflecting original protein concentrations 

https://ldlink.nci.nih.gov/
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(i.e., relative fluorescent units, RFUs). RFU values were submitted to a log10-transform prior to 
analyses. 

Additional Material and Methods can be found in the Supplementary Materials. 
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Supplementary Materials 
 

Material and Methods 

Fig. S1. PCA plot analysis using RNAseq data from the discovery cohort     

Fig. S2. Effect of genotype on mRNA expression within the NAFLD discovery cohort 

Fig. S3. Unsupervised clustering NALD RNAseq cohort       

Fig. S4. Supervised clustering NALD RNAseq cohort 

Fig S5. Pathview enrichment and candidate gene analysis in the comparison NAFLD-control 

Fig. S6. GO annotation pairwise analysis using the NAFLD discovery cohort 

Fig. S7. Nanostring analysis using the replication cohort 

Fig. S8. Integrated single-cell RNAsequencing analysis 

Fig. S9. Expression of 25-gene signature in single-cell RNAsequencing cell clusters 

Fig. S10. Immunohistochemistry for AKR1B10, GDF15 and STMN2 

Fig. S11. Enzymatic activity of HSD17B14 and HSD17B13 against Estradiol and Retinol  
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RNAseq data from the discovery cohort 

Table S7. Differentially expressed genes comparing NASH F4 to baseline NASH F0/1 using the 
RNAseq data from the discovery cohort 

Table S8. Differentially expressed genes associated with NAS>=4 based on RNAseq data  

Table S9. Differentially expressed genes associated with SAF activity>=2 based on RNAseq data 
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Table S11. Correlation 25-gene signature with histological features in the discovery cohort 
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Table S14. Accuracy and validation of models in the discovery and replication cohort 

Table S15. Annotation clusters single-cell RNAsequencing data 

Table S16. Proteomics analysis on NAFLD serum samples 
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Figures legends 
 

Fig. 1. Experimental study design. A total of 381 NAFLD biopsies and 305 NAFLD serum samples 
were included in this study. All samples have been centrally read by two expert liver 
pathologists. 

Fig. 2. Unsupervised clustering using the RNAseq discovery cohort from 206 NAFLD patients.  
Distance map based on the RNAseq data indicating the distribution of clinicopathological 
features. Two distinct clusters, A and B, were observed.   

Fig. 3. Gene signatures associated with progressive NAFLD based on RNAseq data from the 
discovery cohort (n=206). (A) Venn diagram illustrating the number of differentially expressed 
genes identified by pairwise analyses using NAFL or NASH F0/1 as a baseline to identify 
modifiers of steatohepatitis and fibrosis. (B) Heatmap of the 25-gene signature identified by 
using NAFL or NASH F0/1 as a baseline. Expression fold change is compared to NAFL. (C) 25-
gene signature in the comparison of NASH F2-4 to baseline NAFL+NASH F0/1. (D) 25-gene 
signature in the comparison of unsupervised Cluster A vs baseline Cluster B. Data are presented 
using a log2 fold change in expression and –log10 of the q-values.  

Fig.4. Predictive modelling of histological features using the 25-gene signature. (A) Venn 
diagram showing overlap of genes linearly associated with the increase in histological grading 
(adj p<0.05). (B) Hierarchical clustering of genes significantly associated (adj p<0.05) with at 
least three histological criteria. Each histological feature was treated as a continuous linear co-
variate. (C-F) Association of the 25-gene signature with disease activity and stage in the RNAseq 
discovery cohort (n=206) using predictive multi-variate models. ROC curves showing the 
combined predictive model with the single significant co-variates for (C) NAS ≥ 4, (D) SAF 
activity ≥ 2 and (E) advanced fibrosis F3-4. (F) Comparison of the combined predictive model for 
advanced fibrosis with the FIB4 score (n=153 from the discovery cohort). 

Fig.5. Integrated single cell RNAsequencing. (A) Identification of different cell clusters within the 
epithelial cells using publicly available scRNAseq data from healthy and end-stage cirrhotic liver 
(20). Expression of selected genes from our 25-gene signature in these different epithelial cell 
clusters (* adj p<0.001 indicating significantly DEG identifying the cell cluster).  (B) CIBERSORT 
analysis to project cluster signatures onto the discovery RNAseq data set from 206 NAFLD 
patients. (C) Identification of different cell clusters within the macrophage cells using scRNAseq 
data from healthy and end-stage cirrhotic liver and visualization of selected genes in those 
clusters (* adj p<0.001 indicating significantly DEG  identifying the cell cluster). (D) Projection of 
selected macrophage population signatures on our discovery RNAseq data. 

Fig.6. Proteomics analysis on 305 serum samples from patients with histologically proven 
NAFLD using SomaScan. (A) Overview of detectable proteins from our 25-gene signature and 
their correlation with histopathological features. Correlation of AKR1B10 and GDF15 with 
steatosis grade (B-C), SAF activity (D-E) and Brunt fibrosis stage (F-G) for 305 serum samples. (H-
I) 59 serum samples had a matching biopsy included in the discovery RNAseq cohort and 
circulating AKR1B10 and GDF15 were stratified based on the unsupervised clustering. (Kruskal-
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Wallis test with post-hoc Bonferroni correction or Mann-Whitney-U test; RFU= relative 
fluorescent units). 
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Fig. 7. In vitro functional assessment of the 25-gene signature. (A) qPCR analysis for the 25-gene 
signature on Hep G2 cells treated with lipids (oleic, palmitic acid or combined) or with ER stress 
inducers tunicamycin or thapsigargin (biological replicates n=3/group). Data are presented as 
fold change relative to the control.  (Unpaired Student’s t-test, * p<0.05, ** p<0.01, *** 
p<0.001) (B) Western blot analysis for AKR1B10, GDF15 and CHOP on treated Hep G2 cells. (C-E) 
ELISA readout for IL6, TNFA and CCL2 on differentiated monocyte THP-1 cells with or without 
GDF15 pretreatment, challenged with palmitic acid, combined oleic/palmitic acid or 
lipopolysaccharide (LPS) (biological replicates n=3/group).  Data are presented as mean +/- SD. 
(Unpaired Student’s t-test, * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001).  
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Table 1. Clinicopathological characteristics of the unsupervised clusters from the RNAseq discovery cohort 

Clinical features n-value Total (n=206) Cluster A (n=65) Cluster B (n=141) p-value A vs B 

Age (mean +/- SD) 206 54 (+/- 11.87) 57.08 (+/- 10.11) 52.57 (+/- 12.37) 1.58E-02 

Sex 
    

3.90E-01 

male 206 123 36 87 
 

female 
 

83 29 54 
 

BMI (mean +/- SD) 204 31.34 (+/- 5.04) 32.51 (+/- 4.87) 30.8 (+/- 5.04) 1.99E-02 

T2DM  206 
   

6.90E-04 

no 
 

96 19 77 
 

yes 
 

110 46 64 
 

HBA1C (mmol/mol +/-SD) 135 48.06 (+/- 14.54) 52.16 (+/- 17.46) 45.8 (+/- 12.19) 4.17E-02 

ALT (mean +/- SD) 204 67.12 (+/- 41.61) 71.05 (+/- 41.39) 65.33 (+/- 41.73) 1.71E-01 

AST (mean +/- SD) 201 44.67 (+/- 23.08) 53.23 (+/- 26.17) 40.67 (+/- 20.39) 4.62E-04 

Platelet (x109)     169 229.56 (+/- 65.97) 212.53 (+/- 63.15) 237.78 (+/- 65.99) 2.05E-02 

Triglycerides (mmol/L) 180 1.95 (+/- 1.41) 2.02 (+/- 1.43) 1.91 (+/- 1.4) 7.40E-01 

Total Cholesterol (mmol/L) 178 5.45 (+/- 10.14) 4.65 (+/- 1.25) 5.85 (+/- 12.37) 6.70E-01 

Steatosis grade 206 
   

4.78E-01 

0 
 

0 0 0 
 

1 
 

60 16 44 
 

2 
 

73 25 48 
 

3 
 

73 24 49 
 

Ballooning 206 
   

1.67E-05 

0 
 

52 10 42 
 

1 
 

98 23 75 
 

2 
 

56 32 24 
 

Kleiner Lobular Inflammation 206 
   

1.70E-03 

0 
 

16 4 12 
 

1 
 

95 22 73 
 

2 
 

80 28 52 
 

3 
     

SAF lobular inflammation 206 
   

1.36E-04 

0 
 

16 4 12 
 

1 
 

140 33 107 
 

2 
 

50 28 22 
 

Brunt Fibrosis stage 206 
   

5.15E-10 

0 
 

38 5 33 
 

1 
 

47 4 43 
 

2 
 

53 16 37 
 

3 
 

54 29 25 
 

4 
 

14 11 3 
 

NASH 206 
   

2.11E-02 

no 
 

53 10 43 
 

yes 
 

153 55 98 
 

NAS score ≥ 4 206 
   

1.49E-02 

no 
 

58 11 47 
 

yes 
 

148 54 94 
 

SAF activity score ≥ 2 206 
   

8.08E-03 

no 
 

53 9 44 
 

yes 
 

153 56 97 
 

GCKR rs1260326 (CC/CT/TT) 206 49/105/52 12/33/20 37/72/32 3.20E-01 

HSD17B13 rs72613567 (--/-T/TT) [unknown] 188 120/61/7 [18] 33/25/3 [4] 87/36/4 [14] 1.56E-01 

PNPLA3 rs738409 (CC/GC/GG) 206 75/89/42 23/22/20 52/67/22 3.06E-02 

TM6SF2 rs58542926 (CC/CT/TT) 206 156/48/2 46/19/0 110/29/2 2.64E-01 
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Govaere et al 2020 Science Translational Medicine – In Press 35 

Figure 7 

 


