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SUMMARY

The mouse inner cell mass (ICM) segregates into the
epiblast and primitive endoderm (PrE) lineages coin-
cident with implantation of the embryo. The epiblast
subsequently undergoes considerable expansion of
cell numbers prior to gastrulation. To investigate un-
derlying regulatory principles, we performed system-
atic single-cell RNA sequencing (seq) of conceptuses
from E3.5 to E6.5. The epiblast shows reactivation
and subsequent inactivation of the X chromosome,
with Zfp57 expression associated with reactivation
and inactivation together with other candidate regula-
tors. At E6.5, the transition from epiblast to primitive
streak is linked with decreased expression of poly-
comb subunits, suggesting a key regulatory role.
Notably, our analyses suggest elevated transcrip-
tional noise at E3.5 and within the non-committed
epiblast at E6.5, coinciding with exit from pluripo-
tency. By contrast, E6.5 primitive streak cells became
highly synchronized and exhibit a shortened G1 cell-
cycle phase, consistent with accelerated prolifera-
tion. Our study systematically charts transcriptional
noise and uncovers molecular processes associated
with early lineage decisions.

INTRODUCTION

The peri-implantation mouse embryo consists of the embryonic

epiblast combined with two extra-embryonic layers: the tro-

phectoderm and primitive endoderm (PrE). Implantation occurs
Cell R
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at approximately embryonic day (E)4.5 and marks several key

changes in the embryo (Tam and Loebel, 2007). The pluripotent

epiblast dynamically changes post-implantation, developing into

a transcriptionally distinct entity primed for differentiation (Boro-

viak et al., 2015; Nichols and Smith, 2009). This eventually leads

to lineage specification at gastrulation, which is initiated by the

formation of the primitive streak in a proximal-posterior position

(Tam and Loebel, 2007).

Following blastocyst formation, an earlymilestone in embryonic

development is the formation of the epiblast and PrE prior

to implantation. This lineage commitment process is largely driven

by signaling mechanisms, in particular the Fgf/Mapk signaling

pathway (Feldmanetal., 1995;Yamanakaetal., 2010).Modulating

levels of Fgf directly determines lineage outcome (Kang et al.,

2013;Nichols et al., 2009;Yamanaka et al., 2010). Single-cell tran-

scriptome studies recently confirmed a role for Fgf signaling in

driving acquisition of PrE identity (Ohnishi et al., 2014). The newly

emerging epiblast undergoes a process of transcriptional rewiring

and expansion in cell number before further lineage specification

is initiated (Boroviak et al., 2015). During this process, the epiblast

is subjected to coordinated signaling cues that establish axial po-

larity (Tam and Loebel, 2007). Wnt, Tgf-b, and Fgf signaling path-

ways are key drivers of patterning and differentiation, essential for

both primitive streak formation and gastrulation (Camus et al.,

2006; Conlon et al., 1994; Liu et al., 1999; Mesnard et al., 2006;

Sun et al., 1999; Tam and Loebel, 2007; Winnier et al., 1995).

Concomitantly, the PrE differentiates further to produce the

visceral endoderm (VE), which overlies the epiblast. Regulatory

signals from the VE also influence epiblast cell fate, particularly

by promoting or antagonizing pathways, such as Wnt and Nodal

signaling, in a regionally restrictedmanner to position and pattern

the primitive streak and other embryonic sublineages (Dai et al.,

2016; Stower and Srinivas, 2014; Yoon et al., 2015).
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A prominent change during these critical stages is the process

of X chromosome reactivation and subsequent inactivation in

female embryos. The paternally inherited X chromosome, previ-

ously inactivatedat the2–4cell stage, is reactivated in theepiblast

during implantation. Subsequently, one of the two X chromo-

somes is randomly inactivated before the onset of gastrulation

(Mak et al., 2004; Okamoto et al., 2004; Schulz and Heard,

2013). The non-coding RNA Xist, together with its various regula-

tors, has a pivotal role in silencing the X chromosome (Brockdorff,

2011; Cerase et al., 2015). In vitro, pluripotency-associated tran-

scription factors such asPou5f1,Nanog, andSox2 are thought to

play key roles in reactivation of the X chromosome, in part by

downregulatingXist transcription (Minkovsky et al., 2012). Recent

single-cell studies using embryonic stem cells (ESCs) and

epiblast stem cells (EpiSCs) have provided new insights into this

process, including the identification of genes potentially involved

in X chromosome regulation (Chen et al., 2016). However, a com-

plete single-cell transcriptomic characterization of this process

in vivo is lacking. Single-cell analysis in human pre-implantation

embryos indicates that X chromosome inactivation is achieved

through dosage compensation (Petropoulos et al., 2016).

Single-cell transcriptome studies have been used to examine

developmental trajectories and lineage specification in early

mouse pre-implantation embryos (Deng et al., 2014; Kurimoto

et al., 2006; Ohnishi et al., 2014; Shi et al., 2015) and post-implan-

tation gastrulating embryos (Chen et al., 2016; Scialdone et al.,

2016). Several principles underlying cell fate decision-making

have been established, including the role of key transcription fac-

tor networks, cell signaling, cell position andmovement, andme-

chanical forces (Tam and Loebel, 2007), yet how cells actually

transition from one fate to another in vivo is unclear.

Interestingly, uncoordinated transcriptional heterogeneity or

transcriptional noise has, on a few specific occasions, been

observed to precede cell fate decisions. This heterogeneity

has been proposed to aid symmetry breaking (Arias and Hay-

ward, 2006; Eldar and Elowitz, 2010). However, how noise is

generated or how precisely it helps symmetry breaking is un-

known (Eldar and Elowitz, 2010). Early mouse blastomeres

show stochastic transcription of the key transcription factors

Oct4 and Cdx2, which become lineage restricted in the inner

cell mass (ICM) and trophectoderm, respectively (Dietrich and

Hiiragi, 2007). Furthermore, specific PrE and epiblast genes

have been shown to be co-expressed in cells within the E3.5

ICM before becoming restricted to specific cell types by E4.5

(Chazaud et al., 2006; Frankenberg et al., 2011; Kang et al.,

2013; Morris et al., 2010; Ohnishi et al., 2014; Plusa et al.,

2008). A systematic study of transcriptional noise in the develop-

mental stages preceding gastrulation is, however, lacking.

Here, we study the regulatory landscape fromperi-implantation

to early gastrulation by performing single-cell RNA-sequencing

(seq) of mouse embryos from E3.5 to E6.5. Our work provides in-

sights into the exit from pluripotency and priming for differentia-

tion, X chromosome reactivation and subsequent inactivation,

and the emergence of regulatory networks associated with cell

fate decisions. Our work also investigates transcriptional noise

and its sources across the different stages and explores what po-

tential consequences this might have for symmetry breaking and

cell fate decision-making.
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RESULTS

Single-Cell Transcriptomics and Lineage Identification
in E3.5, E4.5, E5.5, and E6.5 Embryos
We dissociated embryos into single cells and performed single-

cell RNA-seq (scRNA-seq) of mouse pre-implantation ICM at

E3.5 and epiblast and extra-embryonic endoderm at E4.5,

E5.5, and E6.5. A total of 1,219 cells were manually isolated

and sequenced from 32 embryos across all stages, from which

721 remained following filtering for data quality (see Experi-

mental Procedures; Figures 1A and S1A). 128 of the cells were

observed during picking to be doublets, but, importantly,

including or excluding these samples did not alter our conclu-

sions (Figure S1B). Transcriptomes derived from isolated cells

were subjected to principal-component analysis (PCA) showing

that the dataset separates by developmental stages and lineage,

consistent with knownmarker-based lineage identities (Tam and

Loebel, 2007) (Figures 1B and 1C).

To rigorously interrogate lineage identities and associated

gene markers, we employed single-cell consensus clustering

(SC3) (Kiselev et al., 2017) using all expressed genes, as well

as subsets of non-coding RNAs and transcription factors (Fig-

ures 1D and S1C). This identified eight clusters of cells and asso-

ciatedmarker gene sets, which distinguished embryonic and ex-

tra-embryonic cells and additionally identified four subclusters

within the E6.5 embryo. Consistent with the PCA, E3.5 cells do

not possess distinct lineage identities, as previously reported

(Ohnishi et al., 2014). Networks of genes including several known

naive pluripotency markers are observed exclusively at this

stage. At E4.5, a clear separation of cells into the epiblast and

PrE is observed and characterized by exclusive expression of

known markers, such as Nanog, Esrrb, Fgf4 (epiblast) and

Gata6, Pdgfra, and Sox17 (PrE) (Figure S1D). The E5.5 epiblast

cells cluster separately from E4.5 epiblast cells and possess

reduced Nanog expression, while gaining primed pluripotency

markers such as Pou3f1. Cells within the E5.5 epiblast do not

show any apparent substructure. Finally, cells from the E6.5 em-

bryo cluster into four groups corresponding to the VE, a primitive

streak population and two subclusters of non-committed

epiblast cells (epiblast 1 and epiblast 2). The primitive streak is

identified by high T expression in addition to the presence of

Snai1, Lef1, Evx1, andMesp1. We also identify several additional

markers for the streak includingGreb1,Ncoa5,Eid1, andH2afy2.

A list of lineage-specific genes can be found in Table S1, along

with differential expression of lineages in Table S2. Gene

pathway analyses indicate an increasing role for signaling path-

ways such as Wnt, Bmp, Fgf, and Nodal during development,

with the primitive streak population exhibiting high pathway ac-

tivity (see Experimental Procedures; Figure S1E).

In terms of charting pluripotency across the stages, E3.5 ex-

hibits the highest levels of naive pluripotency followed by E4.5.

At E5.5 and E6.5, embryos no longer express naive factors and

switch to primed pluripotency markers (Figure 1E) (Boroviak

et al., 2015). E4.5, E5.5, and E6.5 epiblast cells show remarkable

differences in their expression of pluripotency components,

while maintaining a relative lack of evident differentiation,

which potentially suggests a shift toward a ‘‘formative’’ state of

pluripotency prior to differentiation (Kalkan and Smith, 2014).
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Figure 1. Single-Cell mRNA-Seq of E3.5, E4.5, E5.6, and E6.5 Mouse Embryos

(A) Table listing number of embryos and cells, along with representative images of embryos used at each stage.

(B) Principal-component analysis (PCA) of cells that passed the quality and filtering criteria.

(C) PCA of all cells colored by gene expression levels (log2 of counts per million) of selectedmarker genes -Nanog (ICM/epiblast),Gata6 (PrE/VE), Pou3f1 (primed

pluripotency), and T (primitive streak).

(D) Heatmap showing key genes distinguishing cell clusters (SC3 analysis).

(E) Gene expression levels and variability of pluripotency factors classified into primed, naı̈ve, and core genes (using previous classifications; Boroviak et al.,

2014). The size of each dot represents relative expression levels, while variability is shown by color.
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Figure 2. Dynamics of X Chromosome Reactivation and Silencing

(A) Ratio of gene expression (median) between female and male embryos for the X chromosome and chromosomes 1, 4, and 6.

(B) Total expression levels of the X chromosome visualized at a single-cell level. The y axis represents the proportion of X chromosome counts relative to all other

chromosomes.

(C) Overall X chromosome expression levels plotted across all stages. The matched expression levels for Pou5f1, Nanog, and Sox2 are also plotted underneath.

(D) Plot representing pluripotency genes correlating or anticorrelating with X chromosome expression at each stage. Spearman’s correlation coefficient is

represented by color and size.

(E) Plot representing selected genes correlating or anticorrelating with X chromosome expression at each stage. The X represents absence of expression.
Interestingly, we found that many of these markers are not

homogenously expressed in the embryos. For example, at

E3.5, Klf4 and Fgf4 are variably expressed as are Nanog, Sall4,

and Utf1 at E4.5 and T and Cer1 at E6.5 (Figure 1E).

Reactivation and Subsequent Inactivation of the X
Chromosome
The presence of multiple embryos of both sexes enabled us to

investigate potential gender-based differences in early develop-

ment. In particular, the process of reactivation and subsequent

inactivation of the female X chromosome was investigated in

detail. Gender was assigned to each embryo by measuring the
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expression of genes on the Y chromosome (see Experimental

Procedures; Figure S2). Comparison of gene expression ratios

between males and females from the X chromosome and auto-

somes reveals increased X chromosome expression in females

starting at E3.5 (Figure 2A). This difference is more noticeable

at E4.5 and E5.5, where both X chromosomes become fully acti-

vated. Inactivation of the X chromosome is initiated at E5.5, and

by E6.5, X chromosome expression levels in female embryos

were reduced to levels comparable to those of other chromo-

somes. Analysis of X chromosome expression relative to auto-

somes at the single-cell level reveals the heterogeneous nature

of this process within a given stage (Figure 2B). Additionally,



transcriptome data at the single-cell level allows separation of

embryonic and extra-embryonic cells: extra-embryonic endo-

derm cells do not reactivate the paternal X chromosome (Ko-

bayashi et al., 2016), and, thus, both male and female cells ex-

press similar levels of X chromosome genes.

Consequently, we explored the correlation between gene

expression levels and X chromosome activation status in the

embryonic lineage to identify genes associated with this pro-

cess and to characterize the relationship with known regulators.

The pluripotency factors Pou5f1, Nanog, and Sox2 are thought

to be key regulators of X reactivation (Donohoe et al., 2009;

Navarro et al., 2008). Consistent with this, we found (Figure 2C)

that X chromosome reactivation is positively correlated with

Pou5f1 expression levels at E3.5 (Spearman correlation =

0.45), albeit, the result is not significant after correcting for mul-

tiple testing (Table S3). Counter-intuitively, Pou5f1 was nega-

tively correlated with X chromosome levels after inactivation

(Spearman correlation = �0.54, adjusted p = 9.75 3 10�05).

However, since cells in the primitive streak express higher

Pou5f1 levels, this association may reflect lineage-based

expression differences rather than X chromosome inactivation.

In contrast, Nanog and Sox2 show no clear correlation with

either the reactivation or inactivation process. In addition to

evaluating the roles of known pluripotency regulators, several

other candidates were identified (Figures 2D and 2E). The top

100 genes identified as being associated (positively or nega-

tively correlated) with reactivation include the Pou5f1 interact-

ing transcription factor Zfhx3 and several zinc-finger proteins

such as Zfpm1, Zfp180, and Zfp60 (Table S3).

X inactivation analysis was performed at E5.5, as the process

of inactivation begins at this stage and the analysis can therefore

reveal potential drivers of inactivation. Among the top genes

associated with X chromosome inactivation at E5.5 were the

DNA methyltransferase Dnmt3a (Spearman correlation =

�0.35, adjusted p = 0.0006) and the transcriptional repressor

Zfp57 (Spearman correlation = �0.27, adjusted p = 0.02).

Dnmt3a and Zfp57 have been shown to interact with each other,

and Dnmt3a has been shown to regulate Xist expression (Quen-

neville et al., 2011). It is particularly noteworthy that Zfp57

expression is negatively correlated with X chromosome levels

at both X reactivation (Spearman correlation =�0.62) and X inac-

tivation. Inactivation is furthermore correlated with several other

genes including chromatin and transcription regulators such as

Mnt, Zfp444, Lass4, Lin28a, Hsf1, H2afz, and Nr1d1 (Table S3).

The heat-shock transcription factor Hsf1 has been previously

implicated in inactivating X and Y chromosomes during meiotic

repression in spermatogenesis (Akerfelt et al., 2010), as has

the histone H2afz substitution on the X chromosome (Sin et al.,

2012), suggesting a role for these proteins in X chromosome

inactivation. X-inactivation at E5.5 was also correlated with a

decrease in expression of Rlim, a ubiquitin ligase that has been

previously implicated in regulating X chromosome inactivation

(Shin et al., 2010).

Systematic Assessment of Transcriptional Noise across
Early Development
Transcriptional heterogeneity within a tissue may indicate the

presence of coordinated transcriptional networks associated
with the presence of different cell types. By contrast, transcrip-

tional variability occurring in the absence of cell-type substruc-

ture indicates the existence of uncoordinated transcriptional

heterogeneity or transcriptional noise. We explored approaches

to quantifying global levels of transcriptional noise across the

different stages of embryo development, focusing on the embry-

onic lineage. We selected homogeneous cell populations as a

first step. Epiblast cells from E3.5 to E5.5 do not show any sub-

structure, however, at E6.5, cells start to differentiate into the

primitive streak. To ensure that transcriptional heterogeneity is

not driven by the presence of cell subpopulations, we separated

E6.5 primitive streak cells and E6.5 epiblast cells. We specifically

selected cells from the uncommitted anterior epiblast by esti-

mating their most likely original position in the embryo using

the transcriptomic profile of the four quadrants of the E6.5

epiblast (anterior-proximal, anterior-distal, posterior-distal, and

posterior-proximal) (Wu et al., 2015).

The measure of transcriptional noise used here is based on

pairwise cell-cell distances (d) (see Experimental Procedures).

As noise levels increase, cells become more dispersed in the

high-dimensional gene expression space, thus increasing the

average pairwise distance. By contrast, when noise levels

decrease, cells tend to be more similar to each other and d de-

creases (Figure 3A). The results suggest that transcriptional

noise is higher (p < 0.0001) in the uncommitted ICM at E3.5

than in the committed epiblast at E4.5 (Figure 3B). We also

observed a decrease in noise within the primitive streak, further

suggesting that lineage differentiationmay be accompanied by a

decline in transcriptional noise. Interestingly, we observed an in-

crease of transcriptional noise in the uncommitted epiblast at

E6.5 in comparison to the E5.5 epiblast, coinciding with the

exit from pluripotency. Importantly, our findings were consistent

across the different batches that correspond to different litters,

giving confidence in the method and biological origin of this

finding (Figures S3A and S3B). We validated our findings at

E6.5 using an independent dataset (Scialdone et al., 2016)

from a different mouse strain. The results confirmed that tran-

scriptional noise in the uncommitted epiblast was significantly

higher (Wilcoxon test, p < 0.0001) than in the primitive streak

(Figure S3C).

We next explored if heterogeneity with respect to cell-cycle

stageswas linkedwith theobserved levels of transcriptional noise.

We computed cell-cell distances (d) considering only genes asso-

ciated with cell-cycle regulation (KEGG 0411004110). We found a

slight increase in cell-cycle heterogeneity at E3.5 versus E4.5 (Fig-

ure3C), however, theheterogeneity of cell-cycle genes inE5.5and

E6.5 epiblast were comparable, indicating that the increased

global noise in the epiblast cells at E6.5 is not driven by cell-cycle

genes. There was a striking drop of cell-cycle heterogeneity in the

primitive streak, suggesting that these cells are far more synchro-

nized than at any other stage. To further investigate this, we as-

signedacell-cyclestage toeachcell (Scialdoneetal., 2015),which

revealed a mixture of cell-cycle stages in embryos from E3.5 to

E5.5 with a high proportion of cells in the G1 phase (Figure 3D).

By contrast, the E6.5 primitive streak cells were substantially en-

riched for theG2/Mstagewith few cells in theG1phase, providing

amolecular correlate of their significantly accelerated cell division

rate (O’Farrell et al., 2004; Snow, 1977).
Cell Reports 20, 1215–1228, August 1, 2017 1219



Figure 3. Transcriptional Noise across Each Developmental Stage

(A) Cartoon illustrating the concept used to calculate transcriptional noise. The method is based on cell-cell correlations within homogeneous populations.

(B) Plot showing transcriptional noise across all stages of epiblast development and the primitive streak (PS).

(C) Plot showing transcriptional noise of cell-cycle genes across all stages of epiblast development and the primitive streak (PS).

(D) Separation of cells at each stage or lineage by cell-cycle phase. Number of cells at each cell-cycle stage is shown in the inset.
Symmetry Breaking in the Epiblast and PrE Transition
It is known that prior to the emergence of coherent transcrip-

tional networks that define epiblast or PrE identity at E4.5, spe-

cific endoderm or epiblast genes at E3.5 are first co-expressed,

then separate into a ‘‘salt and pepper’’ pattern before forming the
1220 Cell Reports 20, 1215–1228, August 1, 2017
PrE and epiblast (Chazaud et al., 2006; Ohnishi et al., 2014; Plusa

et al., 2008). This pattern allows the co-expression of opposing

lineage markers in an uncoordinated fashion before lineage

exclusive expression. To explore this transition in detail, we

investigated lineage segregation from E3.5 to E4.5. At E4.5,



the cells segregate into two clear subpopulations, the epiblast

and the PrE. Differential expression analysis between these

two cell subgroups at E4.5 identified 689 genes enriched for

the PrE and 382 genes in the epiblast lineage (adjusted p value%

0.05, log2 fold change > 2) (Table S2). Although lineage sub-

groups are not observed at E3.5, specific subsets of PrE and

epiblast genes are already expressed. This suggests the exis-

tence of an ‘‘early’’ (E3.5) and ‘‘late’’ (E4.5) wave of lineage

expression as previously described (Plusa et al., 2008) (Table

S4). Consistent with these observations, both epiblast and PrE

markers, such as Nanog/Sox2 and Gata6/Sox17, were ex-

pressed in a non-lineage-based random manner at E3.5 (Fig-

ure 4A), exhibiting substantial co-expression before displaying

mutually exclusive lineage-specific expression patterns at E4.5

(Figure 4B). At E3.5, the non-coordinated expression of epiblast

and PrE markers contributes to the lack of distinct lineage iden-

tity. Interestingly, a small subpopulation of cells at E4.5 also co-

expresses both lineage markers (Figures 4A, S4A, and S4B).

These ‘‘intermediate’’ cells, however, unlike E3.5 cells, express

both early and late markers and were excluded from subsequent

analyses. Prior visual annotation of the cells excludes the possi-

bility that these samples were doublets.

Using the above defined lineage genes, E3.5 and E4.5 cells

were analyzed to determine the ratio of PrE or epiblast genes ex-

pressed in each cell (Figure 4C). E3.5 cells expressed both line-

age markers, while, as expected, the cells at E4.5 were strongly

biased toward one lineage or the other. To address the question

of how cells break the ‘‘noisy symmetry’’ at E3.5, we identified

genes with expression levels that are correlated with the ratio

of epiblast to PrE genes, hypothesizing that such genes might

represent key drivers of lineage commitment (Figures 4D and

S4C). Using this method, we identified Fgf4 and Fgfr2, which

were previously shown to be important in driving PrE and

epiblast specification, respectively (Ohnishi et al., 2014),

providing confidence in our approach. Notably, we foundPdgfra,

Top2b, Sox17, Gata4, and Pdk2 as being associated with a shift

toward the PrE cell fate. Similarly, Morc1, Nanog, GM10664,

Dppa5a, and Pdpn were associated with the epiblast fate,

providing a rich source of unique candidate lineage driver genes.

These drivers are candidates for genes that are upstream of

known lineage identity genes, and this concept can be

tested in future functional experiments. Analysis of individual

E3.5 embryos indicated that this break in symmetry does not

reflect developmental differences between individual embryos

(Figure S4D).

We next explored potential underlying regulatory mechanisms

driving lineage specification using EnrichR (Chen et al., 2013)

gene set enrichment analysis. The analysis was used to compare

the PrE and epiblast gene sets against existing chromatin immu-

noprecipitation (ChIP)-seq datasets to identify potential master

regulators. The results indicated that epiblast genes were poten-

tially regulated by pluripotency factors, such as Nanog and

Pou5f1 (Table S4). Both epiblast and PrE genes showed a

significant enrichment for binding by polycomb components,

such as Ezh2 and Suz12. Developmental genes are thought to

be regulated by bivalent chromatin marks (Voigt et al., 2013)

(H3K27me3 and H3K4me3), and, hence, we analyzed occu-

pancy by bivalent chromatin marks at both PrE and epiblast
genes using regions defined in ESCs (Rugg-Gunn et al., 2010).

Both PrE and epiblast genes showed enrichment for bivalency

(Figure S4E), which increased in the late lineage defining genes.

To investigate underlying differences between bivalent chro-

matin marking the early noisily expressed lineage genes and

the more coherent late lineage genes, we quantified H3K4me3

and H3K27me3 marks at these early and late lineage genes us-

ing ChIP-seq datasets from the ICM (Zhang et al., 2016; Zheng

et al., 2016). We analyzed the ratio of H3K4me3 to H3K27me3

(Figure 4E) at each site and found significantly (p < 0.0001)

increased H3K4me3 levels at the early lineage genes when

compared to the late genes, which were relatively more enriched

for H3K27me3. This shows that late lineage genes in the ICM

(where they are repressed) are bivalent, but with higher

H3K27me3 levels than early genes (which are active) (Figure 4F).

Bivalency in active genes (as in the E3.5 ICM) has recently been

linked with increased transcriptional noise (Kar et al., 2017).

Exit from Pluripotency and Lineage Commitment
The transition from E5.5 to E6.5 is characterized by increased

transcriptional noise in the uncommitted epiblast portion,

along with a striking decrease in noise within the primitive streak

(Figure 3B). A decrease in expression of naive pluripotency-

associated genes is also observed along with gain in primed plu-

ripotency-associated genes (Figure 1E). Despite expression of

signaling components associated with anterior-posterior polarity

and the primitive streak, such as Cripto, Nodal, and Lefty1, the

epiblast at E5.5 shows no apparent substructure or expression

of primitive streak markers, suggesting that only a handful of

key regulatory molecules might be asymmetrically expressed

and sufficient for patterning asymmetries at this stage.

By SC3 clustering of E6.5 cells, an initial embryonic and extra-

embryonic distinction was observed. Extra-embryonic VE cells

could be further stratified to identify the anterior VE (AVE) using

the known markers Hhex, Cer1, Lefty1, and Dkk1 (Figure S5A).

By examining genes with expression patterns correlated with

Cer1, additional markers such as CD24a and the Wnt antagonist

Sfrp1 were associated with the AVE, while several genes, such

as Tdh, Sord, and the Wnt-associated gene Srebf2 were en-

riched in the non-AVE population. We also performed differential

expression analysis between the two groups of cells to identify

additional markers (Table S5). The epiblast consists of three

main subgroups, a primitive streak population and two epiblast

subclusters (Figure 5A). These two epiblast subclusters show

only small differences in the expression of genes, such as the

Wnt pathway receptor Lgr4 and thus may represent cells only

slightly separated in developmental time or space. T positive

cells in the E6.5 embryo are observed to be bothMesp1 positive

and Mesp1 negative, as previously described (Figure S5B)

(Scialdone et al., 2016). Genes upregulated in the primitive streak

subcluster include known primitive streak and mesendodermal

markers, such as Mesp1, Mesp2, Bmp2, Snai1, Gata4, and

Gata6 (Table S5) and also several additional markers, such as

Greb1, H2afy2, Eid1, and Ncoa5. Interestingly, we identified

consensus motifs for Mixl1, Pou5f1, and Foxh1 in the promoter

regions of primitive streak genes (Figure S5C), suggesting that

these transcription factors may drive the establishment of

mesendodermal fate. Within the epiblast, there was a notably
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Figure 5. Lineage Characteristics at E6.5

(A) Heatmap showing the expression of some differentially expressed genes between the primitive streak cluster and the epiblast.

(B) Expression levels of polycomb components Suz12, Ezh2, and Jarid2 across the different epiblast subclusters and primitive streak (counts per million).

(C) Plot representing H3K27me3 bound genes expressed in E6.5 epiblast and primitive streak cells using published in vivo datasets (Zylicz et al., 2015).
increased expression of the exit from pluripotency-factor Otx2,

along with several polycomb genes, including Suz12, Ezh2,

and Jarid2 (Figure 5B). Indeed, analysis of H3K27me3 ChIP-

seq data from the E6.5 epiblast (Zylicz et al., 2015) shows that

polycomb bound genes were significantly upregulated in the

primitive streak compared to the rest of the epiblast (Figure 5C).

This suggests that the polycomb complex has an important role

in establishing transcriptional control in the non-committed

epiblast cells, including regulating the transition to form the prim-

itive streak, consistent with the phenotype observed in Eed

knockout embryos (Faust et al., 1998).

DISCUSSION

In this study, we applied single-cell RNA-seq at a detailed level of

resolution to explore early mouse development from pre-implan-

tation to early gastrulation. Besides this valuable resource for the

community, our study makes a number of important observa-

tions. First, we have identified several candidates for lineage

driver genes, both at E4.5 and at E6.5. Second, we charted

major epigenetic and signaling events across the exit from plu-

ripotency leading up to gastrulation. Third, we mapped X chro-

mosome reactivation and subsequent inactivation dynamics

together with identifying candidate regulators for both steps.

Fourth, we systematically explored the concept of transcriptional

noise across developmental stages and showed this is highest in

uncommitted cells and subsides upon commitment and differen-

tiation. Fifth, we mapped cell-cycle stage composition at each
Figure 4. Transcriptional Noise during Primitive Endoderm and Epibla

(A) Heatmap showing expression of PrE and epiblast genes identified by different

E3.5, but genes do not segregate by lineage at E3.5.

(B) Examples of PrE and epiblast genes at E3.5 and E4.5 indicating an initial co-

(C) Plot representing number of lineage-specific genes expressed in each E3.5 a

(D) Overlay of expression levels of genes identified as correlated with the ratio o

(E) Plot representing the ratio of H3K4me3 and H3K27me3 enrichment at binding

than their late counterparts (p < 0.001).

(F) Cartoon showing the overall transition from a non-committed state to lineage
developmental time point and discovered a striking synchroniza-

tion of the cell cycle in the primitive streak.

Single-cell sequencing technologies have allowed detailed

investigation of complex heterogeneous systems, including

early development (Kumar et al., 2017). However, with a capture

efficiency ranging between 10% to 50% (Islam et al., 2014), the

low amount of starting material renders these approaches sus-

ceptible to technical artifacts and batch effects (Tung et al.,

2017). Additionally, highly expressed genes are more reproduc-

ibly recovered and hence methodologies that address and ac-

count for these problems, such as correcting for technical

batches and establishing stringent quality parameters need to

be implemented, as we have done in this study.

Overall the kinetics of X reactivation (E3.5 and E4.5) and inac-

tivation (E5.5 and E6.5) we observed are consistent with fluores-

cent reporter-based studies (Kobayashi et al., 2016), lending

added confidence to our chromosome-wide observations. Sin-

gle-cell resolution allows the dynamics of this process to be

studied in individual embryos, revealing heterogeneity within

embryos and thus identifying genes linked with X reactivation

or inactivation.

A recent study using in vitro models identified several candi-

date regulators of the X-inactivation process and also concludes

that pluripotency and X-inactivation are not tightly linked (Chen

et al., 2016). In vitro studies cannot capture the full extent of het-

erogeneity within embryos nor recapitulate embryonic stages

and transitions. Pluripotency factors, particularly Pou5f1, Sox2,

and Nanog, are known to downregulate Xist in ESCs and hence
st Formation

ial expression at E4.5. A substantial number of genes are already expressed at

expression before becoming lineage specific at E4.5.

nd E4.5 cell.

f epiblast and PrE expressed genes.

sites classified as early or late lineage genes. Early genes show a higher ratio

commitment and genes associated with this shift.
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are prime candidates for X reactivation in vivo (Navarro et al.,

2008; Navarro and Avner, 2009). A more recent study has ques-

tioned how direct this link is (Minkovsky et al., 2013), suggesting

the potential involvement of other regulatory factors, which our

single-cell association analysis is able to uncover. We found a

strong association between X reactivation and Pou5f1 expres-

sion (but not with Sox2 and Nanog) at E3.5, which quickly weak-

ened, suggesting that other factorsmay alsomediate ormaintain

the reactivated state, including the Pou5f1 interacting partner

Zfhx3. The following period of rapid X-inactivation was associ-

atedwith increased expression ofDnmt3a andZfp57, reinforcing

the importance of DNA methylation in random X-inactivation

(Auclair et al., 2014). Interestingly, Zfp57 expression levels are

also associated with the reactivation process, being anticorre-

lated with X chromosome expression levels. This suggests that

Zfp57 may act as repressor of the X chromosome during these

stages of development. Consequently, the sets of genes identi-

fied in our study provide additional insights into the mechanisms

underpinning X-inactivation and reactivation and are strong can-

didates for future functional studies.

An intriguing observation in our study is the different levels of

transcriptional noise found at each stage. Significant differences

in noise were detected in cell populations without a coherent

substructure; i.e., without different lineages or cell types being

present. Previous studies analyzing specific genes have sug-

gested stochastic transcription of Oct4 and Cdx2 preceding

their lineage-resolved expression in ICM and trophectoderm

(TE), respectively (Dietrich and Hiiragi, 2007), and the same is

true of some PrE and epiblast genes in the E3.5 ICM before

becoming restricted to the specific cell types by E4.5 (Ohnishi

et al., 2014). Here, we show that this is globally true of the E3.5

to E4.5 transition. Furthermore, the primitive streak shows

much reduced noise in comparison to the uncommitted epiblast

at E6.5. These results suggest the possibility of a general

principle for increase of transcriptional noise prior to lineage

differentiation.

Noise in gene expression has been suggested to feed directly

into protein expression (Bar-Even et al., 2006; Newman et al.,

2006) and importantly is linked with lineage commitment in other

systems. In hematopoietic stem cells, gene expression noise has

been shown to create heterogeneity in expression of lineage

drivers, which in turn directly influences the availability of certain

lineage fates (Chang et al., 2008). Using a single-cell approach,

candidate erythroid progenitors have been linked with increased

transcriptional noise prior to differentiation (Richard et al., 2016).

Transcriptional noise has also been attributed to regulating the

reactivation of latent HIV (Dar et al., 2014). In terms of possible

mechanisms, mixed-lineage states have recently been reported

in hematopoietic precursors where opposing transcription fac-

tors were suggested to compete with one another for binding

to the DNA prior to establishing more defined lineages (Olsson

et al., 2016). Indeed, in early embryos, Nanog and Gata6 have

such opposing roles (Chazaud et al., 2006; Frankenberg et al.,

2011; Fujikura et al., 2002; Shimosato et al., 2007), with in vitro

assays suggesting direct repression of the Gata6 promoter by

the Nanog protein (Singh et al., 2007). Therefore, higher

levels of noise observed at E3.5 might arise from such mutual

antagonism, thereby blocking specification of either lineage.
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The polycomb system through bivalent domains (Wassef et al.,

2015) and the DNA methylation/demethylation system (Lee

et al., 2014) are also potential sources of transcriptional noise.

Interestingly, the genes identified as pioneering symmetry

breaking from E3.5 are primarily transcription factors such as

Sox17, Nanog, Gata4, and Satb2 (Figure 4D). Overexpression

of Gata4 or Sox17 (McDonald et al., 2014; Shimosato et al.,

2007) in ESCs is sufficient to direct cells toward a PrE-like state,

suggesting that tipping the transcriptional balance is important

for lineage decisions. We show that the PrE and epiblast genes

are enriched for bivalent chromatin domains in the E3.5 ICM,

with late (i.e., lineage specific) genes having relatively higher

levels of H3K27me3, suggesting that a changing ratio of

H3K4me3 to H3K27me3 may in part be responsible for the tran-

sition from noisy to lineage-resolved expression.

The establishment of anterior-posterior (AP) polarity precedes

the formation of the primitive streak and is first evident by the

spatially restricted activity of signaling pathways, such as Nodal,

Wnt, and Fgf. Strikingly, at E6.5, as lineages start to be specified,

clear signaling pathway enrichment for BMP, Wnt, Nodal, and

Fgf is evident in our data (Figure S1E). Hence, the elevation of

noise in the uncommitted epiblast at the E6.5 stage may create

‘‘competence’’ for subpopulations of cells to respond to

signaling systems (e.g., Nodal and Wnt inhibitors in the AVE),

thereby helping to break symmetry.

Finally, our dataset allowed identification of cell-cycle phases

for each lineage and stage, with substantial differences

observed. Cells in the primitive streak are thought to cycle very

rapidly, which may be achieved by a shortened or non-existent

G1 phase (O’Farrell et al., 2004). Indeed, the E6.5 primitive streak

demonstrates a distinct cell-cycle signature with a large propor-

tion of cells in the G2/M and S phase. Signaling factors, in

particular Wnt signaling, are thought to interface with cell-cycle

regulation (Davidson and Niehrs, 2010). This potentially initiates

synchrony between cells, which in turn may direct the low levels

of noise observed. The resulting coherence may thus be impor-

tant in maintaining the precision of lineage commitment pro-

grams in the gastrulating embryo.

Our work reveals large-scale modulation of transcriptional

noise across the different stages of early development. High

noise may establish a special state of developmental compe-

tence so that cells can respond to internal or external cues in a

more flexible and refined way in order to break symmetry. The

underlying causes and regulators of noise potentially differ ac-

cording to stage and context. Future studies should be aimed

at identifying such regulators together with their manipulation

in vivo, to better understand the biological significance of this

intriguing phenomenon.
EXPERIMENTAL PROCEDURES

Preparation of Single Cells from Early Embryos

All experimental procedures were performed in accordance with the Animals

(Scientific Procedures) Act 1986 and by local authority granted by the Animal

Welfare and Ethical Review Body (AWERB) committee of the Babraham

Institute. Blastocysts were isolated from C57BL/6Babr mice following inter

se mating, at E3.5 or 4.5. E3.5 blastocysts were flushed from the uterus using

M2 medium and the zonae removed by short incubation in acid tyrodes

solution. Embryos at E4.5 were dissected from nascent decidua. The



trophectoderm was eliminated from E3.5 and E4.5 embryos by immunosur-

gery (Solter and Knowles, 1975). Embryos were incubated for 15–30 min

in 20% anti- mouse antiserum in N2B27 (made in house), rinsed three

times in N2B27, and transferred to 20% freshly thawed rat serum in N2B27

for 15–30 min. Lysed trophectoderm was removedmanually by repeated aspi-

ration using a mouth-controlled, finely drawn, Pasteur pipette just bigger than

the ICM. Isolated ICMswere placed individually in 20 mL drops of Accutase in a

bacteriological dish for at least 5 min until they assumed a blackberry-like

appearance. They were transferred to similar sized drops of M2 and aspirated

repeatedly using a very finely drawn Pasteur pipette to separate the cells. Cells

were immediately placed individually into wells of lysis buffer and frozen. E5.5

embryos were dissected manually and were observed to be early E5.5 cells

lacking distinct thickening of the VE (pre-AVE migration). The extra-embryonic

ectoderm was removed using the tip of a pulled Pasteur pipette. The epiblast

was separated from overlying VE by aspiration, distal end first, with a pulled

Pasteur pipette with a diameter just bigger than the epiblast. Both epiblast

and VE were separately disaggregated and plated into wells as described

above for ICMs.

E6.5 embryos were visually staged as early streak (Downs and Davies, 1993)

and dissected from decidua in PBS and placed into M2 solution to remove ex-

tra-embryonic tissues. Differences in dissection may contribute to different

proportions of primitive streak and epiblast cells obtained at E6.5. The embry-

onic ectodermal portion of the early streak embryo was dissociated in drops of

TrypLE at room temperature and upon partial digestion was fully dissociated

by repeated aspiration using a very finely drawn, mouth-controlled, silicon-

ised-glass needle. Cells were assigned as single, doublets, or multiples by

visual inspection and placed directly into lysis solution and frozen prior to

library generation.

RNA-Processing and Library Preparation, Sequencing

mRNA from isolated single cells was isolated and amplified using the bead-

based capture and amplification previously described in the G&T-seq protocol

(Macaulay et al., 2015). Multiplexed sequencing libraries were generated from

cDNA using the Illumina Nextera XT protocol and 100 bp paired-end

sequencing was performed on an Illumina HiSeq 2500 instrument.

Sequences were trimmed using trim_galore (v0.4.1, http://www.

bioinformatics.babraham.ac.uk/projects/trim_galore/) using default settings.

Trimmed data were separately mapped to the mouse GRCm38 genome

assemblies using HISAT2 (v.2.0.1_Beta) with options-sp 1000,1000-no-mixed-

no-discordant, andwasfiltered to removenon-primaryalignments or alignments

with mapping quality (MAPQ) < 20. Mapped RNA-seq data were quantitated

using the RNA-seq quantitation pipeline in SeqMonk software (http://www.

bioinformatics.babraham.ac.uk/projects/seqmonk/). Genome version used

wasMus musculus GRCm38 (08/06/2012).

Data Filtering

Cells annotated as triplets, multiples, or empty wells were filtered out. Cells ex-

pressing fewer than 4,000 genes ormore than 10%ofmapped reads allocated

to mitochondrial genes were removed in quality control. Furthermore, 49

trophoblast cells were identified by the expression of Elf5, Wnt7b, and

Tex19.1 markers (more than one count in each gene) and were not considered

in downstream analysis. Out of the 1,219 cells that were captured across the

experiment, 721 passed our quality and filtering criteria.

Data Analysis

Gene expression levels were normalized in terms of reads per million of map-

ped reads to the transcriptome of each cell. We only considered genes on the

autosomal chromosomes except for the X chromosome analysis, where all

genes were used for the normalization. PCA analysis was performed on the

normalized counts, excluding genes expressed in less than three cells. Gene

pathway annotations were obtained from ConsensusPathDB (http://www.

cpdb.molgen.mpg.de) (Table S1). Variability of each gene was calculated by

fitting the squared coefficient of variation as a function of the mean normalized

counts and then calculating the distance to rolling median. Correlation ana-

lyses were performed excluding non-expressed genes and using Spearman’s

correlation as a measure of relationship between variables.
DESeq2 R library (Love et al., 2014) was used for differential expression

analysis. Genes were identified by having a log2 fold change significantly

greater than 1 at a false discovery rate threshold equal to 0.05. Due to the

high number of genes differentially expressed between epiblast and PrE at

E4.5, we used a log2 fold change threshold of 2.

For sex determination, embryos with a chromosome-Y count sum fewer

than ten were classified as female and the rest of the embryos were classified

as males. The expression levels of genes on the X chromosome were summed

and used to perform Spearman correlation analysis. For the correlation com-

parisons, we used all genes with mean expression >1 in each of the stages. P

values were corrected for multiple testing by using the false discovery rate

(FDR) method.

ChIP-seq datasets for H3K4me3, H3K27me3 in ESCs, and H3K27me3 in

E6.5 embryos were obtained from existing studies Rugg-Gunn et al. (2010)

and Zylicz et al. (2015), respectively. Datasets for H3K4me3 and H3K27me3

(Zhang et al., 2016; Zheng et al., 2016) were used to quantify bivalency. All

H3K4me3 bound regions were first selected and levels of H3K27me3 were

quantified across the different gene sets. Statistical significance was deter-

mined using a Wilcoxon signed rank test. We used DREME in conjunction

with TOMTOM (Bailey et al., 2009) to identify discriminatory transcription fac-

tor binding sites between the promoters (500 bp upstream of the transcription

start site [TSS]) of the primitive streak and epiblast cell clusters.

Transcriptional Noise

Technical batch effects within a lineage of a given stage were first corrected

using ComBat (Leek, 2014). We selected cells from the epiblast lineage at

E4.5 and E5.5 from our clustering method. For cells at E6.5, we estimated their

most likely original position in the embryo by using a dataset of the transcrip-

tomic profile of the four quadrants of the E6.5 epiblast (Wu et al., 2015).

This information was used in addition to our clustering analysis in order to

distinguish an uncommitted set of E6.5 epiblast cells (those mapping to the

anterior-distal region) from a group of E6.5 cells already committed to a mes-

endodermal fate, as determined by their gene expression pattern and their

posterior-proximal inferred position. The number of cells used for each stage

were: E3.5: 99, E4.5: 26, E5.5: 260, E6.5 epiblast: 120, and E6.5 primitive

streak: 23.

We then identified highly variable genes within each group. We calculated

the distance between the squared CV of each gene and a running median after

excluding genes with a mean expression level lower than ten counts.

Tomeasure transcriptional noise, wemeasured all possible (d) (based on rank

correlation) using the top 500 highly variable genes of each group. We then

transformed these correlationmeasures into distance using the equation below:

d=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ

2

r

d = transcriptional noise

r = Spearman’s rank correlation coefficient

Cell-cycle stage of the cell groups used for the noise analysis was predicted

using a classification algorithm previously described (Scialdone et al., 2015).
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Göttgens, and J.C.M. W.R. is additionally supported by the BBSRC (BB/

K010867/1) and the Wellcome Trust (095645/Z/11/Z), and T.V. is supported

by KU Leuven (SymBioSys, PFV/10/016). We thank Shankar Srinivas for dis-

cussions and critical reading of themanuscript. We also thank Claire E. Senner

for discussions and Felix Krueger and Simon Andrews for computational

support.

Received: October 21, 2016

Revised: June 7, 2017

Accepted: July 6, 2017

Published: August 1, 2017

REFERENCES

Akerfelt, M., Vihervaara, A., Laiho, A., Conter, A., Christians, E.S., Sistonen, L.,

and Henriksson, E. (2010). Heat shock transcription factor 1 localizes to sex

chromatin during meiotic repression. J. Biol. Chem. 285, 34469–34476.

Arias, A.M., and Hayward, P. (2006). Filtering transcriptional noise during

development: concepts and mechanisms. Nat. Rev. Genet. 7, 34–44.

Auclair, G., Guibert, S., Bender, A., and Weber, M. (2014). Ontogeny of CpG

islandmethylation and specificity of DNMT3methyltransferases during embry-

onic development in the mouse. Genome Biol. 15, 545.

Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren,

J., Li, W.W., and Noble, W.S. (2009). MEME SUITE: tools for motif discovery

and searching. Nucleic Acids Res. 37, W202–W208.

Bar-Even, A., Paulsson, J., Maheshri, N., Carmi, M., O’Shea, E., Pilpel, Y., and

Barkai, N. (2006). Noise in protein expression scales with natural protein abun-

dance. Nat. Genet. 38, 636–643.

Boroviak, T., Loos, R., Bertone, P., Smith, A., and Nichols, J. (2014). The ability

of inner-cell-mass cells to self-renew as embryonic stem cells is acquired

following epiblast specification. Nat. Cell Biol. 16, 516–528.

Boroviak, T., Loos, R., Lombard, P., Okahara, J., Behr, R., Sasaki, E., Nichols,

J., Smith, A., and Bertone, P. (2015). Lineage-specific profiling delineates the

emergence and progression of naive pluripotency in mammalian embryogen-

esis. Dev. Cell 35, 366–382.

Brockdorff, N. (2011). Chromosome silencing mechanisms in X-chromosome

inactivation: unknown unknowns. Development 138, 5057–5065.

Camus, A., Perea-Gomez, A., Moreau, A., and Collignon, J. (2006). Absence of

Nodal signaling promotes precocious neural differentiation in the mouse em-

bryo. Dev. Biol. 295, 743–755.

Cerase, A., Pintacuda, G., Tattermusch, A., and Avner, P. (2015). Xist localiza-

tion and function: new insights from multiple levels. Genome Biol. 16, 166.

Chang, H.H., Hemberg, M., Barahona, M., Ingber, D.E., and Huang, S. (2008).

Transcriptome-wide noise controls lineage choice in mammalian progenitor

cells. Nature 453, 544–547.

Chazaud, C., Yamanaka, Y., Pawson, T., and Rossant, J. (2006). Early lineage

segregation between epiblast and primitive endoderm in mouse blastocysts

through the Grb2-MAPK pathway. Dev. Cell 10, 615–624.

Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., Clark, N.R.,

and Ma’ayan, A. (2013). Enrichr: interactive and collaborative HTML5 gene list

enrichment analysis tool. BMC Bioinformatics 14, 128.

Chen, G., Schell, J.P., Benitez, J.A., Petropoulos, S., Yilmaz, M., Reinius, B.,

Alekseenko, Z., Shi, L., Hedlund, E., Lanner, F., et al. (2016). Single-cell
1226 Cell Reports 20, 1215–1228, August 1, 2017
analyses of X chromosome inactivation dynamics and pluripotency during dif-

ferentiation. Genome Res. 26, 1342–1354.

Conlon, F.L., Lyons, K.M., Takaesu, N., Barth, K.S., Kispert, A., Herrmann, B.,

and Robertson, E.J. (1994). A primary requirement for nodal in the formation

and maintenance of the primitive streak in the mouse. Development 120,

1919–1928.

Dai, H.-Q., Wang, B.-A., Yang, L., Chen, J.-J., Zhu, G.-C., Sun, M.-L., Ge, H.,

Wang, R., Chapman, D.L., Tang, F., et al. (2016). TET-mediated DNA demethy-

lation controls gastrulation by regulating Lefty-Nodal signalling. Nature 538,

528–532.

Dar, R.D., Hosmane, N.N., Arkin, M.R., Siliciano, R.F., and Weinberger, L.S.

(2014). Screening for noise in gene expression identifies drug synergies. Sci-

ence 344, 1392–1396.

Davidson, G., and Niehrs, C. (2010). Emerging links between CDK cell cycle

regulators and Wnt signaling. Trends Cell Biol. 20, 453–460.
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