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Abstract

The analysis of high-throughput sequencing, microarray and mass spectrom-

etry data has been demonstrated extremely helpful for the identification of those

genes and proteins, called biomarkers, helpful for answering to both diagnos-

tic/prognostic and functional questions. In this context, robustness of the results

is critical both to understand the biological mechanisms underlying diseases and

to gain sufficient reliability for clinical/pharmaceutical applications. Recently,

different studies have proved that the lists of identified biomarkers are poorly re-

producible, making the validation of biomarkers as robust predictors of a disease

a still open issue. The reasons of these differences are referable to both data di-

mensions (few subjects with respect to the number of features) and heterogeneity

of complex diseases, characterized by alterations of multiple regulatory pathways

and of the interplay between different genes and the environment. Typically in an

experimental design, data to analyze come from different subjects and different

phenotypes (e.g. normal and pathological). The most widely used methodologies

for the identification of significant genes related to a disease from microarray

data are based on computing differential gene expression between different phe-

notypes by univariate statistical tests. Such approach provides information on the

effect of specific genes as independent features, whereas it is now recognized that

the interplay among weakly up/down regulated genes, although not significantly

differentially expressed, might be extremely important to characterize a disease

status. Machine learning algorithms are, in principle, able to identify multivariate

nonlinear combinations of features and have thus the possibility to select a more

complete set of experimentally relevant features. In this context, supervised clas-

sification methods are often used to select biomarkers, and different methods, like

discriminant analysis, random forests and support vector machines among oth-

ers, have been used, especially in cancer studies. Although high accuracy is often

achieved in classification approaches, the reproducibility of biomarker lists still

remains an open issue, since many possible sets of biological features (i.e. genes

or proteins) can be considered equally relevant in terms of prediction, thus it is
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in principle possible to have a lack of stability even by achieving the best accuracy.

This thesis represents a study of several computational aspects related to biomarker

discovery in genomic studies: from the classification and feature selection strate-

gies to the type and the reliability of the biological information used, proposing

new approaches able to cope with the problem of the reproducibility of biomarker

lists. The study has highlighted that, although reasonable and comparable classi-

fication accuracy can be achieved by different methods, further developments are

necessary to achieve robust biomarker lists stability, because of the high number

of features and the high correlation among them.

In particular, this thesis proposes two different approaches to improve biomarker

lists stability by using prior information related to biological interplay and func-

tional correlation among the analyzed features. Both approaches were able to

improve biomarker selection. The first approach, using prior information to di-

vide the application of the method into different subproblems, improves results

interpretability and offers an alternative way to assess lists reproducibility. The

second, integrating prior information in the kernel function of the learning algo-

rithm, improves lists stability.

Finally, the interpretability of results is strongly affected by the quality of the

biological information available and the analysis of the heterogeneities performed

in the Gene Ontology database has revealed the importance of providing new

methods able to verify the reliability of the biological properties which are as-

signed to a specific feature, discriminating missing or less specific information

from possible inconsistencies among the annotations.

These aspects will be more and more deepened in the future, as the new sequenc-

ing technologies will monitor an increasing number of features and the number

of functional annotations from genomic databases will considerably grow in the

next years.

L’analisi di dati high-throughput basata sull’utilizzo di tecnologie di sequenc-

ing, microarray e spettrometria di massa si è dimostrata estremamente utile per

l’identificazione di quei geni e proteine, chiamati biomarcatori, utili per rispon-

dere a quesiti sia di tipo diagnostico/prognostico che funzionale. In tale contesto,

la stabilità dei risultati è cruciale sia per capire i meccanismi biologici che carat-

terizzano le malattie sia per ottenere una sufficiente affidabilità per applicazioni in

campo clinico/farmaceutico. Recentemente, diversi studi hanno dimostrato che le

liste di biomarcatori identificati sono scarsamente riproducibili, rendendo la vali-

dazione di tali biomarcatori come indicatori stabili di una malattia un problema
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ancora aperto. Le ragioni di queste differenze sono imputabili sia alla dimensione

dei dataset (pochi soggetti rispetto al numero di variabili) sia all’eterogeneità di

malattie complesse, caratterizzate da alterazioni di più pathway di regolazione e

delle interazioni tra diversi geni e l’ambiente.

Tipicamente in un disegno sperimentale, i dati da analizzare provengono da di-

versi soggetti e diversi fenotipi (e.g. normali e patologici). Le metodologie mag-

giormente utilizzate per l’identificazione di geni legati ad una malattia si basano

sull’analisi differenziale dell’espressione genica tra i diversi fenotipi usando test

statistici univariati. Tale approccio fornisce le informazioni sull’effetto di speci-

fici geni considerati come variabili indipendenti tra loro, mentre è ormai noto che

l’interazione tra geni debolmente up/down regolati, sebbene non differenzialmente

espressi, potrebbe rivelarsi estremamente importante per caratterizzare lo stato di

una malattia. Gli algoritmi di machine learning sono, in linea di principio, capaci

di identificare combinazioni non lineari delle variabili e hanno quindi la possibilità

di selezionare un insieme più dettagliato di geni che sono sperimentalmente rile-

vanti. In tale contesto, i metodi di classificazione supervisionata vengono spesso

utilizzati per selezionare i biomarcatori, e diversi approcci, quali discriminant

analysis, random forests e support vector machines tra altri, sono stati utilizzati,

soprattutto in studi oncologici. Sebbene con tali approcci di classificazione si ot-

tenga un alto livello di accuratezza di predizione, la riproducibilità delle liste di

biomarcatori rimane ancora una questione aperta, dato che esistono molteplici

set di variabili biologiche (i.e. geni o proteine) che possono essere considerati

ugualmente rilevanti in termini di predizione. Quindi in teoria è possibile avere

un’insufficiente stabilità anche raggiungendo il massimo livello di accuratezza.

Questa tesi rappresenta uno studio su diversi aspetti computazionali legati all’iden-

tificazione di biomarcatori in genomica: dalle strategie di classificazione e di

feature selection adottate alla tipologia e affidabilità dell’informazione biolog-

ica utilizzata, proponendo nuovi approcci in grado di affrontare il problema della

riproducibilità delle liste di biomarcatori. Tale studio ha evidenziato che sebbene

un’accettabile e comparabile accuratezza nella predizione può essere ottenuta

attraverso diversi metodi, ulteriori sviluppi sono necessari per raggiungere una

robusta stabilità nelle liste di biomarcatori, a causa dell’alto numero di variabili

e dell’alto livello di correlazione tra loro.

In particolare, questa tesi propone due diversi approcci per migliorare la sta-

bilità delle liste di biomarcatori usando l’informazione a priori legata alle in-

terazioni biologiche e alla correlazione funzionale tra le features analizzate. En-

trambi gli approcci sono stati in grado di migliorare la selezione di biomarcatori.
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Il primo approccio, usando l’informazione a priori per dividere l’applicazione del

metodo in diversi sottoproblemi, migliora l’interpretabilità dei risultati e offre un

modo alternativo per verificare la riproducibilità delle liste. Il secondo, integrando

l’informazione a priori in una funzione kernel dell’algoritmo di learning, migliora

la stabilità delle liste.

Infine, l’interpretabilità dei risultati è fortemente influenzata dalla qualità dell’infor-

mazione biologica disponibile e l’analisi delle eterogeneità delle annotazioni effet-

tuata sul database Gene Ontology rivela l’importanza di fornire nuovi metodi in

grado di verificare l’attendibilità delle proprietà biologiche che vengono assegnate

ad una specifica variabile, distinguendo la mancanza o la minore specificità di

informazione da possibili inconsistenze tra le annotazioni.

Questi aspetti verranno sempre più approfonditi in futuro, dato che le nuove tec-

nologie di sequencing monitoreranno un maggior numero di variabili e il numero

di annotazioni funzionali derivanti dai database genomici crescerà considerevol-

mente nei prossimi anni.
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Chapter 1

Introduction

1.1 Biomarker discovery and stability in genomic

studies

Transcriptome analysis performed with high-throughput microarrays [1] ex-

perienced a huge diffusion and profoundly changed the approach to the study

of complex diseases, becoming a commonly used tool in biological and medical

research due to its ability to simultaneously profile the expression of thousands

of genes. In a typical experimental design, data come from different subjects and

phenotypes. The analysis of these data has proven extremely useful for the identi-

fication of genes and proteins for the development of new physiological hypotheses

useful for answering diagnostic, prognostic and functional questions. Numerous

studies have for example investigated the so-called molecular signatures, i.e. pre-

dictive models based on the expression of a small number of genes in order to

guide the need for adjuvant therapy [2, 3, 4]. Different methods have been devel-

oped to address this issue. Widely used methodologies are based on computing

differential gene expression by univariate methods, which calculate a statistic

(often a t-statistic) for each gene, measuring differential expression on different

experimental conditions. A p-value is usually generated for each gene, based on

the statistic, via permutation or a parametric distribution. To account for the

thousands of comparisons performed, procedures controlling the false discovery

rate (FDR) [5] are applied. Genes that survive the correction for multiple compar-

isons are then considered differentially expressed while genes that fail to meet the

criterion for significance are non-differentially expressed. Once obtain the list of

differentially expressed genes, it is the responsibility of the biomedical researcher

to draw further conclusions. Such an approach provides information on the effects

1



2 1. INTRODUCTION

of specific genes as individual features, whereas it is now widely recognized that

the interplay between weakly up/down regulated genes, although not significantly

differentially expressed, might be extremely important and can act on regulatory

pathways as significantly differentially expressed genes do. In particular, highly

differentially expressed genes tend to be “downstream” genes. Many upstream

proteins, such as transcription factors and other regulatory proteins, may only

show very moderate changes, especially in contrast to high abundance proteins

expressed at the end of the biological cascade. If attention is restricted to only

the most highly differentially expressed genes, upstream effects are likely to be

missed, despite the crucial role they play, acting as activators.

Other methods, derived from machine learning theory, are characterized by in-

ductive algorithms, i.e. algorithms that learn from examples on a given domain,

providing a model able to classify new biological samples by identifying multivari-

ate nonlinear features. Beside the classification problem, in order to effectively

select those features able to explain alterations characterizing the disease, feature

selection algorithms give the possibility to select a set of experimentally relevant

gene features.

From a methodological point, in order to both achieve a high predictive perfor-

mance and effectively select relevant predictors from microarray gene expression

data, many statistical learning methods, combined with different feature selection

strategies, have been adapted or developed in order to deal with high-dimensional

data. Several classifiers such as linear and quadratic discriminant analysis [6, 7]

and Support Vector Machines [8] can be opportunely associated to a feature

selection phase. These approaches can belong to three main categories: filters,

wrappers and embedded. Filter methods rank all variables in terms of relevance,

as measured by a score that depends on the classification method, without af-

fecting the learning process. Wrapper methods attempt to select jointly sets of

features with good predictive power. Since testing all combinations of features is

computationally impossible, wrapper methods usually perform a greedy search in

the space of sets of features, e.g. Support Vector Machines with Recursive Fea-

ture Selection (see Chapter 2). Embedded methods are learning algorithms that

perform feature selection in the process of training: the search for an optimal

subset of features is built into the classifier construction, and it can be seen as a

search in the combined space of feature subsets and hypotheses (see Chapter 3).

These methods have attracted strong research interest, in particular for the

biomarker discovery task [9]. A biomarker may be defined as “a characteristic

that is objectively measured and evaluated as an indicator of normal biologi-
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cal processes, pathogenic processes, or pharmacologic responses to a therapeutic

intervention” [10]. The discovery of biomarkers from high-throughput data is

typically modeled by selecting the most discriminating features (usually genes or

proteins) for classification (e.g. discriminating healthy versus diseased subjects)

[11].

However, the massive analysis of these high-throughput data carried out in dif-

ferent laboratories and research centers has revealed how difficult is to reproduce

the results when the experiments are repeated. In other words, the list of key

features for the identification of a pathology only partially overlap when the ex-

perimental protocol is replicated in different laboratories or, sometimes, in the

same laboratory [12]. The reasons for these differences are, at this moment, source

of important scientific discussions and seem to be imputable to different causes:

1. Datasets often include small numbers of subjects (some tens) with respect

to the number of variables (tens of thousands of genomic probes in human)

[13, 14];

2. The most complex pathologies, such as cancer, are heterogeneous and mul-

ticausal, as a result of the alteration of multiple regulatory pathways and

of the interplay between different genes and the environment, rather than

imputable to a single dysfunctional gene like in monogenic diseases [15];

3. Different laboratories may use different or poorly reproducible experimental

protocols and analysis pipelines to process biological samples and data [16,

17].

The analysis of the stability of biomarker selection techniques is only a topic of re-

cent interest [18], and it has not yet considered into the mainstream methodology

for biomarker discovery [19]. Although many feature selection and classification

algorithms have been proposed, they do not necessarily identify the same candi-

date feature subsets if the biomarker discovery procedure is repeated [20]. Even

for the same data, one may find many different subsets of features (either from

the same feature selection method or from different feature selection methods)

that can achieve the same or similar predictive accuracy [21, 22, 23]. An unfor-

tunate consequence of this lack of stability is that the biological interpretation

of possible functions and pathways underlying the biomarker list is difficult a

posteriori.
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1.2 Advances in biomarker discovery with gene

expression data

Referring to the first two causes of instability highlighted in the previous

section, different new approaches for biomarker discovery have been developed

recently. In situations where the number of features (genes or proteins) is intrin-

sically higher than the number of available patients as in high-throughput data,

standard methods from statistical learning fail to deal correctly with the so-called

“curse of dimensionality”. Dimension reduction methods, such as principal com-

ponent analysis or partial least squares (see [24] for an overview), try to overcome

this problem by merging the many available covariates into some few by using

linear combinations of original input variables for classification task [25, 26]. Al-

though they may also lead to satisfactory classification performance, biomedical

implications of the classifiers are usually not obvious, since all input variables are

used in construction of the super variables which are poorly interpretable in a

biological sense. Moreover, classic feature selection methods aim at selecting a

minimum subset of features to construct a classifier of the best predictive accu-

racy, often ignoring “stability” in the algorithm design.

To address this issue, ensemble feature selection methods are the first attempt

to incorporate stability considerations into the algorithm design step. Ensemble

learning methods combine multiple learned models under the assumption that

“two (or more) heads are better than one”. Many feature selection methods are

known to be sensitive to small perturbations of the training data, resulting in

unstable signatures. In order to “stabilize” variable selection, several works have

proposed to use ensemble feature selection on bootstrap samples: the variable

selection method is run on several random subsamples of the training data, and

the different lists of selected variables are merged into a hopefully more stable

subset [27].

However, most biomarker discovery applications typically assume that all fea-

tures are equally relevant before the selection procedure. An alternative solution

for the stability problem is to use the biological background knowledge already

available to incorporate it into the learning process. In practice, prior knowledge

from the existing genomic databases is used to bias the selection towards some

features assumed more relevant [28]. Many knowledge-based approaches assume

that if different predictive genes truly represent the same underlying biology, then

perhaps is necessary to evaluate genes as members of gene pathways or biolog-

ical processes, and use biological information to somehow guide the selection of
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predictive genes. Ideally, one would like to have detailed gene pathways informa-

tion, which can then be used to select genes with a potential causal link to the

disease. This has largely not been possible due to the complexity of gene inter-

actions. However, the problem of using biological information can be tackled in

different ways, resorting to different types of external knowledge. Chuang et al.

[29] use a mutual-information scoring approach to analyze known protein-protein

interaction (PPI) networks, infer gene pathways, and find subnetworks predic-

tive of breast cancer metastasis. Another approach, proposed in Svensson et al.

[30], analyzes expression data from ovarian cancers based on gene sets from the

Gene Ontology (GO) [31]; to represent the set’s expression the proposed method

uses a statistic that is essentially a majority-vote of the over- and under-expressed

genes defined using correlation. Machine-learning strategies were proposed in [32],

which, using the semantic structure of GO database, considers a set classifiers

representing Gene Ontology terms instead of one overall classifier, and in [33],

which uses pathway-specific regularization parameters (in Chapter 4 these last

two methods will be discussed in detail).

In other approaches, biological information is not used to group variables, but

rather to help the learning process to select features which are coherent in a

biological sense. Kernel methods are among the most interesting (and recently

devised) algorithms [34], e.g. Support Vector Machines [35]. In this kind of meth-

ods, different kernel functions can be plugged into any linear learning algorithm,

e.g. the perceptron [36]. The kernel function is a formulation which efficiently rep-

resents a similarity function between two input objects with the property that this

corresponds to a scalar product in an opportune (typically very high-dimensional)

feature space. The most important property of these methods is that they allow

to deal with structured objects very easily since one can change the kernel used

(and then the discriminant function) but still keeping the same learning algorithm

infrastructure. Examples of this type of approaches are presented in [37, 38]. In

order to incorporate this information into methods for biomarker discovery, it is

possible to use the matrix of pairwise similarities or dissimilarities of gene annota-

tions to score the connections between genes. Several methods have been defined

from the information theory to score the similarity between GO annotations [39].

Many tools have been developed to automatically use and mine this annotation,

for an overview see [40]. In chapter 5 a detailed overview of these integration

methods and similarity measures used on different types of biological knowledge

is presented.

It has been shown that the use of prior knowledge on relevant features induces
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a large gain in stability with improved classification performance [28, 41] and it

seems a promising approach as the current genomic databases are significantly

growing up providing new available a priori knowledge.

1.3 Mining the information in genomic databases

Although prior knowledge is helpful in improving the stability of feature se-

lection, the use of such information deserves certain limitations caused by the

knowledge domain represented by genomic databases. In the post-genomic era,

public databases are the main place where one can deposit and/or screen the data.

In the last few years, both the amount of electronically stored biological data and

the number of biological data repositories have grown up significantly. Nucleic

Acids Research magazine annually publishes the current database compendium

in a special database issue. In the 2012 year issue, 92 new and 100 updated data

resources are described. Database collection counts now 1380 different resources

[42].

The only problem is to know how to benefit from this rich source of information.

Thus, the accurate analysis of biological data and repositories turns out to be

useful to obtain a systematic view of biological database structures, tools and

contents and, eventually, to facilitate the access and recovery of such data. The

availability of so many data repositories is an important resource but, on the

other hand, opens new questions, as to effectively access and retrieve available

data. Indeed, the heterogeneity of biological data and sources can often cause

trouble to the user trying specific demands; moreover, not only such data sources

are so numerous, but they use different kinds of representations, methods and

various features and formats.

The fields of how to store and mine this knowledge in order to systematically

incorporate it into clinical prediction algorithms are just beginning to develop.

Different types of biological background knowledge exist depending on the level

of the system that is described. First, a controlled vocabulary is necessary to an-

notate and to be able to systematically use this knowledge. The GO consortium

represents an initiative to define a structured vocabulary to annotate and mine

gene functions using a relational database where biological functions are hierar-

chically linked together. Some databases focus only on the biological interactions

that characterize the processes within a living cell and summarize these interac-

tions in usually manually curated pathway models, e.g. KEGG [43] or Consen-

susPathDB [44]. Other databases focus only on certain types of molecular inter-
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actions or on data obtained by certain genomics techniques such as transcription

factor binding based on chip-chip data, e.g. TRANSFAC [45] or JASPAR [46],

or protein-protein interactions based on co-immuno-precipitation or yeast two-

hybrid screening, e.g. Human Protein Reference Database (HPRD) [47]. These

types of biological knowledge can be represented in graph structures, where the

vertices represent the genes or molecules and the edges represent some types of

molecular interactions or relationships. In Chapter 3, a detailed description of

Gene Ontology and PPI databases, used in the integration methods presented in

this thesis, is provided.

The frequent addition of new genomes into public sequence databases allows an

accumulation of information that is astounding in both its scale and breadth.

While these data hold enormous promise for biological and medical discovery,

experimental characterization has been performed on only a small fraction of

the available sequences. As a result, computational methods are required to pre-

dict the molecular functions of the millions of protein sequences that have not

and cannot be characterized experimentally. For over a decade, the majority of

sequences found in public databases has been annotated using computational

methods alone, raising the issue of annotation accuracy and database quality

[48, 49].

In a recent paper that modeled annotation error in the Gene Ontology database,

it was estimated that up to 49% of computationally annotated sequences could be

misannotated [50]. Considering the problem from a different perspective, models

of error propagation have shown that with sufficient initial error in a database,

error propagation can significantly degrade the quality of the annotations it con-

tains [51, 52] and specific examples of error propagation have been noted. Al-

though functional misannotation remains an open issue [53], an in depth analysis

of the prevalence of annotation error in large public databases has yet to be per-

formed. Chapter 6 will discuss in detail the problem related to heterogeneities

and possible inconsistencies of annotation, focusing on Gene Ontology database.

1.4 Thesis Overview

This thesis explores the intrinsic complexity of biomarker discovery task, in

particular focusing on the reproducibility and interpretability of biomarker lists.

This work started from a first study on an assessment of the main classification

and feature selection methods, where particular learning strategies have been

tested and evaluated in terms of reproducibility of results and prediction accu-
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racy. Results highlighted that the bootstrap approach, which provides an ensem-

ble output from different classifiers and different selected features sets, is able to

significantly improve the reproducibility of the results. However, this approach

can be applied regardless of the possible relationships among features, which can

strongly affect both stability of results and lead to molecular signatures concretely

useful for clinical studies. Indeed, a desirable property of a biomarker list is its

interpretability in a biological sense, by selecting the most discriminating features

which can be related to a specific biological process or pathway compromised by

the disease.

Addressing this point, the core of the thesis deals with the integration of different

types of prior knowledge in the learning process: the basic idea of this strategy

is to take into account the complex gene relationships, instead of considering

genes as independent features. In this work, two different kinds of approaches

to integrate biological information are presented. Focusing on the biological in-

formation collected in the Gene Ontology database (GO), the first approach ef-

ficiently exploits the specific structure of the database defining meta-features

which represent biological processes or molecular functions in order to provide

a more interpretable list of those mechanisms altered by the disease. In the sec-

ond proposed approach, different types of biological information like functional

annotations, protein-protein interactions and expression correlation among genes

were evaluated in the context of classification analysis and feature ranking by

codifying each type of information into similarity matrices between features, in

order to transform the feature space such that more similar two features are, the

more closely they are mapped. In this way, an assessment of the effect of different

types of biological knowledge was performed, in terms of both predictive accuracy

and feature ranking stability.

In the integration of prior knowledge from genomic databases, the reliability of

the biological information is important, because it strongly affects the ranking

of the biomarker lists. Thus, in parallel with the investigation of the issue of

biomarker list stability, the problem of mining the biological knowledge and han-

dling the intrinsic heterogeneity of available annotations was analyzed. A global

analysis of heterogeneity in the GO, which is the most popular functional an-

notation database used in genomic studies, was performed in order to study the

presence of heterogeneities among the GO annotations and the impact of these

heterogeneities on the extraction of biological information from this database.

Moreover, a useful approach able to mining GO information accounting for these

aspects was developed, in order to consider the quality and the origin of annota-
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tions when biological annotations are investigated.

The two works presented in the appendices are slightly different with respect

to the aim of this thesis, but useful to appreciate the advantages of the use of

knowledge-based approaches into the analysis of high-throughput data. In partic-

ular, they describe the integration of Gene Ontology information in un-supervised

classification methods in order to improve the functional characterization of tem-

poral patterns of genes selected as differentially expressed.

In the following, a detailed description of the organization of the thesis is dis-

played.

Chapter 2 - Effect of size and heterogeneity of samples on
biomarker discovery: synthetic and real data assessment

In this chapter, an assessment of the consistency of candidate biomarkers provided

by a number of different methods was performed, both on simulated (through an

in silico regulation network model) and real clinical datasets. The effect of hetero-

geneity characterizing complex diseases was extensively simulated, reproducing

both intrinsic variability of the population and the alteration of regulatory mech-

anisms. Population variability was simulated by modeling evolution of a pool of

subjects; then, a subset of them underwent alterations in regulatory mechanisms

so to mimic the disease state. Different methods for binary classification and fea-

ture weighting and ranking were applied to simulated datasets of different sample

size to assess average classification performance and list stability: the Spectral Re-

gression Discriminant Analysis algorithm, the classical Support Vector Machines

and its variants. In all experiments, external bootstrap with separate training

and test phases were employed to avoid overfitting effects such as selection bias.

Results were also compared with those obtained by using SAM, a widely applied

variant of univariate statistical t-test [54].

The simulated data highlighted advantages and drawbacks of different methods

across multiple studies and varying number of samples and evaluated precision of

feature selection on a benchmark with known biomarkers. Although comparable

classification accuracy was reached by different methods, the use of bootstrap

approach is helpful in finding features with a higher degree of precision and sta-

bility, preserving high classification accuracy. Application to real data confirmed

these results. The material of this chapter partially appears in:

• DI CAMILLO B, SANAVIA T, MARTINI M, JURMAN G, SAMBO F, BARLA

A, SQUILLARIO M, FURLANELLO C, TOFFOLO G, COBELLI C Effect of
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size and heterogeneity of samples on biomarker discovery: synthetic and real data

assessment. PLoSOne (Accepted)

• DI CAMILLO B, MARTINI M, SANAVIA T, JURMAN G, SAMBO F, BARLA

A, SQUILLARIO M, FURLANELLO C, TOFFOLO G, COBELLI C (2010)

Effect of size and heterogeneity of samples on biomarker discovery: synthetic and

real data assessment. In: 9th European Conference on Computational Biology

(ECCB), 26-29 September 2010, Ghent, Belgium.

• DI CAMILLO B, MARTINI M, SANAVIA T, COBELLI C, TOFFOLO G (2010)

In silico assessment of effect of size and heterogeneity of samples on biomarker

discovery. In: Secondo Congresso Nazionale di Bioingegneria (GNB). 8-10 July

2010, Turin, Italy.

Chapter 3 - Biological knowledge in genomic databases

The accumulation of data produced by genome-scale research requires explic-

itly defined vocabularies to describe the biological attributes of genes and their

products in order to allow integration, retrieval and computation of data. Thus

biological databases, which represent these vocabularies, are an important tool in

bioinformatics to better understand a host of biological phenomena concerning

the structure of biomolecules and their interactions, their molecular functions and

the biological processes where they interact. This knowledge is collected from sci-

entific experiments, published literature, high-throughput experiment technology,

computational analyses and the information contained in biological databases in-

cludes gene functions, structures, localizations (both cellular and chromosomal),

clinical effects of mutations as well as similarities of biological sequences and struc-

tures. In some cases, biological information is organized according to relational

concepts, given well-defined semantics in order to handle knowledge computa-

tionally in a manner comparable to numeric data. In particular, ontologies are

used as a useful tool to capture the main concepts in a specific knowledge domain

and are able to structure them in a systematic way by defining a set of enti-

ties with specific attributes and relationships among them. The most successful

example is the Gene Ontology (GO), which describes biological processes, molec-

ular functions and cellular components of gene products in both a computer- and

human-readable manner.

Another useful information derives from the pathway databases, since gene prod-

ucts do not act independently, but in a network of complex molecular interactions.

For example, signals from the exterior of a cell are mediated to the inside of a cell
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by protein-protein interactions of the signaling molecules. Methods for identifying

interacting biological components, such as proteins and metabolites, have defined

hundreds of thousands of interactions. These interactions are collected together in

specialized biological databases that allow the interactions to be assembled and

studied further. In this chapter, a detailed description of both Gene Ontology,

pathways and protein-protein knowledge is provided.

Chapter 4 - Gene Ontology based classification: improv-
ing prediction and biological interpretability

The standard biomarker discovery applications assume that all features are equally

relevant before the selection procedure. In practice, since only a subset of fea-

tures are relevant for the biological case analyzed, some prior knowledge may

be available to bias the selection towards these features. Many genes are known

to have the same function or involved in the same biological process as some

known/putative disease-related genes, and the genes in the same functional group

are more likely to work together. Functional analysis was introduced to address

a better biological characterization of results. In biomarker discovery, some im-

portant aspects significantly affect the biological characterization of biomarker

lists and are still now an open issue and are only partially dealt by the currently

available classification and feature selection methodologies: 1) the biological infor-

mation, i.e. annotations from Gene Ontology, often considered only a posteriori,

without affecting the gene signature extraction; 2) the correlation among the

features, reflecting the combined effect of multiple features on disease; 3) the

organization of results in a structured, easy-to-read way in order to achieve a

better interpretation of biological processes altered by the disease. Considering

functional annotations of GO database, in this chapter a new method is pre-

sented, which is able to integrate classification/feature selection with functional

annotations in order to increase biological interpretability of gene signatures by

defining subsets of genes both correlated and annotated to groups of GO terms

with similar meaning. The improvements on both classification performance and

reproducibility of selected GO terms across different datasets suggest narrowing

the search of biomarkers among a limited set of genes characterized by similar

functional roles or interacting in the same biological process. The material of this

chapter partially appears in:

• SANAVIA T, CREPALDI A, BARLA A, DI CAMILLO B (2011) Gene Ontology

based classification improves prediction and gene signature interpretability. Net-
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work Tools and Applications in Biology (NETTAB) Workshop, 12-14 October

2011, Pavia, Italy.

• SANAVIA T, BARLA A, DI CAMILLO B, MOSCI S, TOFFOLO G (2009)

Function-based analysis of microarray data via l1-l2 regularization. In: 17th An-

nual International Conference on Intelligent Systems for Molecular Biology (ISMB)

and 8th European Conference on Computational Biology (ECCB), 27 June - 2

July 2009 Stockholm, Sweden.

Chapter 5 - Gene Ontology based classification: prediction
and biological information stability and interpretability

A possible approach to improve list stability is to integrate biological informa-

tion from genomic databases in the learning process; however, a comprehensive

assessment based on different types of biological information is still lacking in the

literature. In this chapter, a comparison of the effects of using different biological

information in the learning process like functional annotations, protein-protein

interactions and expression correlation among genes was performed. Biological

knowledge was codified by means of gene similarity matrices and expression data

linearly transformed in such a way that the more similar two features are, the

more closely they are mapped. Two semantic similarity matrices, based on Bio-

logical Process and Molecular Function Gene Ontology annotation, and geodesic

distance applied on protein-protein interaction networks, are the best performers

in improving list stability maintaining almost equal prediction accuracy. The per-

formed analysis supports the idea that when some features are strongly correlated

to each other, for example because they are close in the protein-protein interac-

tion network, then they might have similar importance and are equally relevant

for the task at hand. The performance of different sources of prior knowledge

was evaluated using three real datasets from different studies exploring the same

clinical classification task. The assessment of the results obtained for different

similarity matrices is based on the trade-off between predictive accuracy and fea-

ture ranking stability. Obtained results can be a starting point for additional

experiments on combining similarity matrices in order to obtain even more stable

lists of biomarkers. The material of this chapter partially appears in:

• SANAVIA T, AIOLLI F, DA SAN MARTINO G, BISOGNIN A, DI CAMILLO

B Improving biomarker list stability by integration of biological knowledge in the

learning process. BMC Bioinformatics, Volume 13, Supplement 3, 2012.
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• SANAVIA T, AIOLLI F, DA SAN MARTINO G, BISOGNIN A, DI CAMILLO

B (2011) Improving biomarker list stability by integration of biological knowledge

in the learning process. In: 19th Annual International Conference on Intelligent

Systems for Molecular Biology (ISMB) and 10th European Conference on Com-

putational Biology (ECCB), 15-19 July 2011, Wien, Austria.

• SANAVIA T, AIOLLI F, DA SAN MARTINO G, BISOGNIN A, DI CAMILLO

B (2011) Stable Feature Selection for Biomarker Discovery: Use of Biological

Information. In: BITS Annual Meeting 2011, 20-22 June 2011, Pisa, Italy.

Chapter 6 - Gene Ontology based classification: prediction
and biological information stability and interpretability

In the integration of prior knowledge from genomic databases the reliability of

the biological information is an important issue, because it strongly affects the

ranking of the biomarker lists. Referring to Gene Ontology (GO), which is the

most widely used annotation database to transfer biological knowledge on gene

product, in this chapter a comprehensive study of the global level of heterogeneity

in GO annotations was carried out, in order to quantify to what extent inconsis-

tencies are present in the GO database. In particular, the work focused on protein

annotations belonging to Biological Process (BP) and Molecular Function (MF),

the most frequently used GO categories. The global analysis of inconsistencies in

the GO database revealed that the percentage of groups of proteins with high se-

quence similarity but non-homogeneous annotations is around 10% for Biological

Process and 8% for Molecular Function. These obtained results are indicative of

the presence of heterogeneities and confirm the need of considering the quality

and the origin of GO annotations when inferring possible biological functions.

To this purpose, it was developed a method able to assess annotations related to

pools of proteins sharing similar biological functions, in order to organize results

into a functional map as a useful guidance to easily interpret the reliability of GO

annotations. The material of this chapter partially appears in:

• FACCHINETTI A, SANAVIA T, DI CAMILLO B, LAVEZZO E, FONTANA P,

TOPPO S (2011) A Method to Reveal and Handle Heterogeneities and Incon-

sistencies in Gene Ontology Annotation. In: BITS Annual Meeting 2011, 20-22

June 2011, Pisa, Italy.

• SANAVIA T, FACCHINETTI A, DI CAMILLO B, TOFFOLO G, LAVEZZO E,

TOPPO S, FONTANA P (2010) Revealing heterogeneities and inconsistencies in
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protein functional annotations. In: 9th European Conference on Computational

Biology (ECCB). 26-29 September 2010, Ghent, Belgium.

Appendices

The two works presented in the appendices describe two different approaches

to exploit and integrate functional information in gene expression analysis, fo-

cusing on the un-supervised classification, i.e. clustering methods. In the first

study, a new workflow to analyze dynamic gene expression data was defined and

the pipeline was applied to study the effect of insulin on human endothelial cells,

providing new insights on how insulin affects different biological functions, charac-

terized by well-defined temporal patterns. The second study proposed a method to

integrate the three main analyses usually performed on dynamic gene expression

data (gene selection, clustering and functional interpretation) addressing differ-

ent drawbacks affecting these analyses. The method, applied on skeletal muscle

cells treated with insulin, allowed identifying characteristic dynamic responses

to insulin stimulus, common to a number of genes and associated to the same

functional group. The material of the appendix partially appears in:

• DI CAMILLO B, SANAVIA T, IORI E, BRONTE E, RONCAGLIA E, MARAN

A, AVOGARO A, TOFFOLO G, COBELLI C (2010). The Transcriptional Re-

sponse in Human Umbilical Vein Endothelial Cells Exposed to Insulin: a Dynamic

Gene Expression Approach. PLoSONE 5(12):e14390.

• SANAVIA T, DI CAMILLO B, IORI E, MARAN A, BRONTE E, AVOGARO

A, TOFFOLO G, COBELLI C (2008). Function-based discovery of characteristic

temporal expression profiles in endothelial cells stimulated with insulin. In: 11th

International Meeting of Microarray and Gene Expression Data Society (MGED),

1-4 September 2008 Riva del Garda (TN), Italy.

• DI CAMILLO B, IRVING BA, SCHIMKE J, SANAVIA T, TOFFOLO G, CO-

BELLI C, NAIR KS Function-based discovery of significant transcriptional tem-

poral patterns in insulin stimulated muscle cells. (Under second revision)



Chapter 2

Effect of size and heterogeneity of

samples on biomarker discovery

2.1 Background

Gene expression data from microarrays have been extensively used both to

predict pre-clinical and clinical endpoints and to identify the most discriminat-

ing features representing biomarkers indicating pathogenic processes, or potential

targets of clinical and pharmaceutical applications. In order to address these two

issues, different supervised classification and feature selection methods have been

developed: the former, applied to patients based on gene expression measure-

ments, have proved to be useful for answering to several diagnostic/prognostic

questions and a variety of predictive models have been suggested; the latter pro-

vide different approaches to avoid overfitting and improve model performance,

have found a direct application on biomarker discovery task to gain a deeper in-

sight into the underlying processes generating the data.

However, there are several questions related to the application of both classi-

fication and feature selection methods on high-throughput data which are still

matters of several scientific discussions since, as pointed out in the first chapter,

one of the properties of microarray data is that there are many predictors (genes)

with a small sample size. In the context of classification analysis, high-dimensional

data strongly affect the performance in terms of accuracy on assigning the correct

class or on predicting a clinical parameter for new patients, because predictive

models have to cope with large amounts of irrelevant features. In the last decade,

several different methods like discriminant analysis, random forests and support

vector machines among others, have been used on gene expression data, especially

15
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in cancer studies [55, 56, 57], where early diagnosis and an accurate classification

are crucial for treatment or therapy. Although the performance of these classifiers

can be very high in the studied dataset, application of these predictive models

in other datasets is often limited and data reproduction is not straightforward

[58]. On the other hand, since classic feature selection methods aim at selecting

the minimum subset of features to construct a classifier with the best predictive

accuracy, the existing methods often ignore the stability issue, because they do

not necessarily identify the same candidate feature subsets if the biomarker dis-

covery procedure is repeated [20]. Even for the same data, one may find many

different subsets of features (either from the same feature selection method or

from different feature selection methods) that can achieve the same or similar

predictive accuracy [21, 22, 23]. Boutros et al. [59] showed that the use of dif-

ferent statistical procedures could identify multiple highly prognostic signatures

from one dataset [60]. An extensive analysis of the effect of different statistics on

ranked gene lists showed large variability [18]. In particular, Ein-Dor et al. [13]

suggested that many more samples than currently available would be required to

reach a good level of signature stability. The stability issue in feature selection

has received much attention recently and several works have recently pointed out

that high reproducibility of biomarkers lists is equally important as high classifi-

cation accuracy [61, 62, 19].

A slightly different issue, although related with list stability, is the precision of

biomarker identification, i.e. the ability to select true biomarkers, defined as fea-

tures biologically related to the physiological or clinical condition under study as

cause or effect of it. It is possible that there exist multiple sets of potential true

markers in real data. When there are many highly correlated features, different

ones may be selected under different settings [20]. On the other hand, even there

are no redundant features, the existence of multiple non-correlated sets of real

markers is also possible [63].

Different studies were proposed to assess the current status of biomarker discovery

methods. In a recent study [55], classification performance of different methods

was compared across different microarray studies in terms of ability to select

biomarkers discriminating between two conditions. Addressing also the stability

issue, the recent work presented in [64] compares 32 feature selection methods

on four public gene expression datasets for breast cancer prognosis, in terms of

both predictive performance and stability, demonstrating that complex multivari-

ate methods, able to identify multivariate nonlinear combinations of features and

thus the interplay between regulated genes, generally do not outperform simple



2.2. STATISTICAL ANALYSIS OF MICROARRAYS (SAM) 17

univariate feature selection methods, which instead consider genes as independent

features.

2.2 An univariate approach: Statistical analysis

of Microarrays (SAM)

The SAM test [54] is a widely used univariate statistical test for the identi-

fication of differentially expressed genes from microarray data. Gene expression

data on p genes for n mRNA samples may be described by an n × p matrix

X=(xij), where xij denotes the expression level of gene (variable) j in mRNA

sample (observation) i. SAM identifies statistically significant genes by carrying

out a variant of t-test using a statistic d(i) for each gene i which measures the

relative difference between samples related to the gene expression level x(i):

d(i) =
x̄I(i)− x̄U(i)

s(i) + s0
(2.1)

where x̄I(i) and x̄U(i) are defined as the average levels of expression for gene i

in states I and U, respectively. The “gene-specific scatter” s(i) is the standard

deviation of repeated expression measurements:

s(i) =

√

√

√

√a

{

N1
∑

m=1

[xm(i)− x̄I(i)]
2 +

N2
∑

n=1

[xn(i)− x̄U(i)]
2

}

(2.2)

where a = (1/N1 + 1/N2)/(N1 +N2 − 2), with N1 and N2 indicating the number

of measurements in the states I and U. The d(i) or relative difference between

samples for a given gene includes s0, which corrects for high variations in samples

with relatively low intensities, which is typical for microarray data.

SAM uses a resampling procedure to derive the null hypothesis distribution and

the false discovery rate (FDR), i.e. the expected number of false positives within

a group of positives, to account for multiple testing [5]. In this study, a FDR=5%

was used to select features after a ranking based on their p-value. The use of

permutation-based analysis accounts for correlations in genes and avoids para-

metric assumptions about the distribution of individual genes. This is an advan-

tage over other techniques which assume equal variance and/or independence of

genes.
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2.3 Classification and feature selection methods

Before describing the classification/feature selection methods used in this

study, in the following, some useful terms and notations are first introduced.

When the mRNA sample belong to known classes, the data for each observa-

tion consist of a gene expression profile xi=(xi1,...,xip) and a class label yi. For

K classes, the class labels yi are defined to be integers ranging from 1 to K. In

the following, binary classification problems are considered (K=2). A classifier

for K classes partitions the space of the gene expression profiles into K disjoint

subsets, A1,...,AK , such that for a sample with expression profile x=(x1,...,xp)∈Ak

the predicted class is k.

Classifiers are built from past experience, i.e. from observations which are known

to belong to certain classes. Such observations comprise the training set (TR)

L={(x1, y1), . . . , (xnL
, y

nL
)}. Classifiers may then be applied to a test set (TS)

T ={x1, ...,xnT
}, to predict for each observation xi in the test set its class yi. In

the case that yi is known, the predicted and true classes may be compared to

estimate the error rate of the classifier. Considering the entire gene expression

matrix X, y=(y1,...,xn) indicates the vector of observations.

2.3.1 Discriminant Analysis

Linear Discriminat Analysis (LDA) method was originally proposed by Fisher

[65] as a means for finding the optimal linear combination of variables able to

minimize the within-class distance and to maximize the between-class distance

simultaneously, in order to achieve the maximum class discrimination.

Considering an n × p gene expression data matrix X, the method finds linear

combinations xa of the gene expression levels x=(x1,...,xp) with large ratios of

between-groups to within-groups of sum of squares:

â = argmaxa

aTSba

aTSwa
(2.3)

where Sb and Sw are respectively the p × p between group and within group

(pooled) covariance matrices of the gene expression values. When l projective

functions A=[a1,...,al] are needed, the objective function of LDA can be written

as:

Â = argmaxA
tr(ATSbA)

tr(ATSwA)
(2.4)

where tr(.) denotes matrix trace. Applying an eigen-decomposition on these ma-

trices derived from the learning set, the optimal transformation can be obtained.
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The optimization problem in Equation 2.4 is equivalent to finding the l eigenvec-

tors of the following generalized eigen-problem associated with maximum eigen-

values:

Sba = λSwa (2.5)

A common problem of this method is the high computational cost from the eigen-

decomposition of dense matrices. To address this problem, Cai et al. [66] intro-

duced Spectral Regression Discriminant Analysis (SRDA), which casts discrim-

inant analysis into a regression framework by using spectral graph analysis: the

regression framework improves the computational efficiency, whereas the spec-

tral graph analysis is used for solving a set of regularized least squares problems

avoiding the eigenvector computation. In particular, the method finds a which

satisfies XTa=y by a regularized form of the ordinary least squares estimator:

â = (XXT + αI)−1Xy (2.6)

where α(≥ 0) is the only regularization parameter needed to be tuned, which

controls the smoothness of the estimator â.

2.3.2 Support Vector Machines

If each vector in the gene expression matrix is considered as a point in an

n-dimensional space, a simple way to build a binary classifier is to construct a

hyperplane separating class members from non-class members in this space. Un-

fortunately, most real-world problems involve non-separable data for which does

not exist a hyperplane that successfully separates the class members from non-

class members in the training set. One solution to the inseparability problem is to

map the data into a higher-dimensional space and define a separating hyperplane

there. This higher-dimensional space is called the feature space, as opposed to

the input space occupied by the training examples. With an appropriately cho-

sen feature space of sufficient dimensionality, any consistent training set can be

made separable. However, representing the feature vectors corresponding to the

training set can be extremely expensive in terms of memory and time. Further-

more, the artificial separation of the data using this approach leads to obtain

trivial solutions that overfit the data. To address these problems, Support Vector

Machines (SVM) were proposed [35].

Given training vectors xi=(xi1,...,xip) and its corresponding class yi∈ {−1; 1}, the
support vector technique tries to find the separating hyperplane with the largest

margin between two classes, measured along a line perpendicular to the hyper-

plane. For example, in Figure 2.1, two classes could be fully separated by a dashed
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line wTxi+b=0. The SVM approach computes a hyperplane that maximizes the

margin separating the two classes of samples. The optimal hyperplane is called

decision boundary. That means the method finds a line with parameters w and

b such that the distance between wTxi+b=±1 is maximized. By rescaling the

Figure 2.1: Example of separating hyperplane.

parameters w and b, the margin d can be written as d=2/‖w‖. The learning task

in SVM can be formalized as the following constrained optimization problem:

minw =
‖w‖2
2

(2.7)

subject to yi(w
Txi+b)≥1.

When the classes are not linearly separable, a variant of SVM, called soft-margin

SVM, is used. This SVM variant penalizes misclassification errors and employs

a parameter (the soft-margin constant C) to control the cost of misclassifica-

tion. Thus, training a linear SVM classifier amounts to solving the following

constrained optimization problem:

minw,b,ξ
‖w‖2
2

+ C

n
∑

i=1

ξi (2.8)

with one constraint for each training sample xi: yiw
Txi+b≥1-ξi, where ξi are

defined slack variables. These constraints allow that training data may not be on

the correct side of the separating hyperplane wTxi+b=0 while the training error
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∑n
i=1 ξi is minimized in the objective function. Hence, if the penalty parameter

C is large enough and the data is linear separable, all ξi will be zero [67].

Usually, the dual form of the optimization problem is solved:

minαi

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjxixj (2.9)

subject to αi ≥ 0,
∑n

i=1 αiy i=0, where αi is a real number. The resulting decision

function of a new sample z is f(z)= wTxi+b with w=
∑n

i=1 αiy ixi and b=<y i-

w·xi >. Usually many αi are zero. The training samples xi with non-zero αi are

called support vectors. The weight vector w is a linear combination of support

vectors. The bias value b is an average over support vectors. The class label of z

is obtained by considering the sign of f(z).

The decision function for classifying points with respect to the hyperplane only

involves dot products between points in the feature space. Because the algorithm

that finds a separating hyperplane in the feature space can be stated entirely

in terms of vectors in the input space and dot products in the feature space, a

support vector machine can locate the hyperplane without ever representing the

space explicitly, simply by defining a function, called the kernelfunction, that

plays the role of the dot product in the feature space. This technique avoids the

computational burden of explicitly representing the feature vectors. Moreover,

since the simple inner product does not always measure the similarity effectively

for all applications, for some applications a non-linear decision boundary is more

effective for classification. The basic SVM method can then be extended by trans-

forming samples to a higher dimensional space via a mapping function φ. By doing

this, a linear decision boundary can be found in the transformed space if a proper

function φ is used. The kernel function overcomes the limitations related to the

computation in the transformed space, which can be expensive because of its high

dimensionality. The kernel function can defined as K(xi,xj)=φ(xi)
Tφ(xj), where

xi and xj denote the i-th and j-th sample, respectively. Different kernels can be

used: linear (K(xi,xj)=xT
i xj), polynomial with degree γ (K(xi,xj)=(1+xT

i xj)
γ),

Gaussian (K(xi,xj)=exp−‖xi−xj‖/2σ
2

); in this last case, each data point is mapped

to a gaussian function with bandwidth σ, thus the hyperplane is a combination

of gaussian functions of the support vectors.

In this study, SVM method was implemented using both linear (LSVM) and

Gaussian kernel (GSVM). The tuning phase required the identification of the

optimal value of the regularization parameter C (the trade-off between empir-

ical error and smoothness of the solution) and, for the Gaussian kernel, of the

bandwidth σ.
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2.3.3 Ranking and selection

Besides the predictive models, also an efficient approach to rank and extract

the most discriminant features is important for biomarker discovery task. For

feature ranking, the coefficients ai of SRDA and the weights wi of a SVM clas-

sifier provide information about feature relevance. A variant of feature ranking

for linear SVM used in this study is the Iterative-Relief [68], which assigns a

score to features based on how well the features separate training samples from

their nearest neighbours from the same and from the opposite class. The method

solves a convex optimization problem with a margin-based objective function in

a nearest-neighbor based strategy. The algorithm constructs iteratively a weight

vector, which is initially equal to zero; at each iteration, it selects one sample,

adds to the weight the difference between that sample and its nearest sample

from the opposite class (called nearest miss), and subtracts the difference be-

tween that sample and its nearest neighbour from the same class (called nearest

hit). The iterative process terminates when all the training samples have been

considered. The ranking provided by Iterative-Relief can be used by an indepen-

dent classifier: in this study, it was used together with linear SVM (IRSVM).

Another task is the selection of the most discriminant feature. The Recursive

Feature Elimination (RFE) is a well-known feature selection method, firstly in-

troduced in [69]. Considering its application on the SVM-based prediction models,

the method defines the importance of a feature for a SVM in terms of its con-

tribution to the cost function J(α), defined in Equation 2.9. At each step of the

RFE procedure, a SVM is trained on the given data set, J is computed and the

feature less contributing to J is discarded. In the case of linear SVM, the variation

due to the elimination of the ith feature is δJ(i)=w2
i . The heavy computational

cost of RFE is a function of the number of variables, because a SVM must be

trained each time a variable is removed. However, at the first loops of the RFE

algorithm, many weights are generally similar and concentrated nearby zero [70].

In the standard RFE algorithm just one of the many features corresponding to a

minimum weight would be eliminated, while it would be convenient to remove all

of them at once. Another possible choice is to remove
⌊

√

|R|
⌋

features at each

step, where R is the set of the remaining features, thus obtaining the SQRT-RFE

procedure. Furlanello et al. [70] developed an adhoc strategy for an elimination

process based on the structure of the weight distribution, using an entropy func-

tion H, namely the Entropy-based Recursive Feature Elimination (E-RFE). To

compute the entropy, the range of the weights are split into nint intervals, with
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nint =
⌊

√

|R|
⌋

; for each interval, the relative frequency is defined as:

pi =
|δJ(i)|
|R| (2.10)

Entropy is then defined as the following function:

H = −
nint
∑

i=1

pilog2pi (2.11)

According to the entropy measure of the distribution of the weights generated by

the feature weighting schema, E-RFE adaptively discards a subset of the least

informative features, speeding-up the ranking procedure without performance

degradation.

In this study, for all the considered classification methods, E-RFE procedure was

used as the ranking schema and the optimal number of features was chosen in

correspondence to the minimum classification error estimate.

2.4 Cross validation and bootstrap approach

For assessing the performance of a classifier, a validation phase, which is inde-

pendent with respect to the generation of the predictive model from the training

set of samples, is perfomed using the samples belonging to the test set. The cor-

rectly classified proportion of samples in a test set is an estimate of accuracy

assessing the classifier performance. If there is an abundance of data, this esti-

mate is unbiased and variance tends to zero as the number of test samples goes

to infinity. The most direct approach is a split sample validation method, which

randomly splits samples into a training set and a test set.

The k-fold cross validation method partitions the samples into k non-overlapping

subsets of as close to equal size as possible, assigning k-1 subsets into a training

set and the remaining subset into a test set, in order to develop the prediction

classifier using the training set and to estimate its accuracy using the test set. Af-

ter iterating the procedure k times until all subsets have had a chance to be a test

set, every sample has an associated cross-validated predicted class membership

in addition to a true class membership, and the proportion of correctly classified

samples among all available samples provides the estimate of accuracy. In the

case of k=n, where each observation (microarray sample) in the training set is

deleted in turn before it is allocated by the classifier built from the remaining n-1

observations, the so-called leave− one− out cross validation is performed.
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Regardless of how the performance of the classifier is assessed during the feature-

selection process, it is common to assess the performance of the predictive model

for a selected subset of genes by its cross-validated (CV) error. But, if it is cal-

culated within the feature-selection process, there is a selection bias in it when it

is used as an estimate of the prediction error [71]. Thus, an external split sample

should be undertaken subsequent to the feature-selection process to correct for

this selection bias. In this study, an external bootstrap approach was adopted.

Given a standard training set TR of size m, bootstrap generates B new training

sets Di, each of size m′=m, by sampling examples from D uniformly and with

replacement. The B models are fitted using the above B bootstrap samples and

combined by averaging the output (for further details, see [70]).

The four methods considered in this analysis, LSVM, GSVM, IRSVM and SRDA,

were used both in single cross-validation and in a MonteCarlo bootstrap resam-

pling schema with B=100 external training/test splits with 3-fold cross-validation

as internal sampling schema (methods named as LSVM B, GSVM B, IRSVM B

and SRDA B in the following).

2.5 Simulation of gene expression data

In order to assess classification methods’ performance across multiple studies

with varying number of samples and to evaluate precision of feature selection on a

benchmark with known biomarkers,microarray data were simulated starting from

a gene network simulator described in [72]. Each simulated subject was modeled

by a regulatory network of N=10000 genes, based on the gene network simulator

using default parameter settings. Network topology was randomly generated with

scale-free distribution of node degree and clustering coefficient independent of the

number of nodes. Metabolic [73] and possibly transcriptional [74] networks ex-

hibit this topological property. The topology is characterized by the connectivity

matrix W , with weights wij different from zero if gene-product j directly affects

the expression of gene i. Weights wij of the connectivity matrix W can be inter-

preted as the affinity of the genome specific sequences for a transcription factor or

an enhancer j, regulating expression of a gene i. Since weights wij can in principle

be mapped to specific sequences in the genome, W can be interpreted as part of

the genotype1 of the subject. The sign and the magnitude of wij indicate the

1Genotype accounts for the genetic constitution of an individual, that is it refers to the coded,

inheritable information represented by the set of genes in the DNA sequence (the genetic code),

copied at the time of cell division or reproduction and are passed from one generation to the
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sign and the strength of the regulation, respectively. A target value Ti (W, t) was

derived for gene i at time t as a function of the different action of its regulators

(Ti (W, t) represents the expression value to which gene i tends at time t as an

effect of the expression level of its regulators). By explicitly representing interac-

tions among the regulators of each gene, the simulated systems were characterized

by a finite number of basins of attractors, where each attractor corresponds to

a steady state or a periodic behavior. Since each network is characterized by a

finite number of steady states, reachable from a specific set of initial conditions

and/or external stimuli, each steady state can be interpreted as the phenotype2

of an individual in a particular environmental condition.

Differential equations were used to model the dynamics of transcription and

degradation as continuous variables and to describe transcription delay with

different time constants for each gene. In particular, the rate of change of the

expression level of gene i at time t was described as:

dxi (t)

dt
= λi · [Si(Ti (W, t) , αi, βi)− xi (t)] (2.12)

where λi is a time constant influencing both the rate of transcription and the

degradation term and Si(Ti (W, t) , αi, βi) is a sigmoid activation function, mod-

ulating the target value Ti (W, t) and depending on gene i specific parameters αi

and βi:

Si(Ti (W, t) , αi, βi) =
1

1 + exp [−αi · (Ti (W, t)− βi)]
(2.13)

At the end, each subject is characterized by a specific genotype (the connectivity

matrixW with weights wij) and a specific phenotype, thus a vector x=(x1, ..., xN )

representing the steady states expression values of the N genes, obtained by

solving the differential equation 2.12.

2.5.1 Simulation of population evolution and variability

Starting from this simulation schema, evolution of a population of M=1000

individuals was simulated using a procedure similar to the one described in [75].

Given specific initial conditions (i.e. environment condition which was fixed for

the purpose of this work), the initial population at generation 1 consisted of

next (inheritable).
2Phenotype refers to the observed traits or anatomical features of an individual, such as

structure, physiology and behavior. These physical attributes and behavioral characteristics

determine the organism’s ability to survive and reproduce in the environment. The genotype of

an organism determines the phenotype of an organism to a large extent.
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M individuals with identical connectivity matrix W and with N dimensional

vectors of expression values obtained by considering the steady state reached

by the system. Gene specific kinetic parameters αi and βi were sampled from

Gaussian distributions with means µα, µβ and standard deviations σα, σβ. For

each subject, µα and µβ were set to 20 and 0.2, respectively, whereas σα and

σβ were sampled from a Gaussian distribution with means 0.5 and 0.02 and

standard deviations equal to 0.075 and 0.0025, respectively. Parameters values

(Equations 2.12 and 2.13) were empirically chosen so to generate in silico data

with statistical distribution similar to those observed on the real datasets. To

introduce genotype variability in the population, subsequent generations were

produced by iteration of three steps: random pairing of individuals, mutation of

a randomly chosen subset of subjects and selection of the surviving subjects. For

computational reasons, these three steps were applied only to a sub-network of

size N=900, indicated as W900 in the following, which was constrained to be not

connected to any of the other 9100 nodes in the network. Each step is described

in detail in what follows:

• Pairing. Offspring was created by randomly selecting two parents among

the current population of M individuals and randomly combining rows of

the connectivity matrix W900 from each parent with equal probability.

• Mutation. Mutation was simulated by changing each nonzero wij (which, by

simulation, resulted equal to 1619 elements on a matrix of 900×900=810000

elements) with probability 0.025/1619. The new value of each mutated wij

was sampled from a Gaussian distribution with mean and standard devia-

tion equal to 0 and 1, respectively. Therefore, at each iteration, each subject

mutated with probability 0.025.

• Selection. Assuming, in a näıve simplification of reality, that individuals

behaved as haploid3 organisms and that the initial phenotype was essen-

tial for survival, subjects with at least one mutated wij were allowed to

survive only if their phenotype did not change with respect to the original

population. In practice, the Euclidean distance between the expression pro-

file of each mutated subject was calculated (the N dimensional vector of

gene expression values at steady state) and the average expression profile

3Haploid is the term used when a cell has only one set of chromosomes. A normal eukaryote

organism is composed of diploid cells, one set of chromosomes from each parent. Having haploid

genetics means an organism has only one version of each gene in their DNA, one from the mother

OR one from the father.
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of subjects at generation 1; if Euclidean distance exceeded the value of 0.81

(corresponding to the percentile 99.5 of the observed distances) the subject

was eliminated, otherwise he/she survived. At each generation, M individ-

uals were generated, independently of the number of parents survived in

the previous generation. Evolution proceeded for a time sufficient to have

a final population of M subjects with the same phenotype but different

genotype, i.e. 150 generations (Figure 2.2).

Figure 2.2: Total number of subjects mutated with respect to the original

population with the progress of generations. Only survived subjects are

represented for each generation.

Noise was added to expression data of the 10000 genes in the 1000 subjects

as additive Gaussian noise with mean 0 and standard deviation sampled from

the distribution of within-groups error variance in real datasets, as described in

Di Camillo et al. [76]. In particular, the error variance associated to genes was

approximated by a lognormal distribution with mean 0.22 and standard deviation

0.35.

2.5.2 Simulation of the pathological state

Once the base population was simulated, two groups, each of 500 subjects,

were defined. For one of them a pathological condition is simulated by introducing

some impaired regulation in the pathways of the non-healthy subjects. A possible

strategy to do that is either to apply a gene silencing (knock out) or to reduce the

expression level (knock down) of some genes. Thus, the pathological condition
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was simulated by knocking out or down six target hubs, defined as those genes

with the highest out-degree and expression value at steady state higher than 0.88,

so that their knock out (down) achieved an effect. The knock out of gene j was

simulated by setting to 0 its expression and all the elements of row j in matrix

W. Consistently, the knock down of gene j was simulated by halving its value

and all the elements of row j in matrix W. Diseased subjects had 4, 5 or 6 genes

belonging to W900 that were knocked out or down. The proportion of subjects

with 4, 5 or 6 genes affected was set equal to 1/3, 1/3, 1/3, respectively. For each

gene, the proportion of subjects affected by knock-out and knock-down was set

equal to 1/3 and 2/3, respectively.

Figure 2.3: Distance from the original phenotype of the evolved popu-

lation. Upper panel: after the knock-out of the six genes with the highest out-

degree. Middle panel: after the knock out or knock down of all genes in proportion

1/3 and 2/3, respectively. Lower panel: after the knock out (down) of four, five

or six genes.

Figure 2.3 displays group variability in terms of histogram of the Euclidean dis-

tance between the steady states of the original and the diseased population. The

variability rises from both the intrinsic population variability, i.e. the different

connectivity weights wij in W900, and the heterogeneity of the disease. Figure 2.3,

upper panel, shows the effect of the knock-out of the six hubs on subjects with
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different connectivity weights wij, thus with the differences among subjects rising

only from intrinsic population variability. Figure 2.3, middle panel, shows how

these differences increase if hubs are knocked down rather than out in different

subjects with frequency 2/3. Figure 2.3, lower panel, shows the diseased group

variability, obtained when heterogeneity of the disease is also simulated: diseased

subjects have 4, 5 or 6 affected genes (knocked out or down) in proportion 1/3,

1/3, 1/3, respectively. For each gene, the proportion of subjects affected by knock-

out and knock-down was set equal to 1/3 and 2/3, respectively.

Comparison between simulated and Affymetrix data (GSE2990, see below) showed

that the datasets have very similar distribution (Wilcoxon test p-value equal to

0.9).

2.5.3 Biomarkers definition and generation of simulated

datasets

One of the main aspects of using simulated data is to evaluate precision of fea-

ture selection on a benchmark with known biomarkers. The expected biomarkers

are defined as those genes directly or indirectly regulated by at least one of the

six hubs, having expression modified by the knock out (down). Before simulating

the pathological state, for each gene, expression values of the 1000 subjects are

compared to those of the same subjects affected by the knocking out or down of

the six target hubs as previously described. A gene is considered as biomarker

if the median and mean differences are greater than 1e-6 and 0.05, respectively.

This results in 155 biomarkers.

Once defined the biomarker list from simulated data, different synthetic dataset

were generated from the two groups of 500 healthy and 500 diseased subjects: in

order to consider the effect of sample size, data are partitioned into 4 sets of 10

balanced non-overlapping datasets of size 50, 20, 15 or 10 subjects per group (10

datasets for each case study), for a total of 40 simulated datasets.

2.6 Performance evaluation

Algorithms’ performance was evaluated in terms of the ability to accurately

classify the subjects, to provide stable lists of biomarkers and to select true

biomarkers.

The Matthews correlation coefficient, MCC [77], was used as a measure of the

quality of binary classifications. The MCC can be calculated directly from the
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confusion matrix using the formula:

MCC =
TP · TN − FP · FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.14)

In this equation, TP is the number of true positive, TN the number of true

negative, FP the number of false positive and FN the number of false negative

subjects. MCC lives in the range [−1, 1], where 1 is perfect classification, 0 an

average random prediction and -1 an inverse prediction.

To evaluate the ability of the different methods to provide stable lists of biomark-

ers, the algebraic stability indicator derived by Canberra distance was used [62].

In particular, given two ordered lists T1 and T2 of p ranked features, the Canberra

distance between them is defined as:

Ca (T1, T2) =

p
∑

i=1

|τ1(i)− τ2(i)|
τ1(i) + τ2(i)

(2.15)

where τ1(i) and τ2(i) indicate the rank, i.e. the position, of feature i in the ordered

lists T1 and T2, respectively. The stability indicator for a given set of lists was

computed as the mean of the Canberra distances between pairs of lists in the set,

normalized by its expected value on the whole permutation group on p features:

the obtained value ranges then between 0 (maximal stability) and 1.4 (maximal

instability), with 1 as the case of randomly generated lists.

A different extension based on quotients of permutation groups allowed comparing

lists T1 and T2 of different length l1, l2:

Ca (T1, T2) =
1

(p− l1)! · (p− l2)!

∑

Γ1∈S1

∑

Γ2∈S2

Ca (Γ1,Γ2) (2.16)

where p is the total number of analyzed features and Γj (j=1,2) belong to the set

Sj of all the lists having the first lj features ordered as in Tj and the remaining

(p−lj) elements ordered in all the (p−lj)! possible combinations. This is called the

complete version of the partial lists distance: neglecting its component depending

only on the discarded features, a different measure (called core distance) can be

obtained, better tailored to highlight variations on partial short lists [78]. Full

statements and proofs of the mathematical properties of the Canberra distance

can be found in [79].

The ability to select the true biomarkers was evaluated in term of precision (num-

ber of true positives divided by the number of selected features) obtained by the

different methods according to their choice of the optimal number of features.

The area under the precision vs. recall (number of true positives divided by the
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number of true biomarkers) curve was also considered to outline the ability of the

different methods to rank the features, a task related with the ability to select

the true biomarkers.

Finally, statistical significance of the comparison between each method and its

bootstrap variant was assessed using Wilcoxon signed ranks test with significance

level α equal to 0.05. Differences among the four multivariate methods in their

bootstrap variant were assessed using Friedman test (α=0.05), followed, if sig-

nificant, by Wilcoxon signed ranks test to examine between which methods the

differences actually occur, with a significance level α equal to 0.05/6=0.0083 to

correct for multiple testing. SAM was compared with the other eight methods us-

ing Wilcoxon signed ranks test with a significance level α equal to 0.05/8=0.00625

to correct for multiple testing.

2.7 Results on simulated data

The nine different biomarker discovery methods for binary classification and

feature weighting and ranking were tested on the 40 simulated datasets of size

50, 20, 15 and 10 subjects per group, evaluating how sample size and heterogene-

ity characterizing simulated data affect these methods in terms of classification

accuracy, stability of biomarker lists and precision of feature selection.

2.7.1 Classification accuracy

Table 2.1 presents the average MCC obtained on simulated data. All boot-

strap classification methods perform equally well (Friedman test p-values always

above 0.15 for every sample size) in terms of classification accuracy. In particular,

bootstrap approach improves classification accuracy: with 50 subjects per group

LSVM B and IRSVM B perform better than their standard versions (p-value

equal to 0.019 and 0.007, respectively); with 20 subjects per group GSVM B and

SRDA B perform better than their standard versions (p-value equal to 0.030 and

0.025, respectively); with 15 subjects per group LSVM B, GSVM B and SRDA B

perform better than their standard versions (p-value equal to 0.031, 0.031 and

0.016, respectively). SAM was excluded from this part of the analysis.

2.7.2 Feature stability

The ability of the various methods to select the same features across differ-

ent datasets is depicted in Figure 2.4, where the boxplots of the core Canberra
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50 20 15 10

LSVM 0.73 0.69 0.73 0.70

(0.62, 0.82) (0.51, 0.93) (0.60, 0.88) (0.60, 0.82)

LSVM B 0.77 0.74 0.80 0.73

(0.65, 0.87) (0.54, 0.95) (0.68, 0.94) (0.64, 0.83)

GSVM 0.78 0.76 0.81 0.73

(0.70, 0.87) (0.62, 0.91) (0.72, 0.89) (0.66, 0.80)

GSVM B 0.80 0.81 0.83 0.71

(0.65, 0.92) (0.62, 0.95) (0.66, 0.94) (0.64, 0.86)

SRDA 0.75 0.72 0.74 0.69

(0.66, 0.84) (0.61, 0.93) (0.61, 0.87) (0.60, 0.80)

SRDA B 0.77 0.74 0.75 0.73

(0.67, 0.85) (0.59, 0.96) (0.60, 0.94) (0.61, 0.83)

IRSVM 0.77 0.83 0.77 0.65

(0.66, 0.84) (0.61, 0.94) (0.67, 0.85) (0.60, 0.80)

IRSVM B 0.81 0.72 0.80 0.69

(0.67, 0.92) (0.50, 0.95) (0.64, 0.94) (0.51, 0.86)

Table 2.1: MCC corresponding to the optimal number of features ob-

tained using different methods - simulated data. Average MCC obtained

when 50, 20, 15 or 10 subjects per group are available. Range of values is indicated

in parenthesis.

distance (Equation 2.16) of the lists of selected features are shown. The distance

between the ranked lists increases for all the methods when the number of sub-

jects per group decreases.

The bootstrap resampling schema leads to an improvement in list stability, sta-

tistically significant when sample size decreases. In particular, differences are

statistically significant for LSVM, SRDA and IRSVM with 20 subjects per group

(p-value always lower than 0.036), for LSVM, GSVM and IRSVM with 15 sub-

jects per group (p-value always lower than 0.033), for all methods with 10 sub-

jects per group (p-value always lower than 0.001). Among bootstrap approaches,

IRSVM B is the best performing method in terms of list stability, when 20 sub-

jects per group are available; LSVM B performs as IRSVM B in the case of 15

subjects per group; GSVM B performs as IRSVM B in the case of 10 subjects

per group (Friedman test gave p-value lower than 10-11 for sample size 20, 15, 10

and Wilcoxon signed ranks test gave p-value lower than 0.001 for every significant

pairwise comparison).
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Figure 2.4: Evaluation of feature stability on simulated data. Boxplots

of the core Canberra distance between lists of selected features obtained using

different methods when 50, 20, 15 or 10 subjects per group are available. A dot

highlights the significant differences between pair of bootstrap and non-bootstrap

approaches (p-value lower than 0.05, Wilcoxon test).

In the case of 50 subjects per group, SAM shows list stability comparable to the

one obtained by the other methods. With 20 subjects per group, SAM is as good

as IRSVM B; however, results are limited to the four datasets for which SAM

was able to select features below the 0.05 FDR threshold.

2.7.3 Feature selection

Figure 2.5 shows boxplots of precision, obtained by the different methods ac-

cording to their choice of the optimal number of features. Feature selection results

show that bootstrap resampling schema leads to an improvement in terms of pre-

cision, statistically significant when the sample size decreases. In particular, with

20, 15 and 10 subjects per group, bootstrap improves precision of 1.5, 1.4 and

2 fold change, respectively (average improvement across the four different clas-

sification methods). Differences between bootstrap and non-bootstrap approach

are statistically significant (p-value lower than 0.05, Wilcoxon signed ranks test)

for LSVM and GSVM with 20 subjects per group, for LSVM and SRDA with 15
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subjects per group, for all methods but LSVM with 10 subjects per group. There

are no appreciable differences among different bootstrap methods in terms of pre-

cision (Friedman test p-value always above 0.05 for every sample size). In Figure

2.5, the interquartile range of the number of selected features is also reported.

Interestingly, with less than 50 subjects per group, the bootstrap approaches have

the tendency to select a lower number of features.

Figure 2.5: Precision of feature selection on simulated data. Boxplots of

precision corresponding to the optimal number of features chosen by different

methods when 50, 20, 15 or 10 subjects per group are available. A dot high-

lights the significant differences between pair of bootstrap and non-bootstrap

approaches (p-value lower than 0.05, Wilcoxon test). The median number of se-

lected features is also reported below each boxplot.

In the case of 50 subjects per group, SAM detects differentially expressed features

with average precision comparable to that obtained by the other methods, but

GSVM, IRSVM and IRSVM B, which perform statistically significantly better

than SAM (p-value equal to 0.002, 0.006, 0.006 respectively, Wilcoxon signed

ranks test). With 20 subjects per group, SAM is not able to select any gene with

FDR lower than 0.05 in six datasets, whereas in the remaining four, it selects

in average 50 features with high precision (0.85 in average). In these latter cases
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SAM performs statistically significantly better than LSVM (p-value=0.004) and

SRDA (p-value=0.006), i.e. two methods without the bootstrap approach. Fi-

nally, with less than 20 subject per group, SAM is not able to select any gene in

any of the dataset with FDR lower than 0.05; thus no result could be reported

in these latter two cases.

A slightly different task, although related to feature selection, is feature ranking.

In principle, a method could rank features properly, but fail to select the optimal

number of features. Areas under the precision vs. recall curves (AUC) obtained

by ranking features (Figure 2.6) show appreciable differences between methods.

Bootstrap methods perform better than their standard variants for datasets of

size 50, 20 and 15, for all methods (p-value always below 0.005) but GSVM. For

datasets of size 10, only SRDA B improves with respect to SRDA (p-value=0.01).

With datasets of 50, 20 and 15 subjects per class, IRSVM B is the best perform-

ing algorithms (Friedman test gave p-value lower than 0.004 for every sample

size and Wilcoxon signed ranks test gave p-value lower than 0.003 for every com-

parison be-tween IRSVM B and the other bootstrap methods). With 10 subjects

per group, all multivariate methods show AUC below 0.5, without statistically

significant differences among them.

Figure 2.6: Evaluation of feature ranking on simulated data. Boxplots of

area under the precision vs. recall curves obtained by ranking features according

to the different methods, when 50, 20, 15 or 10 subjects per group are available.

A dot highlights the significant differences between pair of bootstrap and non-

bootstrap approaches (p-value lower than 0.05, Wilcoxon test).
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With 50 and 20 subjects per group, a simple univariate test such as SAM is able

to rank differentially expressed features with performance comparable to multi-

variate methods such as LSVM, GSVM, SRDA and their bootstrap versions, but

not to IRSVM and IRSVM B that perform better (p-values equal to 0.002 for

both tests). However, when the number of subjects is lower than 20, SAM perfor-

mance in feature ranking dramatically drops with respect to classification based

methods (p-value lower than 0.002 for all comparisons but GSVM and GSVM B).

This behavior is consistent with the inability of SAM to select any feature with

15 and 10 subjects per group.

2.8 Application to Real datasets

In order to validate results obtained on simulated data comparing classification

methods in terms of classification accuracy and consistency of lists of candidate

biomarkers on real case studies, three publicly available microarray datasets mon-

itoring breast cancer patients with positive and negative estrogen receptor status

were used; biomarker lists from the three datasets as well as sets of sub-lists of

different sample size obtained from each dataset were compared.

Breast cancer microarray studies were collected from Gene Expression Omnibus

repository (GEO) with accession numbers: GSE2990 [80], GSE3494 [81] and

GSE7390 [82]. Datasets were all hybridized using Affymetrix U133 GenechipsTM

(HG-U133A). Samples that have known estrogen-receptor (ER) status were se-

lected so to have balanced groups (ER+ and ER-), homogeneous with respect

to characteristics such as age, tumor size and histological grade. ER status was

chosen as case study because it is always assessed in breast biopsies, therefore it

is very often present among the clinical/pathological information given with the

datasets. Moreover, the assessment of the ER status is important to divide breast

cancer into molecular classes and to treat cancer with the hormone blocking ther-

apy [83]. Since there are subgroups of samples belonging to multiple datasets,

redundant subjects were removed. The resulting datasets are characterized by

22207 features (probe sets) and 66 subjects for GSE2990 (33 ER+, 33 ER-), 50

subjects for GSE3494 (25 ER+, 25 ER-) and 92 subjects for GSE7390 (46 ER+,

46 ER-). Comparison among the three datasets allowed assessing list stability

in a real case study. To assess list stability within dataset, thus not accounting

for experimental setup variability, and to compare the effect of sample size with

simulated data, 20 subjects per ER status were repeatedly sampled from datasets

GSE2990 and GSE7390 to set up smaller balanced datasets (10 datasets for each
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case study). Gene expression intensity signal was derived and normalized inde-

pendently for each dataset using the robust multiarray average (RMA) algorithm

[84]. Probe sets related to the estrogen receptor (ESR1) were removed from all

datasets, since ESR1 is the gene more directly associated with ER status and can

mask other potential descriptors of the underlying pathophysiology [85].

In terms of classification accuracy, the MCC obtained using different methods on

real datasets is shown in Table 2.2. Results on dataset GSE3494 are not shown

since none of the different methods gave good accuracy (MCC always below

0.4). On the other two datasets, results confirmed those obtained by simulated

data. The first two columns report the MCC for GSE2990 and GSE7390, respec-

tively, when 20 subjects per group are repeatedly sampled from each dataset.

The third and fourth columns of Table 2.2 report the MCC obtained using the

complete datasets GSE2990 and GSE7390. Results are comparable to those ob-

tained using simulated data. Bootstrap approach improves classification accu-

racy on dataset 7390 for all methods (p-value equal to 0.02, 0.04, 0.001, 0.03 for

LSVM B, GSVM B, SRDA B and IRSVM B, respectively, with respect to their

standard version), whereas, with dataset 2990, the differences between bootstrap

and standard approaches are not statistically significant. As observed with sim-

ulated data, all bootstrap classification methods perform equally well (Friedman

test p-values always above 0.06 on both the datasets). In terms of stability, boot-

strap resampling schema leads to an appreciable improvement both when the

complete datasets GSE2990 and GSE7390 are compared and when 20 subjects

per group are repeatedly sampled from each dataset (Figure 2.7).

Differences between bootstrap and standard approach are statistically significant

for every method (p-value always lower than 0.002) with dataset GSE2990 and

for LSVM and GSVM with dataset GSE7390. Observing the interquartile range

of the number of selected features reported in Figure 2.7, it is confirmed the ten-

dency of the bootstrap approaches to select a lower number of features.

SAM performance is poor: when 20 subjects per group are repeatedly sampled

from each dataset the core Canberra distance between lists of biomarkers ranges

between 0.04 and 0.37 (average 0.27) for GSE2990 and between 0.13 and 0.31

(average 0.22) for GSE7390; on the other hand, between the complete datasets

(GSE2990 vs. GSE7390) the core Canberra distance is equal to 0.63. SAM re-

sults are not shown in Figure 2.7 to avoid masking the differences among the

other methods.
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GSE2990 GSE7390 GSE2990 GSE7390

20 subjects 20 subjects

LSVM 0.64 0.77 0.6 0.79

(0.61, 0.69) (0.61, 0.90)

LSVM B 0.65 0.81 0.68 0.81

(0.51, 0.77) (0.58, 0.91)

GSVM 0.62 0.73 0.59 0.74

(0.59, 0.64) (0.60, 0.83)

GSVM B 0.65 0.78 0.61 0.77

(0.60, 0.71) (0.61, 0.91)

SRDA 0.63 0.74 0.5 0.78

(0.61, 0.66) (0.62, 0.85)

SRDA B 0.67 0.83 0.67 0.77

(0.61, 0.78) (0.66, 0.90)

IRSVM 0.62 0.80 0.6 0.78

(0.47, 0.69) (0.65, 0.91)

IRSVM B 0.67 0.82 0.67 0.81

(0.58, 0.82) (0.62, 0.91)

Table 2.2: MCC corresponding to the optimal number of features ob-

tained using different methods real data. Average MCC obtained when 20

subjects per group are available, sampled from datasets GSE2990 and GSE7390

MCC (first and second columns, respectively; range of values is indicated in paren-

thesis), and obtained on the complete datasets GSE2990 and GSE7390 (third and

fourth columns, respectively).
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Figure 2.7: Evaluation of feature stability on real data. Boxplots of the core

Canberra distance between lists of selected features provided by different classifi-

cation methods when 20 subjects per group are repeatedly sampled from GSE2990

(upper panel) and GSE7390 (middle panel) datasets. A dot highlights the signifi-

cant differences between pair of bootstrap and non-bootstrap approaches (p-value

lower than 0.05, Wilcoxon test). The interquartile range of the number of selected

features is reported below each boxplot. The core Canberra distances between

lists of biomarkers provided by different methods on the complete GSE2990 vs.

GSE7390 datasets are shown in the lower panel together with the number of

selected features in each dataset.
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2.9 Discussion

For complex diseases such as cancer, high throughput analysis carried out in

different research centers may exhibit poor reproducibility, with limited overlap

or reduced statistical significance. The results of the MAQC-II study address in

a comprehensive analysis this issue on real datasets by comparing methods and

procedures between data analysis teams [44]. Here, the effect of the intrinsic com-

plexity of this task has been further explored.

A first contribution of this work is the comparison of different classification meth-

ods applied on real microarray datasets, in terms of consistency of lists of can-

didate biomarkers and classification accuracy. A second contribution is the gen-

eration of a simulated dataset to extensively assess average method performance

on a large number of studies and experimental conditions accounting for the low

number of samples available and the heterogeneity affecting microarray studies,

and to evaluate precision and feature ranking performance on a benchmark with

known biomarkers. Heterogeneity of samples in each group is obtained by simu-

lating both intrinsic variability of the population and heterogeneity of the disease.

Despite its simplicity with respect to real systems, the simulator provides a ver-

satile test bed to assess a wide spectrum of methodologies.

Results on simulated data show that when some tens of subjects are available per

group, performance of different methods are comparable. However, when avail-

able subjects are equal or lower than 20, bootstrap resampling schema leads to an

improvement in list stability and the precision of the selected features. Bootstrap

approach slightly improves also classification accuracy when 50, 20 or 15 subjects

per group are available. Among the different methods here considered, IRSVM B

provides the best combination of feature ranking and biomarker stability; more-

over, it reaches the best average performance also in terms of classification accu-

racy. In the case of 50 subjects per group, a simple univariate test such as SAM

shows performance comparable to that obtained by the other methods, thus con-

firming results obtained in [64], where in the four used datasets the lowest number

of subject per group is always above or equal to 40. However, with 20 subjects

per group, SAM performance strongly depends on the dataset: on the simulated

data, for example, SAM is not able to select any gene with FDR lower than 0.05

in six datasets, whereas in the remaining four, it selects in average 50 features

with high precision (0.85 in average) and stability comparable to the one obtained

using IRSVM B, although this latter outperforms SAM in feature ranking. Fi-

nally, with less than 20 subjects per group, SAM performance dramatically drops
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with respect to classification based methods. With real data, only list stability

and classification accuracy can be assessed. In both cases, results of classification

methods tightly resemble those obtained with simulated data.

In conclusion, the analysis confirms the MAQC-II indication that comparably

good classification accuracy can be reached by different methods on the same

task, if a valid Data Analysis Plan is adopted [86]. Furthermore, the study high-

lights a systematic improvement due to bootstrap approach in selecting features

with a high degree of precision and stability. Overall, the crucial factor affecting

list stability seems to be that the classification task is under constrained. When

additional information is present on the relationships between genes, this infor-

mation could be used to improve the stability with respect to the features of

the classifiers. The basic idea of this strategy would be to take into account the

complex gene relationships, instead of considering genes as independent features.

In the following chapters, the effect of the use of different biological information

from genomic databases in the learning process is explored, by integrating differ-

ent prior knowledge like functional annotations, protein-protein interactions, and

expression correlation among genes.





Chapter 3

Biological knowledge in genomic

databases

For many years research in molecular biology has been focused on the analy-

sis of relevant components (genes, proteins, metabolites) of a particular cellular

process in isolation. By this approach many genes have successfully been charac-

terized and functionally annotated, but biological systems are complex and their

characteristics are the result of a highly interwoven interaction network develop-

ing through time and space. Fundamental biological processes of living systems,

e.g. assimilation of nutrients and the perception of environmental signals, are the

result of the interplay of different biochemical reactions, thus the understanding

of these processes is essential. However, this requires an approach that takes into

account both interactions at the molecular level as well as physiological func-

tions that are characteristics of the whole organism. From this point of view,

systems approaches are becoming increasingly important, since the understand-

ing of multigenic and complex diseases cannot be related to a single gene or

component but to multiple pathways and the interplay between different genes

and the environment.

The development of systems approaches requires a lot of information on dif-

ferent aspects of the system. Data typically arise from several levels of cellular

information. The most important resource for such information is the scientific

literature and human expertise curated one in public databases. However, as

more and more genomes have been sequenced and annotated, and protein and

gene interaction data have been accumulating, recent years have seen an explo-

sion in the amount of available biological data. Biological databases have become

an essential instrument for managing these data and for making them accessi-

ble. Data are collected from scientific experiments, published literature, high-

43
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throughput experiment technology, and computational analyses. Depending on

the data that they contain, these databases fulfill different functions. The collected

information derives from different research areas including genomics, proteomics,

metabolomics, microarray gene expression, and phylogenetics. This information

is often described as semi-structured data, and can be represented as tables, key

delimited records, and XML structures. An example of data representation is the

ontology, which provides both a vocabulary representing knowledge as a set of

concepts within a domain and a graph of the relationships between these con-

cepts. The ontology structure reflects the current representation of knowledge as

well as serving as a guide for organizing new data. A popular biological ontology

is the Gene Ontology, where genes and proteins can be annotated to biological

concepts at varying levels of the graph depending on the amount and complete-

ness of available information. Other structured data representations are gene and

protein networks, where each relation between two biological entities (i.e. genes

or their molecular products) can represent a specific biochemical interaction or

a regulatory mechanism which can occur at different levels of a cellular process.

Depending on the nature of the relations represented in these biological networks,

there are different databases.

In the following, an overview of existing database for the biological information on

processes, functions and interactions is provided, in particular focusing on Gene

Ontology and protein-protein interactions databases.

3.1 Gene Ontology database

The Gene Ontology (GO) project [31] is a collaborative effort to address

the need for consistent descriptions of gene products in different databases. The

project began as a consortium among three model organism databases, Fly-

Base (Drosophila) [87], the Saccharomyces Genome Database (SGD) [88] and the

Mouse Genome Database (MGD) [89], in 1998. The GO project has developed

three structured controlled vocabularies (categories) that describe gene products

in terms of their associated biological processes, molecular functions and cellular

components in a species-independent manner. In particular:

• Biological Process deals with sets of molecular events, i.e. chemical or

physical transformation, with a defined beginning and end, pertinent to the

functioning of integrated living units: cells, tissues, organs, and organisms;

• Molecular Function collects the elemental activities of a gene product at
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the molecular level, such as binding or catalysis, describing only what is

done without specifying where or when the event actually occurs;

• Cellular Component represents the parts of a cell or its extracellular envi-

ronment where a gene product is active.

Each GO term within the ontology has a term name (which may be a word or

string of words), a unique alphanumeric identifier, a definition with cited sources

and a namespace indicating the domain to which it belongs. Terms may also have

synonyms, which are classified as being exactly equivalent to the term name,

broader, narrower, or related.

To each GO term, a set of annotation (gene products, proteins, etc.) is associated,

where each element can be distinguished by an identification code (e.g. EntrezID,

UniProtID, etc.). All annotations are characterized by an evidence code, which

comes from the Evidence Code Ontology, a controlled vocabulary of codes cov-

ering both manual and automated annotation methods. The following sections

illustrate in more detail the structure and the properties of annotations of GO

database.

3.1.1 Graph structure

GO terms are organized in a directed acyclic graph (DAG) in which each node

corresponds to a GO term and each edge to a relationship between two GO terms.

An example of the GO structure is shown in Figure 3.1, where the node related

to GO term regulation of cell projection assembly is displayed with all available

paths to its root term. Each node may have multiple parents: nodes farther from

the root (high level nodes) correspond to more specialized terms, nodes closer

to the root (low level nodes) to less specialized ones. The main relationships be-

tween GO terms are is-a and part-of relationships. The is-a relationship connects

a subtype to its more general counterpart, but it does not mean “is an instance

of”: GO, like most ontologies, does not use instances, and the terms in GO rep-

resent a class of entities or phenomena, rather than specific manifestations. The

is-a relation is transitive, which means that if A is-a B, and B is-a C, then it is

possible to infer that A is-a C. The relation part-of is used to represent part-whole

relationships in GO; part-of has a specific meaning in GO, and a part-of relation

would only be added between A and B if B is necessarily part of A: wherever

B exists, it is as part of A, and the presence of the B implies the presence of

A. However, given the occurrence of A, B might not exist. Like is-a, part-of is

transitive.
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Figure 3.1:Example of the GO structure.The structure of the GO is illustrated

on the paths of term regulation of cell projection assembly to its root term.

The original use of the part-of relationship between regulatory processes and the

processes that they regulate did not provide enough specificity to allow users to

perform queries that distinguish gene products that play a regulatory role versus

a direct role in a biological process. Recently, new relationships were introduced in

the ontology: regulates, positively-regulates, and negatively-regulates relationships

between regulatory terms and their regulated parents. The three regulates rela-

tionships allow GO to correctly represent important areas of biology where one

process affects the manifestation of another process but may not be a part of that

process itself. For example, regulation of transcription is not a part of transcrip-

tion, but lies outside of the transcription process and controls how it unfolds. The

“regulates” relations in GO are used specifically to mean necessarily-regulates,

that is: if B regulates A, then whenever B is present, it always regulates A, but

A may not always be regulated by B.

In the last years, GO curators also introduced the has-part relationship. It repre-

sents a part-whole relationship from the perspective of the parent, and is thus the
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logical complement to the part-of relationship. In GO, the relationship A has-part

B means that A necessarily (always) has B as a part; i.e. if A exists then B also

exists as a part of A. If A does not exist, B may or may not exist. For example,

cell envelope has-part plasma membrane means that a cell envelope always has a

plasma membrane as a part but a plasma membrane may exist without being a

part of a cell envelope.

The GO undergoes frequent revisions to add new relationships and terms or re-

move obsolete ones. If a term is deleted from the ontology, the identifier for the

term stays valid, but is labelled as obsolete and all relationships to the term are

removed. Changes to the relationships do not affect annotations, because anno-

tations always refer to specific terms, not their location within the GO. Recently,

also relationships between the three categories were introduced, thus eliminating

orthogonality among the information in these three domains. Currently, there

are two concurrent versions of the GO, the filtered and the full GO. The main

difference is that the filtered GO does not contain any has-part or inter-ontology

relationships. In this thesis, the filtered version of GO was used.

3.1.2 Functional annotations

A GO annotation associates a gene with terms in the ontology and can be

generated either by a curator or automatically through predictive methods. Genes

are associated with as many terms as appropriate as well as with the most specific

terms available to reflect what is currently known about a gene. When a gene is

annotated to a term, associations between the gene and the terms’ parents are

implicitly inferred. Because GO annotations to a term inherit all the properties of

the ancestors of those terms, every path from any term back to its root must be

biologically accurate or the ontology must be revised. Thus, a gene annotated to

a specific GO term can be retrieved not only with that term, but also with all of

its parent terms, increasing flexibility and power when searching for and making

inferences about genes, but at the same time introducing strong dependencies

among the GO terms and redundancy of the information. Each annotation in

the GO has a source and a database entry attributed to it. The source can be a

literature reference, a database reference or computational evidence. One of the

most important attributes of an annotation is the evidence code. These evidence

codes are divided into four categories (Figure 3.2). For example, Traceable Au-

thor Statement (TAS) means a curator has read a published scientific paper and

the metadata for that annotation bears a citation to that paper; Inferred from

Sequence Similarity (ISS) means a human curator has reviewed the output from



48 3. BIOLOGICAL KNOWLEDGE IN GENOMIC DATABASES

Figure 3.2:A decision tree for deciding which evidence code to use. Figure

adapted from http://www.geneontology.org/GO.evidence.tree.shtml

a sequence similarity search and verified that it is biologically meaningful. The

ND evidence code indicates that the function is currently unknown (i.e. that no

characterization of the gene is currently available). Annotations from automated

processes (for example, remapping annotations created using another annotation

vocabulary) are given the code Inferred from Electronic Annotation (IEA). The

most reliable annotations are those inferred directly from experimental evidence,

in particular from direct assay (IDA). GO annotations are continually updated

to reflect current knowledge, to correct errors and to improve logical consistency.

The GO ontology is updated daily and most of the annotation files are released

weekly. Although annotations are robust to changes in the ontology because they

are made to the definition of the term and not to the term name or its posi-

tion in the graph, it is important to use the latest versions of the ontology and

annotations.
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3.2 Pathway databases

A pathway is a set of interactions, or functional relationships, between the

physical and/or genetic components of the cell which operate in concert to carry

out a biological process [90]. Pathway databases put protein interactions into a

biological context by creating pathways to describe biological processes, repre-

senting a connected sequence of biochemical reactions. These pathway databases

facilitate a variety of analyses and simulation techniques that can enrich the

understanding of cellular systems. The Pathway Resource List [91] currently pro-

vides an overview of more than 190 web-accessible biological pathway and network

databases, including information on metabolic pathways, signaling pathways,

gene regulatory networks, genetic interactions and protein-protein interactions.

Metabolic pathway databases generally store a series of biochemical reactions,

focusing mainly on the chemical modifications made to the small molecule sub-

strates of enzymes. Signaling pathway databases generally collect sets of molecular

interactions and chemical modifications, propagating information from one part

or sub-process of the cell to another, often via a series of protein covalent mod-

ifications, such as protein phosphorylation. Dysregulation of biological processes

by aberrant signaling pathways causes many common diseases, such as cancer

and diabetes. Gene regulation network databases capture transcription factors

and the genes they regulate; these databases share features with both signal-

ing and protein interaction databases, as they collect protein-DNA interactions

and regulatory (activation and inhibition) events. Genetic pathway databases

are composed of genetic interactions which occur when two mutations have a

combined phenotypic effect that is not simply the sum of the effects caused by

either mutation alone. Finally, protein-protein interaction databases, which will

presented in more detail in the following, mainly store pairwise interactions or

complexes between proteins and sometimes other molecular interaction types.

Unlike metabolic and signaling pathway data, which are generated primarily by

traditional small-scale experimental techniques, large amounts of protein inter-

actions (protein-protein, protein-DNA, etc.) are generated by various large-scale

experimental methods.

All these pathway databases are interesting for modelling approaches, since they

offer a straightforward way of building network topologies by the annotated reac-

tion systems [91], however they provide also an integrated topological representa-

tions of functional knowledge of the different components of a biological system

which allow using this information as a prior knowledge for different genomic and
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proteomic analyses. Examples of these databases are the Kyoto Encyclopedia of

Genes and Genomes (KEGG) [43], Reactome [92] and the Pathway Interaction

Database (PID) [93], which contain metabolic reactions and several signal trans-

duction pathways. KEGG is a reference knowledgebase offering information about

genes and proteins, biochemical compounds, reactions and pathways. It provides

317 reference pathways that are linked to genes and reactions of several organ-

isms. Reactome uses a very precise specification (ontology) of components and

interactions that comprises details on stoichiometry, localization, references to

external databases, etc. This covers also processes like complex formation events

or translocations of molecules. For signalling events, PID is a growing collection

of human signaling and regulatory pathways curated from peer-reviewed liter-

ature and stored in a computable format. Gene regulation processes and gene

regulatory networks are not yet covered in as much detail as metabolic processes

or signalling. However, there are databases that store information on transcrip-

tion factor binding sites such as TRED [94], TRANSFAC [45] and JASPAR [46].

An inherent aspect of the pathway concept is protein-protein interaction repre-

sented by several databases such as IntAct [95] or database of interacting proteins

(DIP) [96], which accomplish a comprehensive knowledge of the protein interac-

tomes from studies on proteome-wide physical connections between protein pairs

measured by efficient large-scale technologies. This last type of pathway-related

information will be presented in detail in the following section.

3.3 Protein-protein interactions

In recent years, given an explosive development of high-throughput experimen-

tal technologies, the number of reported protein-protein interactions (PPIs) has

increased substantially. A protein-protein interaction (PPI) network is commonly

viewed as an unweighted, undirected graph. Each node in the graph represents a

protein and an edge between a pair of nodes indicates that these proteins have

been observed to interact physically (Figure 3.3). In an attempt to understand

and describe the PPI connectivities, a number of models for generating edges in

some probabilistic sense, have been proposed and tested against observed net-

works [97, 98]. Many works have focused on matching degree distributions and

recovering a scale-free law [73, 99], although whether PPI networks are really

scale-free is still the subject of debate [97, 100].

The primary resources for PPI data are individual scientific publications. To make

this information more readily available, a number of publicly available databases
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Figure 3.3: A map of protein-protein interactions for 1870 yeast proteins.

Figure from Jeong et al., 2001 [3]

have set out to collect and store protein-protein interaction data, providing a

global view of protein partners and protein memberships in molecular complexes.

These usually reference the original publication and the experimental method

that determined every individual interaction. In order to uniform this knowledge,

the International Molecular Exchange (IMEx; http://imex.sourceforge.net/)

consortium was formed. The primary PPI databases are DIP [96], IntAct [95],

and MINT [101], which are the core founders of IMEx. Another complete PPI

database is the Human Protein Reference Database (HPRD) [47], which focuses

entirely on human proteins, providing not only information on protein interac-

tions, but also a variety of protein-specific information, such as post-translational

modifications, disease associations and enzyme-substrate relationships.

Focusing on human proteins, the Human Protein Reference Database (HPRD)

contains manually curated scientific information pertaining to the biology of most

human proteins and is the database that includes most human protein-protein in-

teractions, as shown in [102]. The National Center for Biotechnology Information

provides link to HPRD through its databases (e.g. Entrez Gene, RefSeq) per-

taining to genes and proteins. Moreover, HPRD provides not only information

on protein interactions, but also a variety of protein-specific information, such as

post-translational modifications, disease associations and enzyme-substrate rela-

tionships. Protein annotation information was derived through manual curation
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using published literature by expert biologists and through bioinformatics anal-

yses of the protein sequence. From 10,000 protein-protein interactions (PPIs)

annotated for 3000 proteins in 2003, HPRD has grown to over 36500 unique PPIs

annotated for 25000 proteins.



Chapter 4

Gene Ontology based

classification: improving

prediction and biological

interpretability

4.1 Background

All statistical methods to perform classification and feature selection allow

the identification of gene lists. High-throughput genomic experiments often lead

to the identification of large gene lists, which are affected by several problems

related to the stability of the solutions. Moreover, these methods for finding in-

teresting genes often do not help the interpretation of the resulting gene lists

and the formulation of consistent biological hypotheses from these results poses

a challenging task. Most of the methods proposed in the literature are based on a

posteriori annotation of the selected features, in order to describe the main bio-

logical processes characterizing the results. Searching for sets of predefined func-

tionally related genes (e.g. pathways) that are enriched in a gene list is a popular

approach to solve this problem. In particular, enrichment analysis is a statistical

technique to analyze and interpret large gene lists using a priori-knowledge [103].

It assesses the over- (or under-) representation of a known set of genes (e.g. a

biological process) within the input gene list [104, 105, 106]. A statistically sig-

nificant number of genes from the known set in the gene list may indicate that

the biological process plays a role in the biological conditions under study. This

analysis is repeated for all available known gene sets, obtaining a score (usually

53
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a p-value) for each set. Different enrichment methods were developed [107] and

many of these were applied on gene sets from Gene Ontology (GO) annotations,

since they are readily accessible for many organisms and cover many genes. How-

ever, most of these approaches are threshold-dependent, because they require the

user to set a threshold on the gene scoring statistic. Specifically, results may not

be stable to choice of the threshold, since there is loss of information caused by

treating gene scores in a binary way (they either pass the threshold or not).

A different approach is proposed by knowledge-driven classification and feature

selection methods, which integrate biological knowledge into the learning pro-

cess in order to identify biomarkers not as individual genes but gene sets. Lottaz

and Spang [32] proposed a structured analysis of microarray data (StAM), which

generates a classifier graph according to the Gene Ontology, constructs leaf node

classifiers based on selected expression values from shrunken centroid classifica-

tion and propagates classification results through the inner nodes to the root by

a weighted sum, where the weights are related to the performance of the classi-

fiers. A shrinkage scheme was used to shrink the weights towards zero so that a

sparse representation is possible. In the proposed method the user has to specify

two calibration parameter which control the performance of the classifiers and the

shrinkage process. Since the final classifier is built based on the GO tree, it greatly

facilitates the interpretation of a final result in terms of identified biological pro-

cesses that are related to the outcome. However, only the genes annotated in the

leaf nodes (i.e. with most detailed biological functions) are used as predictors;

because of incomplete knowledge, other relevant genes that are not annotated to

leaf nodes cannot be used, missing important genes and losing predictive perfor-

mance of the final model.

Following the assumption that genes in the same group are more likely to func-

tion similarly, Tai and Pan [33] proposed a group penalization method that use

group-specific penalty terms and associated penalty parameters to account for

possibly varying degrees of relevance of the gene groups to the outcome of inter-

est. The basic idea is to treat the genes from the same group to be equal a priori

while those from different groups unequal a priori. In the proposed method, the

shrinkage parameter for a group is inversely weighted such that multiple group-

specific shrinkage parameters are tuned only by one regularization parameter. The

weighted method penalizes less on the genes in a group with a larger mean param-

eter estimate: when a group contains a larger proportion of non-zero coefficients

or a few large non-zero coefficients, indicating the existence of potentially useful

genes in the group, the coefficients of the genes in the group will be shrunken less
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likely to be zero, leading to both higher chance of identifying important genes

and in general smaller biases of shrinkage estimates. This approach is based on

the idea that if the genes in a pathway or from the same functional group tend to

work together, it is more likely that the genes from the same group have either

zero or non-zero parameters simultaneously. This assumption strongly depends

on the type of information used as prior-knowledge, which often provides groups

of genes characterized by different level of specificity of biological information. In

this work the method was applied on KEGG pathways, but other sources of bio-

logical knowledge for gene functions or pathways, such as GO, can be also utilized

in their proposed methods. However, how to take advantage of the hierarchical

structure of GO annotations is not yet defined.

These last two methods are based on the assessment of classification performance

in terms of prediction accuracy. More recently, the method proposed by Haury et

al. [64] addresses also the stability issue by combining the recently proposed graph

Lasso procedure [108] with a stability selection procedure, akin the “randomiza-

tion and aggregation” approach described in [27], where the feature selection

process is repeated on many randomly perturbed training sets by a bootstrap

approach, keeping only those features that are often selected in this procedure.

Reproducibility of biomarkers lists was assessed adopting a gene-centric view,

however it is important to note that the instability characterizing the identified

gene lists is also affected by heterogeneous genomic alterations, which possibly

affect a specific set of biological process, but not the same genes in different pa-

tients [109].

Another problem related to the use of biological knowledge is represented by the

redundancy of information, which is particularly problematic with gene-sets de-

rived from hierarchical functional annotation systems, like GO, as children terms

are partially redundant with their parents by definition. Existing methods used

for enrichment analysis were developed to take advantage of the GO structure to

reduce redundancy. GOstats [110] and elim approach [111] integrate GO graph

topology in enrichment analysis: child terms (i.e. leaf nodes) are tested first, then

parent nodes are modified in order to not include the genes belonging to their

enriched children. As gene sets collections get larger and more complex, integra-

tion methods experience longer lists of results and increased redundancy between

sets, thus new approaches able to manage biological information on a global scale

are required.
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4.2 GO based classification method

The search for predictive biomarkers from high-throughput data is hampered

by heterogeneity of diseases which strongly affect the interpretability of results,

however a robust approach for the identification of biomarker lists has not as

much to force the reproducibility of a gene list, but rather to select coherently

the underlying biological pathways or processes which are altered by the disease.

The semantic organization of GO database can be exploited to build structured

feature sets constraining the learning process, so to select gene sets sharing simi-

lar biological processes or molecular functions. In this way, molecular signatures

are represented by lists of biological functions compromised by the disease in-

stead of a list of independent or partially correlated biomarkers, thus increasing

the interpretability of the results of classification and feature selection analyses.

However, when a gene set approach is adopted to performed a knowledge-based

classification, a stable representation of biological functions is necessary to obtain

an efficient characterization of the disease alterations. GO is a controlled vocab-

ulary where genes annotated with a specific node are also annotated with every

ancestor of that node, thus introducing high redundancy of the information.

Starting from the approach proposed in [32], the proposed method builds a clas-

sifier for each gene set annotated to a GO term and controls the redundancy of

information characterizing inner nodes by using an elimination strategy proposed

in [111], in order to improve class prediction and increase the biological inter-

pretability of the results by selecting stable biological processes and molecular

functions characterized by a high information content. The method exploits the

direct acyclic graph of the Gene Ontology to define different sets of genes sharing

the same annotation. For each gene set, classification analysis and feature selec-

tion are based on ℓ1ℓ2 regularization approach which will be presented in detail in

the next section, using a double optimization schema described in [112]. Starting

from this classifier, the method addresses the redundancy problem affecting GO

annotation using the elim strategy. This approach investigates the nodes in the

GO graph bottom-up. It starts processing the nodes from the highest level nodes,

i.e. the farthest from the root, which are the most specific, and then iteratively

moves to nodes of a lower level. Since nodes from the same level share no edge,

they can be investigated independently. The bottom-up strategy assures that for

a currently investigated node all children have been scored. The level attributed

to each node is defined considering the maximum path length from the root node.

When a node is processed, the classifier is applied on data only considering the
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features representing the genes which are annotate to the GO term representing

that node. Classification performance is measured in terms of Matthews Correla-

tion Coefficient (MCC, section 2.6). If the MCC exceeds a fixed threshold, then

the genes selected by the ℓ1ℓ2 approach are removed from the annotations of all

the ancestors of that node. In this way, the method both accounts for the re-

dundancy of GO annotations in the ontology and preserves the specificity of the

biological information associated to the selected genes, because it promotes gene

selection on the most specific GO nodes in the graph. The algorithm terminates

when the root node is analyzed. At the end, the method provides a list of the

selected GO terms, which could be ranked according to the MCC obtained in the

test set applied to each node.

To each GO term, a classification model, specific for the genes selected by the

ℓ1ℓ2 classifier, is provided. In order to classify new subjects, the method uses the

predictive models obtained on selected gene sets to build a multiple classifier,

adopting a majority vote strategy to assembling results. In detail, for each node

i the ℓ1ℓ2 classifier provides the estimated weight vector βi, indicative of the pre-

dictive power of each feature. Thus, the prediction of new subjects performed by

the model built on the node i, ŷi, can be obtained as ŷi = βi × Di, where Di

represents the dataset restricted to the genes annotated to the node i. Since the

ℓ1ℓ2 regularization approach allows zero-values in the weight vector βi performing

feature selection, the prediction is based only on the most discriminating genes

selected by the ℓ1ℓ2 model. Note that, considering the subject j, −1 ≤ ŷi ≤ 1,

the absolute value of ŷi(j) can be interpreted as an indicator of the reliability of

prediction result. The mean prediction ymean obtained over the set of the selected

GO nodes is then obtained by:

ymean =
1

Ns

Ns
∑

i=1

yi (4.1)

with Ns indicating the number of selected GO terms. The final prediction rule is

defined by the following formulation:

y =







1 if ymean > 0,

−1 if ymean < 0.
(4.2)

The final output of the algorithm can be summarized in the following results:

• the list of selected GO terms, ranked according to MCC values;

• the multiple classifier based on the classification models generated by the

gene set annotated to the selected GO terms.
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4.3 ℓ1ℓ2 regularization approach

Considering a binary classification problem on n×p (p >> n) gene expression

data matrix X, for each observation i characterized by its gene expression profile

xi=(xi1,...,xip), a linear classification method can predict the corresponding class

label ŷi using the following linear combination of the elements of xi:

ŷi = β0 +
N
∑

j=1

xijβi = x̄T
i · β̄ (4.3)

This is the model of a single output ŷi, but in general y is a vector.

A model fitting procedure produces the vector β̂=(β̂0,...,β̂p) which represents the

unknown weight coefficients assigned to each gene. A first simple but powerful

approach for class prediction is the linear model fit by ordinary least squares

(OLS), which estimates β̂ by minimizing the residual sum of squares:

β̂ = argminβ|y −Xβ|22 (4.4)

However, the high number of features, which makes the system hugely under-

determined, and the redundancy of the feature set, which is common in high-

dimensional problems, require methods able to deal with collinearities responsible

for ill-conditioning. A classical way to solve these problems is provided by regu-

larization methods. In these methods, feature selection and classifier construction

are performed simultaneously by computing β̂, estimate of β that minimizes a

penalized objective function, allowing components of estimated β which are equal

to zero. Feature selection is thus achieved, since only variables with nonzero co-

efficients will be used in the classifier.

Specifically, β̂ is defined as:

β̂ = argminβ {m(β;D) + γ × pen(β)} (4.5)

where D represents the dataset consisting of (x1,y1),...,(xn,yn) and m is referred

to as the “classification objective function”, which in the following is considered

as the same used by the ordinary least squares approach (|y−Xβ|22).
The penalty pen(β) controls the complexity of the model. With the penalty func-

tion and properly chosen γ, some components of β̂ are exactly zero. This leads

to sparse classifiers and feature selection.

The tuning parameter γ >0 balances the goodness-of-fit and complexity of the

model. When γ →0, the model has better goodness-of-fit. However, since the
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classifier is too complex, it may have unsatisfactory prediction and be less inter-

pretable. When γ → ∞, the classifier has fewer input variables in it. The case

of γ=∞ corresponds to the simplest classifier where no input variable is used for

classification.

There are different types of penalty functions. One of the best known strategies

consists in adding a quadratic penalty, namely the ℓ2 norm of the coefficient vector

(|β|22 =
∑

j |βj|2), to the loss function, i.e. to find the minimizer of the following

penalized least squares objective function:

φridge(β) =
[

|y−Xβ|22 + ǫ |β|22
]

(4.6)

where ǫ represent the regularization parameter γ. This estimate is known as the

ridge regression [113, 114].

Since the objective function is strictly convex, it admits a unique minimizer given

by

βridge = (XTX + ǫI)−1XTy (4.7)

where I represents the (p× p) identity matrix.

Linear regularization methods select the relevant (stable) components of the solu-

tion and discard the others only on the basis of spectral properties of the matrix

XTX, independently of the data or response vector y. The error level and therefore

the output y is taken into account only according to the choice of the regular-

ization parameter ǫ. However, since the eigenvectors are linear combinations of

all the components of β, such methods are unable to perform variable selection,

since all the weight coefficients are non-zero. This drawback can be overcome

using thresholding or nonlinear shrinkage. A simple instance of a nonlinear reg-

ularization method is obtained when replacing in the ridge objective function by

the ℓ1-norm of the vector of the regression coefficients: |β|1 =
∑p

j=1 |βj|. This
method is called Lasso regression (Least Absolute Shrinkage and Selection Op-

erator) [115]. The minimization of the resulting objective function can be defined

as:

φLasso(β) =
[

|y−Xβ|22 + τ |β|1
]

(4.8)

with τ as regularization parameter. Such formulation increases the penalty on

small coefficients (those for which |β|j <1) and decreases the penalty on large co-

efficients (those for which |β|j >1). In this way, this approach promotes solutions

characterized by few large coefficients instead of many small ones. Moreover, the

ℓ1-penalty allows zero values instead of small ones, i.e. it favors sparse solutions.

However, the Lasso is in general not variable selection consistent in the sense that

small changes in the components of the input data X lead to a different feature



60 4. GENE ONTOLOGY BASED CLASSIFICATION

selection, typically with no appreciable change in the overall expected risk (or

accuracy in the performance) of the obtained model. Thus, when the inputs are

affected by noise or the number of examples is small compared to the number of

features, the selection of the components of the model vector β might be driven

by random fluctuations. Zou and Hastie [116] showed that when there are highly

correlated input variables, such as in gene expression data, Lasso approach tends

to select only one of the correlated variables. A penalty function able to effectively

deal with high correlations is the elastic net penalty, which uses both a lasso-

type and a ridge-type penalty in order to select groups of correlated variables.

The minimization problem is then:

φen(β) =
[

|y−Xβ|22 + τ |β|1 + ǫ |β|22
]

(4.9)

With the pure ℓ1 penalty, corresponding here to the case ǫ=0, in the case of cor-

related features the Lasso estimator can produce very different solutions, either

by selecting one of them with a great weight or a few or else picking them all.

The Lasso objective function is perfectly indifferent to the way the appropriate

weight is distributed among those correlated features since all situations yielding

the same value for the ℓ1-norm are perfectly equivalent. On the other hand, the

ℓ2 penalty forces democracy in such cases since the ℓ2-norm of the equal-weight

configuration is smaller than that of all other configurations. However, the pure ℓ2

penalty (τ = 0) does not allow to perform variable selection The advantage of the

combination of the two penalties is to both select variables and, among groups of

correlated variables, to force democracy [15]. Empirical evidence indicates that

the formulation described in Equation 4.9 produces stable solutions and exhibits

an interesting grouping effect by selecting correlated features due to the pres-

ence of the ℓ2-norm term, but suffers from the solution bias due to the shrinkage

phenomenon induced by the ℓ1-norm term). Moreover, good generalization per-

formances are reported only for large values of the ǫ parameter, thus obtaining

solutions very similar to those obtained by the ridge regression approach. In order

to contrast bias and enhance the ability of ℓ1-norm of promoting sparse solutions,

De Mol et al. [112] proposed an approach which produces gene signatures able to

effectively address prediction problems from high-throughput data like DNA mi-

croarray. The method learns from the available data a minimal set of genes whose

expressions are best suited to accurately predict the biological parameter related

to the problem at hand. By selecting the model through the combination of two

optimization schemes, elastic net and regularized least squares. In particular, the

first optimization procedure erforms gene selection by minimizing Equation 4.9
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for a small value of the ℓ2-norm parameter ǫ, whereas the second optimization is

a regularized least squares (RLS) and the minimization problem is:

φRLS(β) =

[

∣

∣

∣
y− X̃β̃

∣

∣

∣

2

2
+ λ

∣

∣

∣
β̃
∣

∣

∣

2

2

]

(4.10)

where β̃ and X̃ represent respectively the weights vector β and the input matrix

X, restricted to the genes selected by the first procedure. In this way, the method

leads to a model which, unlike the elastic net alone, is characterized by both

sparsity and low bias.

4.4 Classification schema and implementation

In the regularization step, the parameter ǫ (which controls the correlation

among the features by the ℓ2 norm) is a priori fixed equal to 10, allowing a high

level of correlation among the selected features. The parameters for the feature

selection τ (ℓ1 norm) and λ, used in the optimization algorithm described in [112]

to stabilize prediction results, are estimated on a varying geometric range of val-

ues opportunely chosen by the algorithm.

Different classification strategies were adopted in the learning process for each

GO node. In a first preliminary work [117], ℓ1ℓ2 classification and feature selection

were performed using a 5-fold cross validation strategy for parameter estimation,

using an external test set for validation phase. In order to increase classification

performance and to provide a more robust selection of biological functions, a

bootstrap approach was also tested, using a resampling schema with B=100 ex-

ternal training/test splits with 5-fold cross-validation as internal resampling for

parameter estimation. Final feature selection was performed by selecting those

features which present non-zero weights in at least 60% of bootstrap samples. In

order to provide a single classifier for each GO node, the parameter λ, used to

calculate the weights β for the prediction of new subjects used in the regularized

least squares step, was set as the median value of the its optimized estimations

over the B samples.

The algorithm was implemented in Python language, using the library l1l2py

(http://pypi.python.org/pypi/L1L2Py) for the classification method.

4.5 Results

In the following section, both results obtained in the preliminary analysis [117]

and using the bootstrap approach are shown, in terms of both prediction accuracy
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and interpretability through semantic similarity of selected GO terms. The two

GO categories Biological Process (GOBP) and Molecular Function (GOMF) were

used to define the gene sets.

4.5.1 Data

To better appreciate the various facets of the proposed approach, the method

was applied on three real microarray datasets monitoring breast cancer patients

with positive and negative estrogen receptor status were used (Table 4.1). Pre-

processing steps such as background subtraction, probe cell normalization and

expression level calculations, were performed using quantile normalization and

Robust Microarray Analysis (RMA) software [84].

Datasets Samples ER+ Samples ER- Samples

GSE2990 [80] 116 83 33

GSE3494 [81] 155 131 24

GSE7390 [82] 152 103 49

Table 4.1: Breast cancer datasets used for the classification.

4.5.2 Classification performance

The work described in [20] proved an improvement “on average”, comparing

classification performance between the standard approach of the ℓ1ℓ2 algorithm

and the GO-based strategy. For each dataset, ten random splits of the data into

training and test set were applied, with sample proportions 2/3 and 1/3 respec-

tively. The ten splits were considered independently. In this case, feature selection

for each node was directly performed by the ℓ1ℓ2 algorithm by the 5-fold cross-

validation phase, since the classification is based on a single external split and

the test set was used to calculate the MCC. Table 4.2 shows the average MCCs

and the standard deviations obtained from the test sets of the ten splits in the

three datasets. The MCCs of the ten splits obtained applying the new method

on Biological Process and Molecular Function categories are significantly higher

in both categories (p-value always lower than 0.021, Wilcoxon test) with respect

to the MCCs obtained with the standard approach. Figure 4.1 displays also the

distribution of MCC values over the ten replicates, highlighting the higher per-

formance of GO-based methods with respect to the standard approach. Starting

from these preliminary results, the bootstrap resampling schema described in
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Figure 4.1: Boxplot of MCC distribution in the three breast cancer

datasets. MCC values are displayed for the standard approach and the GO-

based approach on GOBP and GOMF categories.
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Standard GOBP GOMF

Method based based

GSE2990
Mean 0.445 0.685 0.679

SD 0.137 0.152 0.121

GSE3494
Mean 0.396 0.523 0.525

SD 0.069 0.076 0.088

GSE7390
Mean 0.661 0.798 0.796

SD 0.117 0.104 0.094

Table 4.2: Classification performance (MCC) over the ten random splits

of the three breast cancer datasets.

section 4.3 was performed. Since the MCC value obtained from the test set is

used to decide if a GO term can be selected by the algorithm, the best strategy

to assess classification results is to have an external validation test set which is

independent from the selection of GO nodes. However, the limited number of

samples in the ER- class in each dataset do not allow an independent blind test.

The three datasets represent three independent studies of the same clinical clas-

sification problem. Thus, a between dataset assessment was performed with the

new analysis. Table 4.3 shows the MCC values obtained on the six combination

of the three breast cancer dataset. On average, GO-based approach outperforms

the standard method when subjects from a different study (thus carried out in a

different laboratory with a different experimental protocol) are used.

Training Test Standard GOBP based GOMF based

GSE2990 GSE3494 -0.05 0.49 0.52

GSE2990 GSE7390 0.23 0.76 0.37

GSE3494 GSE2990 0.09 0.5 0.41

GSE3494 GSE7390 0.29 0.3 0.59

GSE7390 GSE2990 0.31 0.42 0.4

GSE7390 GSE3494 0.2 0.17 0.23

Table 4.3: Between-dataset classification performance (MCC).

4.5.3 Interpretability of GO lists

Beside classification performance, it is also interesting to assess the inter-

pretability of the obtained results. The work described in [117] pointed out the

stability of results obtained by the GO-based approach considering those GO
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terms with a frequency equal or higher than 0.8 in the ten splits. Many of the

selected GO terms were common to all the three breast cancer datasets, in par-

ticular the GO terms related to “response to oxidative stress”, “developmental

process” and “regulation of cell proliferation” in Biological Process and the GO

terms related to “oxidoreductase activity” and “metal ion binding” in Molec-

ular Function. However, it is useful to compare how the GO lists selected by

the proposed method are stable across the three datasets with respect to a sim-

ple enrichment approach. Three different analysis pipelines were compared: the

univariate method SAM with GO enrichment, the standard application of ℓ1ℓ2

classification method with GO enrichment and the new approach with the boot-

strap approach.

GSE2990 GSE2990 GSE3494

vs vs vs

GSE3494 GSE7390 GSE7390

SAM
GOBP 0.511 0.435 0.452

GOMF 0.306 0.439 0.392

Standard
GOBP 0.460 0.687 0.531

GOMF 0.316 0.576 0.331

GO-based
GOBP 0.512 0.690 0.786

GOMF 0.653 0.783 0.654

Table 4.4: Semantic similarity levels obtained by between dataset anal-

ysis.

In order to account for information redundancy as in the proposed method, the

elim approach proposed in [111] was chosen as enrichment method; the selec-

tion of enriched GO terms was performed by applying on resulting p-values the

same threshold used by the elim approach, which is fixed to 0.01 by default. For

each analysis pipeline, the three lists of selected GO terms obtained for the three

breast cancer datasets were compared using the semantic similarities described

in Chapter 5 (section 5.2.5), which allow to quantitatively assess the biological

coherence of selected biological processes and molecular functions. In particular,

given two lists of GO terms, the best-match average approach is used as a mea-

sure of similarity between the biological functions of the two GO lists (Equation

5.10). This method provides a score ranging between 0 and 1, where 1 means that

the two GO lists have exactly the same GO nodes.

Table 4.4 shows that, even if standard ℓ1ℓ2 approach improves performance ob-

tained by the SAM approach in two cases, GO-based approach is the best per-
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former, providing similarities ranging between 0.51 and 0.79 in the three pairwise

comparisons.

4.6 Discussion

When comparing classes of subjects belonging to different phenotypes us-

ing high-throughput technologies such as microarrays, biological annotation of

differential features can give immediate and intuitive information on the phe-

nomenon under investigation. However, organizing results in a structured way

is not straightforward. A new method was here presented to integrate biological

annotation into statistical class prediction analysis of microarray data. Differ-

ently with respect to the previous studies proposed in the literature, the method

exploits the GO graph on a global scale taking into account the redundancy of in-

formation characterizing GO annotations and generates a multiple classifier built

on the most predictive biological pathways selected by the algorithm. Compared

to standard classification analysis, the method significantly improves prediction

accuracy. The improvements highlighted by the presented results are probably

due to the limited number of genes, restricted to those belonging to a single

GO term, used to build each classifier: in this way, the curse of dimensionality

effect is reduced and a more robust statistical analysis is promoted. Moreover,

the method is able to organize results into subsets of genes both 1) highly corre-

lated (from the ℓ1ℓ2 classification approach) and 2) annotated to groups of GO

terms with similar meaning. The list of GO terms provided as output gives a

functional-based characterization of the disease in an easy-to-read way, selecting

more stable biological functions and allowing a better interpretability of results

when different datasets are analyzed. Instead of GO, it would also be possible to

use different functional groups, such as KEGG pathways or, for example, or to

annotate genes in different group depending on which are their known transcrip-

tion factors. Here, Gene Ontology was chosen because it allows annotating the

largest number of genes in comparison with other functional annotation criteria

and it represents the best hierarchical structured biological information currently

available. However, different information can be organized in a hierarchical way

and exploited by the proposed method to manage redundancy of information.



Chapter 5

Improving biomarker list stability

by integration of biological

knowledge in the learning process

5.1 Background

As observed in the previous chapters, there are two stability issues arising

in gene expression classification and analysis. First, since training data are often

scarce, predictive models obtained from different datasets can be extremely dif-

ferent. Secondly, since the number of features is generally very high, then features

can be combined in many different ways to give solutions able to explain the data,

allowing many possible sets of features equally good in terms of the accuracy.

The bootstrap approach, extensively assessed in the second chapter, has been

demonstrated helpful in addressing the first issue. However, this method does

not solve the problem of the instability due to the high number of features. In

fact, the crucial problem is that the classification task is under constrained. To

address this issue, additional information available on the relationships between

genes should be used to improve biomarkers lists stability, taking into account the

complex gene relationships, instead of considering genes as independent features.

In the previous chapter, Gene Ontology (GO) structure has been explored as pos-

sible prior information to be integrated in the learning process. Besides functional

annotations, other different types of biological background knowledge exist, de-

pending on the level of the system that is described. Some databases focus only

on the biological interactions among proteins, that define the processes within

a living cell and summarize these in usually manually curated pathway models,

67
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e.g. Human Protein Reference Database (HPRD) [47]. Another useful type of in-

formation can be extracted from different studies stored in repositories like Gene

Expression Omnbibus (GEO) [118] or ArrayExpress [119]. Correlations charac-

terizing possible interactions among genes can be obtained by meta-analysis on

a set of gene expression datasets. All these types of information were explored

recently by different studies proposing new approaches for incorporating external

biological knowledge into risk prediction models and several efforts in this direc-

tion were recently presented in the literature. In [29], pathway information was

incorporated into the biomarker discovery process using available protein-protein

interaction networks and considering subnetworks as features. Logistic regression

models were applied on expression profiles of two cohorts of breast cancer patients

and results were assessed in terms of both agreement between subnetworks identi-

fied in the two datasets and classification accuracy. Rapaport et al. [120] proposed

a formulation of support vector machines (SVM) to estimate a predictive model

by constraining the weights of connected genes to be similar, allowing to asso-

ciate positive or negative contributions to regions of the network. In [121, 122, 123]

other topological properties of KEGG pathways or networks reconstructed from

gene expression data were used to constrain the learning process. In particular,

[123] used regularization and integrated prior knowledge defining KEGG pathway

based penalty terms. All the above methods focused on prediction performance,

without considering in a systematic way the stability issue. Recent works started

considering the problem of biomarker list stability [64], but an overview of the

ability of different sources of biological knowledge to improve the reproducibility

of biomarkers lists is not yet available in the literature.

In this chapter a new method able to integrate prior knowledge in the learning pro-

cess is presented and, differently from previous works, the performance obtained

by different sources of prior knowledge are compared in terms of biomarker lists

stability. In particular, the method proposes a standardized way to incorporate

in a kernel function different types of biological knowledge like functional annota-

tions, protein-protein interactions, and expression correlation among genes, with

the only constraint that the information is codified by a similarity matrix. The

feature space is then transformed such that the more similar two features are,

the more closely they are mapped. Other studies describe different approaches

that integrate different datasets [124] by combining kernels [38] to improve clas-

sification performance and robustness of the results. Here, a different and maybe

complementary aspect of the problem is handled by incorporating different types

of knowledge, allowing the proposed method to be used with any kernel method.
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5.2 Integration of prior knowledge in the learn-

ing process

Expression data are given as very high dimensional vectors of measurements.

The high dimensionality makes the task of biomarkers discovering very hard. This

is especially due to the fact that the task is under constrained. A linear transfor-

mation of the examples (i.e. the biological samples) is performed in a way that

classifiers computed on transformed examples have a higher stability, hopefully

preserving the accuracy. This transformation is made by using prior biological in-

formation about genes in a way to maintain the structure of the problem. In the

following section, a linear classifier resembling the Bayes Point Machine [125]

and the embedding of knowledge data into feature spaces are introduced. Then,

the algorithm implementing the proposed approach is described.

In the following, the examples are denoted by {~x1, ..., ~xM}, i.e. the N dimensional

vectors of expression data obtained for M subjects, where N is the number of

genes. Each example has associated a binary label ym (m=1,...,M) having values

in -1,+1.

5.2.1 Linear classifier

Given a linearly separable classification task, there are in general infinitely

many linear classifiers (hyperplanes) that can correctly classify the examples.

This set is commonly called the version space. When the number of features is

very high, the version space tends to have a large volume. Formally, the version

space for linear classifiers can be defined as:

V = {~w|ym(~w · ~xm) > 0, for all m = 1, ...,M, ‖~w‖ = 1} (5.1)

Without any loss of generality, weights are considered with unitary norm. A very

popular algorithm to find a linear classifier which correctly separates the training

examples (i.e. an element of the version space) is the Perceptron algorithm [36]

which can be briefly described as in the following. Assuming the training vectors

x and w of size N , with w initially set to the zero vector, the algorithm runs in

epochs. On each epoch all the training examples xi, for i=1,..,M , are used in the

algorithm and the vector w is updated whenever the associated classifier makes

a mistake on xi, i.e. if (yisign(w · xi) ≤ 0) then w = w+ yixi. When the training

set is linearly separable, the perceptron is guaranteed to eventually converge to a

vector (hyperplane) which correctly separates the training data, i.e. the solution
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is an element of the version space.

It can be shown that other kernel based algorithms, like for example the hard

version of SVM (Section 2.3.2), also have solutions in the version space. In the

particular case of SVM this solution is in fact unique and is the one which maxi-

mizes the margin on the training set [34]. As shown in [125], the center of mass of

the version space, the so called Bayes point (Bp), would be the optimal choice,

even better than SVM (which can be considered an approximation of the Bp),

with nice theoretical properties in terms of its generalization ability. An algorithm

that approximates this optimal Bp solution is the so called Bayes point machine,

which considers the average of the solutions of several runs of the perceptron. A

variant of this algorithm was considered in the analyses.

When a feature space is characterized by high dimensionality and the features

are considered independent, i.e. there are many more variables (features) than

constraints (examples), the task is under constrained. This often implies that the

version space volume is large and can change extremely both in form and size,

depending on which examples are used for training. It is clear that this produces

instability. Section 5.2.3 will explain how to add available domain knowledge to

introduce structural constraints in the problem in order to improve robustness of

a linear classifier.

5.2.2 Feature ranking

The values wi of a linear classifier represent the degree of importance and

the bias that a given feature i provides to the decision. High positive (negative)

values tell us that such feature is important to classify an instance as positive

(negative). For this reason, the absolute value of the weights can also be used as

a criterion for feature ranking.

5.2.3 Similarity matrix integration

When prior knowledge is available providing information about gene-gene sim-

ilarity, this knowledge can be effectively used by mapping examples into a feature

space where linear solutions preserve these similarities.

Considering a linear transformation of the data via a matrix P , i.e. φ(x) = Px,

do exist desirable properties of φ which make the task of discriminating positive

versus negative examples simple enough in the target space? It is well known

that a measure of the goodness of an embedding is the ratio between the maxi-

mal norm R, the highest norm (or length) of any example xm, and the margin γ
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of the examples, namely G = (R/γ)2.

For separable data, the margin is defined as the distance between the optimal

separating hyperplane and the examples. In the case of perceptron classifiers,

the value G is also related to the number of mistakes the perceptron algorithm

makes to converge [36]. These considerations seem to indicate that the margin of

transformed examples should be large in order to get high performance. However,

when the expected margin (or equivalently, the expected volume of the version

space) is too large, it generally leads to unstable solutions for small datasets. A

solution, which represents a trade-off between these two (apparently) opposite

goals, is to choose an embedding of data where norm of vectors are as small as

possible but data remain linearly separable.

Specifically, the proposed strategy makes a linear embedding of data via a bi-

stochastic matrix. Here, stochastic matrices are considered because they have the

property to map vectors x into shorter ones (compression) and thus to make the

maximal norm R of target examples smaller (this is due to the fact that the eigen-

values of a stochastic matrix are all in [0,1]). As previously seen, this together

with large margin solutions guarantee a good performance of the embedding.

Let S be a symmetric similarity matrix with elements in [0,1] with 1’s in the

diagonal, the associated stochastic matrix P is obtained as in the following:

P = D−1(I + α(S − I)) (5.2)

where I is the identity matrix, D is a diagonal matrix with elements correspond-

ing to sums of elements in the rows/columns of (I+α(S−I)), and α¿0 is a tuning

parameter. Note that when α=0, then P=I and the feature space coincides with

the original space. The parameter α is fixed according to the best stability per-

formance, measured by the Canberra distance (Equation 2.15).

Given a perceptron-like solution in the target space, the weight vector can be

expressed as a weighted sum of the examples in feature space, namely ~w =
∑

βmφ(~xm), and the following holds:
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where c ≤ 0 is a constant which does not depend on indices i and j. Thus, the

matrix P can be seen as a coding matrix for genes. Specifically, the i-th gene

is codified by Pi. This result shows that when two genes have similar codes, the

difference in the weight vector cannot be too large. It is important to note that this

result does not imply that the same gene will have the same position in the ranking

generated by two independent experiments, i.e. that the same biomarkers will be

selected. The result above simply means that the relative position of two similar

genes will be similar in the two experiments. However, if the matrix P contains

reliable information, this should hopefully produce similar lists of biomarkers.

5.2.4 Classification algorithm and biomarker list genera-

tion

The proposed algorithm is based on the perceptron algorithm and resem-

bles the Bayes point machine. The implementation of the classification algorithm

is available at the link: http://www.math.unipd.it/~dasan/biomarkers.html.

The algorithm starts by mapping data using the matrix P . The transformed data

are standardized by subtracting from each gene expression value its mean across

the samples and dividing by its standard deviation. Then, data are randomly

split (70% training, 30% test) for a number T=1000 of times. For each one of

these splits a run of the perceptron algorithm is performed on its training data

(to increase randomization data are also shuffled before each perceptron epoch).

Thus, for each split t, a weight vector wt is obtained and normalized to unitary

norm. For each split, the accuracy at is also evaluated with respect to the test

partition. The final solution is obtained as the average of weight vectors wt, i.e.

W = AV E(wt).

Note that the expected accuracy of W on new unseen examples can also be es-

timated by using available data with the following method. Let Q be the design

matrix with entries Qtm=1 if the example xm is in the training partition of split

t, and 0 otherwise. For each example xm a predictor W (m) = AV E(wt) is built

using just the weights wt such that Qtm=0, i.e. taking the average of the weight

vectors for the construction of which the example xm was not used. Finally, the

classifier W (m) is tested against xm.

The accuracy observed by applying this method on all available data is an es-

timate of the expected accuracy of W . The list of biomarkers returned by the

algorithm is the list of genes ordered according to the absolute value of their

correspondent value in W .
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The method described above can also be seen as a leave-one-out estimate of the

accuracy. However, the same method can be easily adapted to a (k-fold) cross-

validation type of analysis. In this case, the overall procedure would change as in

the following:

• Split data in k sets X1,..,Xk;

• Train models W1,..,Wm, where Wt, t=1,..,k, is learned on the set X \ Xt,

with the method presented above, and get the accuracy ACC(Xt) on the

set Xt;

• Evaluate the overall accuracy as the average of these partial accuracy esti-

mates.

The advantage of using a k-fold type of analysis instead of the leave-one-out type

of analysis is its lower variance for small samples. The disadvantage is that the

method is more computational demanding. Some experiments were done using

both methods and no significant differences were observed in the obtained results.

5.2.5 Similarity matrices

Three different kinds of data were considered as prior knowledge to be inte-

grated in the feature ranking: 1) Gene Ontology functional annotations; 2) the

network of protein-protein interactions; 3) gene expression profiles from a collec-

tion of breast cancer studies. All these data were used to calculate different kinds

of similarity measures sij between pairs of features i and j based on:

• Semantic similarity of functional annotations;

• Topological similarity in the network of protein-protein interactions;

• Correlation between gene expression profiles.

The corresponding similarity matrix S for N variables is the symmetric N · N
matrix whose element sij refers to the similarity between the features i and j. In

the following, the methods for codifying the three types of prior knowledge into

the corresponding similarity matrices are described in details. Since Affymetrix

data were considered, indexes i and j refer to probesets. What follows can be

easily generalized to consider genes or proteins. Each subsection first describes

the biological information and then illustrates the metrics used to generate the

corresponding similarity matrix.
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Semantic similarity on GO annotations

Semantic similarity measures are used to evaluate the degree of relatedness be-

tween two features by assigning a metric based on the likeness of the semantic

content of their GO annotation, defined over the GO terms associated with the

genes. One early idea was to define the similarity as a function of the distance

between the two terms in the ontology graph [126] or the length of their com-

mon path from the root, i.e. the number of common parents [127]. However, pure

graph-based similarities suffer from the fact that the depth of a term within the

ontology is not necessarily indicative of its specificity [128]. This motivated the

formalization of the notion of specificity with the definition of the Information

Content (IC) of a given term:

IC(t) = −log
f(t)

f(root)
(5.4)

where f(t) is the number of occurences of the annotations associated to the term

c and its descendants, estimated as:

f(t) = |annot(t)|+
∑

c∈children(t)

f(c) (5.5)

The root term, which is implied by all terms, has an IC equal to 0. By contrast,

rare terms have a high IC. Thus, the intuition behind the use of the IC is that

the more probable a concept is, the less information it conveys.

Resnik [129] combined the notion of IC with the ontology structure to define the

similarity the similarity between two concepts t and u as the information content

of the most informative common ancestors, MICA(t, u). Formally:

SimResnik(t, u) = maxc∈MICA(t,u)IC(c) (5.6)

The more informative is the common ancestor, the greater the information shared

by the concepts, and consequently their similarity. An inconvenient aspect of this

measure is that it is not normalized. To overcome this, Lin normalized the measure

between 0 and 1 [130]:

SimLin(t, u) =
2× SimResnik(t, u)

IC(t) + IC(u)
(5.7)

A warning related to the use of this type of measure is that, as an effect of the

normalization, genes annotated to general terms tend to have higher similarities

on average than genes annotated to specific terms. This phenomenon, referred to

as the “shallow annotation problem”, has been discussed in the literature [131].
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Even though it may be affected by this problem, Lin’s formula has already been

proven to outperform other algorithms [132].

So far, semantic similarity measures for pairs of GO terms have been presented.

However, the analysis is at the level of genes or their products, each associated

with one or more terms. A first approach to calculate the semantic similarity score

between two genes g1 and g2 annotated in the database consists in considering

all possible pairs of GO terms associated with both genes and to use either the

maximum or the average similarity as measures for the two gene:

Simmax(g1, g2) = maxt∈GO1,u∈GO2
Sim(t, u) (5.8)

or

Simavg(g1, g2) = avgt∈GO1,u∈GO2
Sim(t, u) (5.9)

where GO1 and GO2 are the groups of GO terms associated to genes g1 and g2,

respectively.

However, both variants have flaws. The maximum approach can answer the ques-

tion of whether two gene products share a functional aspect, but is unsuitable

to assess their global similarity: it is indifferent to the number of functional as-

pects they share and to the number of functional aspects in which they differ,

since genes that differ in all but one functional aspect will still show a high sim-

ilarity under this measure. On the other hand, the average approach makes an

all-against-all comparison of the terms of two gene products and produces coun-

terintuitive results for gene products that have several distinct functional aspects,

because the average tend to be dominated by pairs of different GO terms: con-

sidering a gene with n GO terms, the number of pairs involving identical GO

terms scales linearly in n, but the number of pairs involving different terms scales

quadratically [133].

A good balance between the maximum and the average approach is the best-

match average (BMA) [134], which computes the average over the reciprocal best

matching pairs only. This measure was chosen in the analysis to build similarity

semantic matrices representing Gene Ontology information. Thus, using this ap-

proach in combination with Lin’s similarity measures between the GO terms, the

semantic similarity scores sij between two features i and j are calculated as:

sij =

1
GOi

∑

t∈GOi
maxu∈GOj

SimLin(t, u) +
1

GOj

∑

u∈GOj
maxt∈GOi

SimLin(u, t)

2
(5.10)

where GOi and GOj are the groups of GO terms t and u associated to the features

(e.g. probesets, genes) i and j, respectively.
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Here, Molecular Function and Biological Process GO annotations related to the

probesets were downloaded from NetAffx database (http://www.affymetrix.

com/analysis/index.affx), while the DAG structure was extracted from the

Bioconductor package GO.db.

Topological similarity on protein-protein interactions

Many recent studies have demonstrated the topology of network offers effec-

tive information for a better understanding of gene products molecular functions

[135, 136] and the underlying mechanisms describing how they interact. Different

useful topological metrics were proposed to measure similarity of a protein pair

in protein-protein interactions (PPIs).

Before describing the similarity measures which are most used in the literature,

some terms and notations are first introduced. The network of the interactions

is defined as graph G=(V ,E) consisting of a set of nodes V and a set of edges

E between them; pi and pj refer to proteins which are the nodes of the net-

work, whereas N(pi) and N(pj) are the neighbors of pi and pj respectively, and

N(pi, pj) = (N(pi) ∩N(pj)).

Normalized geodesic distance

The normalized geodesic distance (NG) between two proteins pi and pj is defined

as the normalized length of the shortest path, l(path(pi, pj)), from pi and pj, ob-

tained by dividing l(path(pi, pj)) by the maximum of the shortest paths between

all pairs of proteins. The similarity s(pi, pj) between two proteins is derived as 1

minus the normalized shortest path:

s(pi, pj) = 1− l(path(pi, pj))

maxpk,pr∈V (G) [l(path(pi, pj))]
(5.11)

Jaccard coefficient

Since proteins, which share more common neighbors are likely to share similar

biological characteristics, neighbors counting method has been mostly studied and

widely used in protein function prediction. One of this is the Jaccard coefficient

(JA) [137], which is defined as the ratio between the number of neighbors which

two proteins share (common neighbors) and the total number of proteins they

are connected to:

s(pi, pj) =
|N(pi, pj)|

|N(pi) ∪N(pj))|
(5.12)
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Functional similarity

Chua et al. [138] proposed a measure named Functional Similarity (FS) for mea-

suring the common neighborhood similarity of two proteins pi and pj in an inter-

action network G. For an un-weighted network (0/1 weights), this measure can

be defined as:

s(pi, pj) =
2|N(pi, pj)|

|N(pi)−N(pj)|+ 2 |N(pi, pj)|+ λij

× 2|N(pi, pj)|
|N(pj)−N(pi)|+ 2 |N(pi, pj)|+ λji

(5.13)

where

λij = max(0, navg − (|N(pi)−N(pj)|+ 2 |N(pi, pj)|)) (5.14)

navg is the average number of neighbors of each protein in the network. The pur-

pose of the λij factor is to penalize the score between proteins pairs where at

least one of the proteins has too few neighbors, since the score may not be very

reliable in such a case.

Essentially, FS separates the functional similarity of two proteins into two prob-

abilities that denote the conditional probabilities of pi and pj being functionally

related given the neighborhoods of N(pi) and N(pj), respectively. Each of these

conditional probabilities are computed as how similar the set of common neigh-

bors of pi and pj (N(pi, pj)) is to the two sets of individual neighbors N(pi) and

N(pj). The final FS score is obtained as a product of these probabilities, assuming

that they are independent. For the computation, FS assumes that a protein, i.e

p, is included in its direct neighborhood, i.e. N(p).

Probabilistic common neighborhood similarity

A probabilistic measure for the statistical significance (SC) of the common neigh-

borhood configuration of two proteins pi and pj has been recently proposed by

[139]. The measure is defined as the negative logarithm of the probability of pi

and pj having a certain number of common neighbors by random chance:

s(pi, pj) = −log10(prob(N, |N(pi)| , |N(pj)| , |N(pi, pj)|)) (5.15)

Here,N is the total number of proteins in the network, and prob(N ,|N(pi)|,|N(pj)|,
|N(pi, pj)|) is computed on the basis of the Hypergeometric distribution:

prob(N, |N(pi)| , |N(pj)| , |N(pi, pj)|) =
min(|N(pi)|,|N(pj)|)

∑

k=|N(pi,pj)|

(

|N(pi)|
k

)(

|N |−|N(pi)|
|N(pj)|−k

)

(

|N |
|N(pj)|

)

(5.16)
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Thus, the higher the probability (5.16), the higher the value of s(pi, pj) is.

Equations (5.11), (5.12), (5.13) and (5.15) are finally used to derive sij. Since dif-

ferent proteins can be associated to different probesets, the value of the similarity

score sij between probesets i or j was obtained by averaging the similarity scores

of the associated proteins:

sij =

1
Pi

∑

pi∈Pi
maxpj∈Pj

[s(pi, pj)] +
1
Pj

∑

pj∈Pj
maxpi∈Pi

[s(pj, pi)]

2
(5.17)

where Pi and Pj are the sets of proteins pi and pj annotated to the probesets i

and j, respectively.

Topological information on PPI was extracted from HPRD [47], which contains

manually curated scientific information pertaining to the biology of most human

proteins and is the database that includes most human protein-protein inter-

actions, as shown in [102]. The 22207 features in the considered datasets were

mapped into 9521 proteins using RefSeq identifiers; this resulted in 37080 inter-

actions.

Correlation based similarity

Gene expression profiles over the ten publicly available breast cancer microarray

studies (Table 5.1) were compared using similarity measures based on Pearson

correlation coefficient, Spearman rank correlation coefficient and Mutual Informa-

tion, which provide a general measure to analyze dependencies in gene expression

data [140, 141, 142].

Datasets Platform Samples

GSE2034 [143] HGU133A 286

GSE6532 [144] HGU133A / HGU133plus2 225

GSE11121 [145] HGU133A 200

GSE2990 [80] HGU133A 189

GSE1456 [146] HGU133A 159

GSE7390 [82] HGU133A 155

GSE5460 [147] HGU133plus2 127

GSE3494 [81] HGU133A 110

GSE5847 [148] HGU133A 95

GSE4922 [149] HGU133A 40

Table 5.1: Breast cancer data sets used for the co-expression matrix.
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Pearson correlation coefficient

The Pearson correlation coefficient (PE) is the most widely used measurement

of association between two vectors. Let x and y be the expression profiles of

two probe sets which are analyzed in terms of degree of association. For pairs

of quantities (xi,yi), i = 1, . . . ,m the correlation coefficient ρxy is given by the

formula:

ρxy =

∑m
i=1(xi − µx)(yi − µy)

(m− 1)σxσy

(5.18)

where µx, σx and µy, σy are sample means and standard deviations of x and y

over the m measurements. The Pearson correlation reflects the degree of linear

relationship between two profiles.

Spearman rank correlation coefficient

The Spearman rank correlation coefficient (SP) is a non-parametric measure of

association that summarizes nonlinear relationship between two numerical vari-

ables. The Spearman correlation coefficient is computed as:

ρxy =

∑m
i=1(Xi − µX)(Yi − µY )

√
∑m

i=1(Xi − µX)2
∑m

i=1(Yi − µY )2
(5.19)

where Xi, Yi denote the ranks of xi, yi, respectively and µX ,µY the corresponding

means. When there are no ties, the formula reduces to:

r = 1− 6
∑m

i=1 d
2
i

n(n2 − 1)
(5.20)

where di is the difference between the values of Xi and Yi.

Using both the Pearson and the Spearman correlation, the similarity sij between

the expression profiles x and y of two probesets i and j was defined as:

sij = |ρxy| (5.21)

Mutual Information

The Mutual Information (MI) provides a general measure for dependencies in the

data. It is a well known measure in information theory and it has been widely used

to analyze gene-expression data [140, 141, 142]. Formally, the mutual information

of two discrete random variables X and Y can be defined as:

I(X, Y ) =
∑

y∈Y

∑

x∈X

p(x, y)log

(

p(x, y)

p(x)p(y)

)

(5.22)

where p(x, y) is the joint probability distribution function of X and Y , and p(x)

and p(y) are the marginal probability distribution functions of X and Y , respec-

tively.
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To calculate MI, data were needed to be quantized on L intervals. There is no

optimal solution to choose L, since it depends on data normalization and on the

particular biological application [150]. As suggested in [151], heuristic lower/upper

bounds on the number of intervals were considered [152, 151]:MIlow=⌊1 + log2m⌋
and MIup=

√
m, where m is the number of expression values. L was set equal to

25. The score sij was set to the value I(X, Y ) obtained from the quantized ex-

pression profiles X and Y of two probesets i and j.

Breast cancer datasets reported in Table 5.1 were extracted from GEO, selecting

those with a medium to large sample size. Redundant subjects were removed. All

datasets were hybridized using Affymetrix U133 GenechipsTM (HG-U133A and

HGU133plus2) and were analyzed using A-MADMAN, an open source web appli-

cation, which allows the retrieval, annotation, organization and meta-analysis of

gene expression [153]. In particular, the software enables the integrative analysis

of data obtained from different Affymetrix platforms through meta-normalization.

Affymetrix chip definition files were used to annotate the arrays and gene expres-

sion intensity signal was normalized using RMA algorithm. The resulting gene

expression matrix collects the expression levels of 21921 probesets over 1586 bi-

ological samples.

5.3 Data and evaluation of the biomarker lists

The three real microarray datasets monitoring breast cancer patients with

positive and negative estrogen receptor status, described in the previous chapter

(Table 4.1), were chosen for the analyses. Results were evaluated in terms of both

stability of the biomarker lists obtained by the Canberra distance [7] and the

accuracy performed by the perceptron classifier.

The Canberra distance, described in section 2.6, is a weighted version of the Spear-

man’s footrule which considers the variations in lower portions of the lists less

relevant than those in the top. Its normalized version can be obtained by dividing

the distance in Equation 2.15 by its expected (average) value, approximated by

(log(4) − 1)p + log(4) − 2) for the complete lists. The normalized Canberra dis-

tance ranges between 0 (maximal stability) and 1.4 (maximal instability), with 1

in the case of randomly generated lists.

The average number of iterations needed by the perceptron in the algorithm is

also considered as a good indicator of the ratio between the maximal norm of

transformed vectors and the margin one can obtain in feature space. This value

is considered as a measure of how much difficult is the transformed task.
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Ranked features lists obtained using different similarity matrices were evaluated

both within datasets, i.e. comparing the 1000 different lists obtained using boot-

strap, and between datasets, i.e. comparing the global lists obtained by analyzing

datasets GSE2990, GSE3494 and GSE7390. For the within dataset comparison,

the Canberra distance was applied on the 1000 complete lists resulting from the

bootstrap resampling schema adopted by the classification algorithm. For the be-

tween dataset comparison, the Canberra distance was applied on the sublists of

length k, with k corresponding to the minimum Canberra distance within datasets

(average of the three values obtained for the three datasets). Finally, for the best

performing similarity matrices, the union of the sublists of length k obtained us-

ing the three datasets, where k ranges from 1 to the maximum number of features

(22207), was considered in order to quantify the possible lack of consistency of

the global lists.

5.4 Results

5.4.1 Within dataset assessment

Table 5.2 reports the average normalized Canberra distance and classification

accuracy for all the three breast cancer datasets and for all similarity matrices.

Results are reported for the cases where prior information is not used (α=0) and

when for each similarity matrix the value of α (Equation 5.2) which minimizes

the Canberra distance is used. For all the three datasets, all types of biological in-

formation are able to decrease the average normalized Canberra distance over the

biomarker lists with respect to the standard classification approach. In particular,

three types of prior knowledge are best performers in this task: Gene Ontology

Biological Process (GO BP), Gene Ontology Molecular Function (GO MF) and

protein-protein interactions codified by the normalized geodesic distance (PPI

NG). For these three types of biological knowledge, the improvement in list sta-

bility, which ranges between 26% and 37%, is achieved without a corresponding

loss in accuracy since this latter changes in a range between minus 2% to plus

3%.

Table 5.2 also reports the number of iterations needed by the classification algo-

rithm to reach convergence, averaged across the 1000 bootstrap splits. Compared

to other types of prior knowledge, the higher number of iterations are observed

with the correlation (PE and SP) and Mutual Information (MI) based matri-

ces, whereas PPI measures lead the classifier to reach convergence with a lower
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GSE2990 GSE3494 GSE7390

No prior 0.89 (95%) 0.93 (93%) 0.90 (98%)

7 10 6

GO BP 0.62 (93%) 0.63 (95%) 0.60 (96%)

15 21 13

GO MF 0.63 (93%) 0.68 (94%) 0.60 (97%)

17 24 15

PPI NG 0.57 (94%) 0.58 (96%) 0.53 (97%)

10 14 9

PPI JA 0.87 (95%) 0.91 (93%) 0.87 (97%)

7 11 7

PPI FS 0.88 (95%) 0.92 (95%) 0.88 (97%)

7 11 7

PPI SC 0.83 (95%) 0.86 (95%) 0.83 (96%)

8 13 8

PE 0.78 (95%) 0.89 (96%) 0.79 (96%)

49 56 37

SP 0.78 (95%) 0.89 (95%) 0.79 (95%)

48 56 38

MI 0.76 (91%) 0.80 (94%) 0.73 (94%)

130 207 131

Table 5.2: Classification performance within breast cancer datasets. Nor-

malized Canberra distance between feature lists obtained for datasets GSE2990,

GSE3494 and GSE7390, using the standard classification approach without prior

knowledge integration and different prior knowledge based similarity matrices:

Gene Ontology Biological Process (GO BP), Gene Ontology Molecular Function

(GO MF), protein-protein interactions codified by the normalized geodesic dis-

tance (PPI NG), the Jaccard coefficient (PPI JA), the functional similarity (PPI

FS), the probabilistic common neighborhood similarity (PPI SC), the Pearson

correlation (PE), the Spearman rank correlation (SP) and the Mutual Informa-

tion (MI). Predictive accuracy is indicated in brackets, whereas the number of

iterations obtained by the classifier is reported below the other scores.
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number of iterations, i.e. they improve class separability. However, except the

normalized geodesic distance, all the other protein-protein interaction measures

show the lowest gain in reproducibility.

5.4.2 Between dataset assessment

Table 5.3 reports the average Canberra distance obtained by comparing datasets

GSE2990 vs GSE3494, GSE2990 vs GSE7390, GSE3494 vs GSE7390, and the re-

sulting average Canberra distance together with the average classification accu-

racy across the three datasets for k corresponding to the minimum Canberra dis-

tance within datasets (average of the three values obtained for the three datasets).

GO BP, GO MF and PPI NG are confirmed as the best performing kinds of prior

knowledge. In addition, MI based similarity matrix shows performance compara-

ble to the former similarity matrices. In order to better assess the improvement

highlighted in these four similarity matrices, the size of the union sets of the

biomarker lists of length k over all the three datasets is considered (Figure 5.1).

The more two lists are similar, i.e. containing the same features, the more the

points of the curve are drawn near the diagonal.

Figure 5.1: Feature list stability. Number of features in the union lists of length

k, obtained by the standard classifier (No prior) and the integration of the best

performing biological information: GO Biological Process (GO BP), GO Molec-

ular Function (GO MF), protein-protein interactions codified by the normalized

geodesic distance (PPI NG) and mutual information for gene expression data

(MI).
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k GSE2990 GSE3494 GSE7390 Mean Mean

vs vs vs Canberra Accuracy

GSE3494 GSE7390 GSE7390 Distance

No prior 4182 0.95 0.94 0.94 0.94 95%

GO BP 4268 0.63 0.65 0.65 0.65 95%

GO MF 3456 0.62 0.62 0.63 0.63 94%

PPI NG 8684 0.62 0.61 0.62 0.62 96%

PPI JA 22207 0.96 0.96 0.97 0.97 95%

PPI FS 22207 0.96 0.97 0.97 0.97 96%

PPI SC 22207 0.91 0.92 0.93 0.93 95%

PE 128 0.7 0.72 0.74 0.74 96%

SP 163 0.68 0.71 0.62 0.62 95%

MI 310 0.62 0.65 0.64 0.64 93%

Table 5.3: Canberra distance and accuracy across breast cancer datasets.

Pair-wise Canberra distance between the three breast cancer dataset at different

number of features selected according to the minimum Canberra distance within

datasets, using the standard classification approach without prior knowledge inte-

gration and different prior knowledge based similarity matrices. The correspond-

ing mean value and the mean accuracy obtained across the three datasets are

also reported.
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Compared with the standard approach, the union lists obtained from GO BP,

GO MF and PPI NG are able to improve the feature ranking, but no meaningful

improvements are evident for the similarity matrix obtained using MI similar-

ity matrix. In particular, the two GO BP and GO MF based matrices provide

the most stable union lists for k around 5000 features, whereas PPI NG matrix

achieves the best performance for k around 9000 features.

5.5 Discussion

In this chapter, the subject of the investigation has been the effect of us-

ing information from the biological domain into a learning process with the aim

of improving its general performance with respect to the stability of predicted

biomarkers. State-of-the-art machine learning methods give solutions with em-

pirically good performance in terms of accuracy. However, if an accurate system

tends to select the same biomarkers in different independent experiments, then

it is more likely that the selected biomarkers are the right ones.

Gene expression data and biological prior knowledge were integrated to enhance

biomarker lists stability in a classification approach. In particular, the presented

analyses focused on the effect of incorporating different types of biological prior

knowledge, like functional annotations, protein-protein interactions and expres-

sion correlation among genes in the learning process by evaluating biomarker list

stability and classification accuracy.

Integrating prior knowledge is not an easy task since different types of informa-

tion are represented in various data formats and stored in heterogeneous data

structures. To do that, biological information were codified into specific pair-wise

similarity measures, chosen accordingly to the type of biological information used:

semantic similarities for the annotations on GO, topology-based similarity mea-

sures for PPI and correlation for gene expression data. Feature space has then

been mapped into a new space in which the more similar two features are, the

more closely they are mapped, since when some features are strongly correlated

to each other, for example because they belong to the same biological process,

then they likely have similar importance and are equally relevant for the task at

hand. In other words, the weight vector obtained for a classification task should

have similar values on indices relative to similar genes. Following this idea, it is

possible to bias the solutions to fulfill this property. Experimental results seem

to support this intuition: the proposed approach improves list stability, preserv-

ing high classification accuracy. In particular, three similarity matrices, based on
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GO BP, GO MF annotations and PPI NG, are the best performers in improving

list stability. The lowest gain in biomarkers list reproducibility is observed with

the other matrices based on protein-protein interaction networks, although they

reach convergence of the algorithm with the lower number of iterations, i.e. they

improve class separability. In particular, the MI based matrix shows performance

comparable to GO BP, GO MF and PPI NG based matrices when list stability

is assessed between datasets.

The technique proposed in this chapter builds a kernel matrix from a similar-

ity matrix, thus it can be used together with any kernel method (see [34] and

references therein for a survey). In particular, it provides a standardized way to

incorporate different types of biological knowledge in the kernel, with the only

constraint that the information is codified by a similarity matrix.

Obtained results provide a starting point to combine similarity matrices in order

to obtain even more stable biomarkers, using for example the approach proposed

by Bie et al. [38] to combine kernels, believing that the power and potential of the

proposed strategy will increase as the coverage and quality of biological databases

improve.



Chapter 6

Revealing heterogeneities and

inconsistencies in protein

functional annotations

6.1 Background

As seen in the third chapter, each annotation in the GO has a source and

a database entry attributed to it. The source can be a literature reference, a

database reference or a computational evidence. All GO annotations include an

evidence code to record the type of information on which the annotation is based.

The most reliable annotations are those inferred directly from experimental evi-

dence; such annotations are also important to seed the ontology so that biological

functions on genes and gene products can be inferred by computational methods

[154]. Even if annotations derived from direct experimental evidence are generally

thought to be of higher quality than those from computational or indirect evi-

dence, this aspect has not been yet shown robustly in the literature. As illustrated

in Figure 6.1, about 99% of GO annotations are computationally derived and have

not been manually curated: these are associated with the evidence code “Inferred

from Electronic Annotations” (IEA). Most of these annotations come from the

Gene Ontology Annotation (GOA) project at the European Bioinformatics In-

stitute [155]. The guiding idea behind computational function annotation is the

assumption that gene products with similar sequences or structures are likely to

be evolutionary related and might still have similar functional roles. Electroni-

cally inferred annotations drastically extend the coverage, but at the expense of

introducing a lot of noise in terms of false positive annotations and the presence

87
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Figure 6.1: The distribution of evidence codes among annotations in the

Gene Ontology on March 2011

of more generic annotations. This aspect characterizing GO annotation is recog-

nized by the scientific community and the mistrust towards IEA annotations is

backed by studies suggesting that annotations from available databases should be

used with caution [156]. On the other hand, IEA annotations are able to provide

a first insight of biological functions related to gene products and allow to extend

useful analysis over some parts of the unannotated genome and proteome. How-

ever, few works considered the problem of whether or not ignoring or weighting

IEA annotations in typical GO-based analysis like semantic similarity [157, 158],

and a direct quantification of the extent of the problem still lack in the literature.

In order to investigate this issue and to correctly interpret the accuracy and

consistency of the available annotations, different approaches were recently de-

veloped. Buza et al. [159] provided a score of GO annotation quality based on

the breadth and depth of annotations and their evidence codes, and applied it

to retrieve statistics for model eukaryotes over the time. Khatri et al. [160] pro-

posed a method able to discover potential inconsistencies in existing annotations

and to extract implicit relationships between genes and functions in GO by the

construction of a gene-function matrix. This approach, based on singular value de-

composition, identifies hidden semantic links, thus providing a global assessment

of the GO annotations. Considering a specific group of annotations, instead of

an overall assessment, the work proposed in [161] focused on sets of functionally-

related proteins and described a method that scores the degree of homogeneity of

a protein set using protein-centric semantic similarity measures. However, the as-

sessment of biological coherence of annotations often requires a detailed analysis
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on which types of heterogeneities occur in the annotations, highlighting possible

inconsistencies of the protein annotations in a structured and easy-to-read way.

Thus, a method able both to investigate heterogeneities on GO annotations for

specific user-defined pools of proteins and to address the re-annotation of protein

functions is still lacking.

6.2 Data

Protein sequences were collected from UniProt Knowledgebase [162]. Only

proteins with sequence length between 300 and 450 amino acids were extracted

and then clustered in order to define groups of proteins characterized by high se-

quence similarity levels. In all, 598734 protein sequences were considered. Cluster-

ing analysis on protein sequences was performed by the algorithm CD-HIT [163],

considering increasing percentage of sequence similarity: 100%, 90%, 80%, 60%,

40%. Since clustering large databases of sequences requires very time-consuming

all-by-all comparisons, CD-HIT avoids many pairwise sequence alignments with

a short word filter, based on the number of expected dipeptides, tripeptides

and etc. which are shared between two proteins with known sequence length.

Gene Ontology directed acyclic graph (DAG) structure was retrieved from the

Gene Ontology Consortium [31] website (http://www.geneontology.org). The

gene ontology.obo file version 1.2 was downloaded on March 2011. Protein-GO an-

notations for eukaryota were derived from the Gene Ontology Annotation (GOA)

database [155] (http://www.ebi.ac.uk/GOA/). The GOA project of the Euro-

pean Bioinformatics Institute provides both electronic and manual annotations

to the UniProt Knowledgebase using the standardized vocabulary of the Gene

Ontology (GO). The association file (gene association.goa uniprot) was down-

loaded from GOA on March 2011.

6.3 Global assessment of heterogeneities of the

functional annotations

A first analysis of the global level of heterogeneity in GO annotations was

performed, in order to quantify to what extent heterogeneities and possible in-

consistencies are present in the GO database, evaluating semantic similarities on

annotations of groups of proteins sharing similar functions. Secondly, a quanti-

tative assessment of some GO properties (e.g. evidence code) related to hetero-
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geneous annotations was performed, in order to give an overview of the current

status of GO annotations which is useful to correctly interpret this kind of bio-

logical information in other bioinformatics applications, like data integration. In

particular, the presented data analysis was carried out according to the following

steps:

1. For each pool of proteins, grouped according to their sequence similarity,

semantic similarities both between pairs of GO terms and between pairs of

proteins were computed.

2. Quality Threshold clustering [164], based on semantic similarities between

proteins, was applied to each group of proteins to estimate the amount of

groups characterized by possible inconsistencies in the annotations, thus

globally assessing the heterogeneities in the GOA database.

3. Heterogeneous annotations were investigated in terms of distribution of

the related evidence codes and specificity, i.e. Information Content, of the

related terms.

6.3.1 Semantic similarities

An information-theoretic approach was used to analyze the semantic similar-

ity between GO terms, based on the concept of Information Content, already

described in section 5.2.5. In order to semantically compare two GO terms t1 and

t2, Lin’s similarity measure [130] was used (Equation 5.7). Lin’s method generates

normalized similarity values in the range [0,1] and reflects how close the terms

are to their common ancestor rather than just how specific that ancestor is. If

proteins are well annotated near the root of the ontology, semantic similarities

between the related GO terms are very high in order to avoid false positive het-

erogeneities due to shallow annotations.

To calculate the semantic similarity score between two proteins, pairwise GO

term similarities were computed and then combined using the best-match aver-

age (BMA) approach [134]. Referring to Equation 5.10 and considering a pair of

proteins p1 and p2, this method computes composite averages where each term

of the first protein p1 is compared only with the most similar term of the sec-

ond protein p2 and vice-versa. The BMA approach is able to robustly assess the

global similarity between two proteins also when they are annotated to a different

number of GO terms, since it considers both the GO terms they share and those

where the proteins differ, but only the most similar ones are matched [165].
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6.3.2 Quality threshold clustering

Quality Threshold (QT) clustering [164], based on semantic similarities among

GOA annotations (Equation 5.10), was performed on each group of sequence-

similar proteins. The QT clustering groups only proteins whose pairwise semantic

similarities exceed a given user-defined quality threshold. The advantages of this

method are that firstly it does not require any a priori specification on the number

of clusters and secondly it does not force proteins that are dissimilar to others to

be included in any cluster, thus highlighting possible outliers.

The algorithm was applied considering a grid of similarity thresholds (0.1, 0.15,

0.2,..., 0.9). For a given threshold, each group of proteins was classified according

to the QT clustering output into four cases, summarized in the following:

• One Cluster (OC): proteins are all grouped into a single semantically ho-

mogeneous cluster;

• One Cluster plus Outliers (OC+O): part of the proteins are grouped into

one semantic cluster, with possible protein outliers, i.e. proteins which are

significantly dissimilar to all the others;

• More Clusters plus Outliers (MC+O): proteins are grouped into more than

one semantic cluster, with possible protein outliers;

• Only Outliers (OO): proteins show pairwise semantic similarities all below

the quality threshold; therefore, no clusters are identified and all proteins

are considered as outliers.

Groups of proteins classified as OC+O, MC+O or OO were considered as non

homogeneous with respect to GOA annotations.

6.3.3 Investigating GO properties on heterogeneous an-

notations

To further investigate heterogeneities in the annotation, the groups of proteins

annotated as OC+O, MC+O and OO were considered separately:

• the proteins in OC+O or MC+O that are somehow clustered with other

proteins, i.e. proteins that are not outliers;

• all the proteins in OO and the proteins in OC+O, MC+O that are outliers.
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Considering these two groups, heterogeneties on GO annotations, which were

identified by the clustering algorithm, were analyzed, comparing these two groups

of proteins in terms of both type (i.e. the evidence code) and specificity (i.e. the

Information Content) of the related GO annotations. In particular, percentages of

experimental, computational and author statement annotations were calculated

and the distributions of IC values of the corresponding GO terms were compared,

focusing on the comparison between the first two types of evidence codes.

6.4 Functional map of heterogeneities for spe-

cific groups of proteins

An algorithm was developed to efficiently organize information on GO annota-

tions and to highlight in an intuitive and easily interpretable way unexpected and

hardly traceable heterogeneities in specific groups of sequence-similar proteins, or

in groups of proteins which are clustered according to a different criterion. The al-

gorithm performs two agglomerative hierarchical cluster analysis: the first applied

to the GO terms and the second to the annotated proteins using the similarity

measures based on Lin’s formula and BMA approach, respectively. For each pro-

tein, only the most specific GO terms, i.e. those terms which are not ancestors

of terms where the protein is annotated, were used in the computation of the

semantic similarities. To apply the clustering algorithm, one minus the similarity

value was considered as the distance measure. Average linkage method was used

to update the similarity matrix. Results are organized into a functional map (see

Figure 6.2) coding three different types of information represented by:

• A matrix with as many columns as the number of proteins analyzed and

as many rows as the number of GO terms, where each cell (i, j) is coloured

if the protein j is annotated with the GO term i, with a colour gradation

representing the IC (Equation 5.4) of GO term i;

• A dendrogram for the protein-centric clustering;

• A dendrogram for the GO-centric clustering.

Although clustering analysis accounts only for the most specific GO terms of

each protein, the functional map displays with coloured cells all GO annotations

which are present in the database, thus preserving the original annotations. If the

functional map is fully-coloured, then all the proteins share the same GO terms
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Figure 6.2: Functional map for a group of proteins. A colour-coded matrix

is displayed, with gradations of the coloured cells ranging between light yellow to

bright red for increasing IC values. Results of the two hierarchical cluster analysis

are represented by the two dendrograms, displayed on the left side (GO-centric)

and on the top (protein-centric) of the matrix.

and therefore they are homogeneous with respect to GO annotations. On the other

hand, the presence of one or more blank cells highlights possible heterogeneites

of the GO annotations.

6.5 Results

6.5.1 Global analysis on GOA database

In Figure 6.3 percentages of non homogeneous groups of proteins at differ-

ent semantic thresholds are displayed for five levels of sequence similarity (100%,

90%, 80%, 60%, 40%) in both Biological Process and Molecular Function in the

GOA 2011. Obviously, higher percentages of non homogeneous protein groups

are observed for higher semantic thresholds and for lower sequence similarity.

Considering a semantic similarity threshold equal to 0.7, the percentage of non
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Figure 6.3: Percentages of non homogeneous groups of proteins at differ-

ent semantic thresholds for the two GO categories Biological Process

and Molecular Function. Five levels of protein sequence similarity are consid-

ered: 100% (“dashed with two dots” lines), 90% (dash dotted lines), 80% (dotted

lines), 60% (dashed lines) and 40% (solid lines).

homogeneous groups of proteins ranges between 5.7% (1071 on 18928 groups) and

13.6% (3234 on 23847 groups) for Biological Process and between 4.5% (894 on

20001 groups) and 11.4% (3250 on 28608 groups) for Molecular Function. Tables

6.1 and 6.2 report how groups of proteins are partitioned into the four cases OC,

OC+O, MC+O and OO (section 6.3.2) at a fixed a semantic threshold equal to

0.7 in the two GO categories. Obviously, the groups of proteins classified as OC

decreases with the sequence similarity threshold, and the sum of non homoge-

neously annotated groups (OC+O, MC+O and OO) increases. Interestingly, the

protein groups classified as OC+O or MC+O increase in number, whereas those

classified as OO remain approximately constant in both Biological Process and

Molecular Function.
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Sequence Analyzed OC OC+O MC+O OO

similarity groups

100 18928 17857 (94.3%) 346 (1.8%) 29 (0.2%) 696 (3.7%)

90 39240 36320 (92.6%) 1506 (3.8%) 543 (1.4%) 871 (2.2%)

80 37165 34067 (91.7%) 1556 (4.2%) 735 (2.0%) 807 (2.2%)

60 30471 27186 (89.2%) 1603 (5.3%) 1018 (3.3%) 664 (2.2%)

40 23847 20613 (86.4%) 1532 (6.4%) 1176 (4.9%) 526 (2.2%)

Table 6.1: Results of semantic clustering on Biological Process annota-

tions. Number of groups of proteins analyzed at different sequence similarity

level and corresponding number (and percentage) of groups classified as OC,

OC+O, MC+O and OO, respectively, for Biological Process and semantic simi-

larity threshold equal to 0.7.

Sequence Analyzed OC OC+O MC+O OO

similarity groups

100 20001 19107 (95.5%) 256 (1.3%) 17 (0.1%) 621 (3.1%)

90 44220 41698 (94.3%) 1302 (2.9%) 303 (0.7%) 917 (2.1%)

80 42911 39954 (93.1%) 1514 (3.5%) 575 (1.3%) 868 (2.0%)

60 35965 32657 (90.8%) 1664 (4.6%) 920 (2.6%) 724 (2.0%)

40 28608 25358 (88.6%) 1592 (5.6%) 1087 (3.8%) 571 (2.0%)

Table 6.2: Results of semantic clustering on Molecular Function annota-

tions. Number of groups of proteins analyzed at different sequence similarity level

and corresponding number (and percentage) of groups classified as OC, OC+O,

MC+O and OO, respectively, for Molecular Function and semantic similarity

threshold equal to 0.7.

Figure 6.4 shows the percentage of annotations of proteins belonging to these two

groups, annotated with different evidence code categories: experimental (EXP),

computational method (COMP), author statement from publication (AUTH) and

no evidence available (NOEV); the average IC for each category is also shown. The

percentages shown in Figure 6.4 correspond to groups of proteins characterized

by 80% of sequence similarity. Results for different level of sequence similarity are

similar. As expected, the highest percentages are associated to computational an-

notations (COMP), which include also those electronically inferred. Interestingly,

when considering the protein outliers pie charts, the percentage of experimental

(EXP) and author statement annotations (AUTH) significantly increases with

respect to the one observed for the proteins belonging to a cluster. This is more

evident in Biological Process category, where percentages of EXP and AUTH
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Figure 6.4: Percentages of annotations with different evidence codes and

their average IC. The four pie-charts shows results for both BP (upper panel)

and MF (lower panel) annotations of proteins belonging to groups annotated as

non homogeneous. Pie-chiarts on the left show those proteins in OC+O or MC+O

which are somehow clustered with other proteins; pie-charts on the right show

all proteins in OO plus proteins in OC+O, MC+O that are outliers. For each

category the average IC is also shown.

present a two- and four-fold increase, respectively.

Considering the average IC for each annotation category, GO terms of proteins

annotated as EXP show an IC value greater than GO terms of proteins annotated

as COMP. In particular, considering Molecular Function category, the average IC

doubles from COMP to EXP. This seems related to the different IC content of

proteins annotated with different evidence code, rather than with an intrinsic

difference of IC content of protein outliers with respect to proteins belonging to
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a cluster (Figure 6.5).

Figure 6.5: Boxplots of the IC of GO terms for both computational

(COMP) and experimental (EXP) annotations. Results are displayed for

proteins either clustered with other proteins (in black) or that are outliers (in red).

Different sequence similarity levels were considered to define groups of proteins.

6.5.2 Functional map on GOA annotations: biological ex-

amples

Functional maps of many different groups of proteins were analyzed. In par-

ticular, here results of four representative groups belonging to classes OC+O,

MC+O and OO are shown. These examples, depicted in Figure 6.6, have been

chosen among all available in order to illustrate in detail possible interesting cases

of heterogeneities in the annotation.

Examples shown in panels (a) and (b) of Figure 6.6 are representative of the
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Figure 6.6: Examples of the functional map on GOA annotations. Panels

(a) and (b) shows two examples of proteins grouped into a single cluster with

the exception of one protein outlier. Two possible cases can occur: (a) the GO

term associated to the protein outlier is highly similar to at least one of the

other GO terms; (b) the GO term associated to the protein outlier shows low

semantic similarities with respect to all the other GO terms. Panels (c) and (d)

shows two examples of proteins grouped in two clusters or with respect to all the

other proteins, respectively. IC values are reported below each GO term identifier

displayed in the functional map.

case OC+O, i.e. of proteins grouped into a single cluster by the protein-centric

clustering but with some protein outliers. Here, two possible cases can occur:

1. Panel (a): the outlier is annotated to a GO term very similar to at least

one of the GO terms on which the clustered proteins are annotated. In the

example, the GO term GO:0008544 of the protein outlier Q04695 is similar

to GO terms GO:0031424 and GO:0002009. A possible interpretation can

be that the protein is a missing annotation of these last two GO terms and,
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in principle, could be included as their annotation. Consistently, the three

proteins Q6IFU8, A1L595, Q9QWL7 could be included as annotations of

the GO term GO:0008544.

2. Panel (b): the outlier is annotated to a GO term with low semantic simi-

larity with respect to all the others. In the example, the protein A7E3S8

is annotated only to the GO term GO:0006950, suggesting that the GO

term could be considered inconsistent with respect to the annotations of

the analyzed group of proteins.

It is important to evidence that, in both cases, the possible interpretation of the

isolated GO term is also influenced by the specificity of the molecular function

or the biological process represented by the GO terms of proteins outliers: an

inconsistent GO term with low IC can be neglected, whereas one with high IC

needs further consideration.

If the group of proteins is classified into the cases MC+O or OO, the correspond-

ing functional map is more heterogeneous. In these situations, the protein-centric

dendrogram gives information on the number of clusters in which proteins can

be divided. For instance, in the example reported in Figure 4 panel (c), the func-

tional map allows us to identify two clusters, since proteins Q9R0U1, Q95221

and B2RCP4 are annotated to only two GO terms which are dissimilar to the

GO terms where the other proteins are annotated and are characterized by low

IC values. Interestingly, Q9UHH9 is the only protein annotated to the GO term

GO:0060337, characterized by the highest IC value.

In the functional map reported in Figure 4 panel (d), the three proteins can be

considered as three outliers, since they show low pairwise semantic similarity.

For instance, the protein Q6GLA6 is annotated to two GO terms which are not

shared by the other two proteins. In particular, the term GO:0008016 shows low

semantic similarity to the other GO terms, as well as for the term GO:0034329,

where only the protein Q9HBI1 is annotated. The only GO term with two anno-

tated proteins is characterized by the lowest IC value.

These examples show how the proposed functional map, which combines three

types of information (protein-centric similarity, GO-centric similarity, Informa-

tion Content), is able to easily highlight non homogeneities in the annotations. In

particular, dendrograms resulting from the two hierarchical clustering performed

on both GO terms and proteins are useful to identify the main inconsistencies

affecting GO annotations, whereas the Information Content is useful to assign

different degrees of heterogeneities, helping the user to efficiently handle missing
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or inconsistent annotations. Of note is that the biological interpretation of the

heterogeneities of examples in panels (c) and (d) requires a deeper investigation

than the others, since the heterogeneity is more complex.

6.6 Discussion

The identification of heterogeneities and possible inconsistent annotations af-

fecting biological databases has become an important issue as databases increas-

ingly rely on automated techniques for annotation. In particular, for semantically

structured databases such as Gene Ontology, relationships between the terms

reflect the associations between gene products and several measures have been

proposed to assess semantic similarities among GO terms and the coherence be-

tween gene product annotations by comparing sets of different GO terms.

In this chapter, a global analysis performed on GOA database was shown to as-

sess heterogeneities in the GO annotations. The best-match average method was

adopted as protein-centric measures of semantic similarity, which compares all

combinations of GO terms rather matching similar terms and could underesti-

mate the similarity between the two proteins [165]. Results highlighted that pos-

sible inconsistencies on computational annotations are hardly traceable because

the distribution of this type of annotation is homogeneous over the database, thus

complicating the problem of managing biological information. Indeed, semantic

clustering on GOA annotations highlighted that homogeneity is related to com-

putational annotations on generic GO terms characterized by a low IC, whereas

many heterogeneous annotations are experimental and associated to highly spe-

cific GO terms. However, the presence of non homogeneous protein groups demon-

strated the need of a tool able to efficiently organize information on GO anno-

tations and to highlight in an intuitive and easily interpretable way unexpected

and hardly traceable heterogeneities on protein annotations.

To address this issue, a new method was developed to analyze heterogeneities

of GO annotations. For groups of proteins sharing a high sequence similarity,

the method performs two agglomerative hierarchical clustering based on seman-

tic similarities both between GO terms and between protein annotations, re-

spectively. The protein-centric analysis identifies proteins poorly annotated or

annotated into different GO terms, but fails to localize these differences in GO

database. Thus, it is useful to verify if GO terms of a group of proteins with

a high semantic similarity are all semantically related or are associated to dif-

ferent biological processes or functions. The combination of GO-centric analy-
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sis with the protein-centric approach allows investigating the presence of both

heterogeneities among protein annotations and possible inconsistencies directly

affecting GO terms. The chosen GO-centric semantic similarity measure (Lin’s

measure) is insensitive to the level of specificity of the common ancestor of the

querying terms. This measure has been applied in order to consider the semantic

similarity of two GO terms regardless of the information content of each term. In

this way, the resulting functional map is able to separate the level of specificity

of GO terms from their relationship in the GO graph, avoiding an overlap of

information.

The algorithm gives as output a colour-coded matrix, where the presence of one

or more not-colored cells could highlight possible inconsistencies among GO an-

notations. In this situation, dendrograms resulting from the two hierarchical clus-

tering on both GO terms and proteins are useful to distinguish different cases of

heterogeneities affecting GO annotations. Another important element for the in-

terpretation of the functional map is the colour intensity (i.e. the Information

Content), which is highly indicative of the degree of heterogeneity and helps to

handle missing or inconsistent biological information, since the relevance of the

isolated annotation depends on the specificity of the GO term. The resulting out-

put can thus be used as a guidance for a better intepretation of the biological

information associated to known proteins.





Conclusions

This thesis explored different aspects related to biomarker discovery analysis,

addressing the problem from a “systems biology” point of view, thus considering

and integrating different types of information of biological systems. In order to

identify not only the best predictive genes or proteins characterizing a specific

disease, but a stable and interpretable profile of the molecular alterations related

to the disease, different computational aspects were explored, starting from the

current methodologies currently used in the literature. A set of simulated and

real datasets was used to test the methods separating training and test phases

to avoid overfitting. Results were compared with and without the application of

the bootstrap approach and with a simpler and more commonly used univariate

method to evaluate the trade off between the complexity of the analysis pipeline

and the improvements in terms of both classification performance and biomarker

lists stability. A systematic improvement in selecting features with a high degree

of precision and stability was observed for the bootstrap approach. However, the

crucial factor affecting list stability seems to be that the classification task is

under constrained. Looking for signatures connected on a pre-defined graph or

belonging to a biological process may uncover various important aspects of the

underlying biological mechanisms involved in the disease.

In particular, this thesis dealt with the computational aspects of integration of

this available biological knowledge in the learning process, focusing on the repro-

ducibility of interpretable biomarker lists, which is an issue of increasing interest

from a both computational and clinical point of view. The application of exter-

nal constraints with a biological meaning was analyzed, exploiting the biologi-

cal information structure of Gene Ontology. Results showed that the generation

of multiple classifiers from partitions of the dataset over the features and thus

from less undetermined systems can improve the classification performance and

automatically lead to more interpretable lists of gene sets belonging to known

biological processes and molecular functions. Preliminary results on the repro-

ducibility of these gene sets in different studies of breast cancer revealed the
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identification of similar biological functions which are selected as significantly

altered by the disease. A useful approach able to reduce the redundancy of in-

formation affecting GO annotations was applied; however, the multiple classifiers

are built on pre-defined gene sets strictly depending on how genes are annotated

to the GO terms. An alternative learning approach was developed, which is able

to use biological information opportunely codified as a similarity matrix. The

application of this approach on different types of biological knowledge, such as

functional annotations or protein-protein interaction networks, showed that only

some characteristic combinations of biological information - similarity metrics are

able to achieve good performance in terms of stability of biomarkers lists preserv-

ing high levels of prediction accuracy. In particular, these results lead to some

questions about handling biological information: many annotations are available,

but only some are useful. The obtained results of a global analysis performed in

GO annotations are indicative of the presence of heterogeneities among the GO

annotations and confirm the need of considering the quality and the origin of

annotations when inferring possible biological functions. If on the one hand high-

throughput technologies are able to generate a huge amount of experimental data,

on the other different types of prior information on genes and proteins can be a

useful source to help solving these data-mining problems. This thesis provided

an overview of problems and possible solutions for the integration of prior knowl-

edge in the learning process, opening new future interesting developments. Beside

the Gene Ontology, which is the most complete database of biological functions,

also pathway databases are an interesting source of biological knowledge. The

presented two integration approaches can be both extended to other biological

representations: the first method can be applied on any source of information

which can be characterized using a hierarchical structure, whereas a future pos-

sible development of the second proposed approach is to combine kernels derived

from different types of knowledge in order to achieve a better characterization

of stable biomarker lists. Finally, the functional map proposed in the analysis of

GO annotations can be developed as a useful pre-processing method to select the

most reliable information to be integrated into the learning process.

All these aspects, which have been extensively studied in different microarray

data, can be hopefully also applied on next generation sequencing data, where

problems related to the high number of features will be more and more relevant.

Moreover, developments of new strategies to manage and organize biological in-

formation in biological databases open new challenges for more efficient methods

to use these sources in the next years.
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Appendix A

The Transcriptional Response in

Human Umbilical Vein

Endothelial Cells Exposed to

Insulin: A Dynamic Gene

Expression Approach

A.1 Introduction

Type 2 diabetes is characterized by a two- to fourfold increased risk of car-

diovascular disease. This is generally attributed to the adverse effects of hyper-

glycemia and oxidative stress on vascular biology. It has also been shown that

patients with prediabetic conditions, such as impaired fasting glucose and im-

paired glucose tolerance, are at increased risk of cardiovascular disease as well

[166]. From a pathophysiological standpoint, insulin-resistance initially induces a

compensatory hyperinsulinemia, which carries on a proliferative effect among the

cellular component of the vascular wall.

The endothelium is the thin layer of cells that lines the interior surface of blood

and lymphatic vessels, forming an interface between circulating blood and lymph

in the lumen and the rest of the vessel wall. The cells that form the endothe-

lium are called endothelial cells. Endothelial cells in direct contact with blood

are called vascular endothelial cells whereas those in direct contact with lymph

are known as lymphatic endothelial cells. Vascular endothelial cells play a ma-

jor role in maintaining cardiovascular homeostasis. In addition to providing a
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physical barrier between the vessel wall and lumen, the endothelium secretes a

number of mediators that regulate platelet aggregation, coagulation, fibrinolysis,

and vascular tone. Endothelial cells secrete several mediators that can alterna-

tively mediate either vasoconstriction, such as endothelin-1 and thromboxane

A2, or vasodilation, such as nitric oxide (NO), prostacyclin, and endothelium-

derived hyperpolarizing factor.

The first step of the adverse sequence of events that leads to the atherosclerotic

process is thought to be “endothelial dysfunction” [167]. This term refers to a

condition in which the endothelium loses its physiological properties: the tendency

to promote vasodilation, fibrinolysis, and anti-aggregation. In diabetes chronic

hyperinsulinemia contributes to the instability of the atherosclerotic plaque and

stimulates cellular proliferation through the activation of the MAP kinases, which

in turn regulate cellular proliferation. However, it is not known whether insulin

itself could increase the transcription of specific genes for cellular proliferation in

the endothelium. Hence, the characterization of transcriptional modifications in

endothelium is an important step for a better understanding of the mechanism

of insulin action and the relationship between endothelial cell dysfunction and

insulin resistance.

Considering microarray experiments, in pre/post stimulus studies in which the

transcriptional response is monitored at one specific time instant after a pro-

longed insulin exposure, genes showing a transient response followed by a return

to the pre-stimulus expression or a systematic, but small in magnitude, change

in the expression, are likely to be missed [168]. On the opposite, monitoring the

dynamic response using more than one time samples after the stimulus allows

detecting these genes as differentially expressed and provides a description of the

transcriptional expression patterns of the response. Transient behavior might be

characteristic, and, if common to a number of genes associated to the same func-

tional group, might give insight into the function performed by the gene circuitry.

The aim of this study is to exploit the potential of a dynamic study to investigate

the dynamic transcriptional response of endothelial cells following insulin stim-

ulation, integrating temporal profiles of genes representing the effect of insulin

with the functional information of GO database on the main molecular functions

characterizing the underlying biological mechanisms. This is the first systematic

study in the literature monitoring transcriptional response to insulin in endothe-

lial cells, in a time series microarray experiment.
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A.2 Materials and Methods

To distinguish between insulin effect and other processes that take place in

the cell simultaneously, but are not induced or inhibited by insulin, treated cells

were compared with control cells. Experiments were carried out on human umbil-

ical vein endothelial cells (HUVECs). Samples were collected at times 0, 40, 100,

200, 340, 440 min. Time 0 was cultured and harvested in duplicate so to have

a complete experimental replicate of time 0 sample. Affymetrix chips were used

in the experiments. Preprocessing steps such as background subtraction, probe

cell normalization and expression level calculations, were performed using quan-

tile normalization and Robust Microarray Analysis (RMA) software [84]. Data

are accessible through GEO Series accession number GSE21989. High-level data

analysis was carried out in a pipeline as shown in Figure A.1.

Figure A.1: Pre-processed Affymetrix data analysis pipeline. A selection

method was applied to identify differentially expressed genes. Selected genes were

clustered according to their time expression profile; significantly associated path-

ways and GO terms were identified through enrichment analysis. The enriched

GO terms were grouped into different functional categories. For each cluster and

for each GO category, GO enrichment based on Fisher’s Exact Test was calcu-

lated.
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Selection

Differentially expressed genes were selected using the method described in [168]

that calculates the area of the region bounded by the treated-minus-control ex-

pression profile and assigns a p-value to each gene by evaluating the significance

of this area against the null hypothesis. The two replicates available at time zero

were used to derive the experimental error distribution at different intensity ex-

pression values and, consequently, the null hypothesis distribution of the area

bounded by the treated-minus-control expression profile. As already shown in

[168], the method, implemented for data poor conditions, is quite robust to ran-

dom oscillation, and help diminishing both false positive and false negative rates.

In order to account for multiple testing, the significance level was corrected ac-

cording to a false discovery rate (FDR), i.e. the number of false positives divided

by the number of selected genes, of 0.05.

GO and pathway enrichment

Genes were annotated according to molecular functions of Gene Ontology (GO)

database, using NetAffx database. Enrichment analysis was performed based on a

strategy similar to the “elim” method described in [111]. GO terms (related to dif-

ferent molecular functions) were grouped into levels according to the percentages

of selected genes: namely, level 1 corresponds to GO terms with at least 98%-100%

of their annotations selected, level 2 to the range 96%-98%, etc. Starting from

level 1, the algorithm visited each level and for each GO term performed Fisher’s

Exact Test that assigns a p-value representing the probability that the observed

number of selected genes annotated to the GO term could have resulted from ran-

dom sampling. If in the visited level a GO term has a p-value below a significance

level α, then the corresponding genes were removed from the annotation of GO

terms having lower percentages, in order to penalize their p-value. In this way, the

number of enriched GO terms was kept low, still maintaining a high significance

level. Since this test was applied to a large number of GO terms, the significance

level α for the calculated p-values was empirically set to 0.0025. To identify the

most enriched pathways, selected genes were also annotated to WikiPathways

(http://www.wikipathways.org) using NetAffx database. Enrichment analysis

of pathways was performed using Fisher’s Exact Test.

GO grouping

To obtain a more synthetic annotation, the enriched nodes directly connected by

a path in the GO graph were grouped together in the same functional cluster.
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Each GO group, thus characterized by an isolated sub-graph of siblings or ances-

tors terms, was labeled with the most general of these terms.

Clustering

To identify the main temporal expression patterns in response to insulin stimulus,

treated-minus-control expression profiles of selected genes were clustered using K

means clustering based on Pearson correlation. The number K of clusters was set

to 7.

Cluster-specific GO group enrichment

For each cluster and for each GO group defined above, GO enrichment based

on Fisher’ss Exact Test was calculated separately, so that the resulting p-value

represents the probability that the observed numbers of selected genes belonging

to the cluster and annotated with the GO group have resulted from random sam-

pling. GO groups with p-value¡0.05 were considered as significantly enriched for

the cluster.

A.3 Results

1715 genes were selected as differentially expressed based on their treated

minus control profile, thus allowing the detection of even small but systematic

changes in gene expression. Genes were clustered in 7 groups according to their

time expression profile and classified into 15 functional categories that can support

the biological effects of insulin, based on GO enrichment analysis (Figure A.3).

The seven main temporal patterns in response to insulin stimulus were identified

for treated-minus-control expression profiles as shown in Figure ?? (left panels),

together with the number of genes correlated to each pattern. For each cluster the

specific enrichments in the 15 different GO groups was expressed as (1-p-value), as

shown in Figure ?? (right panels), so that a value close to 1 indicates an elevated

significance level. These results allow to characterize the transcriptional response

by remarkably different temporal profiles. For instance, cluster 1, characterized

by a peak of the expression level at time 200 min, is significantly associated

with GO groups B (actin binding) and C (N-terminal myristoylation domain

binding), in which three genes coding for calmodulin, a protein which increases

NO activity, are annotated. In terms of endothelial function, the most prominent

processes affected were NADH dehydrogenase activity, N-terminal myristoyla-

tion domain binding, nitric-oxide synthase regulator activity and growth factor
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Figure A.2: GO graph of enriched molecular function terms. The paths of

GO enriched terms are displayed; nodes directly connected by a path in the GO

graph were grouped together into 15 GO main annotation groups (denoted by

capital letters).

binding. Pathway-based enrichment analysis also revealed “Electron Transport

Chain” as significantly enriched. Results were validated on genes belonging to

this pathway, using quantitative RT-PCR.

A.4 Discussion

The objective of this study was, using DNA microarray technology, to assess

the transcriptional response to insulin in endothelial cells in a time series microar-

ray experiment and identify the main biological process and functions underlying

this biological case study. To identify significant transcriptional temporal pat-

terns in endothelial cells treated with insulin and to characterize them from a

functional point of view, an ad hoc analysis pipeline was developed and applied

to experimental data. In particular: 1) differentially expressed genes, selected by

using a method tailored for gene expression time series in data-poor conditions,
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Figure A.3: Cluster-specific GO group enrichment. Left panels show tempo-

ral expression profiles (treated minus control) of genes belonging to each cluster,

identified by K-means algorithm; middle panels represent the corresponding av-

erage temporal patterns; right panels show significance of the enrichment for each

GO category (identified by capital letters) in each cluster, as 1 minus p-value. A

star indicates significant GO groups (with p-value < 0.05).
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were annotated according to Gene Ontology molecular functions; 2) the enriched

GO terms were grouped together according to their position in the GO graph

in order to obtain a more synthetic annotation and these groups were used to

annotate the main temporal expression patterns identified by cluster analysis.

This approach selects genes based on their dynamic gene expression profiles, thus

detecting even small but systematic changes in gene expression. Then, by inte-

grating cluster analysis and functional annotations, it gives a limited number of

non-redundant functional groups.

Obtained results demonstrate that endothelial genomic response is significantly

affected by elevated insulin concentrations involving a high number of genes,

whose dynamic response is characterized by well-defined temporal patterns, clas-

sified into functional categories that support the biological effects of insulin.

In addition, since chronic hyperinsulinemia contributes to the instability of the

atherosclerotic plaque and stimulates cellular proliferation, some of the genes

identified in the present work are potential novel candidates in diabetes com-

plications related to endothelial dysfunction. More focused studies on subsets of

genes and on several donors will be objective of future studies.



Appendix B

Function-based discovery of

temporal patterns in insulin

stimulated muscle cells

B.1 Introduction

A main objective of systems biology is the evaluation of gene/protein interac-

tions from high-throughput time series expression data and their link to biological

functions. Hence, it is important to detect the main temporal patterns character-

izing the data, and associate them with functional annotation and information

on differentially expressed genes. To this purpose, a first gene selection step is

usually applied to the data to limit the analysis to those genes that are differ-

entially expressed in time, and then a clustering step is applied to summarize

the information using a limited number of profiles. However, both selection and

clustering steps have some drawbacks. When selection of differentially expressed

genes is performed it is desirable to limit the number of analyzed genes without

missing the key-players, whereas selection procedures are based on a confidence

threshold that controls the false positives and does not explicitly account for the

false negatives. On the other hand, when using clustering to limit the number of

analyzed profiles, it is desirable to obtain sufficiently homogeneous clusters, so

as to summarize the signal without loosing important information, i.e. without

missing significant changes in the pattern of expression. This aspect is related to

the choice of the number of clusters, which is critical in many clustering algorithm

and often let the user decide it in a qualitatively way. Moreover, the functional

interpretation of these results is often performed a posteriori, without affecting
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gene selection, and genomic databases are characterized by high redundancy of

biological information, which often is not take into account.

In this study a new method is proposed that integrates selection, clustering and

functional association to find the main temporal patterns associated to functional

groups of significantly differentially expressed genes. The method is based on an

already proposed method for gene selection [168], GO functional annotation and

a new approach for gene clustering [169]. To better appreciate the enhancement

of the biological interpretation gained by the proposed method, its application on

real data on insulin stimulated muscle cells is shown. Skeletal muscle is responsi-

ble for about 65% of glucose disposal following a meal [170] and reduced insulin

induced glucose disposal results in impaired glucose tolerance. In vivo, insulin

plays an important role in the regulation of skeletal muscle glucose uptake and

regulation of skeletal muscle protein, amino acid and fatty acid metabolism [171].

Similarly, insulin acutely stimulates protein synthesis (translation of transcripts)

by activating a specific insulin-responsive protein signaling cascade [172]. Both of

these responses are regulated by reversible post-translational modifications (i.e.,

phosphorylation) of key signaling protein molecules. However, less information

is available about insulin impact on gene transcription that also may affect in-

sulin action: it is currently unknown whether insulin acutely enhances translation

of genes or there is time related pattern in transcribing the genes thereby hav-

ing a different level of regulation of insulin action on gene expression. Thus, the

transcriptional temporal patterns remains to be fully defined.

B.2 Materials and Methods

To identify significant transcriptional temporal patterns, primary differenti-

ated rat skeletal muscle myotubes treated with insulin were used. Samples were

collected at times 0, 20, 40, 60,..., 480 minutes (every 20 minutes, for 8 hours)

from both insulin treated and control cultures, for a total of 50 biological samples.

Affymetrix chips were used in the experiments. Preprocessing steps such as back-

ground subtraction, probe cell normalization and expression level calculations,

were performed using quantile normalization and Robust Microarray Analysis

(RMA) software [84]. Data are accessible through GEO Series accession number

GSE28997.

The proposed method identifies significant transcriptional temporal patterns,

based on three different computational steps: 1) Gene Ranking, i.e. all genes are

ranked according to a false discovery rate p-value reflecting the likelihood that
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the gene is differentially expressed; 2) Search for the Temporal Patterns, i.e. each

functional group is searched for temporal patterns characterizing it; 3) Selection

of Differentially Expressed Genes, based on both the false discovery rate p-values

and the characteristic patterns. A gene is selected as differentially expressed if it

is associated to a cluster of genes: 1) sharing the same temporal transcriptional

profile; 2) all annotated with the same functional term, 3) containing at least one

gene with significant p-value. The output of the method is a set of clusters of

differentially expressed genes, each characterized by a specific temporal pattern

and by the most specific functional annotations. The three steps of the methods

are described in what follows.

Gene Ranking

Genes are ranked according to false discovery rate p-values using a selection

method of choice. In the case of the data analysis performed in this work, a

method previously proposed was used [3] that calculates the area of the region

bounded by the time series expression profile and assigns a p-value to the gene

according to this area and a null hypothesis distribution, based on a model of the

experimental error, to be derived from experimental replicates. The two replicates

available at time zero were used to derive the experimental error distribution at

different intensity expression values and, consequently, the null hypothesis distri-

bution of the area bounded by the treated-minus-control expression profile.

Search for the Temporal Patterns

For each GO node, the algorithm searches the representative temporal patterns

characterizing the transcriptional response. In particular, among the genes asso-

ciated to a specific GO term, the algorithm searches for a subset of genes whose

time series expression profile Xi =< xi(1), ..., xi(m) > can be modeled by the

following equation:

Xi = ki · P + qi +
∑

(B.1)

where P =< p(1), ..., p(m) > is the characteristic temporal expression pattern,

i.e. a vector of m (number of time points) expression values, ki and qi are the

gene i specific parameters and encodes the measurement error variance. The al-

gorithm iteratively performs a gene-specific parameter identification step and a

temporal pattern search step. In the first step, the parameters ki and qi are iden-

tified for each gene i, using weighted least squares method. A goodness-of-fit test

is performed for each gene i and only genes with significant p-value are kept in

the cluster. In the second step, P is estimated at each sampling time, using again



118 B. FUNCTION-BASED DISCOVERY OF TEMPORAL PATTERNS

weighted least squares, but considering as data the ki and qi of the genes belonging

to the cluster and estimated at the previous step. All the n genes being analyzed

go again through the first step, so to identify new ki and qi and re-define the

cluster membership based on the newly estimated pattern P . All the procedure

is reiterated until the list of genes in the cluster does not change or a maximum

number of iterations is reached. Each identified pattern is thus characterized by

a cluster of genes with correlated profiles and the same annotation.

For each discovered pattern, the set of genes fitting this pattern (fitP ) and the

set of genes that do not fit it (¬fitP ) are defined. Only if significant, i.e. if it

contains at least one gene with false discovery rate p-value lower than a fixed

threshold, e.g. 0.05, fitP is recorded as a cluster in the GO node under analysis.

The procedure is then iteratively applied to ¬fitP , until ¬fitP contains no genes

or no significant patterns are discovered. Nodes are analyzed starting from the

leaves of the GO graph, i.e. the nodes farthest from the root, which are the most

specific GO terms; whenever a significant pattern is identified, genes correlated

to the pattern are removed from all the ancestors of the node, so to avoid redun-

dancy and annotate genes with the most specific available biological information,

analogously to what has been proposed in [111]. Conversely, genes correlated to

a pattern are not removed from the sibling nodes.

Selection of Differentially Expressed Genes

A gene is considered significantly differentially expressed if it has a significant

false discovery rate p-value, i.e. lower than 0.05 (even if it is not associated to

any pattern) or it is associated to a pattern P . Intuitively, since a group of genes

associated to a pattern contains at least one gene with significant false discov-

ery rate p-value, all genes in the group are likely to be differentially expressed

since they are highly correlated to the same temporal pattern and share the same

functional annotation.

B.3 Results

The ability of the method to identify groups of genes belonging to the same

pattern was assessed on synthetic data (100 datasets of 120 profiles characterized

by six different temporal patterns and 880 noisy profiles) by comparing identi-

fied to simulated clusters. The method shows high precision (96%) in detecting

temporal patterns and improves selection performance by decreasing the number

of false negative, maintaining constant the number of false positive (in average,
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on 100 simulations the number of false negatives diminishes from 11% to 9% in

correspondence of a constant false discovery rate of 5%).

Applied on insulin stimulated muscle cells, 326 genes were selected as differentially

expressed and clustered into 12 different clusters, each characterized by a specific

expression pattern. Figure B.1 shows in red the average differential (treated mi-

nus control) expression profiles of the genes in the different clusters; the number

of genes in each cluster and their differential expression profile (in gray) is also

reported. The identified clusters show patterns that includes a slow and gradual

Figure B.1: Expression profile of genes selected as differentially ex-

pressed, clustered in groups of genes sharing the same temporal pat-

terns. The average differential expression profiles (treated minus control) of the

genes in the different clusters is shown in red; the number of genes in each cluster

and their differential expression profile (in gray) is also reported for each cluster.

decrease in gene expression, a gradual increase in gene expression reaching a peak

at about 5 hours and then reaching a plateau or an initial decrease and other dif-

ferent variable pattern of increase in gene expression over time.

Approximately 20% of the genes that were differentially expressed were identified

as belonging to the insulin signaling pathway. To obtain a more synthetic annota-
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tion, the GO nodes directly connected by a path in the GO graph were grouped,

thus obtaining 13 GO groups plus the group of genes annotated to insulin sig-

naling. Each GO group, thus characterized by an isolated sub-graph of siblings

or ancestors terms, was labeled with the most general of these terms. Genes be-

longing to patterns 1 and 4, which are also the most numerous, are annotated

to many different GO groups. Patterns 5 and 10, on the opposite, are charac-

terized by genes belonging to a single GO group: nucleotide binding for pattern

5, RNA binding for pattern 10. Patterns 9, 11 and 12 are directly annotated to

insulin signaling pathway, whereas patterns 2, 3, 6, 7 and 8 are in an intermediate

situation, with genes annotated to a number of GO groups ranging from 3 to 6.

B.4 Discussion

The aim of the present work is to exploit the potential of a dynamic study

to investigate the transcriptional response of skeletal muscle cells during acute

insulin stimulation. To identify significant transcriptional temporal patterns in

muscle cells treated with insulin and to characterize them from a functional point

of view, a new analytical method was proposed applied to experimental data.

This method aims at overcoming some drawbacks of the conventional analysis

approach based on selection of differentially expressed genes, clustering and func-

tional GO annotation. The new approach 1) improves selection of differentially

expressed genes by diminishing the number of false negatives while maintaining

constant the false discovery rate, i.e. the number of false positives divided by the

number of selected genes; 2) clusters genes with the same transcriptional pattern

without requiring the user to fix the number of clusters and 3) automatically

annotates these clusters with the most specific GO terms, avoiding redundancy

of the information.

The new method allows identifying characteristic dynamic responses to insulin

stimulus, common to a number of genes and associated to the same functional

group. The results demonstrate that insulin treatment elicited 12 different clus-

ters of gene transcript profile supporting a temporal regulation of gene expression

by insulin in skeletal muscle cells. Applied on GO annotations, the method is able

to improve the biological interpretation and is well suited as pre-processing step

in summarizing the information content with smoothed temporal profiles.
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