Short Communication

Carbapenemase detection testing in the era of ceftazidime/avibactam-resistant KPC-producing Enterobacterales: A 2-year experience

Gabriele Bianco*, Matteo Boattini, Marco Iannaccone, Alessandro Bondi, Davide Ghibaudo, Elisa Zanotto, Marco Peradotto, Rossana Cavallo, Cristina Costa

Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Corso Bramante 88/90, 10126 Turin, Italy

ARTICLE INFO

Article history:
Received 22 December 2020
Received in revised form 21 January 2021
Accepted 8 February 2021
Available online 20 February 2021

Keywords:
Ceftazidime/avibactam resistance
Carbapenemase detection
KPC
D179Y
KPC-14
Bloodstream infection

ABSTRACT

Objectives: The aim of this study was to investigate the prevalence of ceftazidime/avibactam (CZA) resistance among carbapenemase-producing Enterobacterales (CPE) blood culture isolates as well as the performance of the main carbapenemase phenotypic detection methods to identify KPC variants associated with CZA resistance.

Methods: Non-duplicate CPE strains isolated from blood cultures during 2018–2020 were tested for antimicrobial susceptibility. Molecular testing was used to identify carbapenemase-producers. Strains harbouring blaKPC and with a CZA minimum inhibitory concentration (MIC) ≥8 mg/L were investigated by sequencing. Subsequently, five phenotypic carbapenemase detection methods were evaluated on these strains, namely the modified carbapenem inactivation method (mCIM), Rapidec® Carba NP, the disk diffusion synergy test, NG-Test CARBA® 5 and RESIST-5 O.O.K.N.V.

Results: Overall, the CZA resistance rate was high (13.7%) and remained relevant (5.9%) excluding metallo-β-lactamases-producers. All isolates harbouringblaKPC mutations (n = 8) were associated with reduced carbapenem MICs and negative results by all detection methods based on revelation of enzyme activity. Lateral flow immunoassays failed to detect KPC-31 (n = 4) and KPC-33 (n = 2) but correctly identified KPC-14 (n = 2). Conversely, isolating harbouring wild-type KPC genes (n = 3) were associated with high-level CZA resistance and carbapenem resistance and tested positive by all of the evaluated methods.

Conclusion: In the era of CZA-based therapies, molecular blaKPC identification followed by a carbapenem hydrolysis-based phenotypic assay could be the most reasonable diagnostic algorithm to detect all KPC-producers and to identify mutants associated with impaired carbapenemase activity and CZA resistance.

© 2021 The Authors. Published by Elsevier Ltd on behalf of International Society for Antimicrobial Chemotherapy. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The emergence of carbapenemase-producing Enterobacterales (CPE) has become a major public-health concern over the last decade owing to the dissemination of complex multidrug-resistant phenotypes [1]. In this scenario, rapid and accurate detection of carbapenemases is of paramount importance both for epidemiological and infection control purposes. Additionally, rapid characterisation of carbapenemase types can help to guide antibiotic therapy, as various carbapenemase classes confer different resistance spectra to novel β-lactam/inhibitor combinations such as ceftazidime/avibactam (CZA). Indeed, avibactam inhibits the activity of Ambler class A, class C and some class D β-lactamases, including carbapenemases (e.g. KPC, OXA-48), but remains ineffective towards Ambler class B enzymes [metallo-β-lactamases (MBLs)] such as NDM, VIM and IMP [2]. Despite the fact that CZA has been recently introduced, several reports have described in vivo selection of KPC-producing Enterobacterales resistant to CZA following prolonged treatment. The majority of these CZA-resistant strains harbour new KPC variants exhibiting single amino acid substitutions between positions 164–179 in their omega loop, with Asp179Tyr (D179Y) being particularly common. KPC D179Y variants are characterised by loss of carbapenemase activity and restoration of carbapenem susceptibility together with a concomitant reduced binding to avibactam [3–5]. Moreover, KPC variants encoding mutations outside the omega loop region and associated with CZA resistance (e.g. KPC-41, KPC-23, KPC-14, KPC-8 and KPC-50) have recently been isolated from patients with or without a history of CZA treatment [6–10].

As recently shown, molecular testing is capable of detecting all KPC mutants, whereas phenotypic methods based on carbapenem hydrolysis [i.e. Carba NP test and its commercial derivatives,
matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS)-based assays and the carbapenem inactivation method [11–13]. The inability of lateral flow immunoassays (LFIs) to detect KPC variants encoding D179Y mutations has also been reported [11–14].

Therefore, the choice of the most suitable carbapenemase detection method depends on the carbapenemase epidemiological context, including the prevalence of isolates harbouring KPC variants not detectable by the most commonly used phenotypic methods.

In Italy, CZA has been available since February 2018 and recent reports attest to the emergence of CZA-resistant Enterobacterales strains [15,16].

In this study, we analysed the prevalence of CZA resistance among CPE strains isolated from blood cultures collected at the University Hospital ‘Città della Salute e della Scienza di Torino’ (Turin, Italy) in the period 2018–2020. Subsequently, we assessed the performance of five phenotypic carbapenemase detection methods on KPC-producing Enterobacterales showing resistance or reduced susceptibility to CZA.

2. Materials and methods

2.1. Characterisation of carbapenemase-producing isolates

Non-duplicate CPE strains isolated from blood cultures were prospectively collected from February 2018 to August 2020. Isolates were identified by MALDI-TOF/MS (Bruker Daltonik GmbH, Bremen, Germany). Antimicrobial susceptibility was determined by a commercially available microdilution assay (Panel NMDR, MicroScan® WalkAway® 96 Plus; Beckman Coulter, Switzerland), and CZA minimum inhibitory concentrations (MICs) were confirmed by Etest (bioMérieux, France). Susceptibility data were interpreted according to current European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints (version 11.0, 2021; https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_11.0_Breakpoint_Tables.pdf). A commercial molecular assay (Xpert® Carba-R; Cepheid, Sunnyvale, CA, USA) was used to characterise carbapenemase-producers when the meropenem MIC was >0.12 mg/L (EUCAST screening cut-off value for CPE) or the ceftazidime/avibactam MIC was >8 mg/L.

2.2. Evaluation of phenotypic methods for the detection of KPC

Among isolates harbouring the blaKPC gene and with a CZA MIC ≥ 8 mg/L, carbapenemase production was investigated in duplicate by five phenotypic methods, namely the modified carbapenem inactivation method (mCIM), Rapidic® Carba NP (bioMérieux), the disk diffusion synergy test (KPC, MBL and OXA-48 Confirm Kit; Rosco Diagnostica A/S) and two LFIs [NG-Test CARBA® 5 (NG Biotech, France) and RESIST-5 O.O.K.N.V (Coris Bioconcept, Belgium)]. Assays were performed on overnight subcultures from blood agar following Clinical and Laboratory Standards Institute (CLSI) guidelines (M100, 27th ed; http://www.iacld.ir/DL/public/96/CLSI-2017.pdf) or the manufacturer’s instructions, as appropriate.

2.3. Characterisation of blaKPC genes

On KPC-producing strains with a CZA MIC ≥ 8 mg/L, blaKPC genes were amplified by PCR using the following primers: KPC-fw, TGT CACTTGT ATCCGCC GTC TAG; and KPC-rev, TTA CTG CCC GTG GAC GCC CAA TCC. Amplicons were capillary sequenced using an Applied Biosystems 3130xl Genetic Analyzer (Life Technologies, Carlsbad, CA, USA) and were compared with available sequences in the GenBank database.

3. Results

3.1. Prevalence of ceftazidime/avibactam resistance

A total of 168 CPE strains were collected, of which 89.9% (n = 151) produced KPC, 7.1% (n = 12) produced VIM, 2.4% (n = 4) produced OXA-48-like and 0.6% (n = 1) produced both VIM and KPC (Table 1).

Overall, the CZA resistance rate was 13.7% (n = 23) and the MIC₅₀ and MIC₉₀ values were 2 mg/L and 256 mg/L, respectively.

Among the CZA-resistant isolates, 52.2% (n = 12) were VIM MBL-producing Enterobacteriales, 43.5% (n = 10) were KPC-producing Klebsiella pneumoniae and 4.3% (n = 1) was a VIM/KPC-producing K. pneumoniae. MICs ranged from 16 mg/L to >256 mg/L (Table 1). Excluding Enterobacterales strains expressing VIM MBLs, which are intrinsically non-susceptible to the activity of avibactam, the CZA resistance rate was 5.9% (n = 10) and the MIC₅₀ and MIC₉₀ values were 1.5 mg/L and 6 mg/L, respectively. All CZA-resistant KPC-producing K. pneumoniae isolates were collected from blood cultures of patients treated with CZA.

Table 1

<table>
<thead>
<tr>
<th>Carbapenemase status</th>
<th>Species</th>
<th>No. of isolates</th>
<th>MIC range (mg/L)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEM</td>
</tr>
<tr>
<td>CZA-susceptible (MIC ≤ 8 mg/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bla<sub>KPC</sub></td>
<td>Klebsiella pneumoniae</td>
<td>138</td>
<td>≤0.12 to >32</td>
</tr>
<tr>
<td></td>
<td>Klebsiella oxytoca</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Serratia marcescens</td>
<td>1</td>
<td>>8</td>
</tr>
<tr>
<td></td>
<td>Enterobacter cloacae</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>K. pneumoniae</td>
<td>3</td>
<td>1–16</td>
</tr>
<tr>
<td></td>
<td>Escherichia coli</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>CZA-resistant (MIC > 8 mg/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bla<sub>VIM</sub></td>
<td>K. pneumoniae</td>
<td>2</td>
<td>1–8</td>
</tr>
<tr>
<td></td>
<td>E. cloacae</td>
<td>7</td>
<td>2–32</td>
</tr>
<tr>
<td></td>
<td>E. coli</td>
<td>2</td>
<td>1–2</td>
</tr>
<tr>
<td></td>
<td>Morganella morganii</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>K. pneumoniae</td>
<td>1</td>
<td>>32</td>
</tr>
<tr>
<td>bla<sub>VIM</sub> + bla<sub>KPC</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K. pneumoniae</td>
<td>10</td>
<td>≤0.12 to >32</td>
</tr>
</tbody>
</table>

MIC, minimum inhibitory concentration; MEM, meropenem; CZA, ceftazidime/avibactam.

* CZA MICs were determined by Etest, whereas MEM MICs were determined by a commercial microdilution system. MICs were interpreted following current European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints.
3.2. Characterisation of blaKPC and performance of carbapenem detection assays

Among the KPC-producing Enterobacteriales isolates, 11 of the 151 were included in the evaluation of the mCIM, Rapidec®, Carba NP, disc diffusion synergy test, NG-Test CARBA® 5 and RESIST-5 O.K.N.V. assays. Ten of them showed CZA resistance with MICs ranging from 16 mg/L to >256 mg/L, whereas one K. pneumoniae isolate was susceptible to CZA with an MIC of 8 mg/L. Characterisation of the isolates and the results obtained by the five carbapenem detection methods are detailed in Table 2.

Data sequencing revealed that eight K. pneumoniae strains carried a mutated blaKPC gene (four blaKPC-31, two blaKPC-33 and two blaKPC-34). All mutated KPC variants were associated with increased CZA MICs (ranging from 8 mg/L to >256 mg/L) and carbapenem susceptibility. Unlike molecular testing that was able to detect all mutated KPC variants, methods based on carbapenem hydrolysis (Rapidec®, Carba NP test and mCIM) or boronic acid synergy (disc diffusion synergy test) achieved negative results. Of note, both LFIAs were capable detecting blaKPC-14 but not blaKPC-31 and blaKPC-33.

Conversely, the three isolates harbouring wild-type KPC genes (two blaKPC-3 and one blaKPC-2) were associated with high-level CZA resistance (MICs > 256 mg/L), carbapenem resistance and tested positive for carbapenemase production by all of the evaluated methods.

4. Discussion

In the era of multidrug-resistant Gram-negative bacteria, rapid diagnostic tests detecting carbapenemase activity or genes are increasingly used for epidemiological and infection control purposes as well as to predict antimicrobial resistance. In fact, analysis of resistance markers together with knowledge of local epidemiology may allow the prediction of antibiotic-resistant phenotypes and to optimise empirical antibiotic therapy early when conventional antimicrobial susceptibility testing results are not yet available.

CZA represents an optimal choice for the treatment of infections caused by serine carbapenemase-producing Gram-negative bacteria. However, recent reports highlighted important limitations of the main carbapenemase detection methods in detecting KPC variants associated with CZA resistance.

In this study, we analysed the prevalence of CZA resistance among CPE strains isolated from blood cultures of patients admitted to a reference university hospital of Northwest Italy since the beginning of CZA use. Subsequently, we evaluated the ability of the main phenotypic carbapenemase detection methods to detect KPC variants harboured by isolates with increased CZA MICs.

Overall, the CZA resistance rate among CPE isolates was high (13.7%) and remained relevant (5.9%) excluding intrinsically-resistant MBL-producers compared with a more recent Italian report [17].

Although KPC variants encoding the D179Y mutation represent the most common mechanism associated with CZA resistance, we observed two cases of bloodstream infection by K. pneumoniae strains carrying KPC-14, a KPC-2 Δ242-GT-243 variant rarely reported in the clinical setting to date [8,18]. Additionally, 3 of 11 K. pneumoniae isolates were resistant to CZA and harboured no mutation in blaKPC, suggesting the presence of other resistance mechanisms.

All KPC mutants were associated with reduced carbapenem MICs owing to the lack of carbapenemase activity, which consequently led to negative results by all of the methods based on enzyme activity (i.e. Rapidec®, Carba NP test, mCIM and disc diffusion synergy test). Conversely, LFIAs failed to detect KPC-2- and KPC-3-D179Y but correctly identified KPC-14, suggesting a specific role of this amino acid substitution in the lack of binding affinity to the LFIAs antibodies. Interestingly, 3 of 11 KPC-producing K. pneumoniae strains showed a meropenem MIC ≤ 0.125 mg/L, which is lower than the screening carbapenemase cut-off defined by EUCAST (https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf).

These findings outline the limitations and challenges faced by diagnostic laboratories to correctly identify strains producing various KPC variants. Genotypic information is the most revealing, while phenotypic assays often used yield conflicting results that do not help with the diagnosis of a KPC-producer. Indeed, the majority of avibactam-resistant KPC variants are associated with restoration of carbapenem susceptibility, expression of an extended-spectrum β-lactamase (ESBL) phenotype and negative results by the most used phenotypic carbapenemase detection methods. This evidence could legitimise the use of carbapenems, missing the implementation of infection control measures. However, since various

<table>
<thead>
<tr>
<th>Isolate</th>
<th>blaKPC variant (amino acid mutation)</th>
<th>MIC (mg/L) (EUCAST interpretation)*</th>
<th>Carbenapenem detection assay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CZA MEM IPM</td>
<td>Carbenapenem detection assay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CZA, cefazidime/avibactam; MIC, minimum inhibitory concentration; EUCAST, European Committee on Antimicrobial Susceptibility Testing; MEM, meropenem; IPM, imipenem; S, susceptible; I, intermediate; R, resistant; Pos., positive; Neg., negative.
* CZA MICs were determined by Etest, whereas MEM and IPM MICs were determined by a commercial microdilution system. MICs were interpreted following current EUCAST breakpoints.
subpopulations of KPC-producing Enterobacteriales with different resistance patterns can co-occur following treatment with CZA [19], a drug-driven selection of carbapenem-resistant subpopulations should be also considered. Indeed, Shields et al. highlighted meropenem resistance selection in CZA-resistant and meropenem-susceptible K. pneumoniae isolates during in vitro passage at subinhibitory meropenem concentrations [20].

In conclusion, use of rapid testing should be judicious and considered according to local epidemiology and clinical information of recent CZA therapy. In the era of CZA-based therapies, molecular blaKPC detection followed by a carbapenem hydrolysis-based phenotypic assay could be the most reasonable diagnostic algorithm to detect all KPC-producers and to presumptively differentiate mutants associated with CZA resistance and impaired carbapenemase activity. However, since more resistance mechanisms could be involved in CZA resistance, traditional antimicrobial testing remains necessary.

Funding
None.

Competing interests
None declared.

Ethical approval
This study was conducted in accordance with the Declaration of Helsinki. Formal ethical approval was obtained by the institutional review board of our centre [Protocol No. 0029345].

References

