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Abstract: Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the
automotive domain, yet current ADASs notably operate without taking into account drivers’ states,
e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of
emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for
capturing physiological signals, and the typical algorithms used for human emotion classification.
Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs,
which could increase driving quality and security for both drivers and passengers. We then provide
our view on a novel perception architecture for driver monitoring, built around the concept of
Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence
(AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface
(HMI) functionalities. This concept will be implemented and validated in the recently EU-funded
NextPerception project, which is briefly introduced.

Keywords: Advanced Driver-Assistance System (ADAS); driver safety and comfort; emotion
recognition; Artificial Intelligence (AI); Driver Complex State (DCS)

1. Introduction

In recent years, the automotive field has been pervaded by an increasing level of automation.
This automation has introduced new possibilities with respect to manual driving. Among all the
technologies for vehicle driving assistance, on-board Advanced Driver-Assistance Systems (ADASs),
employed in cars, trucks, etc. [1], bring about remarkable possibilities in improving the quality of
driving, safety, and security for both drivers and passengers. Examples of ADAS technologies are
Adaptive Cruise Control (ACC) [2], Anti-lock Braking System (ABS) [3], alcohol ignition interlock
devices [4], automotive night vision [5], collision avoidance systems [6], driver drowsiness detection [7],
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Electronic Stability Control (ESC) [8], Forward Collision Warnings (FCW) [9], Lane Departure Warning
System (LDWS) [10], and Traffic Sign Recognition (TSR) [11]. Most ADASs consist of electronic systems
developed to adapt and enhance vehicle safety and driving quality. They are proven to reduce road
fatalities by compensating for human errors. To this end, safety features provided by ADASs target
accident and collision avoidance, usually realizing safeguards, alarms, notifications, and blinking
lights and, if necessary, taking control of the vehicle itself.

ADASs rely on the following assumptions: (i) the driver is attentive and emotionally ready to
perform the right operation at the right time, and (ii) the system is capable of building a proper model
of the surrounding world and of making decisions or raising alerts accordingly. Unfortunately, even if
modern vehicles are equipped with complex ADASs (such as the aforementioned ones), the number of
crashes is only partially reduced by their presence. In fact, the human driver is still the most critical
factor in about 94% of crashes [12].

However, most of the current ADASs implement only simple mechanisms to take into account
drivers’ states or do not take them into account it at all. An ADAS informed about the driver’s state
could take contextualized decisions compatible with his/her possible reactions. Knowing the driver’s
state means to continuously recognize whether the driver is physically, emotionally, and physiologically
apt to guide the vehicle as well as to effectively communicate these ADAS decisions to the driver.
Such an in-vehicle system to monitor drivers’ alertness and performance is very challenging to obtain
and, indeed, would come with many issues.

• The incorrect estimation of a driver’s state as well as of the status of the ego-vehicle (also denoted
as subject vehicle or Vehicle Under Test (VUT) and referring to the vehicle containing the sensors
perceiving the environment around the vehicle itself) [13,14] and the external environment
may cause the ADAS to incorrectly activate or to make wrong decisions. Besides immediate
danger, wrong decisions reduce drivers’ confidence in the system.

• Many sensors are needed to achieve such an ADAS. Sensors are prone to errors and require
several processing layers to produce usable outputs, where each layer introduces delays and may
hide/damage data.

• Dependable systems that recognize emotions and humans’ states are still a research challenge.
They are usually built around algorithms requiring heterogeneous data as input parameters
as well as provided by different sensing technologies, which may introduce unexpected errors
into the system.

• An effective communication between the ADAS and the driver is hard to achieve.
Indeed, human distraction plays a critical role in car accidents [15] and can be caused by both
external and internal causes.

In this paper, we first present a literature review on the application of human state recognition for
ADAS, covering psychological models, the sensors employed for capturing physiological signals,
algorithms used for human emotion classification, and algorithms for human–car interaction.
In particular, some of the aspects that researchers are trying to address can be summarized as follows:

• adoption of tactful monitoring of psychological and physiological parameters (e.g., eye closure) able
to significantly improve the detection of dangerous situations (e.g., distraction and drowsiness)

• improvement in detecting dangerous situations (e.g., drowsiness) with a reasonable accuracy and
based on the use of driving performance measures (e.g., through monitoring of “drift-and-jerk”
steering as well as detection of fluctuations of the vehicle in different directions)

• introduction of “secondary” feedback mechanisms, subsidiary to those originally provided in the
vehicle, able to further enhance detection accuracy—this could be the case of auditory recognition
tasks returned to the vehicle’s driver through a predefined and prerecorded human voice, which is
perceived by the human ear in a more acceptable way compared to a synthetic one.

Moreover, the complex processing tasks of modern ADASs are increasingly tackled by AI-oriented
techniques. AIs can solve complex classification tasks that were previously thought to be very
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hard (or even impossible). Human state estimation is a typical task that can be approached by AI
classifiers. At the same time, the use of AI classifiers brings about new challenges. As an example,
ADAS can potentially be improved by having a reliable human emotional state identified by the driver,
e.g., in order to activate haptic alarms in case of imminent forward collisions. Even if such an ADAS
could tolerate a few misclassifications, the AI component for human state classification needs to have
a very high accuracy to reach an automotive-grade reliability. Hence, it should be possible to prove
that a classifier is sufficiently robust against unexpected data [16].

We then introduce a novel perception architecture for ADAS based on the idea of Driver Complex
State (DCS). The DCS of the vehicle’s driver monitors his/her behavior via multiple non-obtrusive
sensors and AI algorithms, providing emotion cognitive classifiers and emotion state classifiers to
the ADAS. We argue that this approach is a smart way to improve safety for all occupants of a
vehicle. We believe that, to be successful, the system must adopt unobtrusive sensing technologies
for human parameters detection, safe and transparent AI algorithms that satisfy stringent automotive
requirements, as well as innovative Human–Machine Interface (HMI) functionalities. Our ultimate
goal is to provide solutions that improve in-vehicle ADAS, increasing safety, comfort, and performance
in driving. The concept will be implemented and validated in the recently EU-funded NextPerception
project [17], which will be briefly introduced.

1.1. Survey Methodology

Our literature review starts by observing a lack of integration on modern ADASs of comprehensive
features that take into account the emotional and cognitive states of a human driver. Following this
research question, we focused the analysis on the following three different aspects:

• The state-of-the-art of modern ADASs, considering articles and surveys in a 5-year time-frame.
We limit ourselves here to the highly cited articles that are still relevant today.

• Psychological frameworks for emotion/cognition recognition. We have both reviewed the classic
frameworks (e.g., Tomkins [18], Russel [19], Ekman [20], etc.) as well as recent applications of
these techniques in the automotive domain. We observe a lack of usage of such specialized
frameworks in real-world ADAS technologies.

• Sensors and AI-based systems, proposed in recent literature, that we consider relevant to
implementation of the above frameworks in the automotive domain.

Based on this summary of the state-of-the-art, we make a proposal of possible improvements
going in two distinct directions: (i) the integration of ADAS with unobtrusive perception sensors and
(ii) the human driver’s status recognition using complex psychological analyses based on modern AI
methods. We provide illustrative scenarios where the integration could take place, highlighting the
difference with existing technologies.

1.2. Article Structure

The rest of the paper is organized as follows. Section 2 reviews the state-of-the-art on ADAS and
human emotion recognition through sensing technologies. Section 3 describes the improvements that are
proposed in DCS estimation and their impact on ADAS, together with the way the proposed ideas will
be validated in the H2020 EU project NextPerception. Section 4 discusses useful recommendations and
future directions related to the topics covered in this paper. Finally, in Section 5, we draw our conclusions.

2. ADAS Using Driver Emotion Recognition

In the automotive sector, the ADAS industry is a growing segment aiming at increasing
the adoption of industry-wide functional safety in accordance with several quality standards,
e.g., the automotive-oriented ISO 26262 standard [21]. ADAS increasingly relies on standardized
computer systems, such as the Vehicle Information Access API [22], Volkswagen Infotainment Web
Interface (VIWI) protocol [23], and On-Board Diagnostics (OBD) codes [24], to name a few.
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In order to achieve advanced ADAS beyond semiautonomous driving, there is a clear need
for appropriate knowledge of the driver’s status. These cooperative systems are captured in the
Society of Automotive Engineers (SAE) level hierarchy of driving automation, summarized in
Figure 1. These levels range from level 0 (manual driving) to level 5 (fully autonomous vehicle),
with intermediate levels representing semiautonomous driving situations, with a mixed driver–vehicle
degree of cooperation.

0

NO AUTOMATION

Manual control. The
human performs all
driving tasks (steering,
acceleration, braking,
etc).

1
DRIVER

ASSISTANCE

The vehicle features a
single automated
system (e.g. it monitors
speed through cruise
control).

2
PARTIAL

AUTOMATION

ADAS. The vehicle can
perform steering and
acceleration. The human
still monitors all tasks
and can take control at
any time.

3
CONDITIONAL
AUTOMATION

Environmental detection
capabilities. The vehicle
can perform most driving
tasks, but human
override is still required.

4
HIGH

AUTOMATION

The vehicle performs all
driving tasks under
specific circumstances.
Geofencing is required.
Human override is still an
option.

5
FULL

AUTOMATION

The vehicle performs all
driving tasks under all
conditions. Zero human
attention or interaction is
required.

THE AUTOMATED SYSTEM MONITORS THE DRIVING ENVIRONMENTTHE HUMAN MONITORS THE DRIVING ENVIRONMENT

Figure 1. Society of Automotive Engineers (SAE) levels for driving automation.

According to SAE levels, in these mixed systems, automation is partial and does not cover every
possible anomalous condition that can happen during driving. Therefore, the driver’s active presence
and his/her reaction capability remain critical. In addition, the complex data processing needed for
higher automation levels will almost inevitably require various forms of AI (e.g., Machine Learning
(ML) components), in turn bringing security and reliability issues.

Driver Monitoring Systems (DMSs) are a novel type of ADAS that has emerged to help
predict driving maneuvers, driver intent, and vehicle and driver states, with the aim of improving
transportation safety and driving experience as a whole [25]. For instance, by coupling sensing
information with accurate lane changing prediction models, a DMS can prevent accidents by warning
the driver ahead of time of potential danger [26]. As a measure of the effectiveness of this approach,
progressive advancements of DMSs can be found in a number of review papers. Lane changing models
have been reviewed in [27], while in [28,29], developments in driver’s intent prediction with emphasis
on real-time vehicle trajectory forecasting are surveyed. The work in [30] reviews driver skills and
driving behavior recognition models. A review of the cognitive components of driver behavior can
also be found in [7], where situational factors that influence driving are addressed. Finally, a recent
survey on human behavior prediction can be found in [31].

In the following, we review the state-of-the-art of driver monitoring ADAS, dealing in particular
with emotion recognition (Section 2.1), their combined utilisation with Human–Machine Interfaces
(HMIs, Section 2.2), the safety issues brought about by the adoption of AI in the automotive field
(Section 2.3), as well as its distribution across multiple components and sensors (Section 2.4).

2.1. Emotions Recognition in the Automotive Field

Emotions play a central role in everyone’s life, as they give flavor to intra- and interpersonal
experiences. Over the past two decades, a large number of investigations have been conducted on both
neurological origin and social function of emotions. Latest century studies seem to have validated the
discrete emotion theory, which states that some specific emotional responses are biologically determined,
regardless of the ethnic or cultural difference among the individuals. Many biologists and psychologists
have commented on the characteristics of this set of “primary emotions”, theorizing various emotional
sets [32,33] and/or dimensional models of affects [19,34]. Great contribution has come from the seminal
work of the American psychologist Paul Ekman, who long theorized a discrete set of physiologically
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distinct emotions that are anger, fear, disgust, happiness, surprise, and sadness [20]. The Ekman’s set
of emotions is surely one of the most considered ones.

Nowadays, understanding emotions often translates into the possibility of enhancing
Human–Computer Interactions (HCIs) with a meaningful impact on the improvement of driving
conditions. A variety of technologies exist to automatically recognize human emotions, like facial
expression analysis, acoustic speech processing, and biological response interpretation.

2.1.1. Facial Expression and Emotion Recognition

Besides suggesting the primary set of six emotions, Ekman also proposed the Facial Action Coding
System (FACS) [35], which puts facial muscle movement in relation with a number of Action Unit (AU)
areas. This methodology is widely used in the Computer Vision (CV) field.

Facial expression classifiers can be either geometric-based or appearance-based. The latter category
aims to find significant image descriptors based on pixel information only. Thanks to recent and
continuous improvements on the ImageNet challenge [36], the application of Deep Learning (DL)
algorithms has emerged as a trend among appearance-based algorithms [37]. A lot of DL architectures
have been proposed and employed for facial emotion recognition, each of which outperformed its
ancestors, thereby constantly improving state-of-the-art accuracy and performance [38].

The most efficient DL architectures to be applied in these scenarios are Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs), and Long Short-Term Memory (LSTM)
networks. Hybrid frameworks also exist, in which different architectures’ characteristics are combined
together in order to achieve better results [39].

State-of-the-art CNNs have reached a noteworthy classifying capability, performing reasonably
well in controlled scenarios. Hence, research efforts have shifted toward the categorization of
emotions in more complex scenarios (namely, wild scenarios), aiming at a similar high accuracy [40].
This is required to allow application of these classifiers in any safety critical scenario (as will be
discussed in Section 2.3). Much progress has been made in CV for emotion recognition. However,
emotion classification in uncontrolled, wild scenarios still remains a challenge due to the high
variability arising from subject pose, environment illumination, and camera resolution. To this end,
the literature suggests to enrich facial expression datasets by labeling captured images in different
conditions (i.e., captured in real-world conditions and not in a laboratory) and to train models to
overcome limitations of available algorithms in emotion recognition [41]; unfortunately, this procedure
is still complex and costly.

2.1.2. Valence and Engagement

Besides predicting which of the six Ekman’s emotions is most likely to be perceived by the user,
affect valence is investigated too. In detail, valence expresses the pleasantness of an emotion and then
differentiates between pleasant (positive) and unpleasant (negative) feelings. While having a view on
the valence dimension is often useful, as nonbasic affective states may appear, one should not forget
that even basic emotions frequently blend together. This is why valence is a commonly investigated
dimension, especially in psychology research areas [42].

A discrete partition of emotions is a useful simplification to work with. However, real perception
of feelings is way more complex and continuous, and this prominently reflects the difficulty that many
people have in describing and assessing their own emotions. With this in mind, valence dimensions
was suggested with one of the so called “circumplex models” for emotions, specifically with the Russell
model [19], in which linear combinations of valence and arousal levels provide a two-dimensional
affective space, as shown in Figure 2.
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ACTIVATION

DEACTIVATION

UNPLEASANT PLEASANT
upset

stressed

nervous

tense alert

excited

elated

happy

sad

depressed

bored

contented

serene
relaxed

calm

ar
ou

sa
l

valence

Figure 2. Graphical representation of the Russell’s circumplex model of affect: valence is reported in
the horizontal axis (ranging from totally unpleasant to fully pleasant), while arousal is reported on the
vertical axis.

On the basis of this classification, the work in [43] found that an optimal driving condition is the
one in which the driver is in a medium arousal state with medium-to-high valence.

Finally, psychology has made great strides in understanding the effects of emotions on user
attention and engagement [44]. In accordance with the arousal–valence model, it is possible to
classify the emotional engagement into active and passive engagement and positive and negative
engagement [45]. The engagement level is then obtained as the sum of each Ekman emotion’s
probability of occurrence; hence, this can be used as an additional indicator of driving performance,
as reported in [46].

2.1.3. Further Factors Influencing Driving Behavior

The literature overview suggests considering other multiple factors to predict risk of driving
behavior such as age [47], gender [48], motivation [49], personality [50], and attitudes and beliefs [51],
some of which transcend emotions. While violations leading to an increased risk mainly concern the
social context, user’s motives, attitudes, and beliefs [52], driving errors mostly depend on the individual
cognitive processes. Violations and driving errors are influenced by gender [53], gender role [54],
attention disorders [55], and age-related problems. Some researches have demonstrated that young
drivers are more likely to drive fast, to not wear seat belts, and to tailgate and that males consistently
exhibit greater risky driving compared with females. However, there is not a consensus on the effects
of demographics on driving behavior. For instance, an experimental study appeared in the literature
demonstrating that age is not such a significant predictor of speed and that other factors (such as
aggression, lack of empathy and remorse, and sensation seeking) have a deeper influence on the
attitude toward speeding and increase the risk of crashes [56] more than age and gender. For that
reason, the present research mainly focuses on the recognition of complex human states rather than
demographics. Age, gender, and ethnicity will be fixed attributes of the individual in the analysis of
risk driving behavior and will be included as covariates in future experimental analyses.

2.1.4. Emotional Effects on Driving Behavior

In the fields of traffic research and HCI, several studies have been published in the past decades
about the detection and exploitation of the driver cognitive and emotional states, given the significant
impact that such conditions have on driver performance and consequent effects on road safety [57,58].
The detection of the driver’s state can be exploited to adapt the HMI so that it communicates with
the driver in a more suitable way, for example, by overcoming driver distractions to effectively deliver
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warnings about risky maneuvers or road conditions. On the other hand, emotional states in the car
are detected mainly with the aim of applying emotional regulation approaches to lead the driver in a
condition of medium arousal and moderate positive valence.

Induced emotions may influence driving performance, perceived workload, and subjective
judgment. Hence, experimental tests reported in [59] demonstrated that induced anger decreases the
level of a driver’s perceived safety and leads to a lower driving performance than neutral and fear
emotional states. The same result is achieved in the case of happiness.

The survey in [60] considers recent literature from Human Factors (HFs) and HCI domains about
emotion detection in the car. It is shown that anger, which is the most investigated basic emotion in
the automotive field, convincingly impacts negatively both safety and driving performance.

It is recognized that a workload increase has, as its main effects, a decrease in reaction time and
an overall impairment on driving performance. On the other hand, an increased arousal, which is
part of an intense emotion, can cause the same effects, as it is known from the Yerkes–Dodson
law [61]. This result, coupled with the literature reviewing the effects of emotions while driving,
suggests as an optimal state for driving [43] the one where the driver shows medium arousal and
slightly positive valence.

Moreover, road traffic conditions, driving concurrent tasks (such as phone conversation,
music listening, and other environmental factors) may arouse emotions. For instance, music, for its
emotional nature, affects the driver’s attention. Neutral music has been demonstrated to not
significantly impact driving attention [62], while sad music leads toward safe driving and happy
music leads to risky driving.

Notwithstanding the role and prevalence of affective states on driving, no systematic approaches
are reported in the literature to relate the driver’s emotional state and driving performance [63].
Some empirical studies have highlighted that traditional influence mechanisms (e.g., the one based
on valence and arousal dimensions) may not be able to explain affective effects on driving. In fact,
considering at the same time valence or arousal dimension (e.g., anger and fear belong to negative
valence and positive arousal), different affective states show different performance results [59]. As a
consequence, a more systematic and structured framework must be defined to explain complicated
phenomena, such as the effects of emotions on driving [46].

2.1.5. Emotion Induction and Emotion Regulation Approaches

Reliable and specific emotion detection could be exploited by the HMI to implement emotion
regulation approaches. Emotion regulation is the function of moderating the emotional state of the
driver in order to keep it in a “safe zone” with medium arousal and positive valence. In particular,
the HMI can act in order to bring the driver back to a suitable emotional state when the detected
emotional state is considered to have a negative impact on driving. Emotion detection and regulation
techniques have been studied in isolation (i.e., without other driver state conditions, such as cognitive
ones) and in simulated environments to date. In this kind of experimental setting, emotion induction
approaches are used to put the participants in different emotional states.

In detail, in [64], different approaches for emotion induction in driving experimental
settings—namely, autobiographical recollection, music video priming, and both techniques enhanced
with the provisioning of emotion-specific music tracks while driving—were evaluated. The results
showed that artificially induced emotions have a mean duration in the interval 2–7 min, adjusted by
±2 min depending on the used technique. The most promising one, according to users’ judgment
about subjective-rated intensity of emotion (measured after inducement) and for dwell time (i.e., for the
time the induced emotion is felt by the participant after inducement), seems to be the one envisioning
autobiographical recollection before driving, coupled with the provision of emotion-specific music
tracks used by the “Database for Emotion Analysis using Physiological Signals” (DEAP) dataset [65].

As an example, a participant was asked to think about and write down an event of his/her life
(autobiographical recollection) connected with a low value, high arousal emotion for 8 min. After that
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initial writing, driving began. The participant drove while listening to a music title used for the DEAP
database for extreme values of arousal and negative valence. In order to recall the emotion while
driving, the participant had to recount the story aloud, preferably in a setting protecting his/her privacy.
This approach was tested in a simulated driving environment, while being applied in following studies
to compare emotion regulation techniques starting from conditions of anger and sadness [66].

According to the review in [64], naturalistic causes of emotions while driving have
been investigated in the literature by means of longitudinal studies, brainstorming sessions,
newspaper articles, analysis about episodes of aggressive driving, and interviews with drivers.
The results are that other drivers’ behaviors, traffic condition, near accident situations, and time constraints are
the main sources of negative emotions. A frustrating user interface (UI) can cause the same effects as well.
Both a positive and a negative impact on the driver state can be triggered, on the other hand, by verbal
personal interaction with other people, the driver’s perception of his/her driving performance, the vehicle
performance, and the external environment. These naturalistic causes of emotions have typically a lower
dwell time and, because of that, are less useful in an experimental context created to collect data about
driving performance and emotion regulation techniques performed by the HMI.

As examples of emotion regulation approaches considered in the literature [64], the following
anger and sadness regulation approaches in manual driving can be recalled:

• ambient light, i.e., the exploitation of blue lighting for leveraging calming effects on the level
of arousal;

• visual notification, i.e., visual feedback about the current state of the driver;
• voice assistant, i.e., audio feedback about the driver’s status provided in natural

language—and obtained with Natural Language Processing (NLP) tasks—with suggestions of
regulation strategies;

• empathic assistant, i.e., a voice assistant improved with an empathic tone of voice mirroring the
driver’s state suggesting regulation activities.

Among these strategies, the empathic assistant seems the most promising one, according to the
effects on emotions felt by the subjects during driving and subjects’ rating about the pleasure of the
experience. Other techniques have been investigated, such as adaptive music to balance the emotional
state, relaxation techniques such as breathing exercises, and temperature control.

2.1.6. Emotion Recognition Technologies in the Vehicle

Nowadays, the recognition of human emotions can be obtained by applying numerous methods
and related technologies at different levels of intrusiveness. Some instruments based on biofeedback
sensors (such as electrocardiograph (ECG), electroencephalogram (EEG), as well as other biometric
sensors) may influence the user’s behavior, spontaneity, and perceived emotions [67]. Moreover, in real
driving conditions, they cannot be easily adopted. Consequently, in the last decade, several efforts
have been made to find nonintrusive systems for emotion recognition through facial emotion
analysis. The most promising ones are based on the recognition of patterns from facial expression
and the definition of theoretical models correlating them with a discrete set of emotions and/or
emotional states.

Most of these systems process data using AI, usually with CNNs [68,69] to predict primary emotions
in Ekman and Fresner’s framework (as shown in Section 2.1). In fact, most of the currently available
facial expressions datasets are based on this emotion framework (e.g., EmotioNet [70]). In the literature,
numerous emotion-aware car interfaces have been proposed [71,72]: some use bio-signals collected
through wearable devices, and others rely on audio signal analysis, e.g., detection of vocal inflection
changes [73]. An extended study on the effectiveness of facial expression recognition systems in a motor
vehicle context to enable emotion recognition is still lacking.



Safety 2020, 6, 55 9 of 33

2.2. Human–Machine Interface (HMI)

Since the complexity of driving is significantly increasing, the role of information systems is
rapidly evolving as well. Traditional in-vehicle information systems are designed to inform the driver
about dangerous situations without overloading him/her with an excessive amount of information [74].
For this reason, the most relevant issues related to evaluation of the HMI from a human factors
perspective are related to inattention and workload topics [75].

Hot topics in modern HMI design concern the modalities to represent the information and the
timing to display them. The design of HMIs (including graphical, acoustic, and haptics) is progressively
facing this transition by shifting the perspective from visualization to interaction.

In detail, the interaction foresees a more active role of the user and requires different design
strategies. For example, in the last years, the automotive domain is also experiencing a rise in
User-Centered Design (UCD) as the main technique to tailor the HMI design around the users.
A crucial role has been assumed by multi-modal interaction systems [76], able to dynamically tailor the
interaction strategy around the driver’s state. In this sense, new perspectives have been opened by the
advancement in unobtrusive sensor technologies, ML, and data fusion approaches [77,78], dealing with
the possibility of combining multiple data sources with the aim of detecting even more complex states
of the driver and actual driving situations. This information can be used to design more effective HMI
strategies both in manual driving scenarios and in autonomous driving scenarios, with particular
reference to takeover strategies [79]. As an example, it could be useful to understand what the driver
is doing (e.g., texting by phone), during which kind of driving situation (e.g., overtaking other cars
on a highway), frequency of visual distraction, level of cognitive distraction, and experiencing which
kind of emotion. Then, this information will allow to choose the most appropriated message to be sent
by the HMI in order to lead the driver back to a safer state using the most suitable communication
strategy and channels (visual, acoustic, etc.).

Actually, emotion regulation strategies have been recently taken into account to improve the
interaction performance. These approaches aim to regulate emotional activation towards a neutral
emotion [80] using the HMI and, in turn, support a cooperative interaction.

2.2.1. Strategies to Build Human–Automation Cooperation: Teaming

Many researches have investigated possible strategies to enable the cooperation between humans
and automated agents, exploiting the cooperative paradigm that establishes the two agents as team
players [81]. In contrast with early researches that focused on increasing the autonomy of agents,
current researches seek to understand the requirements for human–machine cooperation in order
to build automated agents with characteristics suitable for making them a part of a cooperative
system [82,83].

A crucial requirement for cooperation is mutual trust; to gain trust, both team members shall be
mutually predictable. They must be able to monitor and correctly predict the intention of the partner
(and thus the behavior of the team). However, current agents’ intelligence and autonomy reduce the
confidence that people have in their predictability. Although people are usually willing to rely on
simple deterministic mechanisms, they are reluctant to trust autonomous agents for complex and
unpredictable situations, especially those involving rapid decisions [84]. Ironically, the increase in
adaptability and customization will make autonomous agent less predictable, with the consequence
that users might be more reluctant to use them because of the confusion that the adaptation might
create [85].

2.3. AI Components in ADAS

AI utilization in ADAS has been a very active field of research in the last decade [86].
Roughly speaking, these are two main application lines that can be currently identified.
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• Mid-range ADASs (like lane change estimation, blind spot monitoring, emergency brake
intervention, and DMSs) are currently deployed in many commercial vehicles. In these ADASs,
the research focuses on understanding if AI/ML is capable of providing superior accuracy with
regard to rule-based systems or the human driver.

• High-range ADASs for (experimental) autonomous vehicles, like Tesla [87] or Waymo [88],
require complex classification tasks to reconstruct a navigable representation of the environment.
These tasks are mainly performed using DL components based on CNNs and constitute the
emerging field of AI-based Autonomous Driving (AIAD).

The growing interest in the use of AI in vehicles has shown very valuable results, even if there are
several problems that still need to be addressed, mostly safety issues—see the infamous “We shouldn’t
be hitting things every 15,000 miles.” [89]. Safety concerns for SAE’s level 1 and level 2 vehicles are
addressed by the Safety Of The Intended Functionality (SOTIF) ISO/PAS standard 21448:2019 [90],
which addresses the fact that some complex ADASs, even in the absence of any hardware faults,
can still suffer from safety issues (like a misclassified signal obtained from a sensor), since it is not
possible to reasonably consider every possible scenario [91]. Therefore, an accurate ADAS design [92]
should consider the safety boundaries of the intended functionalities and should be designed to avoid
hazardous actions as much as possible. This can be hard to achieve for AI/ML components.

A significant source of classification issues arises from the imperfect nature of learning-based
training of AI models. Any reasonable dataset used for training an AI/ML model will inevitably
be finite and limited, thus being subject to uncertainty; instability; and more generally, lack of
transparency [93]. Therefore, the resulting model will not perform perfectly in every possible scenario,
and misclassifications are expected with some probability. The successful adoption of ML models in
critical ADASs will heavily rely on two factors:

• how the ML/AI component will be capable of ensuring bounded behaviors in any possible
scenario (SafeAI [93]);

• how well humans are able to understand and trust the functionality of these components
(eXplainable AI, or XAI [94]).

Active research is being made on both SafeAI and XAI topics to improve and further advance the
state of AI components. Figure 3 shows the areas of research that are identified as the most critical to
be improved in order to achieve industrial-grade AI components [95].

Fair / 
Impartial

Robust / 
Reliable Privacy Safe / 

Secure
Responsible / 
Accountable

Transparent / 
Explainable

AI Governance

Regulatory Compliance

Figure 3. The pillars of the trustworthy artificial intelligence (AI) framework (see [95]).

Building safe systems for safety critical domains additionally requires consideration of the concept
of redundancy that can be internal or external. Internal redundancy is aimed at tolerating hardware fault
(in particular, transient faults) that may impair certain computations inside the AI components [96],
while external redundancy is based on multiple replication of the whole AI system or by using different
forms of classifiers, followed by a majority voting mechanism. The latter approach, shown in Figure 4,
is generally referred to as ensemble learning. Upon failure, the system should either tolerate it, fail in a
safe manner (fail-safe), and/or operate in a degraded automation mode (fail-degraded). Unfortunately,
detecting failures of AI components is not a trivial task and, indeed, is the subject of active research.
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Figure 4. Framework for ensemble AI [97].

To this end, relying on distributed AI systems [98] is one alternative to fac ing the challenges
with the lack of comprehensive data to train AI/ML models as well as to provide redundancy
during ADAS online operations [99]. In the former case, models are built relying on a federation of
devices—coordinated by Edge or Cloud servers—that contribute to learning with their local data and
specific knowledge [98,99]. In the latter case, Edge or Cloud servers contribute to decision making
during ADAS operations.

Moreover, the use of distributed AI systems (for which an example is shown in Figure 5) brings
many challenges to ADAS safety. For example, resource management and orchestration become much
harder when AI/ML models are built collaboratively [100]. Data may be distributed across devices in
a nonidentical fashion, i.e., some devices may collaborate with substantially larger/smaller datasets,
which could easily bias the aggregated models. Both during model training and ADAS operations,
distributed devices may behave unreliably or could not communicate due to network congestion.
Devices may become unavailable during training or application of algorithms due to faults or the lack
of network coverage.
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ML	Processing
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Figure 5. Cloud vs. local intelligence.

As models are built in a distributed fashion, the attack surface also increases substantially. Some of
the attack scenarios described in the literature [101] include (i) network attacks to compromise or
disrupt model updates; (ii) model theft and misuse; (iii) malicious or adversarial users/servers that
may act to change the environment and influence models’ decision during operations; and (iv) model
poisoning or intentional insertion of biases aiming to tamper the system.

Finally, safety and security properties to be taken into account in systems handling sensitive data,
such as those working in a distributed AI-oriented way in automotive contexts, can be summarized
as follows.

1. Confidentiality, which is the property through which data is disclosed only as intended by the data
owner. Personal data to be collected from people inside a vehicle’s cabin is the main challenge to



Safety 2020, 6, 55 12 of 33

be faced, as each occupant should be sure that his/her data are not disclosed to unauthorized
people, especially for data in which personal features are recognizable (e.g., imaging data).

2. Integrity, which is the property guaranteeing that critical assets are not altered in disagreement
with the owner’s wishes. In vehicular contexts, this is particularly true if sensor or Electronic
Control Unit (ECU) data need to be stored with anti-tamper mechanisms (e.g., data to be used in
case of accidents and disputes).

3. Availability, which is the property according to which critical assets will be accessible when
needed for authorized use.

4. Accountability, which is the property according to which actions affecting critical assets can be
traced to the actor or automated component responsible for the action.

It is noteworthy to highlight that these properties as well as those discussed before for distributed
AI must be either considered in the case that on-board local intelligence would be used as a
first decision stage before sending data to external processing entities (e.g., deployed on Cloud
infrastructures [102]). To this end, even if not directly discussed in this work and left as future analysis
work, these safety and security requirements will play a key role in protecting information from
tampering attempts, especially those that can intervene in intermediate levels, e.g., Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I) channels.

2.4. Sensing Components for Human Emotion Recognition

When considering and evaluating technologies for driver’s behavior recognition and, in general,
for human monitoring, one must consider that the acceptance degree on these technologies by the final
user largely depends on their unobtrusiveness, i.e., how the technology is not perceived to infringe
his/her privacy. To this end, heterogeneous sensors can be adopted as monitoring technologies, in turn
being characterized by their mobility degree, such as stationary sensors and mobile sensors. More in
detail, stationary sensors are well suited for unobtrusive monitoring, as they are typically installed in the
environment (e.g., in the vehicle’s cabin) and act without any physical contact with the user: a standard
example of a stationary sensor is a camera installed in the cabin. On the other hand, mobile sensors,
e.g., wearable, have become practical (thanks to the miniaturization of sensors) and appealing,
since nowadays people buy versatile smart devices (e.g., smart watches with sensors for health
parameters monitoring) that can be exploited for driver’s behavior monitoring and recognition [103].

Then, looking for a driver’s unobtrusive monitoring and aiming to recognize his/her behavior,
a DMS could be enhanced with the Naturalistic Driving Observation (NDO) [104] technique, a research
methodology which aims to characterize the drivers’ behavior on each voyage through discrete and
noninvasive data collection tools [105]. In detail, private vehicles can be equipped with devices
that can continuously monitor driving behaviors, including vehicle’s movements detection and
information retrieval (e.g., vehicle’s speed, acceleration and deceleration tasks, positioning of the
vehicle inside the road it is traveling, etc.), information on the driver (e.g., head and hands movements,
and eye and glance position), and the surrounding environment (e.g., road and atmospheric
conditions, travel time, and traffic density). Moreover, NDO allows to observe these data under
“normal” conditions, under “unsafe” conditions, and in the presence of effective collisions. Within a
NDO-based gathering scenario, the driver becomes unaware of ongoing monitoring, as the collection
of organized data is carried out with discretion and the monitored vehicle is the one commonly
used by the driver. Finally, one of the strengths of NDO is its adaptivity to various kind of vehicles
(e.g., cars, vans, trucks, and motorcycles), and this can be seen as an additional keypoint, thus being
applicable to simulation scenarios before real deployment in real vehicles. Examples of already
deployed NDO-based projects are “100-Car Study” [106], “INTERACTION” [107], “PROLOGUE” [108],
“DaCoTA” [109], and “2-BE-SAFE” [110].
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2.4.1. Inertial Sensors

Considering mobile sensing elements, often worn by the person to be monitored, the adoption of
Inertial Measurement Units (IMUs) allows for estimation of the motion level. Since IMUs integrate
3-axis accelerometers and 3-axis gyroscopes, they allow for implementation of inertial estimation
solutions for both motion and attitude/pose estimation. Moreover, inertial sensors have to be carefully
selected and calibrated, taking into account bias instability, scaling, alignment, and temperature
dependence. All these issues are very important, especially in application areas where the size, weight,
and cost of an IMU must be limited (namely, small size and wearable monitoring systems for drivers).

In the automotive field, inertial sensing can intervene in different areas, from safety
systems—like passenger-restraint systems (e.g., airbags and seat-belt pretensioner) and vehicle
dynamics control (e.g., ESC)—to monitor driver’s movements when seated. In both areas,
current IMUs are mainly built with Micro Electromechanical Systems (MEMS), mostly for
miniaturization and cost reasons, thus providing better performance in compact arrangements [111]
and additionally exploiting highly advanced algorithms based on ML and data fusion
technologies [112]. Moreover, personal motion estimation for health monitoring requires very
precise localization of the ego position; to this end, the availability of 3-axis accelerometers and
3-axis gyroscopes is a plus, since sensing elements have to be much more precise compared to
traditional industrial-grade IMUs used for automotive safety systems.

2.4.2. Camera Sensors

With regards to stationary and unobtrusive technologies that can be adopted for driver behavior
monitoring, a certain importance is given to imaging-based technologies, such as video cameras. To this
end, it is well known that the performance of CV algorithms running on top of the imaging streams
coming from the cameras are largely influenced by swinging lighting and atmospheric conditions.
Hence, one way to overcome this detection accuracy’s deterioration is to use thermal sensors, which are
more robust to adverse conditions with respect to canonical imaging sensors. In detail, thermal or Long
Wavelength Infrared (LWIR) cameras [113] have the following characteristics: (i) can detect and classify
objects in several particular conditions (e.g., darkness, rain, and through most fog conditions); (ii) offer
increased robustness against reflections, shadows, and car headlights [114]; and (iii) are unaffected
by sun glare, improving situational awareness [115]. Typically, the resolution of modern thermal
cameras is lower than the resolution of color cameras, but recent on-market high-end thermal cameras
are capable of producing full HD video streams.

In addition to driver monitoring based on thermal cameras, a further emphasis can be placed
on the use of normal and general-purpose imaging sensors, such as in-vehicle fixed cameras, or the
front camera of a smartphone [116,117]. This is further motivated by their well-known portability and
widespread diffusion in society, thus representing an optimal way to gather data and information [118].
Therefore, it is interesting to highlight not only that modern vehicles are equipped with built-in
sensors (e.g., in 2019, the Volvo car manufacturer released a press announcement regarding the
development of a built-in Original Equipment Manufacturer (OEM) camera-based infrastructure
targeting the detecting of drowsy and drunk people driving a vehicle [7]) but also that vehicles’
models which were not originally equipped with these kinds of technologies can benefit from these
solutions. In detail, textitin-vehicle and smartphone-equipped cameras [119] can be used to gather
information on glance duration, yawning, eye blinking (with frequency and duration; as an example,
prolonged and frequent blinks may indicate micro sleeps), facial expression [120], percentage of
eyelid closure (PERCLOS, formally defined as the proportion of time within one minute that eyes
are at least 80% closed) [121], head pose and movement [122], mouth movement [123,124], eye gaze,
eyelid movement, pupil movement, and saccade frequency. Unfortunately, working with these types
of cameras requires taking into account that (i) large light variation outside and inside the vehicle
and (ii) the presence of eyeglasses covering the driver’s eyes may represent issues in driver behavior
monitoring scenarios [125,126].



Safety 2020, 6, 55 14 of 33

Moreover, considering that, in general, normal cameras work in stereo mode, they can be used
as input sources for facial feature tracking, thus creating three-dimensional geometric maps [127]
and aiding in characterizing the status of the driver and its behavior. As can be easily understood,
the outcome of these powerful tasks could improve consideration of multiple sources: this opens the
possibility of federating multiple in-vehicle cameras aiming to compose a video network, which in turn
could be exploited to detect safety critical events [128,129].

Finally, camera-based monitoring mechanisms can be applied inside the vehicle’s cabin not only
for observing and identifying driver behaviors, but also for recognizing and identifying potentially
dangerous situations and behaviors involving the passengers seated inside the vehicle. Thus, this leads
to the need to create a sensing network inside the cabin as well as to defineproper data fusion
algorithms and strategies [130,131].

2.4.3. Sensor-Equipped Steering Wheel and Wearables

Another unobtrusive way to monitor a person driving his/her vehicle is through a biometric
recognition system that is gradually becoming part of everyday people’s life and is based on the
intrinsic traits of each person. Several biometric indicators are considered, such as Heart Rate Variability
(HRV) [132], ECG [133], or EEG [134]. Among these biometric traits, the ECG (i) gives liveness
assurance, uniqueness, universality, and permanence [135] and (ii) is surely interesting to explore for
biometric purposes. More in detail, this biometric signal is the result of electrical conduction through
the heart needed for its contraction [136]. Based on these characteristics, the possibility to perform
ECG biometric observations directly inside a vehicle’s cabin may provide some advantages, especially
in terms of automatic setting customization (e.g., biometric authentication for ignition lock [137]) and
driving pattern modeling aimed at the detection of fatigue-caused accidents [138] and distraction
moments [139] (e.g., using ECG signals to assess mental and physical stress and workload [140–142]
as well as fatigue and drowsiness [143]), and can be operationally deployed through the adoption of
hidden sensors underneath the steering wheel rim surface material [144]. In this way, it is possible to
detect the location on the steering wheel with which the hands contact [145,146], for both moving and
stationary vehicles [147].

Such a biometric-based recognition system can target reliable continuous ECG-based biometric
recognition. This can be performed through the acquisition of signals in more general and seamless
configurations (e.g., on the steering wheel surface of the vehicle), thus considering that contact loss and
saturation periods may be caused by frequent hand movements required by driving. As a consequence,
this could lead to lower-quality signals and could constitute a challenge in recognition [148].

Additional biometric indicators useful in automotive scenarios rely on properties based on skin
conductance and the exploitation of respiratory rate for further tasks, both collected by the usage
of sensors mounted within the steering wheel or anchored on the seat belt. In detail, these data
could help in deriving several indicators that may be of interest for the fitness level and driver’s
emotional and workload states, while further measurements (e.g., brain waves) would provide various
benefits, hence requiring other kinds of (wearable and obtrusive) sensors. Nevertheless, it could
be assured that, when combining these core measurements with vision data (either by normal of
thermal cameras), it should be possible to estimate a classification index for workload or stress level,
wellness or fitness level, emotional state, and driver intention [149]. Other unobtrusive sensors to be
considered may be pressure sensors, useful for detecting (if applied in the seat) the position of the driver.
This type of sensors can represent a useful integration of video sensors, since it is well-known that a
nonoptimal sitting position (e.g., leaning forward or backwards) may degrade the quality of the drive
and induce stress [150]. At a “mechanical” level, when a correct seat position is maintained by drivers,
pressure is sensed in all cells composing the pressure sensor, whereas a leaning position translates into
nonuniform pressure distribution among the pressure cells [151]. Finally, all the previously mentioned
sensing technologies may be included in portable devices, such as wearables, which are nowadays
finding applicability beyond daily worn devices (e.g., fitness trackers and sleep monitors); moreover,
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clinical-grade biometric-driven products that can accurately detect health issues are nowadays on the
agenda [152]. To this end, an illustrative example [153] may be represented by a wristwatch to be used
to detect the onset of seizure attacks through precise analysis of the user’s electro-dermal activity.

2.4.4. Issues with Sensing Technologies

Lighting is the main factor limiting vision-based and vehicle-based approaches, thus producing
noisy effects on both driver movement monitoring and physiological signal recognition using
cameras. At night, normal cameras generally have lower performance and infrared cameras should
be adopted to overcome this limitation. In addition, the majority of described methods are evaluated
only in simulation environments: this has a negative impact on the reliability of this kind of
methodology, in which “useful” data can be obtained only after the driver is in a dangerous situation
(e.g., she/he becomes drowsy or starts sleeping).

On the other hand, physiological signals generally start changing in the earlier stages of dangerous
situations and, therefore, physiological signals can be employed for anomalous behavior detection,
with a negligible false positive rate [154]. Analyzing the collected raw physiological data should take
into account the noise and artifacts related to all movements made by drivers during driving, but the
reliability and accuracy of driver behavior estimation is higher compared to other methods [155].
One of the main inhibitors for the large adoption of methodologies based on physiological signals
is related to the typically obtrusive nature of their current implementations. A possible solution
is provided by systems with ad hoc sensors that are distributed inside the car, as discussed in
Section 2.4.3, so that each time the driver’s hands are maintained on the vehicle steering wheel
or gearshift, she/he will be monitored. Consequently, a hybrid sensor fusion solution, in which
different monitoring methodologies (camera vision, vehicles monitoring, and lane monitoring) are
integrated with ad hoc miniaturized physiological sensing, certainly represents a next step for a
DMS to easily achieve an unobtrusive solution integrated in the vehicle and to provide a continuous
evaluation of drivers’ “levels of attention,” fatigue, and workload status, as shown in Figure 6.
Regardless of the specific sensing technology adopted for driver behavior monitoring (and discussed
in Sections 2.4.1–2.4.3), there is a common challenge. Since any sensor works well for all possible
considered tasks and for all conditions, sensor fusion, complex algorithms, and intelligent processing
capabilities are required to provide redundancy for autonomous functions.

Driver
On-board
Processing

Communication
Module

Figure 6. Example of a prototypical sensing monitor system.

The work in [156] identifies existing physiological sensing technologies that could be used by a
DMS, summarized as follows.

• Eye movements and PERCLOS.
• Tracking of gaze direction and head orientation: Electro-OculoGram (EOG).
• Level of attention of the driver, with his/her mental stress derived considering both gaze direction

and focus point.
• Pupil diameter, as it has been observed that, in the case of mental stress of the driver, acceleration

of the sympathetic nerve causes an increase in pupil diameter.
• Brain activity, especially through an EEG.
• ECG and HRV, that, as mentioned before, allow for monitoring of the tight connection betweem

mental activity and autonomous nervous system, which in turn influences human heart activity.
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More in detail, the balance between the nervous systems, i.e., sympathetic and parasympathetic,
affects heart rate, that generally linearly follows the predominance of the sympathetic and
parasympathetic nervous systems, respectively.

• Facial muscle activity and facial tracking, for which the related parameters and directions can
be monitored through a camera focusing on the driver, aim to detect his/her attention level and
drowsiness degree and to alert the occupants of the vehicle (through some on-board mechanisms,
e.g., HMIs) in the case that driving conditions are not appropriate (e.g., a weary driving person
usually nods or swings his/her head, yawns often, and blinks rapidly and constantly).

• Steering Wheel Movement (SWM), that represents widely recognized information related to the
drowsiness level of the driver and can be obtained in an unobtrusive way with a steering angle
sensor in order to avoid interference with driving.

3. The NextPerception Approach

3.1. Statement and Vision

NextPerception [157] is a research project funded in the context of the ECSEL JU [158] framework,
which aims to facilitate the integration of versatile, secure, reliable, and proactive human monitoring
solutions in the health, well-being, and automotive domains. In particular, NextPerception seeks to
advance perception sensor technologies, like RADAR, Laser Imaging Detection and Ranging (LIDAR),
and Time of Flight (ToF) sensors, while additionally addressing the distribution of intelligence to
accommodate for vast computational resources as well as increasing complexity needed in multi-modal
and multi-sensory systems.

The basic NextPerception project concept is depicted in Figure 7. NextPerception brings together
43 partners from 7 countries in the healthcare, wellness, and automotive domains, seeking synergy by
combining expertise in physiological monitoring usually in health with real-time sensor processing
typical in the automotive industry.

Proactive 
Behaviour & Physiological

Monitoring

Distributed 
Intelligence

Smart Perception 
Sensors

Health & Wellbeing Automotive

Figure 7. EU-funded NextPerception project concept.

Use Cases (UCs) in NextPerception are tackling challenges in integral vitality monitoring
(e.g., in elderly care), driver monitoring (both in consumers’ cars and for professional drivers), as well as
comfort and safety in intersections (e.g., predicting the behavior of pedestrians, cyclists, and other
vulnerable road users).

With regard to driver monitoring, the use of a variety of sensors to detect compromised driving
ability (e.g., by fatigue or emotional state) will contribute to further developments in automated driving,
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particularly in the transition phase. As also indicated in this paper, driver emotional state assessment
demands the combination of information about the driver’s physiological state, emotional state,
manipulation of the vehicle, and to some extent the vehicle’s environment. Perception sensors provide
the means for many of the necessary observations, including novel applications of technologies
for unobtrusive parameter monitoring and cameras for gaze tracking and emotion assessment.
NextPerception project’s partners aim to assess the feasibility of applying these perception sensors
within the vehicle environment for driver monitoring and for resolving the computational challenges
needed to provide timely feedback or to take appropriate preventive actions.

3.2. Development Process

The activity will start with the definition of practical UCs that, on the basis of different User Stories
(USs), will be then implemented in an automotive environment (as well as in a driving simulator).
In parallel, the system architecture will be defined in order to understand the most appropriate set
of sensors and communication requirements to be included in the development. Then, an iterative
experimental data collection campaign will be conducted to train the software modules.

Finally, as shown in Figure 8, the state detection system and the Decision Support System (DSS)
will be integrated in the driving simulator to test the impact in terms of safety, comfort, acceptability,
and trust.

Figure 8. Implementation process of the Driver Complex State (DCS) monitoring system.

Then, arbitration conditions and HMI-related strategies will be designed to mitigate weakening of
the driver’s emotional state as will a dashboard to check in real-time all the measured parameters.

3.3. Use Case on Driven Behavior Recognition

Among the overall objectives of the NextPerception project, one of the practical UCs of the
project itself focuses on the definition and deployment of a driver behavior recognition system to be
applied in the context of partial automated driving. As highlighted in Section 1, driver behavior has
a significant impact on safety also when vehicle control is in charge of automation. Then, the scope
of this experimental Use Case (UC) will be to stress some of the most critical situations related to the
interaction between humans and the automated system. As discussed in Section 2.2.1, conditions that
have an impact on safety are often related to control transition between the agents, being even true in
both directions, i.e., from manual driving to automated driving, and vice versa. In order to design and
evaluate the impact of a technological solution and to establish its functionalities and requirements,
a common tool used by designers are USs. This instrument can illustrate complex situations from the
user’s point of view and clearly demonstrate the added value provided by technology. The following
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texts will present two short examples of USs to describe the behavior of the monitoring system in a
realistic driving situation in Manual Mode (MM) and Automated Mode (AM).

“Peter is driving in manual mode on an urban road. He is in a hurry, since he is going to pick up his
daughter Martha at the kindergarten and he is late. While driving, he receives an important mail from
his boss. Since he has to reply immediately, he takes his smartphone and starts composing a message,
thus starting to drive erratically. The vehicle informs him that his behavior is not safe and invites him
to focus on driving. Since he does not react properly, the vehicle establishes that Peter is no longer in
the condition to drive. Automation offers the opportunity to take control and informs him that he can
relax and reply to the email. Taking into account Peter’s rush, automation adapts the driving style to
reach the kindergarten safely but on time.”

This first US highlights the benefits of adoption of a DMS in a MM-like driving situation.
The system is able to detect Peter’s impairment and provides a solution to mitigate it. This solution
is incremental since it is firstly based on advice and then on intervention. Moreover, the detection of
Peter’s hurry allows the vehicle’s behavior to adapt according to his needs. The situation depicted in
this short US highlights the added value of complex monitoring, with a significant impact not only
on safety but also on trust and acceptability, since Peter will perceive that the vehicle understand his
needs and adapts its reaction to be tailored around him.

The second US is focused on transition from AM to MM.

“Julie is driving on the highway in automated mode. She is arguing with her husband on the phone,
and she is visibly upset. Since automation detects that she is going to approach the highway exit,
it starts adjusting the interior lighting to calm Julie and, then, plays some calming background music.
Since Julie is still upset, the vehicle concludes that she is not in the condition to take control safely and
proposes that she take a rest and drink chamomile tea at the closest service station.”

In this second US, the value of the monitoring system consists of the joint detection of behavioral
(i.e., even if Julie is looking at the road, she is distracted, since she is involved in a challenging phone
discussion) and emotional states. The reaction deriving from this monitoring is, again, incremental.
The vehicle, understanding (e.g., from digital maps) that a takeover request will be necessary in a
while, first tries to calm Julie, then advises that she is not in the condition to drive. This form of
emotional regulation, currently neglected in vehicle interaction design, can have a significant impact
on traffic safety as well as on the overall driving experience.

Hence, the main innovation of this UC is the combination of cognitive/behavioral/emotional
status recognition in the context of highly automated driving, as shown in Figure 9. This is particularly
relevant given the well-known implications related to “driver out-of-the loop” state [159]. In particular,
this UC will focus on the combined effect of emotional and cognitive affections on driving performance
in safety-critical contexts, such as the transition of control between automated vehicle and human
driver. The scope of the research performed in this UC includes the following activities:

• To develop robust, reliable, non-obtrusive methods to infer a combined cognitive/emotional
state—to the best of our knowledge, there is no system able to infer the combination of these
factors in the automotive domain and of examples of integrated measures [79].

• To develop interaction modalities, e.g., based on the combination of visual and vocal interaction,
including shared control modalities to facilitate the transition of control and, in general,
the interaction between the driver and the highly automated system.

• To develop an appropriate framework to induce and collect data about the driver state from
both cognitive and emotional sides. Indeed, driver cognitive states have been investigated more
than emotional states [160]. To date, driver’s emotions have been always investigated separately
from driver’s cognitive states because of the difficulty to distinguish emotional and cognitive
load effects [60,160]. Further research is then needed to understand the whole driver state from
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both perspectives, starting from the appropriated experimental design paradigm to induce both
conditions.

Cameras for visual distraction monitoring
and emotion recognition

Sensor network for biofeedbackDistributed 
AI System

Multimodal 
HMI

In-vehicle dataExternal data (V2V, V2I)

Sensors and data fusion for proximity 
world representation

Figure 9. System architecture for the envisioned automotive Use Case (UC) in the NextPerception
framework.

3.4. Improving Emotion Recognition for Vehicle Safety

An envisioned vehicle driver-based state detection system would continuously and unobtrusively
monitor driver’s condition at a “micro-performance” level (e.g., minute steering movements) and
“micro-behavioral” level, such as driver psycho-physiological status, in particular, eye closure and
facial expressions. The system may enable the handling (and personalization) of an immediate warning
signal when a driver’s state is detected with high certainty or, alternatively, the presentation of a
verbal secondary task via a recorded voice as a second-stage probe of driver state in situations of
possible drowsiness. In addition, the system adopts an emotional regulation approach by interactively
changing the in-cabin scenario (e.g., modulating interior and car interface’s lighting and sound) to
orient the driver’s attitude toward safe driving and a comfortable experience. The opportunity to
improve road safety by collecting human emotions represents a challenging issue in DMS [161].
Traditionally, emotion recognition has been extensively used to implement the so-called “sentiment
analysis”, which has been widely adopted by different companies to gauge consumers’ moods
towards their product or brand in the digital world. However, it can also be used to recognize
different emotions on an individual’s face automatically to make vehicles safer and more personalized.
In fact, vehicle manufacturers around the world are increasingly focusing on making vehicles more
personal and safer to drive. In their pursuit to build smarter vehicle features, it makes sense for
manufacturers to use AI to help them understand human emotions. As an example, using facial
emotion detection, smart cars can interact with the driver to adapt the level of automation or to
support the decision-making process if emotions that can affect the driving performance are detected.
In fact, (negative) emotions can alter perception, decision making, and other key driving capabilities,
besides affecting physical capabilities.

3.5. Improving Assistance Using Accurate Driver Complex State Monitoring

In the specific UC introduced in Section 3.3, we take into account the conditions and sensors described
in Section 2 to develop a DMS, which can classify both the driver’s cognitive states (e.g., distraction,
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fatigue, workload, and drowsiness) and the driver’s emotional state (e.g., anxiety, panic, and anger),
as well as the activities and positions of occupants (including driver) inside the vehicle.

The high-level objective is to use this information to support partially automated driving functions,
including takeover requests and driver support. To address this scope, we will base our in-vehicle
development on the combination of different unobtrusive acquisition modules able to detect in real
time different parameters that will be later fused to obtain a “Fitness-to-Drive Index” (F2DI). To this
end, Figure 10 shows a modular representation of the overall acquisition system to be deployed in the
driving environment.

Internal data

External data

Video BiofeedbackVehicle Data

Perception – Available data

Camera Termo -
CameraCAN Bus

Vehicle

Other unobtrusive 
sensors

Thermal 
imaging

Driver

Distributed AI𝐴𝐼! 𝐴𝐼" 𝐴𝐼#$! 𝐴𝐼#

Cloud

HMIControl

Figure 10. Schematic representation of the proposed perception system.

With regard to Figure 10, three categories of information will be leveraged: (i) vehicle data,
(ii) driver data, and (iii) external data.

• Vehicle information will be collected through the in-vehicle Controller Area Network (CAN) network
in order to recognize the driving pattern in impairment conditions, such as cognitive distraction.

• Driver data will be collected through a combination of unobtrusive sensors. For example,
as introduced in Section 2.4.2, cameras inside the cockpit will be used to detect driver activity and
visual distraction as well as emotional activation from facial expression; thermal cameras will
be used to detect drowsiness and arousal; other unobtrusive sensors (e.g., smartwatch as well
as more general wearable devices) will be used to measure the driver’s engagement and other
bio-physiological parameters. The combination of different sensors enables the detection of
several parameters influencing the driver’s fitness to drive. We will refer to this combination as
Driver Complex State (DCS), in turn made by the combination of (i) emotional state; (ii) visual
distraction; (iii) cognitive distraction; (iv) arousal; and (v) fatigue/drowsiness.

• Finally, external data, including road conditions, weather conditions, lane occupation, and the
actions of other vehicles on the road will be considered.

The available data will allow a deep comprehension of a joint driver–vehicle state, also correlated
with the surrounding environment. In detail, this comprehension will be the result of the combination
of the output of different AI modules (AI1, . . . , AIn) in a distributed AI-oriented processing
environment (“Distributed AI” block in Figure 10). Then, different data fusion strategies will be
evaluated, in particular Late Fusion (i.e., high-level inference on each sensor, subsequently combined
across sensors) and Cooperative Fusion (i.e., high-level inference on each sensor but taking into account
feature vectors or high-level inference from other sensors) [162].
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Finally, the F2DI parameter, combined with vehicle and environmental conditions, will feed
a DSS that generates two main outputs: (i) a dynamic and state-aware level of arbitration and (ii)
a suitable HMI strategy. The level of arbitration will be an index used to distribute the vehicle
authority (at the decision and control levels) between the human and the automated agents according
to the different situations, including possible solutions of shared, traded, and cooperative control.
The effects of such an index will have an impact at the vehicle level (“Control” block in Figure 10).
On the other hand, the derived HMI strategy will be implemented by the HMI towards the driver
(“HMI” block in Figure 10). Multi-modal interaction modalities and visual solutions based on
elements aimed at increasing the transparency of the system and at providing explanations instead
of warnings (the so-called negotiation-based approach), and emotion regulation strategies aimed at
mitigating the impairment condition and at smoothly conducting the driver towards the expected
reaction, according to the situation.

3.6. Experimental Setup and Expected Results

In order to train and develop the modules to detect driver state and to test the impact of the
different combinations of human states, an experimental testing campaign was conducted. All subjects
gave their informed consent for inclusion before they participated in the study. The study was
conducted in accordance with the Declaration of Helsinki and the ethical approval of NextPerception
(ECSEL JU grant agreement No. 876487). The data collection was performed in a driving simulator
based on SCANeR Studio 1.7 platform [163], enriched with a force-feedback steering wheel and
equipped with cameras and sensors to gather driver’s data. Data collection was performed in two
steps. The first step was conducted to gather emotional states, such as anger, fear, and neutral emotional
activation, used as baseline. In particular, the experimental setup was used as a controlled environment
to build a proper dataset to trains deep CNNs for emotion recognition. The achieved training set could
be merged with other different public datasets—such as CK+ [164], FER+ [165], and AffectNet [166]—to
ensure better accuracy. The emotions were induced with the autobiographical recall method plus an
audio boost [64,167]. The second step consisted in gathering visual and cognitive distraction conditions,
performed using the dual task paradigm [168]. Further acquisitions were performed to test the impact
on driving of the combination of different conditions. In all the performed experiments, vehicle CAN
data as well as sensors data were collected and analyzed in order to design the detection modules and
the decision-making strategies.

The possibility of inferring emotional activation directly from driving behavior was explored
as was definition of the most suitable architecture and combination of sensors to infer the driver’s state.
Moreover, the possibility of inferring cognitive states and arousal from video streams was evaluated
during the experiments.

4. Recommendations and Future Directions

Based on the proposed ADAS-oriented architecture for DCS estimation, it is possible to discuss
and highlight some recommendations and future directions which can be considered. One aspect
that is recommended to be taken into account with regard to ADAS systems, copes with the idea of
“driver satisfaction”. More in detail, one needs to satisfy particular constraints for which knowledge
might be a significant indicator of user acceptance of ADAS systems [169] and, in turn, denotes typical
understanding of driver behavior. An illustrative reference parameters subset, useful to characterize a
driver and its driving style with adaptive ADAS, is proposed in [170].

Another recommendation that can be advised in the future is related to the number and type
of drivers involved in data collection: they should be as large and as heterogeneous as possible.
In this way, it would be possible to assign each driver to one or multiple categories on the basis of
their captured emotions and driving style, with the consequence to be able to further investigate
the intra-driver variation of trip-related parameters (e.g., following distance and cornering velocity
as well as environmental conditions in which the drive is performed, i.e., day/night, sunny/foggy
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day, etc.). Moreover, this structured data collection allows for the evaluation of all the aspects related
to legal rules that should be followed during the trip; cultural-related behaviors followed in particular
regions or environments (e.g., forbidding a certain category of people from driving or from using the
vehicle front seats); and constraints specifically introduced by local governments and to be applied in
specific areas.

Other challenges to be considered in scenarios involving driver emotion recognition through HMIs
and ADAS refer to the following aspects [25]: (i) to incorporate driver-related personal information and
preferences in order to develop more personalized on-board services (e.g., properly “training” on-board
models dedicated to these purposes); (ii) to improve the quantity and the quality of the collected
datasets, targeting a unified standard data representation for different applications (thus supporting
the derivation of more homogeneous models); and (iii) to consider information related to the external
context in models generating an estimation of the driver’s state (thus introducing real-time data even
from remote-sourced sensing platforms).

Finally, should Vehicle-to-Everything (V2X) mechanisms be added to (IoT-aided) enhanced ADAS,
the introduction of cooperative modeling approaches, based on the cooperation of multiple vehicles
sharing their on-board collected data and aiming to enhance their internal models, will be beneficial.
In this way, ADAS will become more powerful systems aiding the driver during his/her trips and,
in the meanwhile, improving driving quality estimation [171]. This can be beneficial even for emotional
state recognition, since anonymized data would be used by a federation of vehicles for enhancing
the quality of the recognition, leaving the driver unaware of this smart processing during his/her
typical errands.

5. Conclusions

In this paper, a comprehensive review of the state-of-the-art of technologies for ADAS identifying
opportunities (to increase the quality and security of driving) as well as drawbacks (e.g., the fact that
some ADASs implement only simple mechanisms to take into account drivers’ state or do not take it
into account at all) of the current ADAS systems has been detailed. This review focuses on the emotional
and cognitive analysis for ADAS development, ranging from psychological models, sensors capturing
physiological signals, adopted ML-based processing techniques, and distributed architectures needed
for complex interactions. The literature overview highlights the necessity to improve both cognitive
and emotional state classifiers. Hence, for each of the mentioned topics, safety issues are discussed,
in turn highlighting currently known weaknesses and challenges. As an example, it is very challenging
to implement in-vehicle systems to monitor drivers’ alertness and performance because of different
causes: incorrect estimation of the current driver’s state; errors affecting in-vehicle sensing components;
and communication issues among the ADAS and the driver. All these shortcomings may cause safety
systems to incorrectly activate or to make wrong decisions.

In order to improve the quality of driving and security for both driver and passengers, with respect
to the traditional manual driving, it is possible to design more advanced ADASs, particularly
DMSs, where the cognitive and emotional states of the human driver are taken into consideration
to enable different levels of interactions and automation. In detail, a DMS will aim to perform
different tasks, such as (i) developing robust, reliable, non-obtrusive methods to infer a combined
cognitive/emotional state; (ii) developing enhanced interaction and shared control modalities between
the driver and the highly automated system (e.g., based on the combination of vocal and visual
interaction); and (iii) developing an innovative framework to induce and collect data about the driver
state from both cognitive and emotional states, which need to be further jointly investigated starting
from an appropriate experimental design paradigm.

After a thorough review, we introduced a novel perception architecture for driver monitoring,
built around the concept of DCS and aimed at deriving a more complete driver state using multiple
non-obtrusive sensors. We envision the use of a combination of data-driven AI techniques to implement
the state classifier. More in detail, the available data will allow deep comprehension of a joint
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driver–vehicle state, also correlated with the surrounding environment, which will be the result of
the combination of the output of different AI modules with distributed processing. This task will
be followed by the evaluation of different data fusion strategies. An overview on the EU-funded
NextPerception project together with its activities focusing on development of prototypes to test the
feasibility of the DCS classifier and its applicability when operating with the vehicle HMI has been
carried out. Finally, recommendations and future research directions (including heterogeneous aspects,
such as driver satisfaction, number and types of drivers involved in data collection, and legal- and
cultural-related behaviors influencing the drivers) have been proposed.
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ABS Anti-lock Braking System
ACC Adaptive Cruise Control
ADAS Advanced Driver-Assistance Systems
AI Artificial Intelligence
AIAD AI-based Autonomous Driving
AU Action Unit
CAN Controller Area Network
CNN Convolutional Neural Network
CV Computer Vision
DCS Driver Complex State
DEAPS Database for Emotion Analysis using Physiological Signals
DL Deep Learning
DMS Driver Monitoring System
DSS Decision Support System
ECU Electronic Control Unit
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ECG Electrocardiograph
EEG Electroencephalogram
EOG Electrooculogram
ESC Electronic Stability Control
F2DI Fitness-to-Drive Index
FACS Facial Action Coding System
FCW Forward Collision Warning
HCI Human-Computer Interaction
HF Human Factor
HMI Human–Machine Interface
HRV Heart Rate Variability
IMU Inertial Measurement Unit
LDWS Lane Departure Warning System
LIDAR Laser Imaging Detection and Ranging
LSTM Long Short-Term Memory
LWIR LongWave InfraRed
MEMS Micro Electromechanical System
ML Machine Learning
NDO Naturalistic Driving Observation
NLP Natural Language Processing
OBD On-Board Diagnostic
PERCLOS PERCentage of eyelid CLOsure
RNN Recurrent Neural Network
SAE Society of Automotive Engineers
SOTIF Safety Of The Intended Functionality
SWM Steering Wheel Movement
ToF Time of Flight
TSR Traffic Sign Recognition
UC Use Case
UCD User-Centered Design
UI User Interface
US User Story
V2I Vehicle-to-Infrastructure
V2V Vehicle-to-Vehicle
V2X Vehicle-to-Everything
VIWI Volkswagen Infotainment Web Interface
XAI EXplainable AI
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