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Abstract 

The laminar organization of the motor cortex of the sheep and other large domestic herbivores received scarce 

attention and is generally considered homologous to that of rodents and primates. Thickness of the cortex, 

subdivision into layers and organization are scarcely known. In the present study we applied different modern 

morphological, mathematical and image-analyses techniques to the study of the motor area that controls 

movements of the forelimb in the sheep.  

The thickness of the cortex resulted comparable to that of other terrestrial Cetartiodactyls (but thicker than in 

marine Cetartiodactyls of similar body mass). The laminar organization showed marked development of layer 

1, virtual absence of layer 4, and image analysis suggested prevalence of large irregular neural cells in the 

deeper layers. Diffusion tensor imaging revealed robust projections from the motor cortex to the pyramids in 

the brainstem, and well evident tracts descending to the tegmentum of the mesencephalon and dorsal pons. 

Our data contrast the general representation of the motor system of this species, considered to be predominantly 

based on extra-pyramidal tracts that originate from central pattern generators in the brainstem.  

 

Keywords: motor cortex, sheep, laminar organization, cortical projections 
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Introduction 

The neocortex of Perissodactyls and Cetartiodactyls is generally characterized by relatively poor lamination, 

with prevalence of layer 1, and absence or extreme reduction of layer 4 (Hof et al. 1999; Cozzi et al. 2017). 

The cytoarchitecture obviously varies from species to species, and – within each species - depends from the 

functional areas, although differences are less marked than in primates or rodents. In some instances, as in 

marine Cetartiodactyls, cytoarchitectural distinction among gyri is hard to make because the laminar 

organization is not clear-cut, and the boundaries between cortical areas poorly evident (Morgane and Jacobs 

1972; Morgane et al. 1980; Cozzi et al. 2017).  

The cerebral cortex of the sheep has received some attention because of the use of the species as an 

experimental animal (Lepore et al., 2011). Detailed studies on the organization and projections of the motor 

cortex are scarce (Lassek 1942; Rose 1942). Early cortical recordings (Simpson and King 1911; Bagley 1922) 

identified motor areas around the pre- and post-cruciate gyri, rostral to the ansate sulcus, surrounding the rather 

tenuous cruciate sulcus, in an area known to contain gigantopyramidal neurons in this species (Bagley 1922; 

Rose 1942; Ebinger 1975). A recent review (John et al. 2017) reconsidered topographical data from the past 

literature and concluded that the motor control of the forelimb in the sheep is indeed located in the proximity 

of the ansate sulcus.   

However, a complete electrophysiological demonstration of the projections of the motor cortex of the sheep 

and other hoofed mammals is lacking. What we presently know is that stimulation of selected cortical “motor´ 

areas located close to the cruciate sulcus led to contractions of the musculature of the head, neck or limbs in 

the sheep (Simpson and King 1911; Grovum and Gonzalez 1999), goat (Clark et al. 1941; Bell and Lawn 

1956), and horse (Breazile 1966). These results are also supported by pioneering investigations using different 

methodologies, including cortical lesions and study of degenerated spinal tracts in the sheep (Dexler and 

Marguiles 1906; King 1911a) and horse (Barone 1959), with all the technical difficulties linked to the size of 

the species.  

Based on these data, comparisons with experimental studies performed in rodents and non-human primates, 

and with human clinical studies, the motor cortex of large herbivores is generally considered wired to control 

the prevailing multi-synaptic extrapyramidal pathways that regulate activation and sequence of quadrupedal 

locomotion, leaving only a minor role for direct monosynaptic pyramidal projections to the spinal cord (Barone 

and Bortolami 2004; Singh 2018). 

In the present investigation, we examined the ovine cortex considered by the literature to be analogous of the 

human area 4, and specifically the part related to the movements of the hand. Samples of the cortex were 

studied to calculate thickness and verify organization into layers. A specific morphometric model has been 

devised to compare neural cells, their shape and relative density within the cortical column. Tridimensional 

reconstructions of the brain were obtained by Magnetic Resonance Imaging (MRI), with matched reading of 

the white matter fibers using deterministic tractography analysis on Diffusion Tensor Images (DTI), thus 

providing a rendering of both pyramidal and extrapyramidal projections of the motor cortex.  
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Materials and methods 

Animal tissue 

For the present study we utilized the brains of six sheep collected at a local slaughterhouse. Animals were 

treated according to the European Community Council directive (86/609/EEC) concerning animal welfare 

during the commercial slaughtering process, and were constantly monitored under mandatory official 

veterinary medical care. All the animals were adult; their age was determined based on official documentation 

available at the moment of slaughtering and confirmed by direct examination of the teeth. 

Once removed, the brains were immediately fixed by immersion in cold buffered formalin. The time interval 

between death and removal of the brain varied between 10 and 20 minutes. Fixation time in formalin was one 

month. The fixed brains were subsequently transported to the Department of Neuroscience, Biomedicine and 

Movement of the University of Verona for MRI scans, using a 4.7 Tesla (T) magnet (see below).  

 

Localization of motor cortex and sampling procedures 

Identification and sampling of the motor cortex took place at the Department of Comparative Biomedicine and 

Food Science of the University of Padova. Removal of the presumptive cortex responsible for the movements 

of the distal segments of the forelimb was based on the position relative to the cruciate sulcus and on the 

available literature (King 1911a, b; Simpson and King 1911; Ramón y Cajal 1899; Breazile et al. 1966) and 

stereotaxic atlases (Richard 1967; Vanderwolf and Cooley 2002; Nitzsche et al., 2015) (see Figure 1).  

 

Histology 

Tissue blocks of nervous tissue were further fixed by immersion in buffered formalin, washed in phosphate 

saline buffer (PBS) 0.1 M, pH 7.4 and processed for paraffin embedding. Tissue samples were cut into 4µm 

thick sections and stained following a routine Nissl protocol. Briefly, sections were immersed in a 1:1 solution 

of chloroform-ethanol for 4 hours, re-hydrated, moved to a 0.1% solution of thionin pH 4.0 for 4¶, dehydrated, 

mounted and cover-slipped.  

Identification of the cortical layers was performed by 4 observers (AP, CC, JMG, BC), each working on an 

independent microscope, then discussed of a 4-way microscope till a unanimous consensus was reached on the 

boundaries between the layers. 

 

Computerized analysis of the Nissl sections 

Quantitative cytoarchitectonic features, including thickness of the whole cortex and of the single layers, were 

examined in sections by using an automated procedure (for details see Cozzi et al. 2017). Briefly, ten stained 

sections per subject were scanned with a semi-automated microscope equipment (D-Sight v2, Menarini 

Diagnostics, Italy) at a magnification of 40x in fast mode with automatic focusing, saving the acquisition as 

Jpeg2000 images.  

 

Automatic cell identification 
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The complete analysis of the acquired images of the motor cortex required the detection of > 250,000 cells 

(see below) and the examination of their outline. Acquisition threshold (sensitivity limit of the system) was a 

diameter of 4 µm. Such procedure is not feasible by direct human revision and classification of the images, 

because of the potential undesired bias even if the region of interest is relatively limited. To tackle the problem, 

we developed an automatic procedure (Grisan et al. 2018) that can process the images identifying the position 

and the outline of most of the visible cells, taking care of the differences in size among cell populations, and 

addressing the density and distribution of cells in each layer. Shortly, a local space-varying threshold (Poletti 

et al. 2012) is applied to the image to separate the stained objects from the background and the local density 

of the foreground objects (mainly cells). The result is thus a rough separation of the most densely (possibly 

including clustered and cluttered cells) and most sparse regions (for additional details see Grisan et al. 2018) 

 

Computerized analyses of the sections 

The analyzed data consisted of information on 252,266 individual neural cells (see Supplementary Material # 

1). Cells were localized within the layers identified by the independent observers (see above). Single cells were 

characterized by 8 morphometric indicators, each one classified into 3 morphological domains, as reported in 

Table 1. 
Morphological 

domain 
Morphometric 
indicator 

Description 

Size 

Area Area of the cell body expressed in Pm2 

Perimeter Total length of neural cell boundary expressed in Pm 

Major axis length Measure of the length of the major axis of the cell body expressed in Pm 

Minor axis length Measure of the length of the minor axis of the cell body expressed in Pm 

Regularity 
Solidity Proportion of pixels in the convex hull that are also in the region of the cell 

Extent Area/(Area of the bounding box) 

Density 
Ngb_50 No. of neighbor cells counted within a radius of 50 Pm all around a given cell 

Ngb_100 No. of neighbor cells counted within a radius of 100 Pm all around a given cell 

Table 1. Morphological domains and morphometric indicators, along with their description.  

 

Statistical data analytics 

The focus of data analytics was the comparison among the layers of the sheep cortex. We applied 

nonparametric permutation tests, formerly considered in similar neuroanatomical analyses (Cozzi et al., 2017; 

Grisan et al., 2018; Graïc et al., 2018). This methodology can be considered the more recommended statistical 

approach to our morphometric data, because of their possible non-normal distribution (Pesarin and Salmaso 

2010; Bonnini et al., 2014). 

We also applied specific innovative multi-aspect tests to provide additional insights on the comparison among 

layers. Details of these latter tests are presented as Supplementary Material # 2. Briefly, a multivariate approach 

(Corain and Salmaso 2015), was used to quantify fine differences of the morphology of neural cells focusing 

on two different distributional aspects of morphometric indicators (Yanagihara and Yuan 2005), i.e. the 
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location (the mean) and the scatter (the variance). Results of pairwise testing were then exploited to apply the 

multivariate ranking methodology recently proposed by Arboretti et al. (2014) and Corain et al. (2016; 2018). 

The more conventional Student¶s t method was applied to analyze the thickness of the cortical layers and 

calculate the relative confidence intervals. Finally, clustering k-means analysis was performed to better 

characterize the cell types present in each layer and thus distinguish large pyramidal-like neurons.  

For all tests, a p-value of less than 0.05 was considered to be significant. 

 

MRI scans and DTI 

MRI scans were obtained at the University of Verona using a Bruker tomograph (Bruker, Karlsruhe, Germany) 

equipped with a 4.7 T, 33-cm bore horizontal magnet (Oxford Ltd., Oxford, UK). Images were acquired with 

a single-coil configuration. A 7.2 cm inner diameter volume birdcage coil was used as transmitter and receiver. 

High-resolution T2w structural images were acquired using a 2D rapid acquisition with relaxation 

enhancement (RARE) sequence with the following parameters: repetition time (TR) 35736 ms; echo time (TE) 

78.1 ms; field of view (FOV) 6.0x5.0 cm; matrix size (MTX) 240x200; 0.250x0.250 mm resolution, n. slices 

160, 0.5 mm thickness; RARE factor 16; number of averages (NEX) 8; and total acquisition time of 1h and 

11mins.  

DTI Images were acquired with an Echo Planar Imaging (EPI) sequence with the following parameters: TR 

20000 ms, TE 24.7 ms, FOV 6.0x5.0 cm; MTX 120x100; isotropic in-plane resolution of 0.500mm; slice 

thickness 1.0mm; n-slice 80; EPI factor 11; NEX 6; 30 noncollinear directions acquired with a b-value of 3000 

s/mm2 and 5 b0 images for a total acquisition time of about 12h 50min.  

Identification of the tracts of interest was obtained by identifying the motor area corresponding to the sampled 

specimens as origin and termination in the pyramids at the level of the brainstem (for the pyramidal tract) or 

the mesencephalon/pons area dorsal to the pyramids (for the extrapyramidal tract), respectively, and estimating 

the white-matter tracts running between the said regions. 
 

Results 

Histology 

Nissl-stained sections of the motor cortex showed a laminar organization. Recognition of the layers performed 

by the independent observers unanimously identified five different neuronal layers. Layer 1 and 5 had a large 

extension. Layers 2, 3 and – to a smaller extent – 6, showed a higher subjective density (Figure 2). 

 

Thickness of the cortex and relative layers 

The thickness of the whole motor cortex and the single layers is reported in Table 2.  
 

Sheep 
ID 

Thickness of the 
cortex (ȝm) 

Layer 1 
thickness 

% L. 2  %  L. 3  %  L. 5  %  L. 6  %  

1 1,729 289 17.4 136 8.1 508 28.8 347 21.4 449 24.3 

2 1,818 534 28.2 188 10.4 447 25.7 335 18.7 314 17.0 

3 1,956 446 23.4 160 8.2 583 30.0 405 20.1 362 18.3 
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4 1,645 245 14.9 179 10.8 575 34.9 388 23.5 259 15.9 

5 1,888 371 19.7 162 8.5 684 36.3 411 21.7 260 13.8 

6 1,952 399 20.7 180 9.4 705 35.7 353 18.1 315 16.1 

 

Average 1,838 375 20.4 169 9.3 596 32.5 376 20.5 322 17.3 

Table 2. Thickness of the whole cortex and of the single layers. 

 

Figure 3 reports the interval plot and statistical analyses of the respective layers. 

 

Analytics results of the morphometric data  

Boxplots in Figure 4 allow us to compare the values taken by one morphometric indicator among layers and 

within each individual sheep. Boxplot analysis suggests that the main differences can be found between layer 

1 and the remaining layers. In particular, layer 1 has a lower density of smaller, more regular neural elements. 

This pattern seems to be approximately steady across all individual sheep, suggesting that inter-animal 

differences are negligible. 

Mean plots as in Figure 5 are useful to compare the mean values taken by one morphometric indicator among 

layers and within each individual sheep. Descriptive analysis of mean plots confirm the previous clue on the 

slight differences occurring from animal to animal while the most relevant variations are observed between 

layer 1 and the remaining layers, even if some differences seem to take place also between layers 2-3 vs. 5-6. 

Note that 2 and 3 looks like the layers with the largest in-size, most dense and less regular cells. Finally, layer 

5 and 6 are similar to each other with mean value in size/density and regularity somewhat lower and larger 

than layers 2 and 3, respectively. 

In general, density is the morphometric descriptor with the highest variation, and it doubles moving from layer 

1 to layer 2. Further relevant differences concern size and regularity. Cells belonging to layers 2 to 6 are much 

larger than those located in layer 1. Besides, neural elements of layers 2 to 6 present less extent and solidity 

than those located in layer 1. Since both indicators are proxy of spherical/spheroid shape, this result suggests 

a progressive relative reduction of circular cells in deeper layers. 

Multivariate ranking analyses (Table 3), and consequent location ranking, confirm that the largest differences 

in cell density are found between layer 1 and layer 2. Layer 2 has the highest cellular density, and contains 

larger and more irregular elements. Layer 1, on the contrary, shows the lowest density and the smaller and 

more regular neural cells. Layer 1 has more homogenous cells considering size, and layer 5 has the more 

heterogeneous.  
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Table 3. Multivariate analysis by domain and aspect (location and scatter). Between-populations pairwise location and scatter one-

sided adjusted permutation p-values are presented in squared matrices. In each cell the alternative hypothesis is “population-in-row is 

larger than population-in-column´. The 5% significant p-values are highlighted in bold. According to Arboretti et al. (2014), location 

and scatter rankings are derived by pairwise comparisons from the whole set of significant dominances. 

  

A k-means analysis was performed to better characterize which type of cells are present in each layer. The 

results allowed us to distinguish pyramidal-like neuron (red colored dots in Figure 6) vs. remaining cells (blue 

colored dots in Figure 6). Scatterplot analysis of minor axis length (lmia) vs. major axis length (lmaa) suggested 

that layer 5 is presumably that with the highest number of large cells, probably large pyramidal neurons (Figure 

5). Conversely, layer 1 contains almost exclusively small cells (probably granules). 

 

MRI and DTI Images  

DTI analyses revealed robust projections from the motor cortex to the pyramids on the lower surface of the 

brainstem compatible with a) pyramidal tract axons directed to the spinal cord (Figure 7, blue); b) pyramidal 

axons directed to the nuclei of somatomotor cranial nerves (Figure 7, orange); and c) extra-pyramidal 

projections to central pattern generators (Katz 2016) in the brainstem (Figure 7, also orange). See also 

Supplementary Material # 3. 
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Discussion 

The thickness of the cortex of the sheep brain, compared to other mammalian species, is reported in Table 4. 

 

SPECIES CORTICAL 
THICKNESS (μm) 

CORTICAL AREA REFERENCE 

Terrestrial Cetartiodactyls 

Ovis aries 1,838 Motor cortex present paper 

1,700  
Average values based on the 
whole hemisphere 

 

Schlenska 1974 Bos taurus  2,100 

Sus scrofa 2,200 

Marine Cetartiodactyls 

Phocoena phocoena 1,580 Neocortex Elias and Schwartz 1969  

Tursiops truncatus 1,760 Motor cortex Morgane and Jacobs 1972 

1,710  
Average values based on total 
neocortical surface 
 

Haug 1970, quoted by 
Hofman, 1985 

Grampus griseus 1,990 

Globicephala 
macrorhynchus 

2,020 

Perissodactyls    

Equus caballus 2,300 Average value based on the 
whole hemisphere 

Schlenska 1974 

Proboscideans 

Loxodonta africana 2,230 Average value based on total 
neocortical surface 

Haug 1970, quoted by 
Hofman, 1985 

Rodents 

Rattus rattus 1,100 – 1,800 Neocortex, several areas Stewart and Kolb 1988;  
Vetreno et al. 2016 

Mus musculus 800 - 900 Parietal somatosensory cortex Markham et al. 2003 

Primates 

Pan troglodytes 1,600 – 2,700 Neocortex, different lobes Hopkins and Avants 2013 

Homo sapiens 2,200 – 2,700 Neocortex, different lobes Pellicano et al. 2012 

Table 4 – Thickness of the cortex in selected mammalian species.  

 

The values that we obtained in the sheep are superior to what previously reported in the same species (Schlenka 

1974), but remain well within the range of other mammals, including the chimpanzee. Incidentally, here we 

note that terrestrial Cetartiodactyls, including the sheep and other ruminant species, have a thicker cortex than 

toothed whales, especially when considering species of similar body size (for a general description of the 

thickness and other characteristic of the cetacean cortex see Morgane and Jacobs 1972; Morgane et al. 1980). 

The thickness of the cortex may vary among areas of the same brain and within individuals of the same species 

(see our data in Table 2). One possible noteworthy fact is that in our experimental series, layer 2 is the thinnest 

layer, with the lowest heterogeneity among the different animals (Figure 3).  
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Our data indicate that the organization of the motor cortex of the sheep is different from the human (and rat) 

equivalent area. In this sense, there is a growing interest in the cellular organization of nervous tissue derived 

from farm animals, given their potential value as novel models in translational neuro-research (Peruffo and 

Cozzi, 2014). The lack of high-precision topographical and stereotaxic atlases, coupled to scarce experimental 

data, does not allow a more precise definition of the sampled area and a distinction between spatially separate 

cortical representations of forelimb movements, as in rats (Brown and Teskey 2014). However, based on the 

available evidence (Vanderwolf and Cooley, 2002), the area that we sampled is the one directed to the control 

of hand movements, and is characterized by a) virtual disappearance of layer 4; and b) a shift in the relative 

size and cell content among the other layers.  

The human adult area 4 has been generally considered a five-layered “agranular´ cortex, with no layer 4 

(Brodman 1909; Parent 1996; Amaral 2000). However, recent indirect evidence obtained with neurochemical 

markers indicated that a non-pyramidal zone, topographically placed between layers 3 and 5, is indeed present 

in area 4 of adult primates (García-Cabezas and Barbas 2014). Independently from the identification of a 

consistent layer 4, our data in the sheep confirm that the motor cortex of large herbivores, if compared to apes 

and monkeys, shows not only a reduced lamination, but also minor neuronal density and a relatively different 

set of cell types (Cozzi et al. 2017). 

Our method has an acquisition threshold of 4 µm, and therefore includes all neurons, excluding most glial cells 

except possibly some large or very large elements slightly above the limit (see Rajkowska et al., 1998). 

Morphometric results obtained in our experiments suggest a prevalence of layer 1 and 3 for size (Figure 3), 

but layers 2 and 3 show the highest cell density (Figure 4, bottom right; Figure 5, bottom boxes) and size 

morphometric descriptors (Figure 5 top boxes). Layer 2, and to a somewhat lesser extent layer 3, show the 

major heterogeneity (Figure 5, first two diagrams in bottom row), followed by the deeper layers 5 and 6. 

Scatterplot analyses (Figure 6) suggests that layers 2, 3, 5 and, to a lesser extent 6, contain large neurons, 

presumably pyramidal. Here we also note that layer 5 shows the largest ones, potentially Betz 

gigantopyramidal cells, and the highest degree of size variation of neural elements (and is therefore the first in 

scatter size ranking, Table 3, lower left box). Layer 1 contains the highest concentration of small and regular 

neural cells, possibly granules. This agrees with what reported in a recent concise review (Larkum, 2013) that 

describes the nature and physiological role of neurons in layer 1, and their reciprocal interactions with 

pyramidal neurons of layer 5. Here again we stress that a regularly detectible layer 4 was not recognized, 

although groups of granules were occasionally identified in the deeper part of the cortex.  

Recent studies proposed “canonical´ models of the circuitry for the agranular cortex (macaque supplementary 

eye field: Godlove et al. 2014; agranular circuits of rodent brain: Beul and Hilgetag 2015) that suggest intense 

connectivity between layers 2/3 and 5/6 (as in granular cortex), but with different interlaminar relationship 

between granules and pyramidal cells (Beul and Hilgetag 2015). Layers 2/3 and 5/6, respectively, thus act as 

combined compartments, a situation that would in fact suit also the situation of the ovine motor cortex in which 

distinction between upper and deeper layers is easy, but separation between layers 2 - 3, and 5 - 6, respectively, 

is more difficult. In the cat, pyramidal neurons belonging to the external layers provide major projections to 
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deeper pyramidal neurons of layer 5 (Koestinger et al. 2018), a fact that could be relevant also for the agranular 

motor cortex of the sheep. In the cat visual cortex, projections from spiny neurons of layer 2 do not spread 

consistently to layer 4 but reach pyramidal cells of deeper layers 5 and 6 instead (Binzigger et al. 2004). 

The virtual absence of the classic thalamo-recipient layer 4 implies an alternative target for sensory 

information, possibly layer 2/3 where granules are present. Furthermore, in the mouse, inputs from posterior 

sensory-related thalamic areas, including the posterior thalamic nucleus, target neurons only in the upper layers 

(L2/3 and L5A) (Hooks et al., 2013). However, layers 5 and 6 also receive direct thalamic afferents in the rat 

(Constantinople and Bruno 2014), and mouse (Crocker-Buque et al. 2014), thus suggesting a possible model 

also for the sheep. The schematic representation proposed in Figure 8 summarizes our conclusions on the 

laminar organization and cell distribution of the ovine cortex. Cell types in the illustration represent the most 

probable neural elements based on the predominant morphological indicator encountered in each layers. 

 

In our experimental series, DTI results indicate that a consistent number of fibers descending from the motor 

cortex is directed towards the pyramids in the lower region of the medulla oblongata (Figure 7, blue fibers), 

very similarly to what reported in man (Chenot et al., 2019). Although we cannot follow the fibers below the 

medullary-spinal junction, the presence of a robust bundle of fibers in the pyramids is suggestive of a direct 

corticospinal (pyramidal) tract. The direct contribution of the motor cortex to the organization of motor 

sequence (walking) through the corticospinal pathway in humans is rather complex and involves control of the 

segmental motor circuits rather than the timing of the motor bursts (Capaday et al. 1999; Dietz 2002, 2011), a 

concept that highlights the role of the generators of motor schemes in the brainstem (Degtyarenko et al. 1993; 

Takakusaki 2013). The importance of the corticospinal tract is related directly to hand dexterity of the species 

(Hepp-Reymond and Wiesendanger 1972; Heffner and Masterton 1975), and indirect corticomotoneural 

pathways have only limited influence in digit movements (Nakajima et al. 2000; Isa et al. 2013). Thus, the 

number of fibers in the pyramidal tracts of man and other primates is consistently higher and reaches further 

down the spinal cord than Lin large herbivores (Barone 1959; Verhaart 1962; Towe 1973). The extrapyramidal 

motor system includes the descending fibers that course caudally from motor brainstem nuclei into the spinal 

cord without traversing the pyramids. It is common and accepted knowledge that the contribution of the so-

called “extrapyramidal´ motor system to fine control of muscles of the limbs is minimal in healthy primates 

(Baker 2011), but prevails in quadrupeds, and especially in the large hoofed herbivores (Haartsen 1961; Barone 

and Bortolami 2004; Singh 2018), where the “pyramidal´ tracts are sometimes hardly acknowledged at all 

(Sisson 1930). The definition of extrapyramidal system derives mainly from recognition that damages to the 

human pyramidal system uncover the existence of additional motor pathways, including essentially but not 

exclusively the rubrospinal, tectospinal, reticulospinal, vestibulospinal and other tracts (Baker 2011; Sengul 

and Watson 2012; for review see de Oliveira-Souza 2012; Deliagina et al. 2014; Lemon 2016). Our DTI results 

indicate that a robust bundle of fibers originating from the motor cortex is directed towards a central brainstem 

area (Figure 7, orange fibers). The presence of brainstem centers that regulate locomotion and gait selection 

and mode has been proven by experimental evidence (Caggiano et al. 2018). The location and identity of the 
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central pattern generators have never been described in large mammals, so it is not possible to establish whether 

they correspond to the pedunculopontine nucleus and cuneiform nucleus as in rodents (Caggiano et al. 2018), 

or to other tectal structures. In domestic ruminants, well-developed projections from the red nucleus 

(Chiocchetti et al. 2006) and lateral vestibular nucleus (Grandis et al. 2007) reach the lumbar and sacral 

segments of the spinal cord (Chiocchetti et al. 2006; Grandis et al. 2007), as in carnivores.  

 

Most, if not all, the articles that describe the reduction of the pyramidal tract in the large herbivores are based 

on the topographical identification of the tracts in the spinal cord and relative fiber counting (Lassek 1942; 

Lassek and Evans 1945), sometimes following rather coarse central lesions (King 1911a; Bagley 1922). We 

emphasize that, to date, no report has yet considered topography, connections and functions of the long-

distance spinal neurons and neural networks essential for the control of locomotion (Büschges 2005; Juvin et 

al. 2012; Ruder et al. 2016) in the large herbivores, whose gait characteristics are peculiar. Direct electro-

stimulation of the pyramids in the horse, though, resulted in contralateral neural activity in the radial and even 

tibial nerve (Breazile et al. 1967), thus suggesting either the presence of a pyramidal tract longer and more 

robust than expected, or the existence of uncharacterized connections to the extrapyramidal tracts. To the best 

of our knowledge, we have not been able to trace a direct description or a general review of the extrapyramidal 

tract in hoofed mammals (Cetartiodactyls and Perissodactyls) based on its physiological evidence. Apparently, 

the structure and recognized importance of the extrapyramidal tract in these latter large mammals is based on 

a) the shortness of the pyramidal tract in their spinal cord and the scarce number of its fibers; b) the area 

occupied by the classical extrapyramidal tracts in the spinal cord; and c) the presence of a well-defined 

extrapyramidal system in human patients with important lesions of the pyramidal tract. An additional, but not 

yet fully explored factor could be the difficulty of backward locomotion in hoofed animals, due to the necessary 

major involvement of the motor cortex (for review see Zelenin et al. 2011). Hence the conclusion that when 

the pyramidal tract is not so well developed, the extrapyramidal tract must take its functional role. However, 

large ungulates have a consistent number of fibers within the pyramids (Lassek 1942), more than does the rat 

(Barron 1934). A specific study (Lassek 1942) reported that a) the pyramidal tract of the large herbivores is 

well represented numerically; b) the axons travelling in the pyramid contain small-to-medium size fibers; c) 

the diameter of the axons does not change with the size of the specimen. Thus, the importance of the pyramidal 

tract in large herbivores may have been undervalued. Our DTI images, showing a large pyramidal tract, support 

this latter hypothesis. In fact, even if supination and pronation are impossible in large herbivores due to 

increasing degrees of fusion and fixity of the bones of the forearm, their locomotion involves excellent 

coordination of movements and synchronization of gait phases among the limbs.  

 

A few key points remain unsolved. Even without considering direct evidence of the importance of the 

pyramidal tract in hoofed animals (at least in the horse, see Breazile et al. 1967), the topography of the tracts 

in their spinal cord should require further scrutiny. Multisynaptic descending pathways (Figure 7, orange 

fibers) should also be investigated in more detail, to identify the precise target in the brainstem 
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(pedunculopontine nucleus? cuneiform nucleus? red nucleus?). In general, descending projections from the 

motor cortex of Cetartiodactyls and Perissodactyls need direct morphological and physiological proofs to 

assess correspondences and differences of their specific characteristics with those of primates and rodents.  

 

  



 14 

Figure Legends 
Fig. 1 Identification of the motor areas in the sheep brain (left) and actual sampling site (right). Somatotopic 
map is taken from Simpson and King (1911). 
 
Fig. 2 Nissl-stained sections of the motor cortex of the sheep. A, B, section of the whole cortex (A) and 
identification of the layers (B); C: enlargement of the whole cortical column with indication of the respective 
layers; D: neural cell types of layers 2/3; E, pyramidal neurons in layer 5; F neural cell types of layer 6. Scale 
bars: A, B: 500µm; C, 250µm; D-F: 100µm. 

Fig. 3 Dot plot of the cortical thickness by layer. Statistical analysis concerns the thickness of single 
layers, where each single data point (gray dot) do represent one measure of a single section. For each 
one of the six sheep we considered three measures from two sections. The blue dot and the related 
interval represent the within layer sample mean along with its own 95% confidence interval (done by 
using the Student¶s t method). 

Fig. 4 Boxplots of some morphometric indicator by layer and individual sheep. The connected blue 
dots represent the within layer sample means. Underlying data refer to morphometric indicators (see 
Table 1) of 252,266 individual neural cells collected from two motor cortex sections for each of the 
six sheep. For sake of simplicity we represented only 4 out of 8 indicators. 

Fig. 5 Mean plots of each morphometric indicator by layer and individual sheep. Underlying data 
refer to morphometric indicators (see Table 1) of 252,266 individual neural cells collected from two 
motor cortex sections of six sheep. There are 6 lines in each graph representing the mean values for 
each individual sheep. 

Fig. 6 Scatterplot of minor axis length vs. major axis length by layer and cluster-based classified cell. 
Underlying data refer to 252,266 individual neural cells collected from two motor cortex sections of 
six sheep. Red dots presumably refer to large pyramidal-like neuron. Other types of cells are all 
colored by blue dots. 

Fig. 7 DTI projections from the motor cortex of the sheep. A, B: Blue lines: projections from the motor area 
of the cortex to the pyramids in the brainstem (pyramidal tract). C: Orange lines: projections from the motor 
area of the cortex to the level of the pedunculopontine and cuneiform nuclei in the brainstem (first leg of the 
extra-pyramidal tract).  
 
Fig. 8 Hypothetical layout of the cortical column in the motor cortex of the sheep. 
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Statistical design and data analytics 
 

A suitable data representation model was adopted to formalize the comparison among the layers. More 

formally and without loss of generality, we assumed that the vector of p cell-related morphometric indicators 

Y (area, perimeter, etc.) measured on the i-th cell (our experimental unit) from the s-th subject/individual 

belonging to the j-th layer could be modelled as 

Yisj = µ + Wj + Es + Hisj, (1) 

where Hisj are i.i.d. possibly non-Gaussian error terms with null mean and scale coefficients Vj
2=V2(Wj) and 

unknown distribution Pε, µ is a population-invariant constant, coefficients Wj represent the main layer effects, 

Es is the subject/individual effect, and V 2(Wj) are layer-varying scale coefficients which may depend, through 

monotonic functions, on main treatment effects Wj. Basically, the proposed data representation model is a quite 

general less-demanding nonparametric model where specific location and scale effects are both allowed across 

layers. 

Since the main goal of this study is to compare the layers and their content, we actually inferred on the layer 

coefficients Wj while Es are considered as nuisance parameter. Here we developed a suitable extension to model 

(1, see above) of the nonparametric combination and permutation-based testing methodology to obtain a more 

flexible and reliable inferential analysis (Bonnini et al. 2014; Corain and Salmaso 2015). We formalized the 

comparison between the j-th and the h-Wh la\eU ZiWh Whe QXll aQd alWeUQaWiYe h\SRWheViV b\ XViQg Whe RR\¶V 

Union-Intersection testing approach (Pesarin and Salmaso 2010) separately for the location and scatter 

parameters (Wj and V 2(Wj)), as follows: 

൞

𝐻ሺሻ:⋂௦⋂𝑌௦  𝑌௦=
 ≡  ⋂௦⋂ൣ𝜂௦ = 𝜂௦  ൧                                                          

𝐻ଵሺሻ:⋃௦⋃ൣ൫𝑌௦  𝑌௦<
 ൯⋃൫𝑌௦  𝑌௦>

 ൯൧       
≡ ⋃௦⋃ൣ൫𝜂௦ < 𝜂௦ ൯⋃൫𝜂௦ > 𝜂௦ ൯൧ ە

 

 𝐻ሺሻ:⋂௦⋂𝑌௦  𝑌௦=
௦௧ ≡   ⋂௦⋂ൣ𝜎௦ଶ = 𝜎௦ଶ  ൧

                                                          
𝐻ଵሺሻ:⋃௦⋃ൣ൫𝑌௦  𝑌௦<

௦௧ ൯⋃൫𝑌௦  𝑌௦>
௦௧ ൯൧       

≡ ⋃௦⋃ൣ൫𝜎௦ଶ < 𝜎௦ଶ ൯⋃൫𝜎௦ଶ > 𝜎௦ଶ ൯൧

 (2) 

where k = 1,2,3, is the reference index for each individual univariate morphometric feature. 

It is worth noting that hypothesis (2) refers to a nonparametric version of the so-called multivariate generalized 

Beherens-Fisher problem (Yanagihara and Yuan 2005). Under the null hypothesis of no difference among 

cortical layers, data are actually approximately exchangeable within each subject so that they can be permuted 

between groups to derive two multivariate directional p-values, separately for the location and scatter 

problems. As univariate location and scatter permutation statistic tests, we respectively used the differences of 

sample means and squared deviations along ZiWh FiVheU¶V cRPbiQiQg fXQcWiRQ (PeVaUiQ aQd SalPaso 2010), to 

derive the multivariate combined p-values.  

Finally, results of pairwise testing as in (2, see above) can be exploited to provide an extension to model (1, 

see above) of the ranking methodology recently proposed by Arboretti et al. (2014) and Corain et al. (2016). 

Under different random distributions Corain et al. (2018) proved the validity of the proposed testing and 

ranking solution (for a more in depth understanding on the testing and ranking procedure, see Arboretti et al. 

2014). 
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