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Highlights

• Considering stakeholders’ preferences through different performance cri-
teria.

• Patient priority maximisation and workload balance as performance cri-
teria.

• Understanding the solution quality combining the two criteria in the OR
planning.

• OR planning defined by a hierarchical multi-objective optimisation model.

• Matheuristic Solution framework based on multi-neighbourhood local search
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Abstract

Previous analysis suggested the opportunity to consider the preferences of differ-
ent stakeholders (hospital, patients, doctors and nurses) through the adoption
of both patient priority maximisation and workload balance as performance cri-
teria. The aim of this paper is to develop an effective and efficient solution
approach for the operating room planning and scheduling capable to take into
account the patient priority maximisation and workload balance criteria at the
same time. This work is inspired by the need of a deeper understanding of
the quality of the solutions obtained when a combination of the two criteria
leads the OR planning decisions. Starting from a hierarchical multi-objective
optimisation model for the combined master surgical scheduling and surgical
cases assignment problems, we develop a class of new multi-neighbourhood lo-
cal search based matheuristic algorithms, whose main feature is to exploit an
ad hoc neighbourhood to generate better solutions in a significant shorter run-
ning time. A broad quantitative analysis on new realistic instances proves the
effectiveness and the efficiency of the proposed matheuristic algorithms as well
as to evaluate the quality of the computed solution from an operating room
management perspective.
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1. Introduction

The ageing of the population and the increase of need of care, given by the
presence of chronic diseases and multi-morbidity in elder people, is rising the
demand of health services within public and private funded national health care
systems (Organisation for Economic Co-operation and Development, 2017). The
increase of the demand implies the modification of the supply in terms of services
provided and resources available in primary and secondary care. The World
Health Organisation, during an assembly in 2015 highlighted the importance of
the role of surgery care in order to achieve health care universally covered (World
Health Organization, 2017).

Surgical care is one the main activity where health care providers (i.e. hos-
pital managers) have to face challenges in terms of resource use, costs and
revenues. Operating Room (OR) is the core of this activity since it can account
about the 60% of the hospital admissions (Peltokorpi, 2011). OR represents one
of the most expensive units in hospital budgets, where costs account about the
40% of the overall hospital costs (Denton et al., 2007). However, this activity
can provide to hospital the largest income in a broad sense, making it the most
important strategic area. The issues arising from OR management are mostly
related to planning and scheduling activities, where combinations of resources
available and patients waiting for the surgery, can provide different results with
a large variation of costs and revenues.

Cardoen et al. (2010) reported different performance criteria adopted in the
literature to lead and to evaluate the OR planning and scheduling decisions,
which are usually defined at strategical, tactical and operational levels. There-
fore different performance criteria can reflect different stakeholders’ preferences
(Marques & Captivo, 2017). Addressing the above mentioned preferences is
challenging, as there could be conflicts amongst them (Cappanera et al., 2018).

Taking into account a patient–centred viewpoint, a preliminary comparison
between two criteria – patient priority maximisation and workload balance –
has been reported in Aringhieri & Duma (2017) over a set of realistic instances
with a scheduling horizon of one week. Such a comparison confirmed the ability
of both criteria to ensure a high level of OR utilisation dealing with long wait-
ing lists, which is a common situation in many hospitals belonging to publicly
funded health care systems. The two criteria provided different results. The pa-
tient priority maximisation is a fairness criterion among patients that allowed
us to have an ex-ante OR utilisation close to 100% in all cases. This proves
that patient priority maximisation is an excellent proxy of the OR utilisation
maximisation. Conversely, the workload balance is a criterion to have a smooth
workload along the week at the price of having a lower OR utilisation with
respect to the patient priority.

From this perspective, a counter-intuitive result is the non-compliance be-
tween the OR utilisation and the number of the planned patients, which is higher
with respect to the patient priority. A further preliminary comparison has been
discussed in Aringhieri et al. (2018b) in which the two above criteria have been
compared using real data on a longer horizon (one year) in order to evaluate
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the impact on the OR scheduling decisions over time. From the analysis, the
use of workload balance seems to be a good compromise between the need of
minimising the waiting time of the patients and taking into account the quality
of the doctors and nurses work in the ward.

Such a preliminary analysis suggested the opportunity to consider the more
relevant preferences of different stakeholders (that is hospital, patients, doctors
and nurses) at the joint tactical and operational level through the adoption
of both patient priority maximisation and workload balance as performance
criteria. The aim of this paper is to develop an effective and efficient solution
approach for the OR planning and scheduling capable to take into account the
patient priority maximisation and workload balance criteria at the same time
in order to investigate and evaluate their impact on the resulting solutions on
a more complex operative context.

We place our study at the joint tactical and operational level under a patient–
centred viewpoint in accordance with the main insights reported in Aringhieri
et al. (2015a) assuming deterministic surgery times and lengths of stay. We pro-
pose a modified version of the hierarchical multi-objective optimisation model
(reported in Aringhieri et al. (2017)) for the combined master surgical schedul-
ing and surgical cases assignment problems in order to adopt the more realistic
patient priority model introduced in Valente et al. (2009) and deeply tested at
S. Martino University Hospital of Genoa, Italy. In accordance with this priority
model, we generate 80 new instances – more complex in terms of operative con-
text – exploiting the work done by Leeftink & Hans (2018) to have instances with
a realistic case mix. We develop a class of new algorithms for solving the mod-
ified hierarchical optimisation model in an efficient way since the preliminary
tests in Aringhieri et al. (2017) showed the limitation of a general purpose solver.
The proposed algorithm framework is a multi-neighbourhood local search based
matheuristic in which several large neighbourhoods are sequentially addressed
by means of integer programming models capable to exhaustively explore large
neighbourhoods in small computational times: the main novelty of our approach
is the use of an ad hoc neighbourhood to better balance the workload. A broad
quantitative analysis proves the effectiveness and the efficiency of the proposed
class of new algorithms.

The paper is organised as follows. A literature review is reported in Section 2
in order to place our work in the literature context. After describing the problem
statement, we outline the modified version of the hierarchical multi-objective
optimisation model in Section 3. Section 4 is devoted to the description of the
proposed solution approach consisting in a multi-neighbourhood local search
based matheuristic. The quality of the solutions computed by our algorithms
is discussed in Section 5 in which a comprehensive analysis is presented: after
describing the computational environment (5.1), we discuss the effectiveness
and the efficiency of the proposed algorithms addressing also the analysis of
the Pareto optimal frontier of the solutions (5.2), and then we analyse the
computed solutions from an operating room management point of view (5.3).
Finally, Section 6 closes the paper.
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2. Literature review

Operational researchers provided in the last three decades several decision
models and optimisation tools aimed at addressing the complexity of the OR
management. In literature there are several reviews that systematically anal-
ysed the operational research approaches to OR planning and scheduling prob-
lems (Guerriero & Guido, 2011; Van Riet & Demeulemeester, 2015; Samudra
et al., 2016; Hof et al., 2017; Zhu et al., 2019): such a large production of aca-
demic papers during the last decades proves the increasing interest in the OR
management by the operational research community, and the increasing need by
the hospital management of solutions and tools based on advanced techniques
to face the high complexity of these problems.

OR planning and scheduling are defined by three main decision levels: strate-
gical, tactical and operational that are respectively based on long, medium and
short-term objectives (Hulsof et al., 2012). Apart from recent integrated ap-
proaches (see, e.g. Siqueira et al. (2018)), usually these levels are studied or
analysed separately, given by the complexity of the problem and the time hori-
zon (e.g. the larger is the horizon, the harder is the problem). The strategic
level faces the problem of resource allocation, assigning to each surgery the re-
sources available (e.g. staff), while the tactical level faces the problem of OR
block assignment to surgical specialties in accordance with the master surgi-
cal schedule. The operational level, usually called surgery process scheduling,
faces two specific problems: a) the selection of the patients waiting for surgery
from a waiting list, assigning them to a specific OR session (an OR block in a
specific day), and b) the definition of the sequence of the surgical procedures
and the resource allocation in each OR session. Such problems can be further
challenged by the inherent stochasticity of their main parameters, such as the
surgery duration, the length of stay, the arrival of non-elective patients, and
often combined with staffing and scheduling decisions (Beaulieu et al., 2012;
Duma & Aringhieri, 2015, 2018; Wang et al., 2018a; Breuer et al., 2020).

The availability and the management of resources is one of the key factors
in the development of the planning and scheduling strategies. In literature the
main resources taken into account are OR session, ward, intensive care unit and
post-anaesthesia care unit beds. The OR session becomes a critical resource
when it can be shared with non-elective patients (Duma & Aringhieri, 2019).
The availability of beds is one of the main bottlenecks in the scheduling pro-
cess, especially when beds are shared between elective and emergency patients
(Landa et al., 2018). The bed availability can affect the performance and the
overall activity of the operating theatre. Ward beds are a resource which elec-
tive and non-elective patients compete for: an unpredictable flow of patients
from the emergency department can stop or limit temporarily the OR activities
of elective admissions given by the shortage of beds, or the unpredictability of
ward length of stay in wards can affect OR schedules (Neyshabouri & Berg,
2017). In the literature, beds are usually considered as a constraint affecting
the main objective (e.g. maximisation of patients treated), as bed is a limited
resource available, and it is a fixed cost that is difficult to variate in its quantity
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in the short-medium term (see, e.g. Aringhieri et al. (2015a)). The impact of
the managed resources in the OR planning and scheduling can be seen in the
long period (see, e.g. Siqueira et al. (2018)), as the impact of workload balance
is verified in the overall activity and within long periods as it consider the sea-
sonality and the variation of service demand given by exogenous factors. More
generally, the problem of patient scheduling considering downstream resources is
receiving increasing attention (see, e.g., van den Broek d’Obrenan et al. (2020);
Schneider et al. (2020); Zhu et al. (2020).

In order to lead and to evaluate the OR planning and scheduling decisions,
different performance criteria have been reported (Cardoen et al., 2010). The
maximisation of OR utilisation rate is aimed at reducing hospital marginal and
fixed costs on surgeries, as it is a cost also the OR idle time, while the maximisa-
tion of patient priority is aimed at reducing the patient waiting time in waiting
lists, giving a higher priority to urgent patients with specific clinical needs.
Considering the limited resources availability and the daily variation of patient
access to hospital ward, the workload balance is aimed at improving the work
quality provided by doctors and nurses, reducing peaks of workload and the
psycho and physical stress. Usually, patient priority maximisation (Dios et al.,
2015) and OR utilisation maximisation (Hans et al., 2008) are the most used,
but also the minimisation of delays and cancellations (Landa et al., 2016), the
maximisation of patient satisfaction (Min & Yih, 2010) and the minimisation of
hospital fixed costs or societal costs (Tànfani & Testi, 2010) were considered as
objective function for OR planning and scheduling. On the contrary, very few
studies consider the workload balance criterion to improve the quality of care
provided to the patients (see, e.g. van Oostrum et al. (2008); Cappanera et al.
(2014); Aringhieri et al. (2015b); van den Broek d’Obrenan et al. (2020)). The
workload balance criteria is usually assessed through the levelling of stay bed
occupancy (bed levelling) (Beliën & Demeulemeester, 2008).

The importance of staff workload (clinicians and nurses) is reported in the
literature of the last ten years and it affected national guidelines. Nurse guide-
lines were renewed in US, Australia, Sweden and other countries to include
boundaries for the staff workload to reduce patient mortality following the in-
dications provided by recent studies on workload (Aiken et al., 2008, 2014). As
reported by Aiken et al. the odds on patients dying in hospitals with an aver-
age workload of 8 patients per nurse is 1.26 times greater than in hospitals with
mean workloads of 4 patients per nurse. These results are confirmed in other
recent studies (Lasater et al., 2020, 2021). In addition the benefits of workload
balance has a direct impact on patient outcomes and on return on investment
derived by preventing additional LOS and readmissions (McHugh et al., 2021).

Considering multiple objectives in bed levelling contest, the development of
the master surgical schedule (MSS) presents several objectives to manage (usu-
ally in contrast), such as smoothing bed occupancy distribution with resources
capacity and demand (Beliën et al., 2006) or minimising the expected total bed
shortage under demand and capacity constraints (Beliën et al., 2007). MSS
development can present multiple objectives together with bed levelling such
as the allocation of ORs exclusively to group surgeons belonging to the same
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speciality and defining a MSS simple and repetitive (Beliën et al., 2009), or con-
sidering a large set of objectives based on surgical case sequencing for patient
characteristic (Cardoen et al., 2009).

More recently, a number of new contributions are characterised by the use of
optimisation models with hierarchical or a multi-objective functions but in a dif-
ferent operative context with respect to that used in this paper. The impact of
earliness and tardiness costs of surgeries on OR planning and scheduling was ex-
plored by Otten et al. (2019). The authors analyse the earliness/tardiness prob-
lem applied to OR planning, providing an optimisation model based on multiple
objectives considering both hospital and patient perspectives. The minimisation
of the makespan was faced by Behmanesh & Zandieh (2019). The authors pro-
posed a bi-objective surgical case scheduling problem under uncertain service
time, aimed at minimising the number of unscheduled surgical cases and the
makespan. The analysis of OR schedules considering the impact of overlapping
surgeries policy on OR schedules was analysed by Freeman et al. (2019). The op-
timisation model is aimed at minimising cost of the idle time of the surgeon and
maximising the total OR time to increase the income, evaluating when the over-
lapping procedure policy provides better results with respect to the traditional
policy. A different setting of objective functions is reported by Roshanaei et al.
(2019), where the objective function is aimed at firstly balancing distributed OR
scheduling to imbalance ORs among collaborating hospitals in terms of number
of allocated ORs, and daily micro imbalance among open ORs in each hospital
in terms of the total caseload assigned. Kamran et al. (2019) propose stochas-
tic mixed integer programming model for OR planning and scheduling problem
with a modified scheduling policy. The study aims at minimising the waiting
time of patients and the tardiness for both patients who are planned to have the
surgery and unplanned patients, the number of rejected and cancelled patients,
the number of surgeon’s day within the planning horizon, and the number of OR
block in overtime. Finally, McRae & Brunner (2019) focused their analysis on
the impact of uncertainty on long-term strategies for OR planning. The authors
proposed a methodological framework based on an mixed integer programming
model for case mix planning that can be extended to include the stochastic-
ity of several parameters. More generally, we would remark that the objective
functions are usually related to cost minimisation, maximisation of number of
patients treated, maximisation of OR use, minimisation of overtime and idle
time, optimal resource allocation. Further, the solution approaches are mainly
based on solving the corresponding model with a general purpose solver and/or
with a metaheuristic algorithm.

In the context of classical metaheuristics, one of the most critical issues
is the efficient exploration of the neighbourhoods in order to guarantee the
overall algorithm efficiency. This issue is more evident when adopting the Large
Neighbourhood Search framework. In this context, a widely used approach to
limit the running time is performing an implicit neighbourhood exploration by a
sequence of destroy and repair operators (Pisinger & Ropke, 2010). The destroy
operators may be defined in different ways. In routing problems, for example,
a destroy operator could consist in breaking down k routes and leaving the
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others unvaried. The repair operator builds up a feasible solution starting from
the partially destroyed one. Generally, a greedy construction heuristic is used
to implement the repair operator leading to solutions with a possible loss of
quality.

Under the term Matheuristics are grouped all methods in which heuristic or
metaheuristic techniques are hybridised with exact methods (Maniezzo et al.,
2010). Between this broad family, it can be identified a specific subset of meth-
ods in which a (mixed) integer programming (MIP or IP) model is exploited to
analyse large neighbourhoods. Differently from repair heuristics, the usage of
MIP models allow to explore the whole large neighbourhood exhaustively, i.e.
to find the best way to reconstruct the destroyed solution. This could yield to
a much faster convergence toward high quality solutions.

Given a MIP (or IP) problem formulation, a neighbourhood generated by
a destroy operator can be described by adding constraints that fix the value
of variables, not involved in the destruction, equal to the value they assumed
in the starting solution, while letting the other variables free to assume any
value in their domain. The resulting over-constrained version of the model is
used to identify the optimal value for the remaining variables. The solution
of this model plays the role of the repair operator. This approach has been
proved to be very effective on nurse rostering (Della Croce & Salassa, 2014), jobs
scheduling (Della Croce et al., 2014), rich vehicle routing problems (Mancini,
2016, 2017b), and tourist cruises itinerary planning (Mancini & Stecca, 2018a).

Local Search matheuristics are a framework which exploit the mathematical
model to efficiently explore large neighbourhoods, by fixing some of the variables
and letting the solver optimizing the resulting over constrained model with a
short time limit. The selection of the variable to be fixed is performed starting
from a current solution and applying a destroy operator that implicitly defines
the neighbourhood to be analysed. Most of the application of from the literature
which are based on a single neighbourhood (see e.g. Mancini (2017a); Mancini
& Stecca (2018b); Marques et al. (2020); Gansterer et al. (2021); Mancini et al.
(2021) or on an LNS framework in which, at each iteration is drawn which
neighbourhood to apply among a set of available neighbourhoods (Mancini,
2016). Although at the heuristic level the multi-neighbourhood local search is
broadly applied in the literature, at the matheuristic level this is the first work
in which it is proposed and applied to OR planning and scheduling.

As reported in the introduction, our preliminary analysis suggested to adopt
patient priority maximisation and workload balance performance criteria since
they are capable to address the more relevant stakeholders’ preferences at the
joint tactical and operational level when considering a patient–centred view-
point. The literature review reported in this section indicates that the problem
of considering multiple and different performance criteria in the OR planning
and scheduling deserve to be studied. Although its relevance in the clinical prac-
tice, the workload balance is the less studied criteria, probably because fairness
problems are usually more complex to model and solve (Nicosia et al., 2017).
For this reasons, the aim of our paper is to develop an effective and efficient
solution approach for the OR planning and scheduling driven by the two above
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performance criteria. The idea of using a hierarchical objective function rep-
resents an attempt to lead the planning and scheduling decisions considering
different stakeholders’ preferences. Further, the use of a hierarchical objective
function seems perfectly suited when the objectives have very different units
of measurement as in our situation as opposed to a “weighted sum” approach,
which works better when the objectives that can be easily reduced to the same
unit of measurement (e.g. costs).

3. Problem Statement and Mathematical Models

Different performance criteria reflect different stakeholders’ preferences: OR
utilisation, patient priority, workload balance are the preferences of hospitals,
patients, and doctors and nurses, respectively. Our preliminary analysis (Ar-
inghieri & Duma, 2017; Aringhieri et al., 2018b) highlighted similar and different
behaviours of the patient priority maximisation and the workload balance cri-
teria. In addition, it shows that patient priority maximisation is an excellent
proxy of the OR utilisation maximisation.

The main goal of our research is to address different stakeholders’ preferences
(hospital, patients, doctors and nurses) by leading the optimisation process using
both patient priority maximisation and workload balance performance criteria.
In this section we introduce the OR planning and scheduling problem that we
consider in the remainder of the paper.

One of the main insight from our previous work (Aringhieri et al., 2015a) is
the importance of exploiting the inherent hierarchy between tactical and oper-
ational levels in order to achieve better overall solutions and developing more
efficient solution algorithms. Starting from this insight, the problem addressed
in this paper consists in simultaneously (i) assigning the OR sessions to a set
of surgical specialties and (ii) scheduling the patient surgeries (i.e., selecting
the patients from the specialty’s waiting list assigning them to the OR session
of the same specialty). The objective of this problem is to optimise both pa-
tient priority and workload balance criteria by leading the solution process by
a hierarchical objective function.

The hierarchical objective function is composed of the two following objective
functions. The patient priority maximisation is defined as the sum of the scores
of the patients selected for their surgery within the planning horizon in such
a way that the greater is the score, the higher is the priority. The score of
each patient is computed as need adjusted waiting days, that is his/her priority
level multiplied by the waiting time between the diagnosis and the surgery,
as introduced in Valente et al. (2009). Such an approach avoids the case in
which patients with high priority level are always operated on before those with
low priority level, which could be possible in the publicly funded health care
systems characterised by long waiting lists. This case was numerically discussed
in Aringhieri et al. (2015a). Priority levels are “coefficient, representing the
speed at which the clinical need is assumed to increase along with the passing
of time” as stated in Valente et al. (2009). The coefficient is not a constant value
but it depends on the value of the maximum time before treatment, that is such
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a period of time within which the admission to the hospital should be provided
in accordance with the national guidelines. In accordance with the literature,
the workload balance is assessed through the levelling of stay bed occupancy,
that is the bed levelling. Such a levelling is implemented by maximising the
number of beds occupied in a surgical specialty ward, in the day in which the
occupation is minimum, which works as maximin fairness (Nicosia et al., 2017).

The main assumptions we made for our problem are the following. For each
patient are known the surgical specialty to which he/she is assigned, the priority
level, the expected length of stay (LOS), the number of days elapsed from the
diagnosis until the day at the beginning of the planning horizon, the expected
surgery duration. For each specialty is known the number of beds available on
each day. Furthermore, the length of each OR session is supposed to be known.
A patient is assigned to an OR session only if that session has been assigned to
the surgical specialty which the patient belongs (block scheduling paradigm).
The total expected duration of surgeries scheduled in an OR session can not
exceed its length. Each scheduled patient occupies a bed in the day of his/her
surgery and for a number of following days equal to his/her LOS. We assume
that, as is the case in many publicly funded health systems, the number of
patients on the waiting lists is greater than the maximum number of patients
that can be operated on during the planning horizon considered. In addition,
deterministic surgery times and lengths of stay are assumed.

3.1. Notation

In order to formalise the addressed problem and the proposed solution ap-
proach, we introduce the following notation. Let I, J and K be respectively the
sets of patients, surgical specialties and operating rooms, each indexed by i, j
and k. Let T = {1, . . . , NT } be the set of days in the planning horizon, indexed
by t. Let Ij be the subset of patients that belongs to the specialty j ∈ J .

For each patient i ∈ I, the expected duration of the surgery pi expressed
in minutes, the priority level πi, and the expected LOS µi expressed in days
from the day after the surgery, are given. Let φit be the number of elapsed day
between diagnosis of patient i and day t. The score of the patient i at the day
t is then computed as πiφit.

Each OR session in the planning horizon is uniquely defined by the pair of
indices (k, t). We denote by skt the time capacity of the OR session (k, t). Let
λjt be the number of beds available for specialty j on day t.
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3.2. The hierarchical multi-objective optimisation model

In order to formulate our hierarchical multi-objective optimisation model,
we introduce the following binary decision variables:

xikt =

{
1 if patient i is assigned to OR session (k, t)

0 otherwise
, (1a)

yit =

{
1 if patient i surgery is scheduled on day t

0 otherwise
, (1b)

wit =

{
1 if patient i occupies a bed on day t

0 otherwise
, (1c)

zjkt =

{
1 if OR session (k, t) is assigned to specialty j

0 otherwise
. (1d)

Let be also O1 and O2 two dummy decision variables representing the primary
and the secondary objective functions. The hierarchical multi-objective optimi-
sation model can be formulated as follows.

H1 : max zbw = O1 +MO2 (2a)

s.t.
∑

k∈K

∑

t∈T
xikt ≤ 1 , i ∈ I (2b)

∑

i∈Ij

xikt ≤ |Ij |zjkt , j ∈ J, k ∈ K, t ∈ T (2c)

∑

j∈J
zjkt ≤ 1 , k ∈ K, t ∈ T (2d)

∑

i∈I
pixikt ≤ skt , k ∈ K, t ∈ T (2e)

∑

k∈K
xikt = yit , i ∈ I, t ∈ T (2f)

min(t+µi;NT )∑

τ=t

wiτ ≥ min(µi + 1; τ(t))yit , i ∈ I, t ∈ T (2g)

t∑

τ=max(t−µi,1)

yiτ ≥ wit , i ∈ I, t ∈ T (2h)

∑

i∈Ij

wit ≤ λjt , t ∈ T, j ∈ J (2i)

O1 ≤
∑

i∈Ij

wit , t ∈ T, j ∈ J (2j)

O2 =
∑

i∈I

∑

t∈T

∑

k∈K
πiφitxikt . (2k)

Constraint (2b) states that a patient can be assigned to at most one OR
session, which implies that only a subset of patients can be selected from the
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long waiting list. A patient can be assigned to an OR session only if it is assigned
to the surgery specialty to which he/she belongs, as stated in constraint (2c).
Constraint (2d) implies that each OR sessions must be assigned to at most one
specialty. Constraint (2e) imposes that the sum of the surgery times of the
patients scheduled in each OR session (k, t) may not exceed the time capacity
skt. Constraint (2f) allows to detect whether the surgery of the patient i is
scheduled on day t. Setting τ(t) = NT − t + 1, constraints (2g) and (2h)
imply that, if a patient i is scheduled on day t, he/she will occupy a bed for
the next µi days as depicted in Figure 1 (with µi = 2), which also illustrates
the hierarchy among the decision variables xikt, yit and wit. For each specialty,

0 0 1 0 0 0 0

0 0 1 1 1 0 0

value of yit

value of wit

μi (LOS)

patient i is scheduled on day t

(2h)

t - 2 t - 1 t t + 1 ... t + μi ...

(2g) (2h)

Figure 1: Hierarchy among the decision variables xikt, yit and wit: variables xikt determines
the values of yit through constraints (2f); in turn, the values of variable yit determines the
values of the variables wit (which measure the occupancy of stay beds) through the con-
straints (2g) and (2h).

constraint (2i) limits the number of beds that each day are occupied by a patient
to the maximum number of available beds.

The hierarchical objective function is reported in (2a) in which M is a con-

stant set to
1

1 +
∑
i πi

. The role of the multiplier M is to ensure that if a

solution S1 has a higher value of O1 with respect to S2, it would be preferred
whichever the corresponding value of O2. In other words, when comparing two
different solutions, the secondary objective becomes relevant only in the case of
the two solutions have the same value of O1.

The primary objective function (2j) implements the workload balance crite-
rion by a bed levelling approach, that is levelling the stay bed occupancy. In
our approach this is implemented by the maximisation of the number of beds
used in the day and the specialty ward with the minimal bed usage. The max
min objective function tends (instead of min max) also to implicitly fill as much
as possible the OR sessions, avoiding their under utilisation. The secondary ob-
jective (2k) implements the patient priority maximisation criterion maximising
the sum of scores of the patients scheduled for the surgery.

In order to complete the analysis regarding the two performance criteria, we
consider also the case in which the roles of the primary and secondary objective
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function swaps. This can be obtained modifying the objective function (2a) as
reported the following model:

H2 : max zwb = O2 +
O1

λmin + 1
s.t. (2a), . . . , (2k). (3)

The value of λmin is a strict upper bound on O1 computed as

λmin = min
(j∈J,t∈T )

λjt. (4)

In this way, the second term of the objective function takes values always be-
tween 0 and 1. Therefore, a solution S1, which has a higher value of O2 with
respect to another solution S2 and the lowest value for O1, would result always
better than S2, whichever is the value of O1 for S2.

4. Multi-Neighbourhood Local Search based Matheuristic

As reported in Aringhieri et al. (2017), a general purpose solver can provide
solutions only for small instances in a reasonable amount of running time. For
this reason, we propose a multi-neighbourhood local search matheuristic, which
consist in sequentially exploring a list of large neighbourhoods. To the best of
our knowledge, this is the first work in which a multi-neighbourhood local search
matheuristic is proposed and applied to OR planning and scheduling. When
compared to previous matheuristic literature, the key difference of our approach
is the adoption of ad hoc suited neighbourhood to force the improvement of the
objective function.

To solve the problems defined by the constraints (2b)-(2k), we introduce the
three different neighbourhoods. The first one is the following.

• N1: patients assignment re-optimisation.
The basic idea is to improve the quality of the solution regarding the
patient assignment component (O2). To this end, we keep fixed all the
OR assignments to specialties (variables zjkt) and re-optimise only the
patient selection and assignment to surgery sessions (variables xikt and
implicitly variables yit and wit).

Exploiting the inherent hierarchy between the specialty assignment decision and
the patient selection decision, Aringhieri et al. (2015a) showed the efficacy of a
neighbourhood working on the specialty assignment instead of only considering
the patient selection. In accordance with this insight, two additional neighbour-
hoods are introduced.

• N2: 2-days re-optimisation.
We re-optimise two randomly selected days (variables zjkt for two different
values of t) while keeping fixed the scheduling for the other days (all the
remaining variables).
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• N3: 2-specialties re-optimisation.
We re-optimise two randomly selected specialties (variables zjkt for two
different values of j) while keeping fixed the scheduling for the other spe-
cialties (all the remaining variables).

We propose two multi-neighbourhood local search matheuristics Azbw and Azwb

which sequentially explore the N1, N2 and N3 neighbourhoods: Azbw and Azwb

solve the problem with the objective function (2a) and (3), respectively. Both
algorithms are repeated for a fixed number of iterations Nmax. We remark that
neighbourhoods N2 and N3 are repeated αN2

≥ 1 and αN3
≥ 1 within the same

iteration. In order to reduce the running times, we set a different time limit
LN1 , LN2 and LN3 respectively for neighbourhoods N1, N2 and N3, after which
the best obtained solution is reported. Every time we find an improving solution
we keep it as current solution.

When Azbw is not able to improve the primary objective (bed levelling),
the algorithm tries to improve the secondary objective (patients score sum). A
larger improvement of the secondary objective can consist in the insertion of
a large number of patients in the scheduling. Unfortunately, such a condition
makes more difficult to improve the primary objective in the subsequent neigh-
bourhood explorations. To avoid such a situation, we introduce an ad hoc suited
neighbourhood N4 for Azbw to force the improvement of the primary objective:
the neighbourhood N4 is explored after N1, N2 and N3, and is repeated αN4

≥ 1
times with a time limit LN4 .

• N4: bed levelling improvement.
In order to push the first objective O1 to be increased, we first iden-
tify the specialty j and day t in the current solution for which the bed
occupation is minimum (and equal to O1), and then we artificially in-
crease its bed availability λjt; the idea is to force the selection of further
patients through a slightly modified version of the O2, which becomes
O2 =

∑
i∈I

∑
t∈T

∑
k∈K xikt. Note that this version of O2 is equivalent

to state that all the patients have the same priority. With this setting,
the run the model obtained by applying neighbourhood N1: if the best
obtained solution is not feasible with respect to the original value of λjt,
we reset λjt to its actual value and apply again N1 to regain feasibility.

Similar approaches to that underlying neighbourhood N4 have been already
reported in the metaheuristic literature for the solution of SONET network
design problems (Aringhieri & Dell’Amico, 2005a,b) and, more recently, for
dealing with a waste disposal problem (Aringhieri et al., 2018a), the equitable
coloring problem (Wang et al., 2018b), and the 2-constraint bin packing prob-
lem (Aringhieri et al., 2018c). To the best of our knowledge, this approach is
never applied in the context of matheuristics and for the solution of bi-objective
optimisation problems.

We observed that the bed levelling function tends to have lower OR utili-
sation because it does not take advantage from the insertion of patients which
have no impact on the bed levelling maximisation. For this reason, at the end
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of the Nmax iterations, Azbw performs an additional exploration of N1 in order
to improve the OR utilisation by adding further patients, if possible.

Finally, Algorithms 1 and 2 report the pseudocode of the algorithms Azwb

and Azbw , respectively: each algorithm takes as input an instance D of the prob-
lem and the list of parameters; after computing an initial solution S′ using the
function CIS( D ), the algorithm starts a cycle of Nmax iterations; at the niter-th
iteration, the algorithm tries to improve the current solution S′ exploring a list
of of large neighbourhoods recording the solution computed when it improve
the current best; at the end, the algorithm returns the best computed solution
S∗. Algorithm 2 differs from algorithm 1 by the use of the ad hoc suited neigh-
bourhood N4 and the post-optimisation using N1. In our implementation the
function CIS( D ) returns the best solution computed by the general purpose
solver on the whole model after LCIS seconds.

Algorithm 1: Azwb

Data: D,Nmax, αN· , LN· ;
Result: S∗;

S′ = CIS( D );
S∗ = S′; niter = 0 ;

while niter ≤ Nmax do
S′ = IS(S′, N1, LN1

);
if zwb(S

′) ≥ zwb(S∗) then
S∗ = S′

S′ = IS(S′, N2, αN2
, LN3

);
if zwb(S

′) ≥ zwb(S∗) then
S∗ = S′

S′ = IS(S′, N3, αN3
, LN3

);
if zwb(S

′) ≥ zwb(S∗) then
S∗ = S′

niter = niter + 1;

return (S∗);

Algorithm 2: Azbw
Data: D,Nmax, αN· , LN· ;
Result: S∗;
S′ = CIS( D );
S∗ = S′; niter = 0 ;
while niter ≤ Nmax do

S′ = IS(S′, N1, LN1);
if zbw(S′) ≥ zbw(S∗) then

S∗ = S′

S′ = IS(S′, N2, αN2 , LN3);
if zbw(S′) ≥ zbw(S∗) then

S∗ = S′

S′ = IS(S′, N3, αN3
, LN3

);
if zbw(S′) ≥ zbw(S∗) then

S∗ = S′

S′ = IS(S′, N4, αN4
, LN4

);
if zbw(S′) ≥ zbw(S∗) then

S∗ = S′

niter = niter + 1;

IS(S′, N1, LN1
);

if zbw(S′) ≥ zbw(S∗) then
S∗ = S′

return (S∗);

5. Quantitative analysis

The main objective of this section is to analyse the effectiveness and the effi-
ciency of the proposed matheuristic algorithms as well as to evaluate the quality
of the computed solution from an operating room management perspective.

We describe the computational environment and the benchmark instances in
Section 5.1. A wide computational analysis of the proposed matheuristics Azwb
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and Azbw is reported in Section 5.2 discussing (i) the null impact of the seed
selected and other parameter tuning (5.2.1), (ii) the comparison of the solutions
provided by the models H1 and H2, and the positive impact of adopting the
neighbourhood N4 in Azbw (5.2.2), (iii) an analysis of the Pareto frontier of the
solutions obtained by fixing the bed levelling value in Azbw (5.2.3). Finally, we
investigates the quality of the solutions from an operating room management
perspective in Section 5.3 providing (i) an analysis of the main parameters to
evaluate the management of a set of ORs in a hospital, and (ii) a sensitivity
analysis through a probabilistic evaluation of the surgery duration skt.

5.1. Computational environment

All the mathematical models H1, H2, and the matheuristics Azwb
and Azbw

were programmed in Mosel within the FICO Xpress-optimizer 8.3 platform. All
the tests for H1, H2 and Azwb

, Azbw were performed on a 2.1 gigahertz AMD
Opteron 8425HE with 12 cores with 16 gigabytes of memory.

We create a benchmark set B of realistic instances in order to test our al-
gorithms. The set B is created starting from the different patient case mix
generated by the tool proposed in Leeftink & Hans (2018), which are based on
real-life case mixes (11 surgical specialties). Such surgical specialties are: Gen-
eral surgery (CHI), Otolaryngology (ENT), Ophthalmic surgery (EYE), Ob-
stetric and gynaecologic surgery (GYN), Neurological surgery (NEU), Surgical
oncology (ONC), Orthopaedic surgery (ORT), Plastic surgery (PLA), Thoracic
surgery (THO), Urology (URO), and remaining specialties, such as colorectal
surgery, paediatric surgery, trauma surgery, vascular surgery, etc. (MIX).

For each specialty, we generated a waiting list made of 300 patients, each
one characterised by the expected operating time pi, the expected LOS µi, the
priority level πi, and the number of elapsed days between the diagnosis of patient
i and the day t of planning φit: pi is generated by the tool developed in Leeftink
& Hans (2018) in accordance to the selected case mix; µi is an integer random
number uniformly distributed in [1, . . . , 5]; πi is a value in {1, 2, 6, 12, 45} in
accordance with the case study discussed in Valente et al. (2009); φit is an
integer number in [1, . . . , 360] distributed according to Table 1.

The benchmark set B has been generated starting from the above lists of
patients: for each instance, patients have been randomly selected from the list
of the specialty in such a way to keep unchanged the distribution of the patients
with respect to πi. We generated 80 instances varying the main instance pa-
rameters as follows: |I| = {50, 100} patients from each one of the |J | = {4, 8}
specialties. The number of ORs is set to |K| = {|J |, |J | + 2}, and each OR
sessions in the 5 days has a time capacity set to skt = 480 minutes. Finally the
number of beds are set to λjt = {20, 40}, for each specialty j and day t. With
these parameters, we can obtain 20 different combinations of feasible settings for
which we generated 5 different instances varying the |J | specialties, as reported
in Table A.7 and Table A.8.
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Table 1: Patient distribution: for each specialty, the two columns report the number and the
percentage of patients having φit discrete uniformly distributed in [1, . . . , 360

πi
].

πi CHI ENT EYE GYN MIX NEU

45 15 5% 30 10% 15 5% 30 10% 30 10% 15 5%
12 90 30% 75 25% 45 15% 30 10% 75 25% 45 15%
6 60 20% 90 30% 120 40% 120 40% 90 30% 120 40%
2 75 25% 75 25% 105 35% 90 30% 75 25% 90 30%
1 60 20% 30 10% 15 5% 30 10% 30 10% 30 10%

πi ONC ORT PLA THO EYE

45 60 20% 30 10% 15 5% 45 15% 15 5%
12 150 50% 60 20% 45 15% 105 35% 60 20%
6 75 25% 120 40% 120 40% 120 40% 90 30%
2 15 5% 75 25% 90 30% 30 10% 105 35%
1 0 0% 15 5% 30 10% 0 0% 30 10%

5.2. Performances and quality of the proposed algorithms

In this section, we report a comprehensive analysis of our matheuristic al-
gorithms. Section 5.2.1 reports about the tuning of the algorithm parameters
while Section 5.2.2 reports the results of our algorithms compared with the
model solutions. Finally, an analysis of the Pareto optimal frontier is discussed
in Section 5.2.3.

5.2.1. Parameter tuning

Preliminary computational experiments have been conducted in order to
determine the setting of the two main parameters of our algorithms. Since
neighbourhoods N2, N3 and N4 have a random component, we would evaluate
the possible dependency of the algorithm results from the initial random seed.
Further, we would evaluate the impact of different values of the time limit LN4

.
Table 2 reports the results of the random seed dependency analysis per-

formed on the problem H1 using the algorithm Azbw with LN4 = 100 seconds
over the benchmark B. The first three columns report the sum of the average
objective function values, O1 and O2, respectively, while the last column reports
the average running time in seconds. We consider the sum instead of an average
value since we are interested in evaluating the dependency over all instances.
The first part of the table shows the results obtained with ten different random
seeds while the second one shows several statistics over the values in the first
part. Finally, the last row reports the average results obtained directly solving
the model with a time limit of 3600 seconds.

The results prove that our algorithm is systematically better than the model
solution, independently from the random seed used: as a matter of fact, the
worst results – reported in the minA100

zbw
– row are better than those of the model.

Further, the standard deviation analysis – reported in the σA100
zbw

row – proves

a minimal and acceptable level of random seed dependency corresponding to a
variation of the 0.73%, 0.74% and 0.92% of the objective function, O1 and O2,
respectively. Therefore, in the following we use a single seed set to 99110 for

17

                  



Table 2: Dependency from the random seed (algorithm Azbw ).

∑
zbw

∑
O1

∑
O2 avg. time

seeds

18963 980.38 971 9378286 640.4
28189 972.48 963 9481542 692.8
38255 989.58 980 9581636 676.2
45924 982.40 973 9400172 680.6
61260 989.61 980 9605517 738.3
82581 974.63 965 9628829 642.3
84467 988.49 979 9488099 676.8
87409 981.58 972 9575808 626.7
97317 987.45 978 9454495 699.9
99110 995.57 986 9569741 682.9

stats

µAzbw
984.22 974.70 9516412.5 675.7

σAzbw
7.23 7.21 87967.9 32.7

maxAzbw
995.57 986.00 9628829.0 738.3

minAzbw
972.48 963.00 9378286.0 626.7

H1 965.13 957.00 8128346.0 3600.0

Azbw . We use the same seed also for Azwb
, whose dependency analysis is less

relevant.
Regarding the setting of LN4

we conducted several tests with values belong-
ing to {30, 50, 80, 100, 130, 150}. The results do not show a clear dominance, and
by consequence we decided to consider three different versions of our algorithm
Azbw varying the time limit LN4 in {30, 100, 150}. In the following, we denote
such versions as A30

zbw
, A100

zbw
and A150

zbw
, respectively. The remaining parameters

are set as follows: αN2
= αN3

= αN4
= 3, LN1

= LN2
= LN3

= LCIS = 5
seconds, and Nmax = 4.

5.2.2. Performance of the algorithms

In this section, we provide a detailed performance analysis of our proposed
algorithms, comparing the results with the solution computed by the XPress
general purpose solver.

The following three tables share the same structure. The columns are
grouped in two sets. The first set concerns the case in which the workload
balance is the primary objective function, reporting respectively the results for
the model, for the matheuristic Azbw with the three different time limits, for
the matheuristic A∗zbw (which is the combination of the three previous versions
returning the best solution computed), and for the matheuristic A0

zbw
(which

is the algorithm Azbw without the use of N4 for the problem H1). The second
set concerns the case in which the patient priority maximisation is the primary
objective function, reporting respectively the results for the model and for the
matheuristic Azwb

. The rows of the tables report the average results concerning
the objective function, the gap of the algorithm with respect to the model, and
the running time, respectively. The last three rows provide an analysis of the
bed levelling value reporting the number of time in which the algorithm give a
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better (wins) or the same (draws) result of the model, and the sum of the O1

values. Finally, the rows report the results computed over the whole benchmark
set B or a part of it.

Table 3: Performance of the algorithms: analysis over the whole benchmark set B.

workload balance patient priority

H1 A30
zbw

A100
zbw

A150
zbw

A∗zbw A0
zbw

H2 Azwb

o.f. 12.1 12.2 12.4 12.4 12.6 11.0 11749.6 12251.1
gap – 3.75% 5.96% 5.56% 7.63% -6.72% – 3.63%
time 3600.0 526.4 682.9 874.8 2084.1 274.5 3600.0 224.4
wins – 14 17 15 18 9 – 57

draws – 43 49 50 54 31 – 22∑
O1 957 967 986 982 1002 867 201 522

Regarding the workload balance case, the results provided in Table 3 prove
the superiority of the three matheuristics A30

zbw
, A100

zbw
and A150

zbw
with respect

to the solution computed by the general purpose solver for H1, reducing the
average running time from about 4 up to 7 times. The unsatisfactory results of
A0
zbw

prove the need and the positive impact of the neighbourhood N4 to deal
with the bed levelling component of the hierarchical objective function. The
results (especially those regarding O1) seem to indicate that A100

zbw
is the best

matheuristic, even if the results of A∗zbw are better on average but requiring a
larger running time.

Regarding the patient priority maximisation case, the results provided in Ta-
ble 3 prove the superiority of the matheuristic Azwb

with respect to the solution
computed by the general purpose solver for H2, reducing the average running
time of about 16 times. It is worth noting that the matheuristic Azwb

computes
better solutions than those for H2 also in terms of O1 with 57 wins, and 65 wins
if we compare the value of O2.

Table 4: Performance of the algorithms: analysis over the whole benchmark set B clustering
the instance on the number of patients for each specialty.

workload balance patient priority

H1 A30
zbw

A100
zbw

A150
zbw

A∗zbw A0
zbw

H2 Azwb

|I| = 50

o.f. 11.5 11.0 11.2 11.0 11.4 9.9 9586.1 9905.1
gap – -3.77% -2.49% -4.20% -0.89% -13.19% – 2.75%
time 3600.0 407.8 477.8 610.4 1496.0 227.2 3600.0 206.2
wins – 0 1 0 1 0 – 32

draws – 26 31 29 34 17 – 8∑
O1 457 438 444 436 452 394 89 260

|I| = 100

o.f. 12.6 13.4 13.7 13.8 13.9 12.0 13913.1 14597.0
gap – 11.27% 14.41% 15.32% 16.15% -0.25% – 4.51%
time 3600.0 645.0 888.0 2672.2 1139.2 321.8 3600.0 242.6
wins – 14 16 15 17 9 – 25

draws – 17 18 21 20 14 – 14∑
O1 500 529 542 546 550 473 112 262
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Table 4 reports the results of the instances in B clustered with respect to
the number of patients belonging to each specialty. The results prove a large
superiority of the solutions computed by the Azbw algorithms with respect to
those computed solving directly the model H1 on larger instances while, on the
contrary, the solutions of H1 are still better on the smallest ones. However the
results for A100

zbw
show that the differences in terms of the bed levelling (objective

function O1) is only on 8 instances out of 40 while in the remaining 32 instances
the value of O1 is equivalent. The results confirm the positive impact of the
neighbourhood N4, and the superiority of the solutions computed by Azwb

with
respect to those computed solving directlyH2, though the differences are smaller
for the smaller instances.

Table 5: Performance of the algorithms: analysis over the whole benchmark set B clustering
the instance on the number of stay beds allocated to each specialty.

workload balance patient priority

H1 A30
zbw

A100
zbw

A150
zbw

A∗zbw A0
zbw

H2 Azwb

λjt = 20

o.f. 11.3 11.8 12.1 12.0 12.3 10.7 11124.8 11871.7
gap – 8.79% 11.71% 11.00% 13.67% -1.09% – 5.66%
time 3600.0 528.5 652.5 744.6 1925.6 282.8 3600.0 226.0
wins – 11 12 10 13 9 – 28

draws – 16 20 22 23 13 – 12∑
O1 448 467 479 475 488 424 95 255

λjt = 40

o.f. 12.8 12.6 12.8 12.8 13.0 11.2 12374.4 12630.4
gap – -1.29% 0.21% 0.13% 1.59% -12.35% – 1.60%
time 3600.0 524.2 713.4 1005.0 2242.6 266.3 3600.0 222.8
wins – 3 5 5 5 0 – 29

draws – 27 29 28 31 18 – 10∑
O1 509 500 507 507 514 443 106 267

Table 5 reports the results of the instances in B clustered with respect to
the number of stay beds allocated to each specialty. The gaps reported seem
to suggest that the instances with less number of stay beds are harder than the
others, both considering bed levelling and patient priority. For the instances
with a smaller number of stay beds, all the Azbw algorithms outperform the
results obtained by solving directly H1, while for those with a larger number of
stay beds the results are almost equivalent. As in the previous tables, the results
confirm the positive impact of the neighbourhood N4, and the superiority of the
solutions computed by Azwb

with respect to those computed solving directly H2,
though the differences are smaller for the instances with a larger number of stay
beds.

Summing up, the large running time reduction proves the efficiency of the
proposed algorithms while the average improvement of the solution quality
proves their effectiveness. Detailed results are reported in Tables A.9 and A.10
respectively for H1 and Az100bw

, and for H2 and Azwb
.

5.2.3. Pareto optimal frontier analysis

In many real-life multi-objective optimisation problems, a common study is
to analyse the Pareto optimal frontier in order to determine a solution corre-
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sponding to the best compromise according to the decision-maker’s preferences.
This can be quite difficult to determine due to the large number of possible
solutions belonging to the frontier. In our problem, this analysis has been made
easier by the discrete nature of one of the two components of our objective
function, that is the value O1 regarding the bed levelling.

In this section we provide an analysis of the Pareto optimal frontier in order
to evaluate the possible contrast between the two criteria, workload balance and
patient priority maximisation. This analysis is performed by running the Azwb

fixing the value of O1 equals to f belonging to the discrete interval [bwb, bbw],
where bwb and bbw are respectively the value of O1 computed by Azwb

and A100
zbw

.
We denote such a algorithm version with Azwb

(f).
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Figure 2: Pareto frontier analysis: four selected instances whose characteristics and parameters
are depicted in Tables A.7 and A.8.

The Figure 2 draws the Pareto frontier of four selected instances. The plots
show a general dominance of the solutions having a larger value of O1: for
the instance 73 I100 J4 B40 O6 the solution with O1 = 13 dominates all the
solutions with a lower value of O1; similar remarks hold also for the other three
instances plotted. Therefore the workload balance criterion seems to be a proxy
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for the patient priority maximisation, at least for values not so far from the
optimal one. In practice, this means that it seems possible to have solutions
that are a good compromise between the two criteria.

Further, we would point out an interesting remark which comes out from
this analysis. Especially for the instances having less patients for each specialty,
the algorithm Azwb

(f) with f = bbw is often unable to find a feasible solution.
Since such a value of f derives from the solution computed by A100

zbw
, this further

proves the importance and the positive impact of the neighbourhood N4.

5.3. Operating room management considerations

In this section, we investigates the quality of the solutions from an operating
room management perspective providing (i) an analysis of the main parameters
to evaluate the management of a set of ORs in a hospital, and (ii) a sensitivity
analysis through a probabilistic evaluation of the surgery duration skt, which is
the most relevant parameter for hospital managers to evaluate a solution at the
operative level (see, e.g. Landa et al. (2016)).

We first analyse the solutions produced by the algorithms A100
zbw

and Azwb

by considering (i) the number P of scheduled patients, (ii) the utilisation UOR
of the operating sessions, (iii) the utilisation UB of the stay beds, and (iv) the
difference ∆ between the maximum and the minimum number of occupied stay
beds. Table 6 reports the average µ and the standard deviation σ of such values
for the benchmark B classified by the corresponding values of |I|, |J | and λjt.
We remark that each group of instances considers a number of patients equals
to |I| |J |.

Table 6: Comparing the solutions from a managerial point of view.

Azwb
A100
zbw

|I| |J | λjt P UOR UB ∆ P UOR UB ∆

50

4
20

µ 137.40 84.93% 68.45% 7.93 138.40 93.91% 68.88% 6.80
σ 21.02 5.15% 9.87% 2.12 19.20 3.14% 9.16% 2.01

40
µ 142.00 87.08% 35.74% 14.13 142.70 94.52% 35.65% 11.30
σ 24.10 2.60% 11.95% 3.31 24.15 2.17% 11.92% 2.43

8
20

µ 255.80 85.25% 63.86% 9.23 264.70 92.53% 66.30% 7.33
σ 21.89 1.80% 11.09% 0.89 19.79 3.02% 9.08% 0.71

40
µ 267.30 86.42% 33.97% 14.83 270.90 93.54% 34.61% 11.60
σ 23.35 1.96% 11.22% 1.62 20.77 1.61% 9.85% 2.30

100

4
20

µ 149.30 74.08% 71.08% 8.83 165.78 92.71% 80.14% 4.81
σ 16.51 6.32% 7.34% 1.45 19.53 3.89% 8.43% 1.27

40
µ 183.50 85.23% 46.64% 17.73 190.50 95.25% 48.10% 14.45
σ 32.66 3.15% 15.75% 3.63 34.56 1.62% 16.60% 2.00

8
20

µ 291.80 80.29% 73.96% 8.66 318.50 91.23% 79.98% 6.34
σ 32.52 7.10% 16.91% 1.07 12.99 2.29% 6.01% 0.58

40
µ 338.44 86.25% 43.18% 18.89 357.60 92.76% 45.60% 14.38
σ 35.13 1.36% 18.63% 3.26 33.82 3.97% 16.43% 1.75

We observe that the values for the algorithm A100
zbw

are generally better than
those for the algorithm Azwb

. Considering the instances with |I| = 50, we
observe that the values of ∆ show the capability of A100

zbw
to determine a better
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overall workload balance while keeping a similar stay bed utilisation, as shown
by the values of UB .

We observe a substantial better utilisation of the OR sessions for A100
zbw

with
respect to Azwb

, which significantly increases for the instances with |I| = 100.
This is due by the fact that our instances are characterised by several specialties
with a different case mix: when the set |I| of a specialty is characterised by
patients having a large different operating time, it could happen that patients
with high priority have short operating time, and vice versa. For example,
this the case of those instances that include specialty MIX (the list is reported
in Tables A.7 and A.8) whose surgeries are quite different (e.g. colorectal,
paediatric, trauma, ...). In this situation, Azwb

fosters the scheduling of high
priority patients which could be not enough to fill in the OR session because of
the bottleneck effect of the limited number of stay beds, while the search for a
bed levelling of A100

zbw
implies a good utilisation of the OR sessions, as discussed

in Aringhieri & Duma (2017). Finally, the remarks on the workload balance
and stay bed utilisation for the instances with |I| = 50 hold also for those with
|I| = 100 but highlighting a slightly larger difference between the values of UB
caused by the bottleneck effect discussed above.

From a management point of view, the robustness of the solution with re-
spect to the surgery duration is more relevant than that with respect to the LOS.
Among many others, the main reason is that overtime is a scarce and expensive
resource. On the contrary, the LOS is a less relevant parameter in the clini-
cal practice: when the patient presents several morbidities and complications,
she/he is transferred to another ward (usually general medicine) in such a way
to offer better treatment in terms of care and better health outcomes (see, e.g.
Duckitt et al. (2010); Regina et al. (2019)). To this end, we provide a sensitivity
analysis of the surgery duration by measuring the probability for an OR session
to exceed the total capacity skt due to an observational or measurement error of
pi. We assume therefore that the real operating time is a Gaussian distributed
random variable ψi with average value equals to the expected operating times
pi and standard deviation equals to 10%, that is 0.1 pi.

Given that a sum of Gaussian distributed random variables is itself a Gaus-
sian distributed random variable, the real total duration of an OR session is a
Gaussian distributed random variable with average value equals to the sum of
the expected operating times

∑
pi and standard deviation equals to 0.1

√∑
p2i ,

as depicted in the following examples: let us suppose that skt = 480 and having
two different schedules, the first one composed of two surgeries of 200 minutes
each, and the second one composed of one surgery of 100 minutes and one of
300 minutes; in this case, we have a different probability of exceeding the total
capacity of the OR session: although we obtain the same OR session utilisation,
the first schedule provides a lower standard deviation, that is 28 minutes vs. 32
minutes.

We introduce the robustness indicators Rδ,θbw and Rδ,θwb defined as the fraction
of the sessions such that the probability of not exceeding skt+δ (δ ≥ 0) is equal
to or greater than a minimum target θ, in which δ is a fixed tolerance. Such
indicators are computed as follow: given the set Ikt of the patient scheduled in a
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certain session (k, t), we compute the probability Pδkt = P(
∑
i∈Ikt

ψi ≤ skt + δ),
and then we can estimate the index as the percentage of the sessions (k, t) such
that Pδkt ≥ θ.
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Figure 3: Robustness: comparing A100
zbw

and Azwb on instances with 50 patients per specialty.
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Figure 4: Robustness: comparing A100
zbw

and Azwb on instances with 100 patients per specialty.

In Figures 3 and 4 we plotted the robustness indicators for three different
tolerances values δ = 0, 15, 30 and ranging the minimum target θ ∈ [0.5, 1].

The four plots show how quickly or slowly the robustness indices Rδ,θbw and Rδ,θwb
decrease as soon as the value of θ increases. For instance, choosing a target
θ = 0.9, Figures 3(a) reports a probability of 37.91%, 58.21% and 89.65% of
not exceeding the total capacity of 480 minutes plus a tolerance of 0, 15 and 30
minutes, respectively. There are two general insights provided by the robustness
analysis.

The first insight is that the algorithm A100
zbw

is significantly more robust of
the algorithm Azwb

, especially when the tolerance is equal to 0, that is when the
schedule is not allowed to use overtime to complete the session. This results is
counter-intuitive with respect to the OR utilisation reported in Table 6. This
remark can be explained as follow. Considering a pair of patients with the
same value of µi, the optimal solution determined by the bed levelling criterion
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could favour the patient having shorter duration pi (and reduced impact of the
robustness indicators) in order to allow the possibility of adding further patients,
if needed. Further, patients having longer pi are distributed among OR sessions
in order to avoid bed levelling bottlenecks.

The second insight is that increasing the number of patients to be operated
on, we have a slightly better robustness for both of the algorithms. In accordance
with the above considerations, it is easier to select patients with short pi when
the number of patients to be operated on increases.

6. Conclusions

The aim of this paper is to develop an effective and efficient solution approach
for the OR planning and scheduling capable to take into account the patient
priority maximisation and workload balance criteria at the same time. This
work is inspired by the need of a deeper understanding of the quality of the
solutions obtained when a combination of the two criteria leads the OR planning
decisions.

Starting from a hierarchical multi-objective optimisation model for the com-
bined master surgical scheduling and surgical cases assignment problems, we
developed a class of new multi-neighbourhood local search based matheuristic
algorithms. In particular, we developed an ad hoc neighbourhood, which has
been proved to generate better solutions in a significant shorter running time
with respect to a general purpose solver. We would remark that this approach
was never applied in the context of matheuristics and for the solution of bi-
objective optimisation problems, to the best of our knowledge.

We provided an accurate computational analysis on realistic instances prov-
ing the effectiveness of the proposed approach, also providing a Pareto optimal
frontier analysis. From this analysis, it clearly emerges that the optimisation
of the workload balance determines good quality solutions also from a patient
priority point of view, while the opposite is not true. Further we investigate the
computed solutions from an OR management point of view also evaluating their
robustness with respect to the uncertainty of the surgery durations. From this
analysis, it emerges that the solutions obtained using the workload balance as
primary criterion are better than those obtained using the priority maximisation
criterion.

A future development could consist in the extension of our methodology
in order to consider the stay bed as a shared resource among different wards.
Another possible development could consider an evaluation of the proposed
hierarchical multi-objective over time in order to evaluate the impact of the
OR planning decisions on a longer time horizon, as in Aringhieri et al. (2018b).
As an alternative of our approach, it could be of interest to consider a multiple
objective approach in order to compare the quality of the solutions provided and,
more general, to further investigate how to consider the different preferences of
the stakeholders. Finally, it would certainly be of interest to integrate in our
solution approach the uncertainty of the main parameters such as the surgery
duration and the length of stay.
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Aringhieri, R., Landa, P., Soriano, P., Tànfani, E., & Testi, A. (2015a). A two level
Metaheuristic for the Operating Room Scheduling and Assignment Problem. Com-
puter & Operations Research, 54 , 21–34.
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Appendix A. Description of the instances and their solution values

Instances and a summary file of the results are available online at http:

//www.di.unito.it/~aringhie/benchmarks.html.

Table A.7: Benchmark instances in B: I is the number of patients for each one of the J
specialities, B is the number of beds for each specialty, O is the number of operating rooms
available for each of the 5 days. The bullet indicates from which specialties the patients have
been selected.

instance id CHI ENT EYE GYN MIX NEU ONC ORT PLA THO EYE

01 I50 J4 B20 O4 • • • •
02 I50 J4 B20 O4 • • • •
03 I50 J4 B20 O4 • • • •
04 I50 J4 B20 O4 • • • •
05 I50 J4 B20 O4 • • • •
06 I50 J8 B20 O4 • • • • • • • •
07 I50 J8 B20 O4 • • • • • • • •
08 I50 J8 B20 O4 • • • • • • • •
09 I50 J8 B20 O4 • • • • • • • •
10 I50 J8 B20 O4 • • • • • • • •
11 I50 J4 B20 O6 • • • •
12 I50 J4 B20 O6 • • • •
13 I50 J4 B20 O6 • • • •
14 I50 J4 B20 O6 • • • •
15 I50 J4 B20 O6 • • • •
16 I50 J8 B20 O6 • • • • • • • •
17 I50 J8 B20 O6 • • • • • • • •
18 I50 J8 B20 O6 • • • • • • • •
19 I50 J8 B20 O6 • • • • • • • •
20 I50 J8 B20 O6 • • • • • • • •
21 I50 J4 B40 O4 • • • •
22 I50 J4 B40 O4 • • • •
23 I50 J4 B40 O4 • • • •
24 I50 J4 B40 O4 • • • •
25 I50 J4 B40 O4 • • • •
26 I50 J8 B40 O4 • • • • • • • •
27 I50 J8 B40 O4 • • • • • • • •
28 I50 J8 B40 O4 • • • • • • • •
29 I50 J8 B40 O4 • • • • • • • •
30 I50 J8 B40 O4 • • • • • • • •
31 I50 J4 B40 O6 • • • •
32 I50 J4 B40 O6 • • • •
33 I50 J4 B40 O6 • • • •
34 I50 J4 B40 O6 • • • •
35 I50 J4 B40 O6 • • • •
36 I50 J8 B40 O6 • • • • • • • •
37 I50 J8 B40 O6 • • • • • • • •
38 I50 J8 B40 O6 • • • • • • • •
39 I50 J8 B40 O6 • • • • • • • •
40 I50 J8 B40 O6 • • • • • • • •
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Table A.8: Benchmark instances in B: I is the number of patients for each one of the J
specialities, B is the number of beds for each specialty, O is the number of operating rooms
available for each of the 5 days. The bullet indicates from which specialties the patients have
been selected.

instance id CHI ENT EYE GYN MIX NEU ONC ORT PLA THO EYE

41 I100 J4 B20 O4 • • • •
42 I100 J4 B20 O4 • • • •
43 I100 J4 B20 O4 • • • •
44 I100 J4 B20 O4 • • • •
45 I100 J4 B20 O4 • • • •
46 I100 J8 B20 O4 • • • • • • • •
47 I100 J8 B20 O4 • • • • • • • •
48 I100 J8 B20 O4 • • • • • • • •
49 I100 J8 B20 O4 • • • • • • • •
50 I100 J8 B20 O4 • • • • • • • •
51 I100 J4 B20 O6 • • • •
52 I100 J4 B20 O6 • • • •
53 I100 J4 B20 O6 • • • •
54 I100 J4 B20 O6 • • • •
55 I100 J4 B20 O6 • • • •
56 I100 J8 B20 O6 • • • • • • • •
57 I100 J8 B20 O6 • • • • • • • •
58 I100 J8 B20 O6 • • • • • • • •
59 I100 J8 B20 O6 • • • • • • • •
60 I100 J8 B20 O6 • • • • • • • •
61 I100 J4 B40 O4 • • • •
62 I100 J4 B40 O4 • • • •
63 I100 J4 B40 O4 • • • •
64 I100 J4 B40 O4 • • • •
65 I100 J4 B40 O4 • • • •
66 I100 J8 B40 O4 • • • • • • • •
67 I100 J8 B40 O4 • • • • • • • •
68 I100 J8 B40 O4 • • • • • • • •
69 I100 J8 B40 O4 • • • • • • • •
70 I100 J8 B40 O4 • • • • • • • •
71 I100 J4 B40 O6 • • • •
72 I100 J4 B40 O6 • • • •
73 I100 J4 B40 O6 • • • •
74 I100 J4 B40 O6 • • • •
75 I100 J4 B40 O6 • • • •
76 I100 J8 B40 O6 • • • • • • • •
77 I100 J8 B40 O6 • • • • • • • •
78 I100 J8 B40 O6 • • • • • • • •
79 I100 J8 B40 O6 • • • • • • • •
80 I100 J8 B40 O6 • • • • • • • •
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Table A.9: Benchmark instances in B: models and matheuristic solution values for the work-
load balance case (instances are denoted using only the two first letters of the “instance id”
used in Table A.7 and A.8).

H1 A100
zbw

H1 A100
zbw

zbw O1 O2 zbw O1 O2 zbw O1 O2 zbw O1 O2

01 11.0461 11 46064 9.0458 9 45782 41 13.0685 13 68545 13.0682 13 68182
02 9.0759 9 75916 9.0760 9 76041 42 13.1048 13 104774 13.1054 13 105388
03 8.0603 8 60330 8.0606 8 60626 43 9.0787 9 78745 9.0785 9 78456
04 13.0567 13 56659 13.0561 13 56056 44 16.0927 16 92725 15.0903 15 90288
05 8.0725 8 72467 8.0720 8 71981 45 12.1081 12 108071 12.1076 12 107640
06 10.1104 10 110373 10.1158 10 115826 46 8.0493 8 49307 13.1711 13 171132
07 8.1172 8 117197 8.1282 8 128219 47 7.0564 7 56438 10.2008 10 200838
08 8.1025 8 102513 8.1066 8 106571 48 7.1185 7 118461 11.1478 11 147791
09 9.1138 9 113765 9.1212 9 121194 49 6.0526 6 52574 10.1583 10 158347
10 11.1103 11 110313 11.1224 11 122446 50 7.0574 7 57388 13.1946 13 194584
11 11.0539 11 53900 11.0554 11 55355 51 15.0755 15 75496 15.0862 15 86203
12 16.0797 16 79666 16.0808 16 80843 52 18.1137 18 113657 18.1222 18 122184
13 13.0627 13 62729 13.0679 13 67916 53 14.0743 14 74252 15.0908 15 90815
14 16.0637 16 63660 16.0625 16 62520 54 17.0739 17 73934 15.0890 15 88952
15 13.0815 13 81528 12.0837 12 83749 55 16.1035 16 103515 15.1253 15 125303
16 12.1204 12 120378 12.1281 12 128071 56 9.0602 9 60177 13.1673 13 167257
17 13.1020 13 102016 12.1347 12 134736 57 8.0601 8 60140 12.1831 12 183096
18 11.1213 11 121275 10.1273 10 127339 58 8.0568 8 56822 12.1733 12 173320
19 12.1189 12 118913 11.1326 11 132647 59 12.1210 12 120963 13.1651 13 165104
20 13.1254 13 125389 14.1221 14 122058 60 8.0631 8 63072 12.2017 12 201699
21 12.0522 12 52245 12.0517 12 51681 61 13.0756 13 75612 13.0749 13 74936
22 9.0863 9 86273 9.0864 9 86348 62 13.1160 13 116016 13.1142 13 114205
23 10.0617 10 61698 10.0610 10 61036 63 11.0786 11 78630 11.0785 11 78547
24 12.0582 12 58175 12.0573 12 57259 64 13.0841 13 84125 13.0837 13 83682
25 9.0733 9 73247 9.0732 9 73238 65 12.1113 12 111306 12.1124 12 112377
26 10.1199 10 119931 10.1197 10 119717 66 12.1747 12 174677 12.1874 12 187378
27 8.1226 8 122618 8.1286 8 128545 67 11.1898 11 189808 9.2001 9 200062
28 10.1083 10 108344 10.1109 10 110902 68 9.1245 9 124503 11.1454 11 145396
29 10.1181 10 118126 10.1198 10 119823 69 10.1817 10 181740 11.1947 11 194731
30 10.1295 10 129467 10.1292 10 129203 70 10.2036 10 203557 13.2231 13 223064
31 12.0565 12 56467 12.0562 12 56240 71 16.0893 16 89349 16.0904 16 90442
32 17.0843 17 84288 17.0849 17 84897 72 20.1211 20 121051 20.1259 20 125887
33 12.0622 12 62195 12.0619 12 61949 73 16.1045 16 104543 16.1053 16 105333
34 14.0624 14 62434 14.0618 14 61765 74 22.1000 22 99987 22.1021 22 102078
35 15.0877 15 87744 14.0895 14 89525 75 19.1284 19 128404 17.1316 17 131633
36 11.1180 11 118012 11.1288 11 128810 76 13.1708 13 170753 16.1879 16 187933
37 13.1507 13 150739 10.1539 10 153866 77 13.2129 13 212866 15.2239 15 223948
38 12.1174 12 117363 12.1165 12 116534 78 15.1661 15 166120 15.1853 15 185349
39 12.1295 12 129520 12.1177 12 117689 79 13.1699 13 169912 13.1934 13 193364
40 14.1363 14 136345 10.1413 10 141285 80 16.2060 16 206049 15.2325 15 232529
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Table A.10: Benchmark instances in B: models and matheuristic solution values for the
patient priority case (instances are denoted using only the two first letters of the “instance
id” used in Table A.7 and A.8).

H2 Azwb
H2 Azwb

zbw O1 O2 zbw O1 O2 zbw O1 O2 zbw O1 O2

01 4620.10 0 46201 4658.58 8 46585 41 7098.19 9 70981 7249.79 9 72497
02 7639.86 6 76398 7636.97 7 76369 42 10959.60 0 109596 10808.10 10 108080
03 6079.70 0 60797 6047.86 6 60478 43 8024.10 0 80241 8089.88 8 80898
04 5708.30 0 57083 5706.26 6 57062 44 9619.70 10 96196 9635.71 11 96356
05 7213.90 0 72139 7183.77 7 71837 45 10930.40 0 109304 10956.20 10 109561
06 10807.30 0 108073 11852.50 0 118525 46 14987.40 0 149874 17711.70 0 177117
07 12918.30 0 129183 13392.80 0 133928 47 17599.90 0 175999 19502.79 9 195027
08 10256.50 0 102565 11045.16 6 110451 48 13467.80 0 134678 15494.90 0 154949
09 11453.50 0 114535 12528.76 6 125287 49 15650.60 0 156506 16711.94 4 167119
10 11606.00 0 116060 12589.90 0 125899 50 16957.40 0 169574 18815.70 0 188157
11 5437.08 8 54370 5571.50 10 55714 51 8344.59 9 83445 8917.42 12 89173
12 8360.48 8 83604 8480.92 12 84808 52 12560.50 8 125604 12663.60 10 126635
13 6730.30 0 67303 6926.09 9 69260 53 8883.15 5 88831 9623.90 10 96238
14 6506.99 9 65069 6692.04 14 66919 54 8520.31 11 85202 9066.63 13 90665
15 8273.17 7 82731 8361.69 9 83616 55 11887.00 5 118869 12765.69 9 127656
16 12190.30 0 121903 13218.69 9 132186 56 15932.80 0 159328 17876.40 0 178764
17 12605.20 0 126052 13723.97 7 137239 57 18486.40 0 184864 20069.70 0 200697
18 12185.50 0 121855 12942.98 8 129429 58 15240.50 0 152405 16201.10 0 162011
19 12684.70 0 126847 13071.58 8 130715 59 16332.10 0 163321 18319.08 8 183190
20 12839.00 0 128390 14285.00 0 142850 60 17391.40 0 173914 18471.10 0 184711
21 5230.60 0 52306 5228.78 8 52287 61 7575.96 6 75759 7539.79 9 75397
22 8592.95 5 85929 8575.06 6 85750 62 11528.10 10 115280 11349.90 10 113498
23 6255.90 0 62559 6198.07 7 61980 63 7992.78 8 79927 8031.29 9 80312
24 5806.66 6 58066 5840.76 6 58407 64 8485.69 9 84856 8540.07 7 85400
25 7377.10 0 73771 7377.97 7 73779 65 11325.90 0 113259 11298.00 10 112979
26 12147.90 0 121479 12083.74 4 120837 66 18280.20 0 182802 18892.57 7 188925
27 12800.90 0 128009 13118.70 0 131187 67 19381.50 0 193815 20173.30 0 201733
28 11290.90 0 112909 11573.70 0 115737 68 14888.70 0 148887 15143.57 7 151435
29 12222.00 0 122220 12594.76 6 125947 69 19324.80 0 193248 20298.50 0 202985
30 13193.80 0 131938 13575.90 0 135759 70 21855.80 0 218558 22102.30 0 221023
31 5628.17 7 56281 5610.99 9 56109 71 9002.90 0 90029 9233.11 11 92330
32 8625.07 7 86250 8616.51 11 86164 72 12575.50 10 125754 12613.94 14 126138
33 6284.15 5 62841 6265.80 10 62657 73 10522.10 0 105221 10677.18 8 106771
34 6234.68 8 62346 6282.41 11 62823 74 10305.00 6 103049 10593.38 18 105932
35 9006.47 7 90064 9044.99 9 90449 75 12999.00 0 129990 13438.40 10 134383
36 12768.20 0 127682 13428.47 7 134284 76 19519.70 0 195197 19747.20 0 197472
37 15257.10 0 152571 15557.06 6 155570 77 21983.60 0 219836 23015.20 0 230152
38 11797.00 0 117970 11836.67 7 118366 78 17833.30 0 178333 18835.23 3 188352
39 13107.20 0 131072 13144.07 7 131440 79 19776.60 0 197766 20042.57 7 200425
40 13702.80 6 137027 14331.87 7 143318 80 22491.20 6 224911 23363.99 9 233639
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