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Part II: Non-Collinear Density Functional Theories
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We revise formal and numerical aspects of collinear and non-collinear density functional theories in the con-
text of a two-component self-consistent treatment of spin-orbit coupling. Theoretical and numerical analyses
of the non-collinear approaches confirms their ability to yield the proper collinear limit and provide rotational
invariance of the total energy for functionals in the local-density or generalized-gradient approximations
(GGA). Calculations on simple molecules corroborate the formal considerations and highlight the importance
of an effective screening algorithm to provide the sufficient level of numerical stability required for a rota-
tionally invariant implementation of non-collinear GGA functionals. The illustrative calculations provide a
first numerical comparison of both previously proposed non-collinear formulations for GGA functionals. The
proposed screening procedure allows to effectively deal with points of small magnetization, which would oth-
erwise be problematic for the evaluation of the exchange-correlation energy and/or potential for non-collinear
GGA functionals. Both previously suggested formulations for the non collinear GGA are confirmed to be
adequate for total energy calculations, provided that the screening is achieved on a sufficiently fine grid. All
methods are implemented in the Crystal program.

Keywords: non-collinear DFT, relativistic DFT, spin-orbit coupling, collinear limit, rotational invariance

I. INTRODUCTION

The Kohn-Sham Density Functional Theory (KS-
DFT) is the de facto workhorse for studying extended
systems from a first principles approach. Calculations
on such extended systems are usually performed within
the collinear approach to KS-DFT first suggested by
Von Barth and Hedin.1 In this theory, the exchange-
correlation (xc) energy Exc depends in a local, semi-local,
or non-local way on the electron density n and only one
of the three Cartesian components of the electron mag-
netization m = [mx,my,mz], typically chosen along the
z Cartesian axis (i.e., Exc = Exc[n,mz]).

Despite the success of the collinear approach, the limi-
tation of expressing the xc energy as a functional of only
one of the three Cartesian components of the magnetiza-
tion can be insufficient in certain cases, including geomet-
rically frustrated states of matter. Such states are found,
for example, in the naturally occuring face-centered-cubic
phase of bulk Fe, and minerals of the Jarosite and Garnet
families, which exhibit the ideal Kagomé lattice (in the
surface), or the hyper-Kagomé lattice (in the bulk).2–6

These materials carry states that can be described from
a scalar-relativistic (SR) Hamiltonian that includes an

a)Electronic mail: jacqueskontak.desmarais@unito.it
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electron-electron operator which depends explicitly on
spin. But perhaps more importantly, the collinear xc
energy expressions are also insufficient for describing
fermionic systems if other spin-dependent operators are
present in the Hamiltonian, the most notable example
being the spin-orbit coupling (SOC) operator.

Indeed if the Hamiltonian depends on spin, the to-
tal energy obtained from a collinear xc expression will
change according to the direction of the spin-quantisation
axis. An arbitrary choice of the z axis for spin quanti-
sation means that the results of a collinear calculation
would vary according to the orientation of the Carte-
sian frame (the calculation is said to not be rotationally
invariant). The development of non-collinear (NC) ap-
proaches, on the other hand, represent efforts to restore
the rotational invariance by instead writing the xc energy
as a functional of all three Cartesian components of the
magnetization (i.e. Exc = Exc[n,mx,my,mz]).

7–20

The NC approaches provide a starting point for devel-
oping calculation methods based on more rigorous DFTs
for treating fermionic systems in a fully-relativistic con-
text (i.e. including both scalar-relativistic and spin-orbit
coupling effects). Indeed, if the relativistic Hamiltonian
is written in a four-component spinor basis, then the ap-
propriate formulation is the so-called four-current DFT
(i.e., Exc = Exc[J ]).21–23 If it is instead written in a
two-component spinor basis, then the appropriate rela-
tivistic formulation is the spin-current DFT (SCDFT),
in which the xc energy depends on not only the elec-
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tron density and magnetization, but also the three com-
ponents of the orbital-current density j = [jx, jy, jz]
and a total of nine components from the three spin-
current densities Ji = [Jix, Jiy, Jiz], i = x, y, z (i.e.,
Exc = Exc[n,mx,my,mz, j,Jx,Jy,Jz]).

24–27 The appar-
ent daunting task of generalizing NC functionals to also
depend on all of the different components of the SOC-
induced orbital- and spin-current densities, is however
greatly simplified by inclusion of a fraction of exact non-
local Fock exchange, through spin-current hybrid func-
tionals in the local-density or generalized-gradient ap-
proximations (LDA or GGA) of the SCDFT, as was re-
cently shown by some of the present authors.28 The use
of such hybrid functionals, however, requires explicitly
specifying the non-interacting KS reference as a single
Slater determinant. This limitation to a single-reference
can be insufficient for systems of strong multi-reference
character, especially because of the presence of the spin-
dependent SOC operator. In this case, more elaborate
multi-reference treatments would be necessary in accor-
dance with the ideas of ensemble DFT.29–46 The general-
ization of the SCDFT to a practical calculation approach
on such ensembles of interacting electronic states is an
open and interesting future research direction.

The most common method to generalize the DFT to
NC magnetism is the approach first described by Kübler
and co-workers, originally formulated for the LDA and
hereafter referred to as the “canonical” NC theory.7 At
variance with the usual collinear theory (where the spin-
quantisation axis is taken everywhere along z), the quan-
tisation axis is now allowed to vary from point to point
and to locally adopt the direction of the electron magne-
tization. When used with LDA functionals, the theory
is numerically very stable and also reduces properly to
the result of the corresponding collinear functional when
the magnetization is indeed (anti-)parallel everywhere
(the so-called “collinear limit”). Considerable work has
also gone towards implementing this formulation for
time-dependent DFT.47–53 Several attempts have been
made to generalize this canonical non-collinear theory to
functionals beyond the simple LDA.9,10,12–14,20,54,55 In
many cases, serious numerical problems have been re-
ported. Sometimes, these problems have been partly
circumvented by throwing away unstable terms in the
xc potential.12–14,20 In other cases, the actual approach
used beyond LDA is not entirely outlined,10 or the nu-
merical instability of the implementation is acknowledged
in later publications.8,9 Moreover, some authors have re-
ported formal problems with the canonical theory, which
make generalizations to GGA or meta-GGA functionals
to no longer reduce to the collinear limit.8,11 This ap-
parent lack of reduction to the proper collinear limit was
used in part as justification to develop an alternate for-
mulation of the NC approach termed the Scalmani-Frisch
(SF) formulation.8,11 The SF NC theory has been suc-
cessfully employed in the relativistic calculation of exci-
tation spectra,17,19,56 and zero field splitting as well as
various magnetic properties (EPR, NMR, paramagnetic

NMR).20

Given the above-mentionned challenges, one conse-
quence is that the rotational invariance of the canonical
approach beyond the LDA has not before been studied
formally and numerically. Indeed, if the supposed lack
of reduction of the canonical NC formulation beyond the
LDA to the proper collinear limit were to be true, then
the question also arises as to whether this approach is
truly rotationally invariant.

Here, we provide thorough formal analysis and illustra-
tive calculations of the NC theories in both the canonical
and SF formulations, which show that they achieve the
proper collinear limit for LDA and GGA functionals and
confirms their rotational invariance. The calculation ex-
amples, however, stress the importance of an effective
screening algorithm, which is required in practical cal-
culations to achieve the necessary degree of numerical
stability for rotational invariance. The illustrative cal-
culations provide a first numerical comparison of previ-
ously proposed NC formulations for functionals beyond
the LDA. All the formulations of NC-DFT discussed in
the paper have been implemented in a developmental ver-
sion of the public Crystal program.57

II. FORMAL ASPECTS

We refer to Part I of the paper for the description
of the notation, in particular for the adopted nota-
tion for vectors and matrices.58 The present implemen-
tation, as described elsewhere in the literature,28,58–60

is based on a two-component Kramers-unrestricted ap-
proach, where SOC, as well as SR effects are both treated
self-consistently from relativistic effective-core potential
(RECP) operators. These are mono-electronic, non-
local operators which enter into the Hamiltonian and
are obtained by fitting a set of solid-spherical Gaussian
functions to potentials derived from comparatively very
accurate all-electron four-component atomic Dirac-Fock
calculations.61,62

The presence of the SOC operator implies that the
eigenfunctions of the Hamiltonian are complex two-
component spinors, which, in our case, are in turn ex-
panded as a linear combination of nf real-atomic orbitals
χµ(r):

Ψi(r) =

nf∑
µ=1

[(
cαµ,i
0

)
+

(
0

cβµ,i

)]
χµ(r) , (1)

where cσµ,i (with σ = α, β) are complex molecular orbital
(MO) coefficients that are determined by solving the cor-
responding self-consistent field (SCF) equations (either
Fock or Kohn-Sham). From the subset of occupied two-
component MO spinors in Eq. (1), a complex-Hermitian
one-particle density matrix is built as:[

Dσσ′
]
µν
≡

occ∑
i

cσµi

[
cσ
′

νi

]∗
. (2)
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In the present implementation in the Crystal code,
the χµ atomic orbitals are expressed as a linear combina-
tion of real solid-spherical Gaussian-type functions up to
angular momentum quantum number l = 4 (i.e. g-type
functions).63

A. Fundamental Variables in Relativistic Density
Functional Theory

Any practical formulation of the DFT requires a defi-
nition of fundamental density variables from which den-
sity functional approximations (DFAs) are built. In the
four-component approach, the corresponding formulation
is based on the four-current J .21 In the two-component
approach, the approriate formulation is the SCDFT,24–27

whereby the contribution to the functional from the SOC-
induced orbital-current j and spin-current Jx, Jy, Jz den-
sities can be treated through an inclusion of a fraction of
non-local Fock exchange in the Hamiltonian.28,59

The remaining ingredients to be considered explicitly
are the particle-number (or total) density:7–16,21,64

n(r) ≡
occ∑
i

Ψ†i (r)Ψi(r) , (3)

and the magnetization vector m(r), whose Cartesian
components are defined as:

mc(r) ≡
occ∑
i

Ψ†i (r)σ̂cΨi(r) , (4)

where c = x, y, z labels a Cartesian component and σ̂c
are the usual 2×2 complex Pauli matrices given in Eq. (4)
of Part I. By introducing the following compact notation:

n<σσ′(r) =
∑
µν

<
[
Dσσ′

]
µν
χµ(r)χν(r) ;

n=σσ′(r) =
∑
µν

=
[
Dσσ′

]
µν
χµ(r)χν(r) , (5)

the total density and magnetization can be expressed in
terms of the elements of the density matrix as follows:58

n(r) = n<αα(r) + n<ββ(r) ; (6)

mx(r) = n<βα(r) + n<αβ(r) ; (7)

my(r) = n=βα(r)− n=αβ(r) ; (8)

mz(r) = n<αα(r)− n<ββ(r) . (9)

B. Generalized DFT Treatment

We now discuss the treatment of SOC within the DFT
in a two-component framework. Here we show how
the approach can be generalized to local-density and
generalized-gradient approximations (LDA and GGA) of
the exchange-correlation (xc) operator, as well as LDA

and GGA hybrid functionals, where a fraction a of non-
local Fock exchange is included in its definition. That is
to say, we are interested in formulations of DFT associ-
ated with energy expressions of the form:

E = Tr (hD) +
1

2
Tr (CD) +

a

2
Tr (KD) + Exc . (10)

The exact form of the mono-electronic h matrix elements,
and bi-electronic Coulomb C and exchange K matrix el-
ements, as well as strategies for calculating the traces
above were discussed in Part I.58 The formal analyses
presented here depend on the formulation of the xc ap-
proximation (i.e. whether the functional is of LDA or
GGA type), but not on the specific form of the functional
itself. Exc is the exchange-correlation energy, which is
expressed using integrals over space of the exchange-
correlation functional Fxc:

Eixc = (1− a)

∫
Fx[Qi]dr +

∫
Fcorr[Q

i]dr , (11)

where the exchange-correlation functional has been writ-
ten as a sum of exchange Fx and correlation Fcorr contri-
butions:

Fxc[Q
i] ≡ Fx[Qi] + Fcorr[Q

i] . (12)

For a = 0, the formalism reduces to that of plain LDA
or GGA formulations. In the above, the exchange-
correlation functional depends on a set of variables Qi,
where i is an index that labels the different formulations
(either i = col for the collinear formulation i = can for
the canonical NC formulation or i = sf for the SF NC
formulation). In the following, we drop the superscript i

on all variables other than Qi for notational convenience.

More explicitly, Qi is spanned by density variables ni±
and gradient variables γi±±:

Qi(r) = [Qi1(r), Qi2(r), Qi3(r), Qi4(r), Qi5(r)]

= [ni+(r), ni−(r), γi++(r), γi−−(r), γi+−(r)] .(13)

The density variables ni± depend on the value of the total
density and magnetization at position r in space, while
the gradient variables γi±± depend on both the value and
gradients (with respect to r) of the total density and
magnetization at position r in space. So the variables
γi±± are proper to GGA functionals, whereas the ni± are
present in both LDA and GGA functionals. More details
on the exact definitions of these variables are provided
in the following. In principle, meta-GGA forms of the
exchange-correlation operator could also be treated sim-
ilarly using however a larger set of variables, but we do
not discuss these explicitly here.

The Kohn-Sham Hamiltonian is built using the xc po-
tential V̂xc, which is also written as a sum of exchange
and correlation contributions:

V̂xc(r) ≡ V̂x(r) + V̂corr(r) , (14)
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and, within a two-component generalisation of the the-
ory, is given by:1,7,9

V̂xc(r) = Exc(r)σ̂0 +
∑
c

Bxcc (r)σ̂c , (15)

where the σ̂c are the 2 × 2 complex Pauli matrices, σ̂0

is the 2 × 2 identity matrix, and both Exc and Bxcc are
defined in terms of functional derivatives of the xc energy.
More specifically, the xc electrostatic potential Exc reads:

Exc(r) =
δExc
δn(r)

, (16)

and the Cartesian components Bxcc of the so-called xc
magnetic field read:

Bxcc (r) =
δExc
δmc(r)

, (17)

where in the expressions above, δ is used to represent the
functional derivative.

We can use the Bxc to define the local torque of the xc
magnetic field τxc as follows:65–67

τxc(r) = m(r)×Bxc(r) . (18)

The variables Qi on which the functional depends can
in general be chosen such that the τxc is locally non-
vanishing, even though in general its integral over all
space

∫
τxc(r)dr should be null, such that it obeys the

so-called zero-torque theorem.65–67

The Kohn-Sham Hamiltonian matrix elements are ex-
pressed using mono-electronic (including SR and SOC)
and bi-electronic (Coulomb and exchange) integrals, as

well as the xc potential V̂xc introduced above. For the
diagonal spin-blocks we have:

[Hσσ
KS ]µν = [hσσ]µν + [Cσσ]µν + a [Kσσ]µν

+ (1− a) [V σσx ]µν + [V σσcorr]µν . (19)

For off-diagonal spin-blocks (i.e. for σ 6= σ′), all mono-
electronic integrals apart from SOC ones are null, as well
as the bi-electronic Coulomb integrals (as shown in Part
I), so that we have:[

Hσσ′

KS

]
µν

=
[
hσσ

′

SO

]
µν

+ a
[
Kσσ′

]
µν

+ (1− a)
[
V σσ

′

x

]
µν

+
[
V σσ

′

corr

]
µν

. (20)

The xc potential is described in the following according to
two competing theories: the collinear and non-collinear
formalisms.1,7–10,12–14 More details are provided below in
Sections II C and II D on the two theories.

C. Collinear Density Functional Theory

In the collinear formalism, the variables Qcol entering
the exchange-correlation functional depend only on the

total density n and z component of the magnetization
mz, while the x and y components of the magnetization
are set to zero. As a consequence, the x and y compo-
nents of the xc magnetic field introduced in Eq. (17) must
vanish. From Eq. (15), the xc potential thus reduces to:

V̂xc(r) = Exc(r)σ̂0 + Bxcz (r)σ̂z . (21)

Given the real nature of both σ̂0 and σ̂z, the xc po-
tential therefore forms a real block diagonal matrix in
spin-space:

Vxc =

(
Vαα
xc 0αβ

0βα Vββ
xc

)
, (22)

whose matrix elements are real Hermitian:

[V σσxc ]µν = [V σσxc ]νµ . (23)

From Eq. (21) and by recalling the definition of the xc
electrostatic potential and xc magnetic field given in Eqs.
(16) and (17), we get the following expressions for the
collinear xc potential in terms of functional derivatives
of the xc energy Exc:

V̂ ααxc (r) =
δExc

δn<αα(r)
(24)

V̂ ββxc (r) =
δExc
δn<ββ(r)

. (25)

The disadvantage of the collinear theory is that rota-
tional invariance is lost when calculations are performed
in the presence of a SOC operator. The loss of rotational
invariance means that a rigid rotation of the molecule
will cause a change in energy. This occurs because the
collinear theory effectively consists of choosing the spin-
quantisation axis along z for the xc potential term. Given
that the SOC operator imparts an energy dependence on
the orientation of the spin-quantisation axis,58 the arbi-
trary and non-general choice of the z direction results in
loss of rotational invariance.

1. Collinear LDA

As introduced in Section II B, LDA xc functionals only
depend on ni+(r) and ni−(r), which, in the collinear for-
malism (in analogy to the non- or scalar-relativistic one-
component approach), are defined as:

ncol+ (r) = n<αα(r) (26)

ncol− (r) = n<ββ(r) , (27)

and are therefore built solely from the real part of the αα
and ββ blocks of the density matrix. From Eqs. (6) and
(9), the variables above can be shown to depend only on
the total density n and z component of the magnetization
mz as:

ncol± (r) =
1

2

[
n(r)±mz(r)

]
. (28)
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From calculus of variations, for LDA, the functional
derivatives of the energy in Eqs. (24) and (25) reduce
to the following partial derivatives of the xc functional:

V̂ σσxc (r) =
∂Fxc

∂n<σσ(r)
. (29)

2. Collinear GGA

As discussed above, apart from the ni± introduced
above, GGA xc functionals also depend on gradient vari-
ables γi±±, which, within the collinear formalism (again,
in analogy to the non-relativistic one-component ap-
proach), are defined as:

γcol±±(r) = ∇̂ncol± (r) · ∇̂ncol± (r) . (30)

From Eq. (28), it is easy to see that also these variables
only depend on the total density n and z component of
the magnetization mz:

γcol±±(r) =
1

4
∇̂
[
n(r)±mz(r)

]
· ∇̂

[
n(r)±mz(r)

]
.(31)

For GGA, standard calculus of variations gives the fol-
lowing expression for the xc potential:68

V̂ σσxc (r) =
∂Fxc

∂n<σσ(r)
− ∇̂ ·

[
2

∂Fxc

∂
∣∣∣∇̂n<σσ(r)

∣∣∣2 ∇̂n<σσ(r)

+
∂Fxc

∂γcol+−(r)
∇̂n<σ′σ′(r)

]
, (32)

where in the equation above σ 6= σ′. From Eq. (32), for
GGA functionals the evaluation of the xc potential would
require the second derivatives of the xc functional (e.g.

one from the ∇̂ operator and one w.r.t. γcol+−). However,
as was first noted by Pople and co-workers,68 the matrix
elements of the xc potential can be obtained through in-
tegration by parts, such that only the first derivatives of
the functional are required, as follows:

[V σσxc ]µν =

∫
∂Fxc

∂n<σσ(r)
χµ(r)χν(r)dr +

∫ [
2

∂Fxc

∂
∣∣∣∇̂n<σσ(r)

∣∣∣2 ∇̂n<σσ(r) +
∂Fxc

∂γcol+−(r)
∇̂n<σ′σ′(r)

]
· ∇̂χµ(r)χν(r)dr . (33)

D. Non-Collinear Density Functional Theory

In the non-collinear formalism, the variables entering
the exchange-correlation functional depend on the total
density n and on the three Cartesian components of the
magnetization m, so that rotational invariance is ensured
even in the presence of the SOC operator.

Given that the xc functional now depends on the to-
tal density and on the three Cartesian components of
the magnetization, the non-collinear xc potential has the
form shown on Eq. (15) and therefore forms a complex
matrix in spin-space:

Vxc =

(
Vαα
xc Vαβ

xc

Vβα
xc Vββ

xc

)
. (34)

Based on Eq. (15) and on the expressions for the Pauli
matrices, the following symmetry properties can be de-
rived. For the diagonal αα spin-block:

[V ααxc ]µν = [V ααxc ]νµ

= 〈χµ|Exc + Bxcz |χν〉 . (35)

For the diagonal ββ spin-block:[
V ββxc

]
µν

=
[
V ββxc

]
νµ

= 〈χµ|Exc − Bxcz |χν〉 . (36)

For the off-diagonal spin-blocks, the matrix elements read
as follows:[

V αβxc

]
µν

=
[
V αβxc

]
νµ

=
[
V βαxc

]∗
νµ

=
[
V βαxc

]∗
µν

= 〈χµ|Bxcx − iBxcy |χν〉 . (37)

So the diagonal αα and ββ spin-blocks of the xc potential
are real Hermitian so that only their upper (or lower)
triangular parts need to be computed. The off-diagonal
αβ and βα spin-blocks are complex symmetric so that
only the upper (or lower) triangular part of αβ needs to
be calculated.

Depending on the choice of the variables used in the
definition of the xc functional, two different (canoni-
cal and SF) formulations of non-collinear two-component
DFT are possible. They are both reviewed below.

1. The Canonical Formulation

In the canonical formulation of the non-collinear DFT,
the variables on which Fxc depends are built starting
from the generalized density:7

n̄(r) =
1

2

[
n(r)σ̂0 +

∑
c

mc(r)σ̂c

]
. (38)
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By recalling the exact form of the Pauli matrices given in
Eq. (4) of Part I, the generalized density can be written
explicitly as follows in terms of the total density and
components of the magnetization:

n̄(r) =
1

2

(
n(r) +mz(r) mx(r)− imy(r)
mx(r) + imy(r) n(r)−mz(r)

)
. (39)

By performing a unitary transformation on the general-
ized density n̄, which diagonalizes locally in space the
matrix above, one gets the ncan± variables used in the
definition of the xc functional:8,12

n̄(r)
diag
=

(
ncan+ (r) 0

0 ncan− (r)

)
, (40)

where the eigenvalues of the matrix are:

ncan± (r) =
1

2

[
n(r)±m(r)

]
, (41)

where m = |m| is the magnitude of m. Comparison
of Eq. (41) with Eqs. (26) and (27), shows that the
non-collinear definition of the ncan± variables differs from
the collinear definition by replacing mz by m (i.e. the z
component of the magnetization by the absolute value of
the magnetization).

From Eqs. (16) and (17), the xc potential can be writ-
ten in terms of the ncan± by noticing that, from the chain
rule of differentiation:

δExc
δmc

=
δExc
δm

δm

δmc
=
δExc
δm

mc

m
. (42)

where from now on the dependence on r is dropped.
Finally, using Eq. (38) and taking into account that

n = Tr [n̄σ̂0] and mc = Tr [n̄σ̂c] shows that the xc
potential operator can be written more succinctly as a
functional derivative of the xc energy with respect to the
generalized density:

V̂xc =
δExc
δn̄

. (43)

When considering an LDA xc functional, the functional
derivatives of the xc energy in Eqs. (16), (17) and (42)
reduce to partial derivatives of the xc functional:

Exc =
∂Fxc
∂n

; Bxcc =
mc

m

∂Fxc
∂m

. (44)

In a scalar- or non-relativistic code, the partial deriva-
tives of the xc functional with respect to n and mz are
available. So, for an LDA functional, one has to simply
replace mz by m in the existing code to generalize it to
the canonical non-collinear theory.

GGA xc functionals also depend on the gradient vari-
ables γi±± that, within the canonical formulation of non-
collinear DFT read:

γcan±± =
1

4

{
∇̂ [n±m] · ∇̂ [n±m]

}
, (45)

where the gradient of the absolute magnetization is cal-
culated as follows:

∇̂m =
1

m

∑
c

mc∇̂mc . (46)

Later we are going to discuss some numerical issues and
corresponding solutions related to the treatment of these
terms. For application to GGA functionals, standard cal-
culus of variations leads to the following expressions for
the functional derivatives of the xc energy:

Exc =
1

2

{(
∂Fxc
∂ncan+

+
∂Fxc
∂ncan−

)
︸ ︷︷ ︸

Γ+

−∇̂ ·
[

2
∂Fxc
∂γcan++

∇̂ncan+ + 2
∂Fxc
∂γcan−−

∇̂ncan− +
∂Fxc
∂γcan+−

(
∇̂ncan+ + ∇̂ncan−

)]
︸ ︷︷ ︸

Λ+

}
; (47)

and:

Bxcc =
mc

2m

{(
∂Fxc
∂ncan+

− ∂Fxc
∂ncan−

)
︸ ︷︷ ︸

Γ−

−∇̂ ·
[

2
∂Fxc
∂γcan++

∇̂ncan+ − 2
∂Fxc
∂γcan−−

∇̂ncan− − ∂Fxc
∂γcan+−

(
∇̂ncan+ − ∇̂ncan−

)]
︸ ︷︷ ︸

Λ−

}
. (48)

From Eqs. (35), (36) and (37), we see that the matrix
elements of the GGA xc potential are built from [Exc]µν
and [Bxcc ]µν . Through integration by parts, we find the

following working expressions:

[Exc]µν =
1

2

[∫
χµχνΓ+dr +

∫
Λ+ · ∇̂

(
χµχν

)
dr

]
,

(49)



7

and:

[Bxcc ]µν ≈
∫

mc

2m
χµχνΓ−dr +

∫
mc

2m
Λ− · ∇̂

(
χµχν

)
dr ,

(50)
where in the passage from Eq. (48) to Eq. (50), the term
originating from the gradient of mc/m has been dropped.
Thus, Eq. (50) represents the commonly adopted ap-
proximation, in which the gradient of the magnetization
is assumed to locally follow the quantization axis of the
magnetization vector for the definition of the xc magnetic
field.12,14,20,55 As will be seen through the numerical ex-
amples from Section IV, this approximation does not ap-
preciably affect the rotational invariance or reduction to
the collinear limit of the theory. We leave the evaluation
of terms arising from the gradient of mc/m for future
work.

2. The Scalmani-Frisch Formulation

Scalmani and Frisch have proposed an alternative for-
mulation of the non-collinear theory, which differs from
the canonical theory illustrated above for functionals be-
yond the LDA.11 This theory adopts the following defi-
nitions for the GGA variables:

γsf++ or γsf−− =
1

4

[
∇̂n · ∇̂n+ ∇̂ m · ◦∇̂ m

]
± f∇

2

[(
∇̂n · ∇̂ m

)
◦
(
∇̂n · ∇̂ m

)] 1
2

︸ ︷︷ ︸
Ξ

,(51)

and:

γsf+− =
1

4

[
∇̂n · ∇̂n− ∇̂ m · ◦∇̂ m

]
, (52)

where the dot product identified by the symbol “·” runs
over the components of ∇̂ while that identified by the
symbol “◦” runs over the components of m. Finally, the
f∇ is defined as:

f∇ = sgn

[
∇̂n ·

(
∇̂ m

)
◦m

]
, (53)

where the signum function “sgn” returns either 1 or -1
according to the sign of the argument. We obtain expres-
sions for the matrix elements of the theory of Scalmani
and Frisch from the calculus of variations. We do not
show details of the derivation, but report the final ex-
pressions, as follows:

[Exc]µν =
1

2

∫
Γ+χµχνdr +

1

2

∫ {(
∂Fxc

∂γsf++

+
∂Fxc

∂γsf−−
+
∂Fxc

∂γsf+−

)
∇̂n

+

(
∂Fxc

∂γsf++

− ∂Fxc

∂γsf−−

)
f∇ Ξ−1

(
∇̂n · ∇̂ m

)
◦ ∇̂ m

}
· ∇̂

(
χµχν

)
dr , (54)

and:

[Bxcc ]µν ≈
1

2

∫
mc

m
Γ−χµχνdr +

1

2

∫ {(
∂Fxc

∂γsf++

+
∂Fxc

∂γsf−−
− ∂Fxc

∂γsf+−

)
∇̂mc

+

(
∂Fxc

∂γsf++

− ∂Fxc

∂γsf−−

)
f∇ Ξ−1

(
∇̂n · ∇̂mc

)
∇̂n

}
· ∇̂

(
χµχν

)
dr . (55)

As, was the case for the canonical formulation, also
here for the SF formulation Eq. (55) is an approximate
expression for the xc magnetic field matrix elements, this
time because terms arising from the gradient of f∇ are
not considered — see for instance Eq. (57) of Ref. 19.
The numerical examples presented below in Section IV
suggest also here that such terms do not have an appre-
ciable effect on the rotational invariance and reduction

to the collinear limit of the implementation.

3. Rotational Invariance and Reduction to the Collinear
Limit of Non-Collinear Theories

Both the canonical and SF formulations of NC KS-
DFT described above in sections II D 1 and II D 2 are at-
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tempts to restore rotational invariance to existing DFAs
for calculations on systems which can be described by
a Hamiltonian that depends explicitly on spin (for in-
stance, containing a SOC operator). Although it is intu-
itive that the insertion of all three Cartesian components
of the magnetization (rather than only one component)
into the xc energy expression, could eventually lead to
restoring its rotational invariance, a formal proof (or nu-
merical evidence) to support this assumption for func-
tionals beyond the LDA is still lacking. Furthermore, a
desirable property of any NC formulation is that it re-
duces to the corresponding collinear formulation when
the magnetization is everywhere (anti)-parallel in space
(the so-called “collinear limit”). As a matter of fact, the
supposed lack of the proper collinear limit of the canoni-
cal NC formulation for functionals beyond the LDA was
used in part as justification for providing the SF one.8,11

If the lack of reduction to the correct collinear limit of
the canonical NC formulation were to be true, then the
question arises as to whether this approach can in fact be
shown to truly be rotationally invariant. In this section,
we provide formal arguments to support that both the
SF and canonical formulations do indeed reduce to the
proper collinear limit for LDA and GGA functionals and,
as a consequence, can also be formally characterized as
being rotationally invariant.

For providing the formal demonstration, it proves use-
ful to perform a linear transformation which recasts the
xc energy expression in Eqs. (11)-(13) not as func-

tional of the variables Qi, but instead using a new

set of variables Pi = [P i1, P
i
2, P

i
3, P

i
4, P

i
5], in which i =

col, can, or sf . The relevant transformation is chosen
such that:

Qi1 = ni+ =
1

2
P i1 +

1

2
P i2 (56a)

Qi2 = ni− =
1

2
P i1 −

1

2
P i2 (56b)

Qi3 = γi++ =
1

4
P i3 +

1

4
P i4 +

1

2
P i5 (56c)

Qi4 = γi−− =
1

4
P i3 +

1

4
P i4 −

1

2
P i5 (56d)

Qi5 = γi+− =
1

4
P i3 −

1

4
P i4 (56e)

Substituting Eqs. (30) and (31) in Eq. (56), we obtain
the following for the collinear formulation:

Pcol = [n,mz, ∇̂n · ∇̂n, ∇̂mz · ∇̂mz, ∇̂n · ∇̂mz] (57)

Then, substituting Eqs. (41) and (45) in Eq. (56), we
find, for the canonical NC formulation:

Pcan = [n,m, ∇̂n · ∇̂n, ∇̂m · ∇̂m, ∇̂n · ∇̂m] (58)

and finally, substituting Eqs. (57)-(59) in Eq. (56), for
the SF formulation:

Psf = [n,m, ∇̂n · ∇̂n, ∇̂ m · ◦∇̂ m, f∇Ξ] (59)

We start by looking at the reduction to the collinear
limit and rotational invariance of Exc[P

can], then

Exc[P
sf ], respectively for the canonical and SF NC

formulations. This is followed by a discussion of the
collinear limit and rotational invariance of the corre-
sponding xc potential expressions.

Showing that Exc[P
can] reduces to the proper collinear

limit for the specific case of strictly positive mz follows
immediately by comparing Eq. (57) with Eq. (58) and
noticing that:

lim
m→mz

Exc[P
can] = Exc[P

can]
∣∣
cl

= Exc[n,m, ∇̂n · ∇̂n, ∇̂m · ∇̂m, ∇̂n · ∇̂m]
∣∣∣
cl

= Exc[n, |mz|, ∇̂n · ∇̂n, ∇̂|mz| · ∇̂|mz|, ∇̂n · ∇̂|mz|]
=︸︷︷︸

mz≥0

Exc[n,mz, ∇̂n · ∇̂n, ∇̂mz · ∇̂mz, ∇̂n · ∇̂mz]

= Exc[P
col] (60)

in which cl indicates the collinear limit of the argument.
Now for the remaining case of negative mz, we start

by looking at the behaviour of the collinear expression.
From Eq. (57), we obtain the following:

Exc[P
col]

= Exc[n,mz, ∇̂n · ∇̂n, ∇̂mz · ∇̂mz, ∇̂n · ∇̂mz]

=︸︷︷︸
mz<0

Exc[n,−|mz|, ∇̂n · ∇̂n, ∇̂|mz| · ∇̂|mz|,−∇̂n · ∇̂|mz|]

(61)

Comparing the third line of Eq. (60) with Eq. (61), we
see that the correct collinear limit for the canonical NC
formulation can be obtained provided that:

Exc[n, |mz|, ∇̂n · ∇̂n, ∇̂|mz| · ∇̂|mz|, ∇̂n · ∇̂|mz|] =

Exc[n,−|mz|, ∇̂n · ∇̂n, ∇̂|mz| · ∇̂|mz|,−∇̂n · ∇̂|mz|]
(62)

The key passage is to now realize that Eq. (62) repre-
sents nothing other than the formal statement that the
xc energy is invariant to a global rotation of the spin
reference frame (i.e., a rotation of the spin-quantization
axis) from the z direction to the −z direction (or, equiv-
alently, an interchange of all α labels for β labels, and
vice-versa). Given that the expression for the xc energy
functional originates from the theory of Von Barth and
Hedin,1 in which the choice of the orientation of the spin-
quantisation axis is arbitrary, the xc energy expression is
necessarily invariant to a global reorientation of the spin
reference frame.

Combining Eqs. (60)-(62), we find that the xc energy
expression from the canonical NC formulation has the
correct collinear limit:

Exc[P
can]

∣∣
cl

= Exc[P
col] (63)

The rotational invariance of the xc energy from the
canonical NC formulation can then be shown by choos-
ing a different orientation for the spin-quantization axis,
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invoking the invariance of the xc energy functional to a
global rotation of the spin reference frame, and repeating
the steps outlined in Eqs. (56)-(62) for the new orienta-
tion.

We now move on to showing the reduction to the
collinear limit (and, as a consequence, also rotational
invariance) of the xc energy expression for the case of
the SF NC formulation. A similar demonstration to that
provided above can be also shown for the SF formulation
by first looking at the collinear limit of the individual
gradient variables that are contained in the definition of
Psf in Eq. (59):

∇̂n · ∇̂n
∣∣∣
cl

= ∇̂n · ∇̂n (64a)

∇̂ m · ◦∇̂ m
∣∣∣
cl

= ∇̂mz · ∇̂mz (64b)

and:

f∇Ξ|cl = sgn

[
∇̂n ·

(
∇̂mz

)
mz

]
|∇̂n · ∇̂mz|

= ∇̂n · ∇̂|mz| (64c)

Substituting Eqs. (64a)-(64c) in Eq. (59) and proceeding
as in Eqs. (60)-(61), we obtain the correct collinear limit
also for the xc energy expression from the SF formulation:

Exc[P
sf ]
∣∣∣
cl

= Exc[P
col] (65)

We now consider the xc potential expressions. Their
proper collinear limit and, consequently, rotational in-
variance, for both SF and canonical formulations now
follows naturally by substituting Eqs. (63) and (65) in
Eqs. (15)-(17):

V̂xc

∣∣∣
cl

=
δExc[P

i]

δn
σ̂0 +

∑
c

δExc[P
i]

δmc
σ̂c

∣∣∣∣∣
cl

=
δExc[P

col]

δn
σ̂0 +

δExc[P
col]

δmz
σ̂z (66)

4. On the Treatment of Unstable Terms of Non-Collinear
Exchange-Correlation Potentials

We discuss here algorithmic strategies for the evalua-
tion of delicate terms in the non-collinear xc potential.
Several previous authors have acknowledged numerical
issues associated with the evaluation of non-collinear xc
potentials, particularly so for xc functionals beyond the
LDA.8–14,17,19,67 However, to the best of our knowledge,
an effective screening algorithm for dealing with these
problems in both the canonical and SF formulations is
yet to be presented in the literature.

All of the difficulties previously noted in the literature
are related to factors Rc = mc/m, which are ill-defined
at those points in space where the magnetization is small.
Although, formally, the xc functionals and potential are

everywhere finite, the problem lies in their accurate nu-
merical evaluation. In general, the mc/m factors appear
both in the expressions for the variables on which GGA
xc functionals depend and in the expression for the xc
magnetic field (for all functionals, including LDA). In the
canonical theory, the challenging terms occur in both the
definition of the GGA variables – see Eq. (46) – and in
the xc potential, see Eq. (50). For the theory of Scal-
mani and Frisch, the problematic terms do not occur in
the definition of the GGA variables, but are still present
in the definition of the xc magnetic field term of the po-
tential in Eq. (55).

For LDA functionals, from Eqs. (17) and (44), points
of small magnetization can be safely disregarded because
the mc/m factors in the potential multiply ∂Fxc/∂m
which is also vanishing for vanishing m. This is not the
case for GGA functionals, where the mc/m factors some-
times multiply gradients of the magnetization, gradients
of the total density, or gradients of the atomic orbitals,
which are not necessarily small where m is small. See for
example Eqs. (46) and (50) for the canonical theory.

As a consequence, the treatment of these terms re-
quires a very careful local screening of the magnitude of
the magnetization m and of its individual Cartesian com-
ponents mc at each point of the DFT grid. Here we in-
troduce a screening algorithm that can be used with any
non-collinear formulation and sketch its main features.
The algorithm is presented for the case where the mc/m
terms multiply gradients of the magnetization but it can
be very easily extended to the cases where the mc/m
factors multiply instead gradients of the total density or
gradients of the atomic orbitals.

At each point in space (i.e. at each point of the
DFT integration grid), the absolute value |mc| of the
three Cartesian components of the magnetization m are
screened according to a threshold (here set to 10−27 a.u.).
Two distinct cases are identified and treated differently:
1) all three components are individually smaller than the
threshold, or 2) at least one component is larger than the
threshold. We treat these two cases as follows:

1. The three components of the magnetization are all
small. We locally set:

m = 0 ;

∇̂m =
∑
c

〈
mc

m

〉
∇̂mc ,

where the gradient of the magnetization ∇̂m at
that point is expressed in terms of the gradients
of the three Cartesian components of the magne-
tization at the same point ∇̂mc while the pre-
factors 〈mc/m〉 are average values for mc/m. In
the present implementation, the mean quantities
〈mc/m〉 are calculated by averaging the mc/m over
the atomic basin to which the current point of the
DFT grid belongs. The size of each atomic basin
is determined using the same atomic radii that
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are used to calculate the DFT integration weights.
These quantities are computed from the values of
the magnetization of the previous iteration of the
SCF (or of the starting guess at the first iteration).
Other choices for the partitioning of space for cal-
culating the averaged 〈mc/m〉 quantities could be
possible but we leave this to future work. These av-
erage values are essential to ensure numerical sta-
bility at those (many) points where the mc and m
are so small that their ratio could not be evaluated
with any reasonable degree of confidence. More-
over, they are also useful when mc is too small
to reasonably determine its sign (positive or neg-
ative). For these reasons, it is beneficial to instead
associate an average value to mc/m calculated over
the atomic basin of the current point in space.

2. At least one of the three Cartesian components of
the magnetization is large in absolute value. The
largest component, in absolute value, is determined
and the following signed quantity defined:

mmax = sgn
(
mx +my +mz

)
× max

(
|mx| ,

∣∣my

∣∣ ,|mz|
)
.

At this point, a screening on the “local collinearity”
is performed. The absolute value of the other two,
non-maximum, components of the magnetization is
checked relative to |mmax|. Two distinct cases are
identified, which are treated differently:

(a) Both non-maximum Cartesian components
are small relative to |mmax| and therefore the
system is locally collinear. The two small com-
ponents are put to zero and the problem re-
duces to the collinear one with the quantiza-
tion axis along |mmax|. In this case we set:

m = |mmax| ,
∇̂m = sgn(mmax)∇̂mmax .

(b) At least one of the non-maximum Cartesian
components is not small relative to |mmax|. In
this case, we set explicitly:

m =
√
m2
x +m2

y +m2
z ,

∇̂m =
∑
c

Rc∇̂mc ,

where the factors Rc are determined as fol-
lows, based on the value of the ratios |mc| /m:
if the ratio|mc| /m is small than we setRc = 0,
otherwise we set it to Rc = mc/m.

III. COMPUTATIONAL DETAILS

We have implemented all of the DFT formulations dis-
cussed above in a developmental version of the Crys-

tal17 code.57 To validate our implementation and dis-
cuss numerical strategies for its use, we have chosen a
test set of small molecular systems, and have performed
similar calculations also with the latest public version of
the Dirac69 and Turbomole70 codes. Both SR and
SOC effects are treated from RECPs. The systems are
similar to those discussed in Part I.58 That is, the I2,
CH3I, IH and TlBr molecules, in both a neutral state
(closed-shell electronic configurations) and a positively
charged state obtained by removing one electron from the
molecules (open-shell electronic configurations): namely,
I+
2 , CH3I+, IH+ and TlBr+. We refer the reader to Part

I for details on the used basis sets, RECPs and molecular
geometries.

The numerical integration required for calculating the
xc energy and matrix elements was achieved with our
implementation on an unpruned grid. For the compar-
ison with other implementations, this grid (denoted as
G1) contained 75 radial points and a Lebedev accuracy
level of 16, corresponding to 974 angular points for each
radial point.71–73 The quadrature weights proposed by
Becke were used in all calculations.74 For calculations
with the Dirac and Turbomole codes, the finest avail-
able grids were used, which are similar to the one cho-
sen with our implementation and all integral screenings
were deactivated. The SCF procedures with all codes
were converged down to a criterion on the energy of
1×10−9 Hartree a.u. (Ha). Calculations were performed
with the SVWN5 LDA functional,75,76 The PBE GGA
functional,77 and the PBE0 and B3LYP hybrid-GGA
functionals.78,79 The guess for the SCF procedure was
generated from a superposition of SR atomic-HF density
matrices using an approach described in Ref. 80. The
magnetization generated from each of the atomic SR den-
sity matrices is rotated along a desired direction using an
approach described in Part I.58

For the tests that were performed with only our imple-
mentation, we used a finer numerical DFT grid (denoted
as G2) consisting of 500 radial points and a Lebedev ac-
curacy level of 29, corresponding to 5810 angular points
and a criterion on the energy for convergence of the SCF
of 1×10−12 Ha (unless explicitly stated otherwise). More
specific details are provided in the electronic supplemen-
tary information (ESI), in which example input decks are
provided.81

IV. RESULTS AND DISCUSSION

We discuss below several aspects of the methodolo-
gies formally illustrated in Section II: i) we compare our
implementation to those available in other codes; ii) we
document the reduction to the collinear limit of differ-
ent non-collinear formulations of the DFT; iii) we quan-
tify the degree of rotational invariance of different non-
collinear formulations.
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TABLE I. Energies for the closed-shell electronic configura-
tions. The ∆ESOC = ESOC − E0 is the SOC contribution
to the energy as obtained with our implementation. The
∆∆EX = ∆EX − ∆ESOC is the difference between the SOC
energy contribution computed with the program X=TUR or
DIR (where TUR stands for Turbomole and DIR stands for
Dirac) and that with our implementation in Crystal17. All
quantities are reported in atomic units (Ha).

I2 CH3I IH TlBr

LDA

∆ESOC −7.7×10−3 −3.2×10−3 −3.0×10−3 −3.6×10−2

∆∆EDIR +4.8×10−9 +4.0×10−9 +1.0×10−9 -

∆∆ETUR +1.2×10−5 +1.3×10−6 +6.9×10−7 +2.6×10−6

PBE

∆ESOC −7.9×10−3 −3.2×10−3 −3.0×10−3 −3.5×10−2

∆∆EDIR +1.3×10−8 +1.8×10−9 +2.1×10−9 -

∆∆ETUR +1.4×10−5 +1.4×10−6 +2.9×10−7 +2.5×10−6

PBE0

∆ESOC −7.7×10−3 −3.1×10−3 −2.9×10−3 −3.4×10−2

∆∆EDIR +1.1×10−8 +1.1×10−9 +1.9×10−9 -

∆∆ETUR +1.3×10−5 +1.0×10−6 +3.6×10−7 +1.9×10−6

A. Comparison with Previous Implementations

We first report comparisons of our implementation
with those available in the Dirac and Turbomole
codes, for validation purposes. We start by discussing re-
sults on the closed-shell electronic configurations, where
since the magnetization is vanishing, and, as a conse-
quence, in Eq. (17) δExc/δm = 0, and all of the for-
mulations coincide. The closed-shell tests thus permit
to test aspects of the implementations that are not re-
lated to the treatment of non-collinear magnetization
(e.g. the integration grid, accuracy of the evaluation of
electron repulsion integrals and the implementation of
the xc functionals and their derivatives). Calculations
were performed with and without the SOC operator in-
cluded in the Hamiltonian, and the energy differences of
these two calculations, ∆ESOC, are tabulated.

In Table I, we report the ∆ESOC calculated with our
implementation, as well as the differences of the ∆ESOC

with respect to those calculated with the other imple-
mentations. These are denoted in the table as ∆∆EX,
where X denotes the code used for the calculation, that is
X = TUR or DIR. It can be seen from the table that the
agreement with Dirac is very satisfactory in all cases,
because the ∆∆EDIR is always on the order of 1×10−9

Ha, which is remarkably the same accuracy as the con-
vergence of the SCF. The only exception is the PBE or
PBE0 calculations on I2, where the ∆∆EDIR is instead

TABLE II. Energies for the open-shell electronic configura-
tions. See caption of Table I for a definition of all quantities.
Values are given in atomic units (Ha). Calculations are per-
formed with the canonical non-collinear theory described in
section II D 1.

I2
+ CH3I+ IH+ TlBr+

LDA

∆ESOC −2.2×10−2 −1.6×10−2 −1.6×10−2 −4.2×10−2

∆∆ETUR +8.9×10−5 +5.6×10−4 +1.3×10−4 +4.1×10−3

PBE

∆ESOC −2.1×10−2 −1.4×10−2 −1.4×10−2 −3.9×10−2

∆∆ETUR +9.6×10−5 +3.7×10−4 +1.4×10−4 +1.3×10−3

PBE0

∆ESOC −2.1×10−2 −1.4×10−2 −1.4×10−2 −3.9×10−2

∆∆ETUR +1.1×10−4 +3.4×10−4 +1.5×10−4 +2.1×10−3

on the order of 1×10−8 Ha.
As was also noted in Part I,58 for the case of TlBr,

it was not possible to use the Dirac code in exactly
the same computational conditions as in the other codes.
This is due to the fact that the RECP-SOC implemen-
tation in Dirac is only available with a basis of Carte-
sian Gaussian-type functions that differ from spherical
Gaussian-type functions (used in our implementation as
well as in the Turbomole one) starting from angular
momentum l = 2 (i.e. starting from d-type functions).
Given that TlBr has occupied d orbitals in the valence, it
was not possible to perform the comparison with Dirac
in this case. For all other molecular systems, no l = 2
or higher angular momentum functions were included in
the valence basis sets, so that we were able to perform
the comparison.

The agreement with Turbomole is still very satisfac-
tory but less good because this implementation uses the
resolution of identity (RI) approximation for at least the
evaluation of the Coulomb integrals. The RI approxima-
tion introduces inaccuracies which do not perfectly cancel
between the calculations with and without SOC. As such,
the ∆∆ETUR are on the order of 1×10−5 Ha (for the I2

molecule) to 1×10−7 Ha (for the IH molecule). These
values are however still more than sufficient to confirm
the correctness of the implementation, being two to four
orders of magnitude smaller than the SOC contribution
to the energy. The agreement with both codes is gener-
ally better with LDA (where only the density needs to be
evaluated on the numerical grid), or with PBE0 (which
includes a significant portion of Fock exchange, and hence
is in a larger part analytical). A worst agreement is gen-
erally found using PBE, where both the density and its
gradient need to be evaluated on the numerical grid.

We now discuss the calculations on the open-shell elec-
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tronic configurations, which are obtained by removing
one electron from the same molecules discussed above.
As in Part I, we were unable to perform comparable
calculations with the Dirac code on open-shell elec-
tronic configurations as, to the best of our knowledge,
it is not possible to perform single-determinant Kramers-
unrestricted calculations with the Dirac code at present.
So the comparison can only be made against the Tur-
bomole code. What is more, we are only able to use one
formulation for each functional, using the Turbomole
code. That is, the canonical non-collinear formulation.
The comparison of calculations done with both imple-
mentations is reported in Table II. It can be seen from
Tables I and II that the SOC contribution to the total
energy, ∆ESOC, is now increased by a factor of three to
four by removing one electron from all systems, except
for TlBr, where the ∆ESOC instead only increases by
about 10%. A similar result was reported in Part I with
the HF theory. The comparison with the Turbomole
implementation is now slightly less impressive than for
the closed-shell systems, because the evaluation of the xc
matrix elements and potential now also requires a numer-
ical integration containing functions of the magnetization
(and possibly its gradient) and not only the density. The
∆∆ETUR is now mostly on the order of 1×10−4 Ha, ex-
cept for TlBr+, where it is instead on the order of 1×10−3

Ha. We note, however that the ∆∆ETUR is still at least
one order of magnitude smaller (in absolute value) than
the ∆ESOC, which helps confirm the correctness of the
implementations.

The reported effect of SOC on the total energies of
the positively charged ions in Table II is also reflected
in associated changes to their valence properties. Tables
S1 and S2 quantify the changes in the particle-number
n and z-component magnetization mz Mulliken popula-
tions, reported as differences from the calculations with-
/without SOC for the positively charged open-shell sys-
tems. Fig. S1 provides the associated changes in the
orbital energy levels, for states lying close to the HOMO.
These tables and figure show that the changes in the to-
tal energies from SOC have considerable effect on the
valence properties of the molecules, as reflected, for ex-
ample, in significant changes to the HOMO-LUMO gaps.
Table S1 shows the effect of the xc functional on the
changes in the n and mz Mulliken populations of TlBr+

induced by SOC. It is seen that the PBE0 calculations
induce changes in the populations on the order of 10−1

a.u. from SOC, while the LDA and PBE ones only in-
duce changes on the order of 10−3 a.u. Indeed, given that
the PBE0 functional includes a non-vanishing fraction
of Fock exchange, it allows to include the SOC-induced
orbital- and spin-current densities in the definition of the
electron-electron potential,28,59 which may lead to larger
SOC-induced changes in the valence properties of the
molecules.

TABLE III. Deviation from the collinear limit of various non-
collinear formulations (CAN stands for “canonical” and SF
for “Scalmani-Frisch” described in sections II D 1 and II D 2,
respectively). The quantization axis is along the xyz diago-
nal. The reported quantities are energy differences (in atomic
units) between non-collinear formulations and the collinear
one for the open-shell electronic configurations in the absence
of SOC.

I2
+ CH3I+ IH+ TlBr+

LDA

CAN/SF −4.7×10−13 +2.3×10−13 −2.0×10−14 +1.1×10−12

PBE

CAN +6.9×10−13 −7.1×10−14 +4.1×10−12 −2.8×10−13

SF +2.5×10−14 −5.8×10−13 +3.0×10−15 +5.7×10−14

PBE0

CAN +1.3×10−12 +8.5×10−12 +1.5×10−12 +1.7×10−11

SF −1.1×10−14 −2.5×10−13 +7.0×10−15 −1.1×10−13

B3LYP

CAN +2.5×10−12 −1.4×10−11 +6.0×10−14 −2.6×10−13

SF −1.0×10−12 −1.3×10−11 −5.0×10−15 −3.1×10−13

B. The Reduction to the Collinear Limit of Non-Collinear
Theories

We discuss now the reduction to the collinear limit of
non-collinear formulations of the DFT, that is the ability
of non-collinear theories to provide the same energy of the
collinear theory in those cases where the magnetization
is everywhere collinear. To do so, we consider the four
open-shell systems without SOC (i.e. in the absence of
any torque that can rotate the initial magnetization) so
that the magnetization remains aligned to the direction
along which it was pointing in the collinear guess.

Table III reports the energy differences between the
collinear theory and the different NC formulations (CAN
stands for “canonical”, SF for “Scalmani-Frisch”). The
table supports the formal analysis provided in section
II D 3. Indeed, it is seen that both NC formulations
yield energy differences with respect to the collinear one
that are very small, being on the order of 10−15 to
10−11 Ha (for comparison the tolerance on the energy
for convergence of the SCF procedure was 10−12 Ha, as
stated in section III). The reported energy differences are
smaller for the Scalmani-Frisch formulation rather than
the canonical one. This is expected from the considera-
tions outlined in section II D 4, in which it was pointed
out that the delicate mc/m terms that can lead to numer-
ical instabilities occur in the expressions for both the xc
energy and potential in the CAN formulation, but only
in the potential for the SF formulation. This results in
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the SF formulation being slightly more numerically stable
than the CAN one, which is demonstrated in the smaller
energy differences reported in table III. However, given
that the energy differences never exceed a value on the
order of 10−11 Ha, we can conclude from table III that
both NC formulations are more than adequate from the
point of view of reduction to the collinear limit for total
energy calculations.

C. The Rotational Invariance of Non-Collinear Theories

We now discuss the rotational invariance of the
collinear approach and of the various non-collinear for-
mulations, in the presence of SOC. The tests are per-
formed on the I+

2 linear molecule, for which seven dif-
ferent orientations are explored: from parallel to the z
axis, 0°, to parallel to the x axis, 90°. At each orien-

tation, an initial atomic guess for the magnetization is
used, which is parallel to the molecular axis. The abso-
lute differences between the energies of the various orien-
tations with respect to that obtained when the molecule
is along z (taken as a reference) are reported in Table
IV for the plain GGA functional PBE and hybrid GGA
functionals PBE0 and B3LYP, or Table V for the LDA
functional. The last row of both tables reports average
energy differences over all the explored orientations. For
perfectly rotationally invariant formulations of the the-
ory the reported energy differences should be vanishingly
small. To quantify the effect of the numerical grid on the
rotational invariance, Table S3 of the ESI provides fur-
ther calculations with the different formulations for GGA
functionals, in which the smaller G1 numerical grid was
used instead of the finer G2 grid. Furthermore, Table S4
of the ESI provides GGA calculations in which the SOC
operator was excluded from the Hamiltonian.

TABLE IV. Rotational invariance of GGA collinear and non-collinear formulations of DFT with SOC. The linear I+2 molecule
is studied in seven different orientations (from parallel to the z axis, 0°, to the x axis, 90°). The atomic guess magnetization is
always parallel to the axis of the molecule. For each orientation, the absolute difference (in Ha) between the computed energy
and that obtained when the molecule is along z (|E−Ez|), and the number of cycles needed to converge the SCF are reported.
The last row reports the average over all the explored orientations, |av|, of the absolute value of the quantities in their respective
columns.

Collinear Non-Collinear

Canonical Scalmani-Frisch

PBE PBE0 PBE PBE0 B3LYP PBE PBE0 B3LYP

0° Ref. 52 Ref. 68 Ref. 65 Ref. 97 Ref. 91 Ref. 53 Ref. 78 Ref. 73

10° 7.7×10−05 52 6.3×10−05 113 4.2×10−09 70 2.1×10−09 110 5.8×10−09 101 2.3×10−09 58 5.5×10−09 107 1.8×10−09 100

22° 3.9×10−04 52 3.1×10−04 131 1.3×10−09 65 3.3×10−09 124 5.1×10−09 118 2.3×10−09 65 7.7×10−10 125 1.1×10−09 115

45° 1.5×10−03 53 1.2×10−03 182 2.7×10−10 69 8.2×10−09 134 4.1×10−08 114 4.7×10−10 68 5.7×10−09 133 2.0×10−09 124

68° 3.1×10−03 72 1.1×10−03 1437 7.2×10−10 65 2.8×10−09 115 5.6×10−09 116 1.7×10−09 65 1.4×10−09 124 5.9×10−10 115

80° 1.7×10−03 194 9.6×10−04 950 4.1×10−09 70 2.0×10−09 110 5.9×10−09 101 2.4×10−09 56 1.5×10−10 107 2.0×10−09 98

90° 1.6×10−03 51 3.2×10−03 82 1.5×10−10 65 1.5×10−10 97 1.5×10−10 91 1.6×10−10 54 5.6×10−09 78 1.6×10−10 73

|av| 1.4×10−03 78 1.1×10−03 423 1.8×10−09 67 3.1×10−09 112 9.1×10−09 105 1.5×10−09 60 3.2×10−09 107 1.1×10−09 100

From the tables IV and V, it is clear that, as expected,
the collinear approach does not ensure rotational invari-
ance when the SOC operator is included in the Hamil-
tonian, both at the LDA and GGA level. Indeed, the
average deviation of the energy among different orienta-
tions is very large, on the order of 1×10−3 Ha for LDA,
PBE and PBE0. This lack of rotational invariance is
also reflected in the amount of cycles required to con-
verge the SCF for the different orientations, which shows

very large variations for the different orientation. For the
case of LDA, the rotational invariance is fully regained
by the non-collinear formulation, as the average devia-
tion becomes 2.2×10−10 Ha. It is interesting that almost
identical values are obtained from both the SF and CAN
formulations for GGA functionals without SOC (see Ta-
ble S4), which confirms the numerical robustness of the
NC GGA implementation.

Table IV shows that both formulations (CAN and SF)
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TABLE V. Same as Table IV, but now results are reported for
the LDA, using both the collinear or non-collinear theories,
with and without the inclusion of the SOC operator in the
Hamiltonian.

Collinear Non-Collinear

with SOC without SOC with SOC without SOC

0° Ref. 49 Ref. 50 Ref. 50 Ref.

10° 7.1×10−05 49 5.0×10−11 50 4.9×10−11 56 5.0×10−11 50

22° 3.6×10−04 48 1.8×10−11 50 1.6×10−11 65 1.8×10−11 50

45° 1.4×10−03 48 4.4×10−10 50 4.4×10−10 65 4.4×10−10 50

68° 2.1×10−03 510 5.7×10−10 50 5.7×10−10 62 5.7×10−10 50

80° 1.9×10−03 273 5.7×10−11 50 5.9×10−11 56 5.7×10−11 50

90° 1.9×10−03 48 1.6×10−10 51 1.6×10−10 51 1.6×10−10 50

|av| 1.3×10−03 146 2.2×10−10 50 2.2×10−10 58 2.2×10−10 50

for NC GGA calculations also allow to restore the rota-
tional invariance of the calculation when a SOC operator
is included in the Hamiltonian, with the average devia-
tion of the energy being however about an order of magni-
tude higher than for LDA calculations, at 1.5-3.2 ×10−9

for PBE and PBE0, and 1.1-9.1 ×10−9 for B3LYP. A
greater amount of SCF cycles is required to converge the
PBE0 calculations as compared to the PBE ones, which
results in slightly larger average deviations of the total
energy (1.8 ×10−9 Ha for PBE vs. 3.1 ×10−9 Ha for

PBE0 and the CAN formulation). Both the CAN and
SF formulations of PBE and PBE0 achieve essentially
identical degrees of rotational invariance with the finer
G2 numerical grid used for the calculations in table IV,
as the reported average deviations of the total energy are
very similar for both formulations. The results in Table
S3, however show that the SF formulation is confirmed
to be slightly more numerically stable than the CAN one
when the coarser G1 numerical grid is used, because en-
ergy deviations are slightly smaller (e.g., 7.7×10−8 Ha
with the SF formulation vs. 1.3×10−7 Ha with the CAN
formulation for the PBE functional). From Table IV, the
SF formulation also appears more stable for the B3LYP
calculations with the G2 grid, as the energy deviation is
lower by almost an order of magnitude (e.g., 1.1×10−9

Ha with the SF formulation vs. 9.1×10−9 Ha with the
CAN formulation). The superior numerical stability of
the SF formulation is also reflected in the lower number
of cycles required to converge the SCF, as compared to
the CAN formulation. In the most extreme case (G1 grid,
PBE functional) the SCF is converged at an average of 9
cycles faster with the SF formulation, as convergence of
the SCF took an average of 61 cycles for the SF formula-
tion instead of 70 cycles for the CAN one (see last row of
Table S3). However, given that the average deviations of
the energies in Table IV are similar for both the SF and
CAN formulations, we can conclude that also from the
point of view of rotational invariance both formulations
are more than adequate for total energy calculations.

Further insight into how the NC GGA implementa-
tion allows to restore the rotational invariance can be
obtained by looking at Figure 1. This Figure provides
contour plots of the magnetization from the PBE calcu-
lations as the molecule is rotated from the x axis (right
of the Figure) to the z axis (left of the Figure). The
top row of the Figure shows that the magnetizations ob-
tained from the collinear formulation, and the two other
rows provide those from the CAN NC and SF NC formu-
lations. It is seen from those obtained by the collinear
formulation that although the magnetizations were ori-
ented along the molecular axis in the guess, they are par-
tially rotated towards the z axis during the SCF proce-
dure, such that the plotted arrows no longer point di-
rectly along the molecular axis. Instead, using the CAN
or SF NC formulations, the magnetizations are seen to
always remain along the molecular axis throughout the
calculation, such that the plotted arrows rotate along
with the molecule.

V. CONCLUSIONS

The formalism of Kramers-unrestricted collinear and
all previously reported formulations of non-collinear den-
sity functional theory (DFT) for the self-consistent treat-
ment of spin-orbit coupling (SOC) in electronic structure
calculations has been revised. The various approaches
have been implemented in the Crystal program and
have been compared both formally and using test exam-
ples on small molecules.

The formal analysis shows that all formulations for
calculations in the non-collinear generalized-gradient
approximation (GGA) formally reduce to the proper
collinear limit and are, as a consequence, rotationally
invariant. The illustrative calculations provide a first
numerical comparison of both previously suggested non-
collinear formulations for GGA functionals. They high-
light the importance of using an effective screening al-
gorithm for treating delicate terms that appear in the
expressions for the exchange-correlation energy and/or
potential. If the screening is achieved on a sufficiently
fine grid, then all non-collinear GGA formulations are
adequate for total energy calculations. The formulation
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FIG. 1. Spatial distribution of the electronic magnetization for the I+2 molecule in the xz plane, as computed with the PBE xc
functional, upon inclusion of SOC, with three formulations of the GGA theory: collinear COL, canonical CAN, and Scalmani-
Frisch SF. The molecular axis and atomic guess magnetization is progressively rotated from the x axis (left) to the z axis
(right). The small black arrows in the figure have lengths which reflect the magnitude and direction of the x and z components
of the magnetization, while the color represents the magnitude m of the magnetization vector. The absolute value of the energy
difference of each solution with respect to that obtained with the molecule along z is reported on top of the panels, as well as
the number of cycles needed to converge the SCF, on the bottom of the panels. All quantities are reported in atomic units.

of Scalmani and Frisch is shown to be slightly more nu-
merically stable (in terms of the consistency of energies
obtained for different orientations of the molecules and
reduction to the collinear limit) than the canonical for-
mulation. However, the differences are very small and
non-collinear GGA calculations including spin-orbit cou-
pling can be performed with either formulation with a
rotational invariance down to an order of 1.0×10−9 Ha,
with the present implementation.

SUPPLEMENTARY MATERIAL

See Supplemental Material at URL for example input
decks, a discussion of the effect of SOC on the eigenvalue
spectrum and charge/spin populations of the open-shell
molecules, and tables to quantify the rotational invari-
ance of the formulations of non-collinear DFT for GGA
functionals.
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