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Abstract: In this work, we introduce a minimal model for the current pandemic. It incorporates the
basic compartments: exposed, and both symptomatic and asymptomatic infected. The dynamical
system is formulated by means of fractional operators. The model equilibria are analyzed. The
theoretical results indicate that their stability behavior is the same as for the corresponding system
formulated via standard derivatives. This suggests that, at least in this case for the model presented
here, the memory effects contained in the fractional operators apparently do not seem to play a
relevant role. The numerical simulations instead reveal that the order of the fractional derivative has a
definite influence on both the equilibrium population levels and the speed at which they are attained.

Keywords: dynamical systems; fractional-order derivative, epidemics; stability; disease; basic repro-
duction number; memory effects

1. Introduction

Among the new tools that have recently come into the limelight in scientific research,
fractional derivatives play an important role, in view of the fact that, in a sense, they embed
memory effects in dynamical systems [1–4]. This concept has been successfully applied
in mathematical physics [5], but more recently it has also been used in other contexts. In
the biological framework, ecological models incorporating this type of operator have been
introduced in [6], and for epidemic situations, in [7]. In view of the COVID-19 pandemic
that has been affecting humanity for almost two years, in the last months several papers
have been published on this topic. Some of them attempt to set up and analyze models for
this epidemic based on the concept of fractional derivatives.

The simplest epidemiological model, SI, consists of two classes, namely susceptibles
S and infectives I. If possible disease recovery is allowed, the class of healed individuals
is introduced as R. These individuals are immune from the disease, at least temporarily.
The model thus becomes type SIR. If, additionally, the recovered individuals lose disease
immunity, they again become prone to being infected and thus they return to the class of
susceptibles. In such cases, therefore, disease relapses are allowed, and the SIRS model is
obtained. A further step forward consists of introducing another compartment, hosting
the individuals that have been exposed to the disease. It is indeed well-known that, in
the case of measles, individuals that have contracted the disease do not show symptoms
until about at least a week after being infected. Meanwhile, they are very much able to
transmit the disease, especially in the very first few days after infection. The exposed
class therefore has paramount importance in transmissible disease modeling. The simplest
nontrivial compartment model that shows this feature is the SEIR model. It has been taken
into consideration, together with a fractional derivative approach, in [8,9]. Reference [10]
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also considers this formulation, but in addition time delays are explicitly built into the
model. Another extension of the SEIR system is considered in [11], where the class P of
“deprived and marginalised” individuals is also considered. The latter are individuals
that are less able to cope with strict distancing measures and therefore contribute to
the further spread of the disease. Apparently, they are “recruited” from the infected by
a simple linear transition. In other words, the surviving infected exit this class either
by recovering or by becoming part of P. In [12], instead, three additional classes are
introduced, thereby forming the SEIQRDP model. Apart from the class D of deceased
individuals, quarantined individuals Q are introduced, as well as the “insusceptible”,
P. In the model, disease mortality is allowed only among quarantined, thereby most
likely implying that infected that die of the disease are accounted for as having been
recognized as disease carriers, and therefore put in isolation before dying. The Atagana–
Baleanu fractional derivative is employed instead of the Caputo fractional derivative in [13].
Here, the infected may migrate to the quarantined Q class. Individuals in isolation may
possibly become confirmed cases and therefore are lumped into the new class C. Notably,
individuals belonging to both Q and C classes are assumed not to be able to disseminate
the disease further, which may be a strong assumption. In Italy, at least in the early
phases of the pandemic, most of the contagions involved doctors and nurses working
in hospitals. This indicates that virus leakage was nevertheless possible in supposedly
confined environments. After collecting data for various compartments from two countries,
in [14] parameters are estimated, on the basis of which, initially a standard dynamical
system and later on some fractional models, are built. In particular, the Caputo, Caputo–
Fabrizio, Atangana–Baleanu and the fractal–fractional nonlocal operators are employed.
Five classes of infected are considered, of which the first one essentially represents the
exposed in our above terminology. The remaining ones consider symptomatic individuals
that have or have not been tested and found to be positive or not. In [15], again the same
previous five classes of infected individuals are considered, those having been tested or
not, or those under treatment. The model also introduces a time-dependent transmission
rate that tries to incorporate the social distancing measures, including the wearing of
masks, and social contacts restrictions, that is, shop closures, curfew and so forth. This
attempts to model the ways of fighting the epidemic diffusion that have been enforced by
many governments worldwide, although the implementation times differed from country
to country. Specifically, in [15], a model is proposed that extends the possible disease
transmission mechanism of [14] to two other compartments which were not able to spread
it. In addition to the equilibria analysis, a numerical scheme for the integration of the
fractional system is developed. In both [14,15], the major novelty at the modeling level
appears to be the introduction of the compartment of the vaccinated, V. In [16], an early
model for treatment is also formulated using standard derivatives.

In all the papers considered above, however, no real asymptomatic class appears in
the model. By this terminology, we mean people that are unrecognized carriers, in that
they do not show symptoms. This class has enormous importance, given the fact that
individuals in it believe that are not infectious and therefore think that they may mingle
without restraint with susceptibles. However, not being recognized as disease-carriers, they
contribute to the fast diffusion of the epidemic. A model with standard derivatives taking
asymptomatics into account has been formulated in [17]. Symptomatic and asymptomatic
infectious are partitioned into two different classes. The model is formulated via standard
derivatives. Instead, in [18] a fractional operator model is presented, but the main aim
of the paper consists of devising a suitable stable numerical scheme, which essentially
relies on the use of the Laplace transform. The basic reproduction number is evaluated
and, if smaller than one, it is shown that the epidemic is eradicated. Parameters for the
simulations are taken from the literature or estimated by data fitting. The asymptomatic
class is also considered in [19], where the main aim is the study of a numerical algorithm
based on the Riesz wavelets is proposed.
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In [20], quarantined individuals—coming from the exposed class, the symptomatic
and asymptomatic infected, the isolated and treated—are considered in addition to the
standard classes of the SEIR model. Notably, the model does not seem to account for
disease mortality. For infected I the parameter ρ, according to the parameter list, should be
interpreted to be the same as γ. It describes the migration from class I to treatment. At least
both the infected and treated individuals should experience disease mortality. Indeed, if by
the term “treated” the authors mean hospitalized, not including disease mortality does
not appear to match observations. As a matter of fact, in the case of covid, hospitalized
mortality has had a very big impact on societies worldwide. A similar remark may perhaps
be made on the class P of “isolated” individuals into which the “quarantined” (being
so after exposure) and infected migrate. After all, these people are still affected by the
disease. In the model, the isolated and quarantined are assumed to be able to propagate the
disease. However, treated individuals are not. In such cases, the same remark on the Italian
hospitals’ situation mentioned above may apply. The paper investigates the existence of
the solutions and the feasibility and stability of the system equilibria.

We have therefore chosen a simple model that is formulated via fractional derivatives
in the line of the above research lines. It includes only the basic epidemiological classes,
because the aim of modeling is to elucidate, if possible, how very complex behaviors
are generated, using the minimal feasible assumptions. These must contain the basic
mechanisms underlying the variables’ relationships, but should not remove the system’s
basic features (Occam’s razor).

The model we propose differs in some more important or smaller aspects from each
one of the systems presented in the above papers. In some cases it is simpler, which may
be a shortcoming if real data need to be analyzed. On the other hand, however, it may
represent an advantage in that it is well-known that minimal models sometimes help in
highlighting system features whose real origin may be obscured in more complicated ones.

This paper is organized as follows. The next Section 2 contains the model description.
The basic analytical properties of the system are presented in Section 3. A numerical
simulation is presented in Section 4 together with a brief final discussion.

2. Material and Methods

We consider the following fractional-order epidemiological model incorporating a
spread of corona virus. We consider the following classes of individuals: susceptibles S,
namely the individuals who have not yet been exposed to the virus; exposed E, people who
have been infected by the virus but are in the incubation period, in which they cannot yet
spread the disease; symptomatic infected I, individuals that manifest symptoms and can
communicate the disease; asymptomatic infected A, those persons that can communicate
the disease even without having explicit symptoms; the removed class R, which includes
the people that recovered from the disease. We further let N(t) denote the total population.
Thus, N(t) = S(t) + E(t) + I(t) + A(t) + R(t). The model reads as follows:

DqS(t) = Λ− β IS(I + kA)− dpS,

DqE(t) = β IS(I + kA)− (1− α)ωpE− αω′pE− dpE,

Dq I(t) = (1− α)ωpE− (γp + dp + µ)I + ξ A,

Dq A(t) = αω′pE− (γ′p + dp + ν)A− ξ A,

DqR(t) = γp I + γ′p A− dpR,

(1)

where Dq is the standard Caputo differentiation with q ∈ (0, 1). For the benefit of the
reader, we recall the definition of the Caputo fractional derivative of order q [1,2]:

Dqx(t) =
1

Γ(n− q)

∫ t

0
(t− s)n−q−1x(n)(s) ds, n− 1 < q < n, n ∈ N.
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In the above model, all individuals experience natural mortality at rate dp; susceptibles
are recruited at constant rate Λ, these being the only two demographic features of the
model. The epidemic part of the model considers disease transmission among susceptibles
and both types of infected, at rate β I , through mass action. Note that the factor k modulates
the possible difference in the ability to spread the disease from asymptomatic people versus
symptomatic ones. After contagion, a susceptible migrates into the class of the exposed,
from which, after activation of the disease, it moves on to the infected compartments, at
possibly different rates ωp and ω′p; α instead tells the proportion of exposed that will never
show symptoms, that is, they move to class A. From this class, at rate ξ, individuals may still
be able to become symptomatic and migrate to the I class. Both types of infected individuals
may recover at rates γp and γ′p and are subject to disease-related mortality, for which we
assume two possibly different rates, µ for symptomatic and ν for asymptomatic people.
All the parameters are non negative and their meaning is summarized in Table 1. The basic
mechanisms underlying the model are shown in Figure 1.

Figure 1. The basic interactions among the compartments.

Table 1. Model parameters and their meaning.

Λ susceptibles recruitment rate,
dp natural mortality,
β I disease transmission rate,
k transmissibility ratio between asymptomatics and symptomatics,
ν disease-related mortality for asymptomatics,
µ disease-related mortality for symptomatic individuals,

ωp progression rate from exposed to symptomatic,
ω′p progression rate from exposed to asymptomatic,

α fraction of exposed that turn asymptomatic,
ξ progression rate from asymptomatic to symptomatic,

γp recovery rate from symptomatic infection,
γ′p recovery rate from asymptomatic infection.

The system (1) is completed by the following initial conditions

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0,

A(0) ≥ 0, and R(0) ≥ 0.
(2)
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3. Results

This section studies the existence, uniqueness, non-negativity and boundedness of the
solutions of a fractional order epidemiological model (1). In addition, the stability analysis
of fractional order epidemiological model (1) is also performed.

3.1. Existence and Uniqueness

The sufficient condition for the existence and uniqueness of the solution of a fractional
order system (1) are as follows:

Theorem 1. For each non-negative initial conditions, there exists a unique solution of fractional
order system (1).

Proof. We seek a sufficient condition for the existence and uniqueness of the solutions of
fractional order system (1) in the region Ω× (0, T] where

Ω = {(x, y, z, u, v) ∈ R2 : max(|x|, |y|, |z|, |u|, |v|) ≤ ρ}.

The approach used in [6] is adopted. Consider a mapping

G(X) = (G1(X), G2(X), G3(X), G4(X), G5(X))

and
G1(X) = Λ− β I x(z + ku)− dpx,

G2(X) = β I x(z + ku)− (1− α)ωpy− αω′py− dpy,

G3(X) = (1− α)ωpy− (γp + dp + µ)z + ξu,

G4(X) = αω′py− (γ′p + dp + ν)u− ξu,

G5(X) = γpz + γ′pu− dpv.

(3)

For any X, X, it follows from (3) that∣∣∣∣G(X)− G(X)
∣∣∣∣ =

∣∣G1(X)− G1(X)
∣∣+ . . . +

∣∣G5(X)− G5(X)
∣∣

=
∣∣Λ− β I x(z + ku)− dpx−Λ + β I x(z + ku) + dpx

∣∣
+
∣∣∣β I x(z + ku)− [(1− α)ωp + αω′p + dp]y

−β I x(z + ku) + [(1− α)ωp + αω′p + dp]y
∣∣∣

+
∣∣(1− α)ωpy− (γp + dp + µ)z + ξu

−(1− α)ωpy + (γp + dp + µ)z− ξu
∣∣

+
∣∣∣αω′py− (γ′p + dp + ν + ξ)u

−αω′py + (γ′p + dp + ν + ξ)u
∣∣∣

+
∣∣∣γpz + γ′pu− dpv− γpz− γ′pu + dpv

∣∣∣
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= β I |x(z− z) + z(x− x)|+ kβ I |x(u− u) + u(x− x)|

+dp|x− x|+ β I |x(z− z) + z(x− x)|

+kβ I |x(u− u) + u(x− x)|

+[(1− α)ωp + αω′p + dp]|y− y|

+(1− α)ωp|y− y|+ (γp + dp + µ)|z− z|+ ξ|u− u|

+αω′p|y− y|+ (γ′p + dp + ν + ξ)|u− u|

+γp|z− z|+ γ′p|u− u|+ dp|v− v|

≤ [2β Iρ(1 + k) + dp]|x− x|

+[2(1− α)ωp + 2αω′p + dp]|y− y|

+(2β Iρ + 2γp + dp + µ)|z− z|

+(2kβ Iρ + 2ξ + 2γ′p + dp + ν)|u− u|

+dp|v− v|

≤ C
∣∣∣∣X− X

∣∣∣∣,
where

C = max
(

2β Iρ(1 + k) + dp, 2(1− α)ωp + 2αω′p + dp,

2β Iρ + 2γp + dp + µ, 2kβ Iρ + 2ξ + 2γ′p + dp + ν
)

.

Thus, G(X) satisfies the Lipschitz condition. Consequently, the existence and uniqueness
of the solution of the fractional order system (1) follows.

3.2. Non-Negativity and Boundedness

The solutions of the fractional order system (1) represent the densities of the interacting
populations and must therefore be non-negative and bounded. These features are ensured
by the following results.

Theorem 2. All the solutions of fractional order system (1), which start in R5
+ are uniformly

bounded and non-negative.

Proof. We follow the approach used by [6]. Define the function N(t) = S(t) + E(t) +
I(t) + A(t) + R(t). Hence, for each dp > 0,

DqN(t) + dpN(t) = Λ− β IS(I + kA)− dpS

+β IS(I + kA)− (1− α)ωpE− αω′pE− dpE

+(1− α)ωpE− (γp + dp + µ)I + ξA

+αω′pE− (γ′p + dp + ν)A− ξA

+γp I + γ′p A− dpR

+dp(S(t) + E(t) + I(t) + A(t) + R(t))

= Λ− µI − νA

≤ Λ.

By using the standard comparison theorem for fractional order [21],

N(t) ≤ N(0)Eq
(
−dp(t)q)+ Λ(t)qEq,q+1

(
−dp(t)q),
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where Eq is the Mittag–Leffler function. According to Lemma 5 and Corollary 6 in [21],

N(t) ≤ Λ
dp

, t→ +∞

Therefore, all the solutions of fractional order system (1) starting in R5
+ are confined to the

region Σ, where

Σ = {(S, E, I, A, R) ∈ R5
+ : N(t) ≤ Λ

dp
+ ε, ε > 0}. (4)

Next, we show that the solutions of the fractional order system (1) are non-negative.
From the first equation of system (1) we have

DqS(t) = Λ− β IS(I + kA)− dpS

≥ −[β I(I + kA) + dp]S

≥ −[β I(1 + k)
Λ
dp

+ dp]S

≥ −C1S,

where C1 = β I(1 + k) Λ
dp

+ dp. According to the standard comparison theorem for frac-
tional order [21], and the positivity of the Mittag–Leffler function Eq,1(t) > 0, for any
q ∈ (0, 1) [22],

S ≥ S(0)Eq,1(−C1tq)⇒ S ≥ 0.

From the second equation of system (1) we find

DqE(t) = β IS(I + kA)− (1− α)ωpE− αω′pE− dpE

≥ −[(1− α)ωp + αω′p + dp]E

≥ −C2E,

where C2 = (1− α)ωp + αω′p + dp. Therefore,

E ≥ E(0)Eq,1(−C2tq)⇒ E ≥ 0.

From the third equation of system (1) we get

Dq I(t) = (1− α)ωpE− (γp + dp + µ)I + ξ A

≥ −(γp + dp + µ)I

≥ −C3 I,

where C3 = γp + dp + µ. Therefore,

I ≥ I(0)Eq,1(−C3tq)⇒ I ≥ 0.

From the fourth equation of system (1) we obtain

Dq A(t) = αω′pE− (γ′p + dp + ν)A− ξA

≥ −(γ′p + dp + ν + ξ)A

≥ −C4 A,
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where C4 = γ′p + dp + ν + ξ. Therefore,

A ≥ A(0)Eq,1(−C4tq)⇒ A ≥ 0.

From the last equation of system (1) we have

DqR(t) = γp I + γ′p A− dpR

≥ γp I + γ′p A− dpR

≥ −dpR.

Therefore,
R ≥ R(0)Eq,1(−dptq)⇒ R ≥ 0.

Thus, it has been proved that the solutions of system (1) are non-negative.

3.3. Equilibrium Points and Local Stability

In this section, we investigate the local stability of equilibrium points. The fractional-
order system (1) has the following equilibrium points:

1. The coronavirus-free equilibrium P0(S0, 0, 0, 0, 0), where S0 =
Λ
dp

. It is always feasible.

2. The coronavirus-symptomatic-infected-free equilibrium PI(SI , EI , 0, AI , RI), which is
feasible if

Λ >
dpBT HT

kβ Iω′p
, α = 1 and ξ = 0, (5)

where

EI =
1

BT

(
Λ−

dpBT HT

kβ Iω′p

)
, SI =

Λ− BTE∗

dp
,

AI =
ω′p
HT

EI , RI =
γ′p
dp

ω′p
HT

EI ,

and 

BT = (1− α)ωp + αω′p + dp,

CT = γp + µ + dp,

DT = ξ + kCT ,

HT = γ′p + ν + ξ + dp.

(6)

3. The coronavirus endemic equilibrium P∗(S∗, E∗, I∗, A∗, R∗), which is feasible if

Λ >
dpBTCT HT

β I

[
(1− α)ωp HT + αω′pDT

] , and either α 6= 1 or ξ 6= 0, (7)
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where

E∗ =
1

BT

Λ−
dpBTCT HT

β I

[
(1− α)ωpHT + αω′pDT

]
, S∗ =

Λ− BTE∗

dp
, (8)

I∗ =
(1− α)ωpHT + αω′pξ

CT HT
E∗, A∗ =

αω′p
HT

E∗ (9)

R∗ =

(
γp

dp

(1− α)ωpHT + αω′pξ

CT HT
+

γ′p
dp

αω′p
HT

)
E∗. (10)

3.4. The Basic Reproduction Number

The basic reproduction number R0 for our fractional model is found using the next
generation matrix method [23].

The reduced system may be written in compact form as: DqX = F(X)−V(X), where
X = (E, I, A)

F(E, I, A) =

 β IS(I + kA)
0
0

, V(E, I, A) =

 −(1− α)ωpE− αω′pE− dpE
(1− α)ωpE− (γp + dp + µ)I + ξA
αω′pE− (γ′p + dp + ν)A− ξ A

.

The Jacobian matrices of F(X) and V(X) at the disease-free equilibrium point P0 are

JF(P0) =

 0 β IS0 β IS0 k
0 0 0
0 0 0


and

JV(P0) =

 −BT 0 0
(1− α)ωp −CT ξ

αω′p 0 −HT

.

We find that

J−1
V (P0) =



−1
BT

0 0

−[(1− α)ωp HT + αω′pξ]

CT BT HT

−1
CT

−ξ

CT HT
−αω′p
BT HT

0
−1
HT

.

The next generation matrix is

−JF(P0)J−1
V (P0) =

 β IS0
[(1− α)ωp HT + αω′pDT ]

CT BT HT
β IS0

1
CT

β IS0
DT

CT HT
0 0 0
0 0 0

.

Thus

R0 = ρ(−JF(P0)J−1
V (P0)) = β IS0

[(1− α)ωp HT + αω′pDT ]

CT BT HT
. (11)
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Next, we will discuss the stability of the equilibrium points of system (1). At the point
P(S, E, I, A, R), the Jacobian matrix of system (1) is given by

J(P) =


−β I(I + kA)− dp 0 −β IS −β ISk 0

β I(I + kA) −BT β IS β ISk 0
0 (1− α)ωp −CT ξ 0
0 αω′p 0 −HT 0
0 0 γp γ′p −dp

. (12)

Using the Jacobian matrix (12) and the Matignon condition [4,7], the local stability of
the equilibrium points of the fractional-order system (1) is investigated. We have the
following results.

Theorem 3. The coronavirus-free equilibrium P0 of the fractional-order system (1) is locally
asymptotically stable if

Λ <
dp

β I

BTCT HT
(1− α)ωpHT + αω′pDT

,

(
i.e., R0 = β IS0

(1− α)ωp HT + αω′pDT

CT BT HT
< 1

)
, (13)

and unstable if

Λ >
dp

β I

BTCT HT
(1− α)ωp HT + αω′pDT

, (i.e., R0 > 1). (14)

Here, recall that R0 denotes the basic reproduction number.

Proof. Letting

a2 = BT + CT + HT , (15)

a1 = HT [BT + CT ] + BTCT − β IS0((1− α)ωp + kαω′p)

a0 = BTCT HT − β IS0

(
(1− α)ωp HT + αω′pDT

)
,

the Jacobian matrix (12) around the coronavirus-free equilibrium P0 is

J(P0) =



−dp 0 − β IΛ
dp

− kβ IΛ
dp

0

0 −BT
β IΛ
dp

kβ IΛ
dp

0

0 (1− α)ωp −CT ξ 0
0 αω′p 0 −HT 0
0 0 γp γ′p −dp


.

The eigenvalues of the Jacobian matrix J(P0) around the coronavirus-free equilibrium P0
are λ1 = −dp of multiplicity order two and the roots of the characteristic polynomial of the
minor matrix of J(P0) given by

C(λ) = λ3 + a2λ2 + a1λ + a0 = 0, (16)

where ai, i = 0, . . . , 2 are given in (15).
It is evident that a2 > 0. From condition (13), the following equations are also satisfied:

a0 = BTCT HT − β IS0

[
(1− α)ωpHT + αω′pDT

]
=

β I
dp

[
(1− α)ωp HT + αω′pDT

]dp

β I

BTCT HT[
(1− α)ωp HT + αω′pDT

] −Λ

 > 0,
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[
(1− α)ωp HT + αω′pDT

]
a1

= [HT(BT + CT) + BTCT ]
[
(1− α)ωp HT + αω′pDT

]
−β IS0

[
(1− α)ωpHT + αω′pDT

]
[(1− α)ωp + kαω′p]

= [HT(BT + CT) + BTCT ]
[
(1− α)ωp HT + αω′pDT

]
+[a0 − BTCT HT ][(1− α)ωp + kαω′p]

= HT(BT + CT)(1− α)ωp HT + (HTCT + BTCT)αω′pξ

+a0[(1− α)ωp + kαω′p] > 0

and [
(1− α)ωp HT + αω′pDT

]
a1a2

= HT(BT + CT)(1− α)ωpHTa2

+(HTCT + BTCT)αω′pξ a2

+a0[(1− α)ωp + kαω′p]a2

= HT(BT + CT)(1− α)ωp HTa2

+(HTCT + BTCT)αω′pξ a2

+a0(1− α)ωp(BT + CT + HT)

+a0kαω′p(BT + CT + HT)

> BTCTαω′pξa2 + a0(1− α)ωp HT

+a0αω′p(kCT + ξ)− a0αω′pξ

> BTCT HTαω′pξ + a0[(1− α)ωpHT + αω′pDT ]

−BTCT HTαω′pξ

= a0[(1− α)ωpHT + αω′pDT ].

Thus, ai > 0, i = 0, . . . , 2 and a2a1 > a0.
From the Routh–Hurwitz criterion, all the roots λi of the characteristic Equation (16)

have negative real parts. By using Matignon’s condition [4,7], it can be observed that
|arg(λi)| > q π

2 for all 0 < q < 1. Therefore, the coronavirus-free equilibrium point P0 is
locally asymptotically stable if condition (13) is satisfied. Under condition (14), we have
a0 < 0 and lim

λ→+∞
C(λ) = +∞. Then a positive real root λ∗ > 0 of the characteristic

Equation (16) exists; from Matignon’s condition [4,7], it can be observed that |arg(λ∗)| =
0 < q π

2 for all 0 < q < 1. Thus, the coronavirus-free equilibrium point P0 is unstable.

The coronavirus-free equilibrium point P0 is locally asymptotically stable when the
coronavirus-symptomatic-free equilibrium PI and the coronavirus endemic equilibrium P∗

do not exist.
Since we can deduce the stability of coronavirus symptomatic infected-free equilib-

rium PI from the stability of coronavirus endemic equilibrium P∗ by taking α = 1 and
ξ = 0, the stability of the coronavirus endemic equilibrium P∗ is now discussed.

Theorem 4. Let

c3 = β I(I∗ + kA∗) + dp + HT + BT + CT > 0,
c2 = [β I(I∗ + kA∗) + dp](HT + BT + CT) + BTCT + HT(BT + CT)

−[αω′pk + (1− α)ωp]β IS∗,
c1 = [β I(I∗ + kA∗) + dp][BTCT + HT(BT + CT)] + HT BTCT

−[αω′p(kdp + DT) + (1− α)ωp(dp + HT)]β IS∗,
c0 = [β I(I∗ + kA∗) + dp]HT BTCT − dp[αω′pDT + (1− α)ωp HT ]β IS∗.

(17)
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The coronavirus endemic equilibrium P∗ of the fractional-order system (1) is locally asymptotically
stable if

Λ >
dp

β I

BTCT HT
(1− α)ωp HT + αω′pDT

, (i.e., R0 > 1). (18)

Proof. At the coronavirus endemic equilibrium P∗, the Jacobian matrix (12) is given by

J(P∗) =


−β I(I∗ + kA∗)− dp 0 −β IS∗ −β IS∗k 0

β I(I∗ + kA∗) −BT β IS∗ β IS∗k 0
0 (1− α)ωp −CT ξ 0
0 αω′p 0 −HT 0
0 0 γp γ′p −dp

.

The eigenvalues of the Jacobian matrix J(P∗) at the equilibrium P∗ are −dp < 0 and the
roots of the characteristic polynomial arising from the remaining minor of order four:

λ4 + c3λ3 + c2λ2 + c1λ + c0 = 0, (19)

where ci, i = 0, . . . , 3 are given in (17).
It is evident that c3 > 0. From condition (18), the following inequalities on the

coefficients are also satisfied.

c0 = [β I(I∗ + kA∗) + dp]HT BTCT − β I [(1− α)ωp HT + αω′pDT ]dpS∗

= β I

[
(1− α)ωpHT + αω′p(ξ + kCT)

]
BTE∗ + dp HTCT BT

−β I [(1− α)ωp HT + αω′pDT ](Λ− BTE∗)

= β I

[
(1− α)ωpHT + αω′pDT

](
2BTE∗ +

dp HTCT BT

β I [(1− α)ωpHT + αω′pDT ]
−Λ

)
= β I

[
(1− α)ωpHT + αω′pDT

]
BTE∗ > 0,

c1 = [β I(I∗ + kA∗) + dp][BTCT + HT(BT + CT)] + HT BTCT

−[(1− α)ωp(dp + HT) + αω′p(kdp + DT)]β IS∗

=

[
β I

(
(1− α)ωpHT + αω′pDT

CT HT

)
E∗ + dp

]
[BTCT + HT(BT + CT)]

−β I [(1− α)ωp + αω′pk](Λ− BTE∗)

= β I

(
(1− α)ωp HT(BT + CT)

CT
+

αω′pξBT

CT
+

αω′pDT(BT + HT)

HT

)
E∗

+dp[BTCT + HT(BT + CT)]− β I [(1− α)ωp + αω′pk](Λ− 2BTE∗)

= β I

(
(1− α)ωp HT(BT + CT)

CT
+

αω′pξBT

CT
+

αω′pDT(BT + HT)

HT

)
E∗

+dp[BTCT + HT(BT + CT)]

−β I [(1− α)ωp + αω′pk]

 2dpBTCT HT

β I

[
(1− α)ωpHT + αω′pDT

] −Λ


= β I [(1− α)ωpHT + αω′pDT ]

(
CT HT + BT(CT + HT)

CT HT

)
E∗

+dp

 (BT + CT)H2
T(1− α)ωp + HT BTαω′pξ + CT(BT + HT)αω′pDT[

(1− α)ωp HT + αω′pDT

]
 > 0,
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c2 = [β I(I∗ + kA∗) + dp](HT + BT + CT) + BTCT + HT(BT + CT)

−[αω′pk + (1− α)ωp]β IS∗

=

[
β I

(
(1− α)ωpHT + αω′pDT

CT HT

)
E∗ + dp

]
(HT + BT + CT) + BTCT + HT(BT + CT)

−[αω′pk + (1− α)ωp]β I
Λ− BTE∗

dp

= β I

(
(1− α)ωp(HT + BT)

CT
+

αω′pξ(HT + BT + CT)

CT HT
+

αω′pk(BT + CT)

HT

)
E∗

+dp(HT + BT + CT) + BTCT + HT(BT + CT)

+β I [(1− α)ωp + αω′pk]
(
(dp + BT)E∗ −Λ

dp

)
= β I

(
(1− α)ωp(HT + BT)

CT
+

αω′pξ(HT + BT + CT)

CT HT
+

αω′pk(BT + CT)

HT

)
E∗

+dp(HT + BT + CT) + BTCT + HT(BT + CT)

+
β I [(1− α)ωp + αω′pk]

BT

Λ−
(dp + BT)BTCT HT

β I

[
(1− α)ωpHT + αω′pDT

]


= β I(BT + CT + HT)

(
(1− α)ωpHT + αω′pDT

CT HT

)
E∗

+dp(HT + BT + CT) + CT HT + BT

 (1− α)ωp H2
T + HTαω′pξ + αω′pCT DT[

(1− α)ωp HT + αω′pDT

]
 > 0

and

c1(c3c2 − c1) = β I

(
(1− α)ωp HT + αω′pDT

CT HT

)
E∗c1c2

+β I
[
(HT + CT + dp)HT + CT(CT + dp)

]
×


[
(1− α)ωp HT + αω′pDT

]
CT HT

E∗c1

+β I(HT + BT + CT + dp)BT

(
(1− α)ωp HT + αω′pDT

CT HT

)
E∗c1

+(HT + BT + CT)(HT + BT + CT + dp)dpc1

+CT HT(CT + HT + BT)c1

+BT(BT + CT + HT)

 [(1− α)ωp H2
T + αω′pCT DT ] + αω′pξHT[

(1− α)ωp HT + αω′pDT

]
c1

> β3
I BT

[
(1− α)ωp HT + αω′pDT

]( (1− α)ωp HT + αω′pDT

CT HT

)2

E∗3

+2β2
I BT(dp + HT + BT + CT)[(1− α)ωp HT

+αω′pDT ]

(
(1− α)ωp HT + αω′pDT

CT HT

)
E∗2

+β I BT(dp + HT + BT + CT)
2
[
(1− α)ωp HT + αω′pDT

]
E∗

= c0c2
3.
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Thus, ci > 0, i = 0, . . . , 3 and c1(c3c2 − c1) > c0c2
3. Then, according to the Routh–Hurwitz

criterion, all the roots of the characteristic Equation (19) have negative real parts. By using
Matignon’s condition [4,7], it can be observed that |arg(λ1)| = π > q π

2 for all 0 < q < 1.
Therefore, the coronavirus endemic equilibrium point P∗ is locally asymptotically stable if
(18) is satisfied.

From Theorem 4, we obtain the following result.

Remark 1. Letting

b3 = β IkAI + dp + HT + BT + CT > 0,
b2 = [β IkAI + dp](HT + BT + CT) + BTCT + HT(BT + CT)

−ω′pkβ ISI ,
b1 = [β IkAI + dp][BTCT + HT(BT + CT)] + HT BTCT

−ω′p(kdp + DT)β ISI ,
b0 = [β IkAI + dp]HT BTCT − dpω′pDT β IS∗.

(20)

The coronavirus symptomatic-infected-free equilibrium PI of the system (1) is locally asymptotically
stable if

Λ >
dp

β I

BTCT HT
ω′pDT

, (i.e., R0 > 1). (21)

Proof. The result can easily be deduced from Theorem 4 by taking α = 1 and ξ = 0.

3.5. Global Stability

The global asymptotic stability of the equilibria P0, PI and P∗ of the fractional-order sys-
tem (1) is now investigated by using a suitable constructed Lyapunov function, Lemma 4.6
in [24] and Lemma 3.1 in [25].

Theorem 5. If

Λ <
dpBTCT HT

β I [(1− α)ωp HT + DTαω′p]
, (i.e., R0 < 1), (22)

then the coronavirus-free equilibrium P0 of the fractional-order system (1) is globally asymptotically
stable in R5

+.

Proof. First, the four equations in (1) are independent of R, therefore the last equation in
(1) can be omitted without loss of generality. Hence, let us consider the following function:

V0(S, E, I, A) =

(
S− S0 − S0 ln

S
S0

)
+ E +

BT
[(1− α)ωpHT + DTαω′p]

(HT I + DT A).

It is easily seen that the above function is non-negative and also V0 = 0 if and only if
S = S0, E = 0, I = 0 and A = 0. Further, calculating the q-order derivative of V0 along the
positive solutions of (1), we find:

DqV0(S, E, I, A) ≤ 1
S
(S− S0)DqS + DqE +

BT(HT Dq I + DT Dq A)

[(1− α)ωp HT + DTαω′p]

=
1
S
(S− S0)(−β IS(I + kA)− dp(S− S0)) + β IS(I + kA)− BTE

+
BT HT((1− α)ωpE− CT I + ξ A)

[(1− α)ωp HT + DTαω′p]
+

BT DT(αω′pE− HT A)

[(1− α)ωpHT + DTαω′p]

= −
dp

S
(S− S0)

2 + β IS0(I + kA)
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− BTCT HT I
[(1− α)ωpHT + DTαω′p]

− BT(−ξ + DT)HT A
[(1− α)ωpHT + DTαω′p]

= −
dp

S
(S− S0)

2 +

(
β IS0 −

BTCT HT
[(1− α)ωp HT + DTαω′p]

)
(I + kA)

= −
dp

S
(S− S0)

2 +
β I
dp

(
Λ−

dpBTCT HT

β I [(1− α)ωpHT + DTαω′p]

)
(I + kA).

From condition (22), we can show that the coefficient of the term I + kA in the last equality
are negative. Thus, we have DqV0 ≤ 0 for all (S, E, I, A) ∈ R4

+ and DqV0 = 0 if and only
if (S, E, I, A) = (S0, 0, 0, 0). Thus, the only invariant set contained in R4

+ is {(S0, 0, 0, 0)}.
Hence, by Lemma 4.6 of [24], it is enough to prove the convergence of the solutions
(S, E, I, A) to (S0, 0, 0, 0). From the last equation of (1) we can easily show that R converges
also to 0. Therefore, P0 is globally asymptotically stable in R5

+ if R0 < 1.

Theorem 6. If

Λ >
dpBT HT

β Ikω′p
, (i.e., R0 > 1), (23)

then the coronavirus-symptomatic-infected-free equilibrium PI of the fractional-order system (1) is
globally asymptotically stable in R5

+/R+ × {(0, 0, 0)} ×R+.

Proof. Consider the function

V1(S, E, I, A) = S− SI − SI ln
S
SI

+ E− EI − EI ln
E
EI

+
β ISI
CT

I +
kβ ISI

HT

(
A− AI − AI ln

A
AI

)
.

This function is positive and V1(S, E, I, A) = 0 if and only if (S, E, I, A) = (SI , EI , 0, AI).
By calculating the q-order derivative of V1 along the solution trajectories of system (1)

and using Lemma 3.1 in [25], we obtain

DqV1(S, E, I, A) ≤
(

1− SI
S

)(
Λ− β IS(I + kA)− dpS

)
+

(
1− EI

E

)
(β IS(I + kA)− BT E)

+
β ISI
CT

(−CT I)

+
kβ ISI

HT

(
1− AI

A

)(
ω′pE− HT A

)
=

(
1− SI

S

)(
β ISIkAI + dpSI − β IS(I + kA)− dpS

)
+

(
1− EI

E

)
β IS(I + kA)− BT E + β ISIkAI (24)

−β ISI I

+
kβ ISI

HT

(
1− AI

A

)
ω′pE− kβ ISI A +

kβ ISI
HT

ω′pEI

= −
dp

S
(S− SI)

2 + β ISIkAI

(
1− SI

S

)
−β I EI

SI
E
− kβ I EI

SA
E
− kβ ISI

HT
ω′p AI

E
A

+β ISIkAI +
kβ ISI

HT
ω′pEI .
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Now, substituting

x =
S
SI

, y =
E
EI

, z = I, u =
A
AI

,

in inequality (25), we obtain

DqV1(S, E, I, A) ≤ −
dp

S
(S− SI)

2 + β ISIkAI

(
2− 1

x
− xu

y

)
−β ISI

xz
y

+
kβ ISI

HT
ω′pEI

(
1− y

u

)
.

From the fourth equation of (1), we have

ω′pEI − HT AI = 0. (25)

Multiplying the Equation (25) by

kβ ISI
HT

F1(x, y, z, u),

where F1(x, y, z, u) is a function to be determined later, yields

kβ ISI
HT

ω′pEI F1(x, y, z, u)− β ISIkAI F1(x, y, z, u) = 0. (26)

Then, we obtain

DqV1(S, E, I, A) ≤ − dp
S (S− SI)

2 + β ISIkAI

(
2− 1

x −
xu
y − F1(x, y, z, u)

)
−β ISI

xz
y + kβ I SI

HT
ω′pEI

(
1− y

u + F1(x, y, z, u)
)
.

(27)

The function F1(x, y, z, u) is chosen such that the coefficient of EI is equal to zero. In this
case, we obtain

F1(x, y, z, u) =
y
u
− 1.

Thus, inequality (27) is equivalent to

DqV1(S, E, I, A) ≤ −
dp

S
(S− SI)

2 + β ISIkAI

(
3− 1

x
− xu

y
− y

u

)
− β ISI

xz
y

.

By the arithmetic mean-geometric mean inequality we have
(

3− 1
x −

xu
y −

y
u

)
≤ 0 for all

x ≥ 0, y ≥ 0 and u ≥ 0. Hence DqV1(S, E, I, A) ≤ 0, and DqV1(S, E, I, A) = 0 if and only
if S = SI , I = 0 and u = y (i.e., E

EI
= A

AI
). Since S must remain constant at SI , DqS is

zero. This implies that A = AI and E = EI . Thus, by Lemma 4.6 in [24], it follows that the
coronavirus-symptomatic-infected-free equilibrium PI is globally asymptotically stable in
R5
+/R+ × {(0, 0, 0)} ×R+.

Theorem 7. If

Λ >
dpBTCT HT

β I

[
(1− α)ωp HT + αω′pDT

] , (i.e., R0 > 1), and either α 6= 1 or ξ 6= 0, (28)

the fully endemic equilibrium P∗ of the fractional-order system (1) is globally asymptotically stable
in R5

+/R+ × {(0, 0, 0)} ×R+.
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Proof. Consider the function

V2(S, E, I, A) = S− S∗ − S∗ ln
S
S∗

+ E− E∗ − E∗ ln
E
E∗

+
β IS∗

CT

(
I − I∗ − I∗ ln

I
I∗

)
+

β IS∗DT
CT HT

(
A− A∗ − A∗ ln

A
A∗

)
.

This function is positive and V2(S, E, I, A) = 0 if and only if (S, E, I, A) = (S∗, E∗, I∗, A∗).
By calculating the q-order derivative of V2 along the solution of system (1) and using

Lemma 3.1 in [25], we obtain
DqV2(S, E, I, A) ≤

(
1− S∗

S

)(
Λ− β IS(I + kA)− dpS

)
+

(
1− E∗

E

)
(β IS(I + kA)− BTE)

+
β IS∗

CT

(
1− I∗

I

)(
(1− α)ωpE− CT I + ξA

)
+β IS∗

(
DT

CT HT

)(
1− A∗

A

)(
αω′pE− HT A

)
=

(
1− S∗

S

)(
β IS∗(I∗ + kA∗) + dpS∗ − β IS(I + kA)− dpS

)
+

(
1− E∗

E

)
β IS(I + kA)− BTE + β IS∗(I∗ + kA∗)

+
β IS∗

CT

(
1− I∗

I

)(
(1− α)ωpE + ξ A

)
(29)

− β IS∗

CT
CT I +

β IS∗

CT
[(1− α)ωpE∗ + ξ A∗]

+
β IS∗DT
CT HT

(
1− A∗

A

)
αω′pE− β IS∗DT

CT HT
HT A +

β IS∗DT
CT HT

αω′pE∗

= −
dp

S
(S− S∗)2 + β IS∗ I∗

(
1− S∗

S

)
+ β IS∗kA∗

(
1− S∗

S

)
−β I E∗

SI
E
− kβ I E∗

SA
E
− β IS∗

CT
(1− α)ωp I∗

E
I

− β IS∗

CT
ξ I∗

A
I
− β IS∗DT

CT HT
αω′p A∗

E
A

+ β IS∗(I∗ + kA∗)

+
β IS∗

CT
[(1− α)ωpE∗ + ξ A∗] +

β IS∗DT
CT HT

αω′pE∗.

Now, replacing

x =
S
S∗

, y =
E
E∗

, z =
I
I∗

, u =
A
A∗

,

in inequality (27), we obtain

DqV2(S, E, I, A) ≤ −
dp

S
(S− S∗)2 + β IS∗ I∗

(
2− 1

x
− xz

y

)
+β IS∗kA∗

(
2− 1

x
− xu

y

)
+

β IS∗

CT
(1− α)ωpE∗

(
1− y

z

)
+

β IS∗

CT
ξ A∗

(
1− u

z

)
+

β IS∗(kCT + ξ)

CT HT
αω′pE∗

(
1− y

u

)
.

From the third and fourth equations of (1), we have

CT I∗ − (1− α)ωpE∗ − ξ A∗ = 0, (30)

αω′pE∗ − HT A∗ = 0. (31)
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Multiplying the Equations (30) and (31) respectively by

β IS∗

CT
F2(x, y, z, u),

β IS∗(kCT + ξ)

CT HT
F3(x, y, z, u),

where F2(x, y, z, u) and F3(x, y, z, u) are functions to be determined later, yields

(
CT I∗ − (1− α)ωpE∗ − ξ A∗

) β IS∗

CT
F2(x, y, z, u) = 0, (32)(

αω′pE∗ − HT A∗
) β IS∗(kCT + ξ)

CT HT
F3(x, y, z, u) = 0. (33)

Then, we have

DqV2(S, E, I, A) ≤ −
dp

S
(S− S∗)2 + β IS∗ I∗

(
2− 1

x
− xz

y
+ F2(x, y, z, u)

)
+β IS∗kA∗

(
2− 1

x
− xu

y
− F3(x, y, z, u)

)
+

β IS∗

CT
(1− α)ωpE∗

(
1− y

z
− F2(x, y, z, u)

)
(34)

+
β IS∗

CT
ξ A∗

(
1− u

z
− F2(x, y, z, u)− F3(x, y, z, u)

)
+

β IS∗(kCT + ξ)

CT HT
αω′pE∗

(
1− y

u
+ F3(x, y, z, u)

)
.

The functions F2(x, y, z, u) and F3(x, y, z, u) are chosen such that the coefficients of ω′pE∗

and I∗ are equal to zero. In this case, we obtain

F2(x, y, z, u) =
1
x
+

xz
y
− 2,

and
F3(x, y, z, u) =

y
u
− 1.

Thus, inequality (35) is equivalent to

DqV2(S, E, I, A) ≤ −
dp

S
(S− S∗)2 + β IS∗kA∗

(
3− 1

x
− xu

y
− y

u

)
+

β IS∗

CT
(1− α)ωpE∗

(
3− y

z
− 1

x
− xz

y

)
+

β IS∗

CT
ξ A∗

(
4− u

z
− 1

x
− xz

y
− y

u

)
.

By the arithmetic mean-geometric mean inequality we have
(

3− 1
x −

xu
y −

y
u

)
≤ 0,(

3− y
z −

1
x −

xz
y

)
≤ 0 and

(
4− u

z −
1
x −

xz
y −

y
u

)
≤ 0 for all x ≥ 0, y ≥ 0, z ≥ 0 and

u ≥ 0. Hence, DqV1(S, E, I, A) ≤ 0, and DqV1(S, E, I, A) = 0 if and only if S = S∗ and
u = z = y (i.e., E

E∗ =
I
I∗ =

A
A∗ ). Since S must remain constant at S∗, DqS is zero. This im-

plies that A = A∗, I = I∗ and E = E∗. Thus, by Lemma 4.6 in [24], it follows that the fully
endemic equilibrium P∗ is globally asymptotically stable in R5

+/R+ ×{(0, 0, 0)}×R+.

Remark 2. If the initial conditions start from R+ × {(0, 0, 0)} ×R+, then the solution converges
to the coronavirus-free equilibrium point P0.
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4. Discussion

The proposed epidemic model for COVID-19 containing a fractional derivative formu-
lation has been analyzed. The results show that the model is sound, because trajectories are
confined to a compact set and the subpopulations corresponding to the various compart-
ments into which the whole population is partitioned remain bounded. Unboundedness
would indeed be biologically impossible. The model exhibits the endemic equilibrium P∗

at which the disease persists. It also contains the disease-free point with only susceptible
individuals, P0, for which the pandemic is finally eradicated. This equilibrium should
be the goal of the policies attempting epidemic diffusion confinement. There is also an
“intermediate equilibrium”, PI , which does not contain symptomatic infected, but it still
harbors the disease among the asymptomatic individuals, so that it is in reality still en-
demic. The susceptible-only point P0 is incompatible with both PI and P∗, the latter being
unfeasible when the former is stably attained. Note also that PI is a kind of particular case
of coexistence P∗, which arises if asymptomatics will never develop symptoms and all
the exposed migrate into the asymptomatic class. In Section 3.5, global stability for each
equilibrium in suitable conditions is shown. This result is relevant but also to be expected,
in view of the incompatibility of multiple equilibria discussed above.

Figures 2–4 show these three theoretical types of possible model behaviors. The
comparison of these results with publicly available datasets on COVID-19 is not really
our goal. In part, this is also due to the discussion that follows below, indicating that the
population equilibrium levels change with the changes of the fractional derivative order.

Note that, of the two endemic points P∗ and PI , at equilibrium PI the disease remains
hidden in the population. However, it still has its pernicious effects, since people will still
“silently” die of it, at rate ν. In a sense, this equilibrium is worse than the explicit endemic
one P∗, because the latter keeps on showing to the people that the disease is not eradicated
and therefore warns the population to maintain suitable safety measures.

Figure 2. The model behavior for R0 = 1.1421 > 1. (Left) exposed and recovered settle at a level
near 2500, susceptibles drop to about 500; (Right) infected stabilize at 120 individuals, asymptomatic
instead at 40 individuals. This corresponds to the endemic equilibrium P∗. The parameter values are
Λ = 500, β I = 0.01, k = 0.1, dp = 0.082, α = 0.15, ωp = 0.1, ω′p = 0.1, ξ = 0.1, µ = 0.001, γp = 1.764,
γ′p = 0.6024, ν = 0.0005.

Finally, we observe that the stability results obtained analytically for the fractional
operator model in this case do coincide with those of the model formulated using standard
derivatives. Therefore, theoretically, the memory effects on this dynamical system are
essentially scantly relevant, and the use of a classical standard formulation appears to be
adequate. However, to further analyse in practice the effect of the order of the fractional
derivatives, we have investigated how it may possibly affect the equilibrium levels. Sim-
ulations of the population values attained at equilibrium are also reported as a function
of the fractional derivative order, in Figures 5–7, which correspond to the time series
of the Figures 2–4 mentioned above. It is clearly seen that the order q of the fractional
derivative does influence the final stage of the compartment levels. In Figure 5, for the
endemic equilibrium P∗, all compartments show a population decrease when q falls below
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0.5, with the exception of S, which slightly increases. The same trend is also observed
for the other endemic point PI , in Figure 7, although in this case the compartments are
arranged differently in the two frames, to better show the details. For the disease-free
point P0, in Figure 6, a low value of q decrements the susceptibles and increases the other
compartments. These are very small, but in fact should vanish. However, the simulations
have all been carried out with the same final time T = 10,000, so that the result indicates
that a low q entails a longer time for disease eradication.

Figure 3. The model behavior for 0 < R0 = 0.0571 < 1. (Left) susceptibles reach the level of 5500;
(Right) infected and asymptomatic individuals are reduced to the single digits, essentially vanishing,
recovered and exposed individuals remain confined respectively around the levels 100 and 50. In this
situation, the system approaches the disease-free equilibrium P0. The parameter values are Λ = 500,
β I = 0.0005, k = 0.1, dp = 0.082, α = 0.15, ωp = 0.1, ω′p = 0.1, ξ = 0.1, µ = 0.001, γp = 1.764,
γ′p = 0.6024, ν = 0.0005.

Figure 4. The model behavior for R0 = 1.2677 > 1. (Left) recovered attain the level of 25,000, exposed
instead about 4000; (Right) infected stabilize at around the 200 level, susceptibles and asymptomatic
individuals remain confined around the level 100. Once again the system settles at the endemic
equilibrium, but this time we have ξ = 0 and α = 1, so that the point attained is PI . The parameter
values are Λ = 500, β I = 0.01, k = 0.1, dp = 0.0082, α = 1, ωp = 0.1, ω′p = 0.1, ξ = 0, µ = 0.001,
γp = 1.764, γ′p = 0.6024, ν = 0.0005.

A possible line of research to be pursued in the future is to compare the real-world
scenario data with the simulation outcomes to assess the optimal fractional order to be
used in the model, or if instead the standard derivatives are sufficient.
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Figure 5. The model behavior for R0 = 1.1421 > 1 as q varies in [0, 1]. (Left) exposed and recov-
ered; (Right) susceptibles, infected and asymptomatic. The situation corresponds to the endemic
equilibrium P∗. The parameter values are the same of Figure 2.

Figure 6. The model behavior for 0 < R0 = 0.0571 < 1 as q varies in [0, 1]. (Left) susceptibles;
(Right) exposed, infected, asymptomatics and recovered. In this situation the system approaches the
disease-free equilibrium P0. All the simulations have been stopped at the same final time, T = 10,000.
For low values of the fractional derivative order, the populations E, I, A and R are not zero, but this
feature is intentionally left in the figure. Thus, it denotes the different speeds at which the populations
vanish as a function of the fractional derivative order. The parameter values are the same as those in
Figure 3.

Figure 7. The model behavior for R0 = 1.2677 > 1 as q varies in [0, 1]. (Left) exposed and recovered;
(Right) susceptibles, infected and asymptomatic. Once again the system settles at the endemic
equilibrium, but this time we have ξ = 0 and α = 1, so that the point attained is PI . The parameter
values are the same as those in Figure 4.
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