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Abstract: Johansen’s (2000. “A Bartlett Correction Factor for Tests of on the Coin-
tegrating Relations.” Econometric Theory 16: 740–78) Bartlett correction factor
for the LR test of linear restrictions on cointegrated vectors is derived under the
i.i.d. Gaussian assumption for the innovation terms. However, the distribution
of most data relating to financial variables is fat-tailed and often skewed; there
is therefore a need to examine small sample inference procedures that require
weaker assumptions for the innovation term. This paper suggests that using the
non-parametric bootstrap to approximate a Bartlett-type correction provides a
statistic that does not require specification of the innovation distribution and can
be used by applied econometricians to perform a small sample inference proce-
dure that is less computationally demanding than it’s analytical counterpart. The
procedure involves calculating anumber of bootstrap values of theLR test statistic
and estimating the expected value of the test statistic by the average value of the
bootstrapped LR statistic. Simulation results suggest that the inference procedure
has good finite sample property and is less dependent on the parameter space of
the data generating process.

Keywords: cointegration, LR test, bootstrap, Bartlett correction

JEL Code: C12, C15, C22

1 Introduction
The procedure for estimating and testing cointegrating relationships described
in Johansen (2006) is available in virtually all econometric software packages
and is widely used in applied research. Briefly, this method involves maximizing
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the Gaussian likelihood function and analyzing the eigenvalues and eigenvectors
found using the reduced rank regression method.Once that the number of coin-
tegrating vectors has been determined, hypotheses on the structural economic
relationships underlying the long-run model can be tested using the likelihood
ratio (LR) test.

Although the LR test of linear restrictions of cointegrating vectors has the cor-
rect size asymptotically, many studies contain reports that the approximation of
the 𝜒2 distribution to the finite sample distribution of the LR test can be seriously
inaccurate; see, for example, Haug (2002) or Gredenhoff and Jacobson (2001).
Broadly speaking, the problem can be described as one of lacking coherence
between the test statistic and its reference distribution. One way of addressing
this problem is to correct the test statistic so that the finite sample distribution
is closer to the asymptotic distribution. In this respect, early attempts of cor-
recting the test statistic were made in Podivinsky (1992) and Psaradakis (1994),
where small sample corrections based on degrees of freedom were suggested.
More recently, Johansen (2002) proposed a Bartlett type correction factor for
LR statistic and analytically derives the asymptotic expansions needed to cal-
culate the expectation of the test statistic. Multiplying the unadjusted statistic
by a factor derived from an asymptotic expansion of the expectation of the test
provides a closer approximation of the resulting adjusted statistic to the 𝜒2 distri-
bution, thus reducing the size distortion problem. Simulation results presented
by Johansen (2000) suggests that applying this type of correction to the LR test
statistic dramatically reduces the finite sample size distortion problem. However,
the Bartlett correction factor is predicated under the assumption of Gaussian
innovations. When the innovations are non-normal, the correction factor needs
to be modified in order to account for skewness and kurtosis of the innovations.
One way of overcoming such calculations is to use a numerical approximation
in place of the analytical Bartlett correction. The first paper that suggested to
calculate such approximation in time series context was the work by Canepa
and Godfrey (2007). In their article the authors proposed computing the Bartlett
adjustment for a quasi-LR test using non-parametric bootstrapping as a simple
method to generate a non-normality robust small sample inference procedure
in the context of ARMA models. The Bartlett corrected quasi-LR test suggested
in Canepa and Godfrey (2007) can be used in ARMA models as a misspecifica-
tion test or alternatively as a model specification procedure. The former case
involves testing for the adequacy of an ARMA model by an overfitting diagnostic
check, whereas in the latter case the inference procedure can be used to test
the validity of simplifications of an ARMA model. In the multivariate context,
Canepa (2016) proposed to use the bootstrap to approximate the finite sample
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expectation of the LR test in place of the analytical Bartlett correction in the con-
text of cointegrated VAR models (see also Hunter, Burke and Canepa 2017). The
authoralsoproved theconsistencyof thesuggested testunder theassumption that
the innovations are independent and identically distributed (i.i.d.). The results
in Canepa (2016) are promising since it was found that the performance of the
bootstrap Bartlett test was less dependent on the values of the parameters of the
data generating process and better able to cope with violations of the Gaussian
assumption about the innovations with respect to the Johansen (2000) Bartlett
corrected LR test. A possible shortcoming of the inference procedure suggested
in Canepa (2016) is that the suggested test statistic relies on the i.i.d. assumption.
Evidence of violation of this strong assumption appear in many macroeconomic
series, such as aggregate consumption and income, in interest rate data and
in nominal and real price variables; see Sensier and van Dijk (2004). Similarly,
it is a well-known stylized fact that GARCH-type models fit well to stock market
returns (see Boswijk et al. 2016; Engle and Rangel 2008; Harvey et al. 2016; among
others).

Against this background, in this paper we built on Canepa (2016) and inves-
tigate if the bootstrap Bartlett corrected LR test can be used to reduce the size
distortion problem in situations where an analytical solution is difficult or does
not work well. If such an application was to be successful it would have signifi-
cant practical implications, for several reasons. The bootstrap Bartlett corrected
LR test does not rely on the Gaussian assumption of the innovations, and this
feature may be appealing to the applied worker. Moreover, simulation results
indicate that the correction factor is useful for some parameter values but does
not work well for others. As Johansen points out “the influence of the parameters
is crucial [. . . ] There are parameters points close to the boundary where the order
of integration or the number of cointegrating relations change, and where the
correction does not work well” (cf. Johansen 2000 p. 741). Simulation results in
Cavaliere et al. (2015) confirmed that the performance of test heavily depends on
the parameter space (see also Andrews and Guggenberger 2009; Canepa 2006;
Cavaliere et al. 2020; Elliott et al. 2015; Lu 2016; McCloskey 2017).

We believe that the dependency on the parameter values may be reduced by
computing the Bartlett adjustment using the non-parametric bootstrap. Because
the bootstrap method involves replacing the unknown cumulative distribution
function of the LR test statistic by the empirical distribution function of the
bootstrap distribution of the same test, the resulting inference procedure may
show less sensitivity to the values of the parameters of the data generating pro-
cess (DGP) than a test based on the asymptotic critical values. Computing the
bootstrap Bartlett correction factor is relatively straightforward. Roughly speak-
ing, this procedure involves calculating a number of bootstrap values of the
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LR test statistic and estimating the expected value of the test statistic by the
average value of the bootstrapped LR statistic. The bootstrap Bartlett method
was first proposed in Rocke (1989) where hypothesis testing in seemingly unre-
lated regression models was considered (see also Jacobson and Larsson 1999).
Rocke’s simulation results showed that the Bartlett adjustment for the LR test
determined using the non-parametric bootstrap was considerably more accu-
rate than the Bartlett adjustment from the second-order asymptotic method of
Rothemberg (1984). In the time series context, the idea of using the bootstrap
to tackle the problem of finite sample biased estimation is also considered in
Engsted and Pedersen (2014) where a bootstrap based bias-correction method is
considered as a simple approach to bias-adjustment in VAR models. The authors
show that the bootstrap bias-correction approach yields a large reduction in bias
compared to OLS estimate and the performance is similar to the analytical bias
formula.

The contribution to the literature of this paper is twofold. First, it provides
a “feasible” small sample correction factor that can easily be used to calculate
the LR test for linear restriction on the cointegrating space in situations where
the analytical Bartlett correction factor would fail. Second, the consistency of
the suggested procedure is considered and it is shown that the bootstrap Bartlett
statistic converges weakly in probability to the correct asymptotic distribution.
Establishing the conditions that ensure asymptotic refinementswill be the subject
of future research. However, in his seminal article, Beran (1988) concluded that
for asymptotically pivotal statistics (i.e. statistics for which the limiting distribu-
tion does not depend on unknown nuisance parameters), the analytical Bartlett
adjustment produces an error in rejecting probability of order O

(
T−3∕2). Approx-

imating the finite sample expectation of the LR test using the bootstrap involves
substituting a

√
T consistent estimate of statistic, hence the resulting inference

procedure should have accuracy of the same order.
The performance of the suggested procedure and the analytical Bartlett cor-

rection under non-normality assumption of the innovations are evaluated by
Monte Carlo evaluation. Innovation structures typically found in financial data
are considered such as fat tailed and conditionally heteroskedastic (i.e.ARCH and
GARCH) innovations. Performance is assessed in terms of the size and power of
the inference procedures under consideration. The performance of the suggested
procedure is compared with the bootstrap p-value test. In general, unlike the
Bartlett (1937) idea that involves replacing the original statistic with a corrected
statistic which is closer to the reference distribution, the bootstrap p-value test
involves making the reference distribution closer to the finite sample distribu-
tion. In the literature it has been shown that in many cases the bootstrap can be
considered as a numerical approximation to analytical calculations of one-term
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Edgeworth expansion (see Hall 1992) where the critical values of the limit dis-
tribution are replaced with transformations of critical values obtained from the
Edgeworth expansions of the distribution function.

This section will close with a brief presentation of the Bartlett correction.
The next section introduces the LR test for linear restrictions on cointegrating
space, the Bartlett correction of Johansen (2000), and the two bootstrap inference
procedures. In Section 3, the design of the Monte Carlo experiment is explained,
and inSection4, the simulation results are reported. InSection5, some robustness
checks are undertaken. An empirical application is considered in Sections 6 and
7 contains some concluding remarks.

1.1 The Bartlett Correction
The Bartlett correction is based on a simple idea but can be very effective in
reducing the finite sample size distortion problem of the LR tests. This method
takes the form of a correction to the mean of the LR statistic for a given parameter
point 𝜃 under the null hypothesis. In regular cases, the asymptotic distribution of
theLR statistic is givenbyΛ = −2 log(LR) ∼ 𝜒2 (q),whereq is thedimensionof the
constraints, and the asymptoticmeanof theLR statistic ought to be approximately
equal to q. The Bartlett correction is intended to make the mean exactly equal to
q by replacing the above equation by ΛB = qΛ

E𝜃 (Λ)
and then referring the resulting

statistic toa𝜒2 (q). Typically, given thecomplicated formof theLR test, it isdifficult
to find an exact expression for E𝜃 (Λ) and one can instead find an approximation
of the form

E𝜃 (Λ) = q
(
1 + b (𝜃)

T

)
+ O

(
T−3∕2) . (1)

Thus, the quantity
Λ

1 + b(𝜃)
T

has an expectation q + O
(
T−3∕2) which is closer to the limit distribution.

In the independent and identically distributed (i.i.d.) setup, the Bartlett
correction has been widely studied in the literature since the pioneering work
by Lawley (1956). In the paper, the author showed that the finite-sample dis-
tribution of a Barlett-corrected likelihood ratio test statistic was closer to the
𝜒2-distribution than the original LR statistic; see Cribari-Neto and Cordeiro (1996)
for a review. However, the Bartlett correction is relatively less explored for depen-
dent data. In the time series context, Giersbergen (2009) derived a Bartlett
correction factor for testing hypotheses about the autoregressive parameter in
the stable AR(1) model with trend and intercept, and showed that the Bartlett
corrections are useful in controlling the size of the likelihood ratio statistic in
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small samples (see also Omtzigt 2003). Similarly, Taniguchi (1991) calculated
the corrections for the AR(1) and MA(1) models without disturbance parameters,
whereas Van Garderen (1999) used differential geometry and suggested how to
compute the Bartlett correction factor geometrically, for the case of no distur-
bance parameter. In the context of ARMA (autoregressivemoving average), Lagos
and Morettin (2004) derived a Bartlett correction for the likelihood ratio statistic
used to test hypotheses about parameters of a Gaussian stationary and invertible
model. Ravishanker et al. (1990) considered the differential geometry of autore-
gressive fractionally integrated moving average processes and use the properties
ofToeplitz formsassociatedwith the spectraldensity functionsof these longmem-
ory processes to compute the geometric quantities. The authors investigated the
role of geometric quantities on the Bartlett correction to the likelihood ratio test
statistics for the fractional difference parameter. Similarly, Chen and Cui (2006,
2007) proved that the empirical likelihood with moment restrictions is Bartlett
correctable even in the presence of a nuisance parameter.

Recently, Bartlett-type corrections in unstable autoregressive models have
also attracted much attention. For example, Chan and Liu (2010) proved that
the Bartlett correction can be used for Gaussian short-memory time series.
Chan et al. (2014) extended Chan and Liu (2010) to Gaussian long-memory time
series. Similarly, Chen et al. (2016) examine the Bartlett correction factor for the
frequency domain empirical likelihood of linear time series models and showed
that the factor can be used for non-Gaussian short-memory time series; see also
Chan et al. (2014), (for earlier studies see for example Bravo 1999; Larsson 1998;
Nielsen 1997).

2 Model and Tests
Consider the p-dimensional VAR model

ΔYt = 𝛼
(
𝛽′Yt−1 + 𝜌′Dt

)
+

k−1∑

i=1
ΓiΔYt−i + 𝜙dt + 𝜀t, t = 1,… ,T (2)

where Yt, 𝜀t ∼ (0,Ω) are (p × 1) vectors with E (𝜀t𝜀s) = 0 (for t ≠ s) and
ΔYt = Yt − Yt−1. The matrices of coefficients have the following dimensions: 𝛼
and 𝛽 are (p × r); 𝜙 is (p × pd); 𝜌 is (pd × r); and Γ1,…, Γk−1 are (p × p). Also,
dt (pd × 1) and Dt (pD × 1) are deterministic terms in (2). Once the cointegrating
rankhas been established, linear restrictions on cointegrating space canbe tested
for. We focus on the hypothesis 0: 𝛽 = H𝜑, where H (p × s) (for r ≤ s ≤ p) is a
known matrix that specifies that the same restrictions are imposed on all cointe-
grating vectors (r), s is the number of unrestricted parameters, and 𝜑 is an (s × r)
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matrix; see Johansen (1996) for a discussion of tests for other hypotheses. The LR
test statistic for 0 can be obtained from the concentrated likelihood function
and is given by

Λ = −T
r∑

i=1
log

[(
1 − �̂�i

)
∕
(
1 − �̃�i

)]
, (3)

where �̂�i and �̃�i are the usual eigenvalues implied by the maximum likelihood
estimation of the restricted and unrestricted models, respectively.

For the null hypothesis 0: 𝛽 = H𝜑, an approximation to the order T−1 for
the Bartlett adjustment is given by

𝜗 = E𝜃 (Λ)
q = 1 + 1

T

[ 1
2 (p + s − r + 1 + 2pD) + pd + kp)

]

+ 1
Tr

[
(2p + s − 3r − 1 + 2pD) 𝑣 (𝛼) + 2 (c (𝛼) + cd (𝛼))

]
, (4)

where 𝜃 = (𝛼, 𝛽, Ω̂), q = r(p − s), 𝑣 (𝛼) = tr
{(
𝛼′Ω−1𝛼

)−1 ∑−1
𝛽𝛽

}
with ∑

ββ = Var
(𝛽′Yt|ΔYt,… ,ΔYt−k+2), cd (𝛼) = pd𝑣 (𝛼), and the constant c (𝛼) is given in
Johansen (2000). Thus, ΛB = 𝜗−1Λ is the Bartlett corrected LR statistic.

The likelihood ratio test in (3) and the correction in (4) are derived under the
assumption that the innovations are 𝜀t ∽ N(0,Ω). However, the Gaussian hypoth-
esis is often too restrictive for the type of data used in economic applications. The
fact that the distribution of most data relating to financial variables, for example
(but certainly not exclusively), are fat tailed and often skewed has been exten-
sively documented in the finance literature. Although, under weak conditions
relaxing the Gaussian hypothesis does not affect the asymptotic distribution of
Λ, one may expect the finite sample error in rejecting probability to be larger.
Moreover, when innovations are non-Gaussian, the second terms of the asymp-
totic expansions of the mean and the variance of Λ depend on the skewness
and kurtosis of their distribution. This means that in order to use the analytical
Bartlett’s correction factor, it is necessary to estimate the skewness and kurtosis
of the true distribution and accordingly modify the Bartlett’s adjustment. Rather
than undertaking these tedious calculations, it is proposed below that the non-
parametric bootstrap be used to approximate the finite sample expectation of Λ.
By using the empirical distribution function in place of some specific parametric
distribution, the non-parametric bootstrap method does not require a choice of
error distribution be made; this feature is desirable with many types of data. The
proposed inference procedure involves undertaking a simulation study using the
constrained estimates of 𝛽 obtained by solving the eigenvalue problem, condi-
tional on the initial values Y0 and ΔY0, as the true values. Given these estimates
and any required starting values, bootstrap data can be generated recursively
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after resampling residuals. From each generated sample, one obtains a bootstrap
value of the LR statistic, say Λ∗

j , whose average estimates the mean of Λ under
the null hypothesis. An alternative procedure is a straightforward application of
the bootstrap p-value approach, where the significance level assigned to Λ is the
fraction of the Λ∗

j greater than Λ. (Note that the subscript “∗” is used to indicate
the bootstrap analog throughout the paper.)

2.1 Bootstrap Algorithms
Bootstrap methods rely on simulations to approximate the finite-sample dis-
tribution of the test statistic under consideration. In order to achieve accurate
inference procedures, the bootstrapDGP used for drawing bootstrap samples has
to mimic the features of the underlying DGP. In this section, we describe the two
bootstrap algorithms used to calculate the bootstrap Bartlett corrected test

(
Λ∗
B
)

and the bootstrap p-value test (Λ∗). The former is suitable for the model in (2)
when the innovations are i.i.d., whereas the latter is used when innovations are
independent but not identically distributed.

2.1.1 Algorithm 1

The steps used to implement the bootstrap algorithm for calculating the bootstrap
Bartlett corrected LR test can be summarized as follows:

Step (1): estimate themodel in (2) and computeΛ and the estimated restricted
residuals as

𝜀t = ΔXt − 𝛼�̂�′ (H′Xt−1 + 𝜌′Dt
)
−

k−1∑

i=1
Γ̂iΔXt−i − �̂�dt.

Step (2): resample the residuals from (𝜀1,… , 𝜀T) independently with replace-
ment to obtain a bootstrap sample

(
𝜀∗1 ,… , 𝜀∗T

)
. Generate the bootstrap sample

ΔY∗
t = 𝛼�̂�′ (H′X∗

t−1 + 𝜌
′Dt

)
+

k−1∑

i=1
Γ̂iΔX∗

t−i + �̂�dt + 𝜀
∗
t ,

recursively from
(
𝜀∗1 ,… , 𝜀∗T

)
using the estimated restricted model given in (6.2).

Step (3): compute Λ∗
j using the data of step (2) and repeat B times.

Step (4): average the observed valuesΛ∗
1 ,… ,Λ∗

B to get an estimate,Λ∗, of the
average value of Λ. A Bartlett-type corrected statistic is therefore Λ∗

B = qΛ
Λ∗ . The

corrected statistic is then referred to a 𝜒2 (q) distribution (with q = r (n − s)).
As far as the test Λ∗ is concerned, when innovations are independent and

identically distributed with common variance, it is possible to obtain an accurate
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inference by simply resampling the residuals of the estimated restricted model
in (2) without the need to make a particular parametric assumption about the
distribution of the innovations. Swensen (2006) considers a recursive bootstrap
algorithm for testing the rank ofΠ = 𝛼𝛽′ in (2) and shows that, under a variety of
regularity conditions, the non-parametric bootstrap based test is consistent in the
sense that the bootstrap statistic converges weakly in probability to the correct
asymptotic distribution. This involves repeating Step (1)–(3) and then following
Step (5) below.

Step (5): compute the bootstrap p-value function of the observed value Λ by
calculating

P̂∗(Λ) = B−1
B∑

j=1
I
(
Λ∗

j ≥ Λ
)
,

where I(⋅) is an indicator function that equals one if the inequality is satisfied and
zero otherwise. The bootstrap p-value test, Λ∗, is carried out by comparing P̂∗(Λ)
with thedesiredcritical level,𝛾, andrejecting thenullhypothesis if P̂∗(Λ) ≤ 𝛾.Note
that the resampling and testing in Algorithm 1 is done once that the cointegrating
rank has been established. Therefore, for a given cointegrating rank all unit roots
have been eliminated.

2.1.2 Algorithm 2

When the innovations show conditional heteroskedasticity simply resampling
from the residual fails to mimic essential features of the DGP that initially gener-
ated the data. A suitable modification of the residual based bootstrap procedure
is the wild bootstrap, which is designed to accommodate the possibility of inde-
pendent but not identically distributed innovations. The wild bootstrap method
was developed by Liu (1988) based on a suggestion presented in Wu (1986).
Regarding time series, Gonçalves and Kilian (2003) proposed a recursive-design
implementation of the wild bootstrap for the autoregression model with condi-
tionally heteroskedastic innovations. For cointegrated VAR models, noteworthy
are the recent papers by Cavaliere, Rahbek and Taylor (2010a, 2010b).

The wild bootstrap DGP is given by

ΔY∗
t = 𝛼�̂�′ (H′Y∗

t−1 + 𝜌
′Dt

)
+

k−1∑

i=1
Γ̂iΔY∗

t−i + �̂�dt + 𝜀
∗
t ,

where 𝑣∗t = 𝜀tZt and Zt is specified as a two-point distribution

Zt =
−
(√

5 − 1
)

2 with probability

(√
5 + 1

)

2
√
5
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=

(√
5 + 1

)

2 with probability

(√
5 − 1

)

2
√
5

so that Zt terms are mutually independent drawings from a distribution which is
independent of the original data andhas the properties thatE (Zt) = 0,E

(
Z2t

)
= 1,

and E
(
Z3t

)
= 1. Given the bootstrap data, the associated value of the test statistic

Λ∗
i can be calculated; repeat B times and follow Step (4) to calculate Λ∗

B and Step
(5) to calculate Λ∗.

Using the fact that 𝜃 = f (𝛼, 𝛽,Γi,Ω) is consistently estimated in the pres-
ence of conditional heteroskedastic innovations, we show below that Λ∗ and Λ∗

B
converge weakly in probability to the first order asymptotic null-distribution ofΛ.

Remark 2.1. The procedure outlined in Algorithm 2 is suitable when the inno-
vations are serially uncorrelated. Many alternative procedures could be used for
generating the bootstrapDGP, such as the block bootstrap for example. Establish-
ing which bootstrap scheme is the best to calculate the Bartlett correction factor
under different assumptions on the innovation process is outside the scope of
this paper. In this work, the wild bootstrap was preferred to the block bootstrap
for the following reasons. First, the wild bootstrap method is easier to implement
than the block bootstrap as it does not involve the problem of determining block
length as the latter bootstrap method does. Second, under Assumption 1 below,
the innovations form an uncorrelated martingale difference sequence and using
the block bootstrap procedure when innovations are uncorrelated may result in
a loss of efficiency. Finally, the consistency of the wild bootstrap in the present
context can be proved using available tools for independent random variables.
However, when innovations admit serial correlation using Algorithm 2 would fail
to replicate the correlation structure of the residuals, therefore the procedure is
no longer valid.

Remark 2.2. Note that the bootstrap Bartlett correction could easily be extended
to other inference procedure, such as theWald test or may find good applications
in structural VAR models in cases where inference on the slope parameters is
needed. However, recent theoretical results in Bruggemann, Jentsch and Tren-
kler (2016) show that for inference in VAR statistics that depend both on the
VAR slope and the variance parameters (e.g. in structural impulse response func-
tions) for these statistics, Algorithm 2 would fail in the presence of conditional
heteroskedasticity because the bootstrap algorithm does not correctly replicate
the relevant fourth moments’ structure of the error terms (see also Jentsch and
Lunsford 2019). In contrast, the residual-based moving block bootstrap results
in asymptotically valid inference. Investigating the usefulness of the suggested
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Bartlett test in the cases where the block bootstrap is needed will be the subject
of future research.

2.2 Some Asymptotic Results
We now consider theΛ∗

B statistic and show that the distributions of the bootstrap
based inference procedure coincides with the corresponding asymptotic counter-
part. In this paper, we focus on the pseudo-data generated by Algorithm 2 since
the consistency of the bootstrap procedure proposed in Algorithm 1 is derived
in Canepa (2016). Our approach builds on the important theoretical results in
Cavaliere, Rahbek and Taylor (2010a). The authors demonstrate that the limiting
null distributions of the rank statistics remain valid in the less restrictive case
of globally stationary, conditionally heteroskedastic shocks satisfying certain
moment conditions. Cavaliere et al. (2010a) also show that the pseudo maxi-
mum likelihood estimator of the error correction model, that assumes Gaussian
i.i.d. disturbances, remains consistent under these weaker conditions. Building
on these results below, we show that the functional central limit theorem for
the stochastic process built from the sequence of partial sums for the bootstrap
analog holds and the expected value of the test is consistency estimated.

In the following,
𝑤
←←←←←←←←←←←→ denotes weak convergence,

P
←←←←←←←←←←→ convergence in proba-

bility,
𝑤p
←←←←←←←←←←←←←←←→ weak convergence in probability as defined by Gine and Zinn (1990),

P∗ denotes the bootstrap probability and E∗ relates to the expectation under P∗.
Moreover, for any squarematrixA, |A| is used to indicate the determinant ofA, the
matrix A⊥ satisfies A⊥A = 0 (where (A,A⊥) is a full rank matrix), and the norm
‖A‖ is ‖A‖ =

[
tr (A′A)

]1∕2. For any vector a, ‖a‖ denotes the Euclidean distance
norm, ‖a‖ = (a′a)1∕2.

Inorder toestablish thevalidityof thewildbootstrap,weneed to imposesome
conditionson the innovations.Moreprecisely,wemake the followingassumption:

Assumption 1.
(i) Define the characteristic polynomial,

A(z) = (1 − z)Ip − 𝛼𝛽′z − Γ1(1 − z)z − · · · − Γk−1(1 − z)zk−1. (5)

Assume that the roots of |||
[
A (z)

]||| = 0 are located outside the complex
unit circle or at 1. Also assume that the matrices 𝛼 and 𝛽 have full rank r
and that 𝛼′

⊥
Γ𝛽⊥ has full rank p − r, where Γ = Ip − Γ1 − · · · − Γk−1.

(ii) The innovations
{
𝜀t
}
form martingale difference sequence with respect to

the filtration t, t−1 ⊆ t, with E (𝜀t) = 0 and E
(
𝜀t𝜀

′
t
)
= Ω < ∞.

(iii) E ‖‖𝜀t‖‖
4+𝜍

<∞, 𝜍 > 0.
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Assumption 1 replaces the usual Gaussian assumption on the innovations{
𝜀t
}
by the less restrictive martingale sequence assumption. The innovations are

not correlated, however ARCH and GARCH effects are now allowed in model (2)
by Assumption 1-(ii). Finally, condition (iii) requires the 4 + 𝜍 moments to be
uniformly finite.

UnderAssumption1,Theorem1 inRahbek,HansenandDennis (2002) implies
that the process Yt has the following representation

Yt = C
t∑

i=1

(
𝜀i + 𝜌′Di

)
+

∞∑

i=0
Ci(𝜀t−i + 𝜙dt−i) + A0, (6)

where C = 𝛽⊥

(
𝛼′
⊥

(
I −∑k−1

i=1 Γi
)
𝛽⊥

)−1
𝛼′
⊥
, the coefficients Ci decrease exponen-

tially, and A0 is a term that depends only on the initial values and 𝛽′A0 = 0.
Moreover, Theorem 2.1 in Hansen (1992) implies the weak convergence of the
stochastic integrals

T−1∕2
[Tu]∑

t=1
𝜀t

𝑤
←←←←←←←←←←←→B (u) ,

T−2
T∑

t=1

( t∑

i=1
𝜀i

)( t∑

i=1
𝜀i

)′
𝑤
←←←←←←←←←←←→

∫

1

0
B (u)B (u)′ du,

where B = Ω1∕2W is a p-dimensional Brownian motion with variance Ω and W
a p-dimensional standard Brownian motion. Rahbek et al. (2002) use this result
to derive the asymptotic distribution of the pseudo likelihood ratio test for coin-
tegrating rank. They show that, under the assumption that innovations form a
stationary and ergodic vector of martingale difference sequence, the limit distri-
butions of the rank tests are invariant to heteroskedasticity (see also Seo 2006). In
the paper by Cavaliere, Rahbek and Taylor (2010a), it is shown that the limiting
null distributions of the rank tests remain valid in the less restrictive case of global
stationarity.

Turningnow to the statistics constructedunder thepseudo-data generatedby
Algorithm 2, the representation in (6) is still valid for each bootstrap replication.
However, the reminder term, (A0), depends on the realization and needs careful
consideration in the bootstrap context. Theorem 1 extends the validity of Lemma 1
in Swensen (2006) (derived under the assumption of i.i.d. innovations) to the case
where innovations form an uncorrelated martingale sequence difference with
finite fourth moments. In the following, we set 𝜌, 𝜙 and the initial values of Y to
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zero, without loss of generality. As before, an asterisk (∗) denotes the bootstrap
analog.

Theorem 1. Let the conditions of Assumption 1 hold. Then, under the null hypoth-
esis, Λ∗

𝑤p
←←←←←←←←←←←←←←←→Λ as T →∞.

Corollary 1. Under the conditions of Theorem 1, E∗ (Λ∗)
P
←←←←←←←←←←→E (Λ) as T →∞.

Proof of Theorem 1. ByLemmaA.4 inCavaliere et al. (2010a), underAssumption 1,
the generated pseudo observations have the representation

Y∗
t = Ĉ

t∑

i=1
𝑣∗i + T1∕2R∗

t , (7)

where Ĉ = 𝛽⊥

(
𝛼′
⊥

(
I −∑k−1

i=1 Γ̂i
)
𝛽⊥

)−1
𝛼′
⊥

and, for all 𝜂 > 0, P∗
(
maxt=1,…,T

‖‖‖R
∗
t
‖‖‖ > 𝜂

)
→ 0 in probability as T →∞.

Using the results in (7), we can describe the asymptotic properties of the
product moment matrices generated using the pseudo-observations, which are
the basic properties of the test statistics. Following the standard notation, we
defineR0t andR1t as the residuals obtainedby regressing Z̃0t = ΔYt and Z̃1t = Yt−1,
respectively on Z̃2t =

[
ΔY ′

t−1,ΔY
′
t−2,… ,ΔY ′

t−k+1

]
. Moreover,

Si, j = T−1
T∑

t=1
RitR′

jt = Mi j −Mi2M−1
22M2 j i, j = 0, 1.

andMi j = T−1
T∑

t=1
Z̃itZ̃′

jt.

Let Ω̈𝛽𝛽 = p lim
T→∞

T−1
T∑

t=1
𝛽′Z̃1tZ̃′

1t𝛽, Ω̈𝛽i = p lim
T→∞

T−1
T∑

t=1
𝛽′Z̃1tZ̃′

it for i = 0, 2, and

Ω̈i j = p lim
T→∞

T−1
T∑

t=1
Z̃itZ̃′

jt for i, j = 0, 2. Under Assumption 1,

P∗ (‖‖S∗00 − Σ00
‖‖ > 𝜂

) P
←←←←←←←←←←→0, (8)

P∗
(‖‖‖𝛽

′S∗11𝛽 − Σ𝛽𝛽
‖‖‖ > 𝜂

) P
←←←←←←←←←←→0, (9)

P∗
(‖‖‖𝛽

′S∗10 − Σ𝛽0
‖‖‖ > 𝜂

) P
←←←←←←←←←←→0, (10)
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where Σi j = Ω̈i j − Ω̈i2Ω̈−1
22 Ω̈2 j for i, j = 0, 1, 𝛽. Moreover,

T−1∕2
[Tu]∑

t=1
𝑣∗t

𝑤p
←←←←←←←←←←←←←←←→B (u) , (11)

T−1𝛽′
⊥
S∗11𝛽⊥

𝑤p
←←←←←←←←←←←←←←←→

1

∫
0

F(u)F(u)′du, (12)

𝛽′
⊥

(′S∗10 − S∗11𝛽𝛼
′) 𝛼⊥

𝑤p
←←←←←←←←←←←←←←←→

1

∫
0

F (u) dB′𝛼⊥, (13)

where F(u) := 𝛽′
⊥
CB(u) and [Tu] is the integer value of uT.

The proof for (8)–(10) mimics the proof of Lemma A.7 in Cavaliere
et al. (2010a). Similarly, Lemma A.5 in the same paper implies that the func-
tional central limit theorem for the stochastic process built from the sequence of
partial sums corresponding to the bootstrap resamples holds, so that

T−1∕2
[Tu]∑

t=1
𝑣∗t

𝑤p
←←←←←←←←←←←←←←←→B (u) .

Considering now, (11) and (12), as the reminder R∗
t in (7) vanishes Lemma 10

in Rahbek et al. (2002) holds and

T−1∕2𝛽′
⊥
Y∗
[Tu]

𝑤p
←←←←←←←←←←←←←←←→F(u)

such that the continuous mapping theorem gives

T−1𝛽′
⊥
S∗11𝛽⊥

𝑤p
←←←←←←←←←←←←←←←→

1

∫
0

F(u)F(u)′du.

Similarly, we have

𝛽′
⊥

(
S∗10 − S∗11𝛽𝛼

′) 𝛼⊥
𝑤p
←←←←←←←←←←←←←←←→

1

∫
0

F(u)d
)
B′𝛼⊥.

When linear restrictions are imposed on the parameters 𝛽 = H�̂�, a submodel
is defined and the space spanned by the linear transformation z:ℝp ⟼ ℝs with
matrix representation Y∗

t ⟼ H′Y∗
t forms a subspace such that sp

(
𝛽
)
⊂ sp (H).

Given that linear transformations preserve linear combinations of vectors it fol-
lows that if

{
Y∗
t
}
satisfies (7), then

{
H′Y∗

t
}
also satisfies the same conditions.
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Moreover, the random process
{
T−1∕2

(∑[Tu]
t=1 H

′𝑣∗i

)}
converges weakly toward a

Brownian motion with covariance matrix H′Ω̂H and the asymptotic distribution
of the moment matrices is given by

T−1∕2�̂�′
⊥
H′Y∗

[Tu]

𝑤p
←←←←←←←←←←←←←←←→H′F̃(u) (14)

�̂�′
⊥
H′S∗10𝛼⊥

𝑤p
←←←←←←←←←←←←←←←→H′

1

∫
0

F̃ dB′𝛼⊥ (15)

T−1�̂�′
⊥
H′S∗11H�̂�⊥

𝑤p
←←←←←←←←←←←←←←←→H′

1

∫
0

F̃(u)F̃(u)′ duH. (16)

where F̃(u) :=𝜑′
⊥
CB(u). From Theorem 1 it follows that the (p − r) smallest solu-

tions of
|||�̂��̂�

′ (H′S∗11H − H′S∗10S
∗−1
00 S

∗
01H

)
�̂�
||| = 0

converge to zero. Therefore, using (14)–(16) the asymptotic distribution ofΛ∗ can
found by mimicking Theorem 13.9 in Johansen (1996). □

Proof of Corollary 1. Under Assumption 1, (11) and (12) imply weak convergence of
thepartial sumsof stochastic integrals.Moreover, from(8)–(10)wehave thatS∗i j →
Σi j in probability and the estimators of the parameters are consistent. Under the
conditions of Theorem 1, this trivially implies that E∗ (Λ∗)→ E (Λ) in probability
as T →∞. □

3 The Monte Carlo Design
To what extent do deviations from the Gaussian assumption in model (2) affect
the finite sample performance of the analytical Bartlett correction? In addition,
can the non-parametric bootstrap based Bartlett adjustment introduced above
deliver accurate small sample inference when the Gaussian assumption on the
innovations is relaxed? Questions of this nature can best be settled by case and
simulation studies. We now describe the Monte Carlo study that addresses these
issues.

The DGP adopted is given by

Y1t = Y2t + u1t where u1t = 𝜉u1t−1 + 𝜀1t (17)

Y2t = −Y1t + u2t u2t = u2t−1 + 𝜀2t
ΔY3t = 𝜀3t
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ΔY4t = 𝜀4t

with [
𝜀s,t
𝜀l,t

]

∼ i.i.d.N
⎡
⎢
⎢
⎣

⎛
⎜
⎜
⎝

0
(2×1)
0

(2×1)

⎞
⎟
⎟
⎠
,

⎛
⎜
⎜
⎝

A
(2×2)

0
(2×2)

0
(2×2)

B
(2×2)

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦

where 𝜀s,t =
[
𝜀1t 𝜀2t

]′
, 𝜀l,t =

[
𝜀3t 𝜀4t

]′
, A =

(
𝜎2 𝜎𝜘

𝜎𝜘 𝜎2

)

, and B = 𝜎2I. The null

hypothesis

0: 𝛽 = H𝜑 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0
(1×2)

−1 0
(1×2)

0
(2×1)

I
(2×2)

⎤
⎥
⎥
⎥
⎥
⎦

𝜑
(3×1)

,

is tested against the alternative1: 𝛽 unrestricted. For ease of interpretation, the
DGP in (17) is also given in VECM form

⎡
⎢
⎢
⎢
⎢
⎣

ΔY1t
ΔY2t
ΔY3t
ΔY4t

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

ΔY2t
−ΔY1t
0
0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

(𝜉 − 1)
0
0
0

⎤
⎥
⎥
⎥
⎥
⎦

(Y1t−1 − Y2t−1) +

⎡
⎢
⎢
⎢
⎢
⎣

𝜀1t
𝜀2t
𝜀3t
𝜀4t

⎤
⎥
⎥
⎥
⎥
⎦

From (17), it is easy to see that under the null hypothesis the variables
Y1t and Y2t enter into the cointegrated relationship with coefficients propor-
tional to (1,−1). This restriction matches the hypothesis of proportional co-
movements of the two random variables. The DGP in (17) is similar to that used in
Gonzalo (1994). Among others, Gonzalo considers a simple two-dimensional VAR
in which cointegration holds between the I(1) series Y1t and Y2t in (17). The DGP
used in Gonzalo allows for high control over the many parameters affecting the
size distortion of Λ such as the speed of adjustment (𝜉), the correlation between
the innovations (𝜂), and the volatility parameter (𝜎). A possible shortcoming,
however, is that bivariate cointegrated VARs are rarely encountered in empiri-
cal applications. The DGP in (17) maintains high control over the experimental
designwhile also having greater practical relevance. The experimental parameter
space is T ∈ (50, 100, 250, 500), 𝜉 ∈ (0.2,0.5,0.8, 1), 𝜂 ∈ (−0.5,0,0.5), and 𝜎 = 1.
In addition, combinations of these parameters with alternative distributions of 𝜀t
are considered.

Although non-normality is not a feature confined to financial data, it is the
financial literature that has extensively documented substantial departures from
the assumption of Gaussian innovations. For example, it is well established that
the unconditional distributions of returns fromfinancialmarket variables such as
equity prices and interest rates are characterizedbynon-normality. Equity returns
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tend to be negatively skewed, whereas the patterns of skewness for bond market
yields are more varied. Non-normality of the marginal distributions of returns
does not necessarily imply the non-normality of the conditional distributions, but
many empirical studies suggest that for financial data the Gaussian distribution
is highly counterfactual. Given the widespread use of Johansen’s procedure in
financial applications, it seems appropriate to consider innovation distributions
that better describe the behavior of financial markets.

To illustrate the problem of non-normality in financial market variables, we
use the behavior of exchange rates. It is well known that exchange rate changes
do not follow a Gaussian distribution. Potentially important sources of non-zero
skewness and excess kurtosis are recurrent periods of a volatile and then quiet
currency markets. To mimic the jump-like behavior caused by the volatility clus-
tering of exchange rates, several researchers have allowed the innovations to be
drawn from fat tailed distributions. Among others, Tucker and Pond (1988) pro-
vide evidence on the descriptive validity of themixture of normal distribution as a
statistical model for currency markets. Hull and White (1998) give indications on
the choice of parameters of the mixture of normals that match the higher-order
moments of exchange rate changes for a number of major trading currencies.
Building on these studies, we allow the innovations to be drawn from these
distributions.1 The DGP in (5) has

𝜀s,t ∼ i.i.d. 𝜔1N
(
𝜇1, 𝜎

2
M1

)
+ 𝜔2N

(
𝜇2, 𝜎

2
M2

)
and 𝜀l,t ∼ N(0, 1)

with 𝜔1𝜇1 + 𝜔2𝜇2 = 0, 𝜔1, 𝜔2 ≥ 0, and 𝜔1 + 𝜔2 = 1. Volatility clustering is intro-
duced in (5) by 𝜔1 that causes occasional “jumps” in the innovation process of
the cointegrated VAR(1).

When 𝜇1 = 𝜇2 = 0 the zero skewness assumption about 𝜀s,t is preserved,
being the means of the normal distributions mixed at zero. In this case, excess
kurtosis has been introduced in (17) by choosing 𝜔1 < 𝜔2 and 𝜎2M1 > 𝜎

2
M2. Under

this assumption the kurtosis in 𝜀s,t is strictly increasing according to the quantity
𝜎2M1
𝜎2M2

. Consistent with these considerations, the following five distributions of 𝜀s,t
have been investigated

D1: 𝜀s,t ∼ i.i.d. 0.15N (0, 3.1329) + 0.85N (0,0.6084) ,

1 In a related paper, Canepa (2016) considers a large range of distributions from heavily fat
tailed (i.e. Student-t distributions with 3–30 degree of freedom) to highly skewed innovations
(𝜒2 distribution with 3–30 degrees of freedom), in order to disentangle the effect of skewness
and kurtosis on the LR test. Simulation results in Canepa (2016) are obtained by response surface
regression.
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Table 1: Descriptive measures of D1, D2, D3, and D4.

D1 D2 D3 D4

Mean 0.00 0.00 0.00 0.00
Var 1.08 3.28 3.82 6.29
Skew 0.00 −0.50 −2.65 1.34
Kurt 4.61 4.49 12.83 4.16

D2: 𝜀s,t ∼ i.i.d. 0.52N (−2, 1.5876) + 0.48N (2.18,0.3721) ,

D3: 𝜀s,t ∼ i.i.d. 0.7N (2, 1.4161) + 0.3N (−4.7,0.0196) ,

D4: 𝜀s,t ∼ i.i.d. 0.32N (4, 1.9881) + 0.7N (−1.9,0.5329) .

Table 1 summarizes the descriptive statistics for D1, D2, D3 and D4. Note that
the skewness coefficient, (Skew), is computed as the third theoretical sample
moment standardized by three halves power of the variance, whereas the kurtosis
coefficient, (Kurt), is the fourth theoretical sample moment divided by the square
of the variance. For a normal distribution, Skew should be zero and Kurt should
be equal to three.2

As it emerges from Table 1, the innovations generated using mixture of nor-
mals cover a broad range of fat tailed and skewed distributions. Innovations
generated under D1 have mildly fat tails but are not skewed, whereas D2, D3, and
D4 are fat tailed and skewed distributions.

Though mixture of normals introduces fat tails, it preserves the i.i.d. struc-
ture of the innovations. Among others, Bollerslev (1987) suggests that ARCH and
GARCH models better fit exchange rate data measured over short time intervals
(i.e. daily or weekly). Accordingly, simulations with conditional heteroskedastic
innovations have been carried out with

𝜀1t =
√
ht𝜍1t, 𝜀2t = 𝜘𝜀1t +

√
(1 − 𝜘2)𝜍2t, 𝜀3t and 𝜀4t ∼ N (0, 1) ,

with 𝜍i,t ∼ N (0, 1) (for i = 1, 2) and ht denotes the conditional variance. Two
specifications of the variance schemes are used: an ARCH(1) process given by

ht =
𝜎

1 − 𝜚 + 𝜚𝜀21t−1, (18)

2 Note: the second, third, and fourth central moments of 𝜀it are calculated as E(𝜀2it) =
2∑

b=1
𝜔b

[
𝜎2b + 𝜇

2
b
]
, E(𝜀3it) =

∑2
b=1𝜔b

[
3𝜇b𝜎2b + 𝜇

3
b
]
, and E(𝜀4it) =

∑2
b=1𝜔b

[
3𝜎4b + 6𝜇2b𝜎

2
b + 𝜇

4
b
]
(for

b = 1, 2), respectively.
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with 𝜎 = 1, and a GARCH (1, 1) process given by

ht = 𝜓0 + 𝜓1𝜀
2
1t−1 + 𝜓2ht−1. (19)

with𝜓0 = 0.1. As for the choice of the other parameters, the following values have
been selected

D5: 𝜀s,t as in (7) with 𝜚 = 0.4;

D6: 𝜀s,t as in (7) with 𝜚 = 0.8;

D7: 𝜀s,t as in (8) with𝜓1 = 0.570 and𝜓2 = 0.921;

D8: 𝜀s,t as in (8) with𝜓1 = 0.095 and𝜓2 = 0.881.

The parameter values in D7 and D8 are those estimated for the exchange rate
markets in Bollerslev (1987).

Estimates of the rejection probabilities have been obtained using pseudo-
random numbers with programs written in GAUSS.3 The Monte Carlo experiment
was based onN = 10,000 replications forΛ,ΛB and onN = 1000 replications for
Λ∗
B and Λ∗. All bootstrap distributions have been generated by resampling and

then calculating the test statistic 800 times. The random number generator was
restarted for eachT valuewith the initial value set equal to zero. TheVAR(1)model
was fitted with an unrestricted constant. Moreover, note that in the Johansen
procedure, the maximum likelihood estimator of 𝛽 in Eq. (2) is calculated as
the set of eigenvectors corresponding to the s largest eigenvalues of S′0kS

−1
00S0k

with respect to Skk, where S00, Skk, and S0k are the moment matrices formed
from the residuals Δyt and yt−k, respectively, onto the Δyt−j. In this paper in
place of the conventional algorithm for cointegration analysis (i.e. the algorithm
for maximum likelihood estimation that uses the second moment matrices), all
simulation results reported have been obtained using an algorithm based on QR
decomposition; see Doornik and O’Brien (2002). This yields simulation results
that are more numerically stable.

4 The Monte Carlo Results
Tables 2–5 report the simulation results on the performance ofΛ,ΛB,Λ∗

B, andΛ
∗.

The finite sample significance levels are estimated for nominal levels of 5% and
all estimates are given as percentages. In Table 2, the normal distribution serves

3 The code used for the Monte Carlo simulation experiment will be available upon request.
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as a benchmark, whereas Table 3 shows the results for the case of innovations
drawn from a mixture of two normal distributions. Table 3 also contains results
relating to the sensitivity of the error in rejection probability to variations of key
parameters of the DGP. Finally, Table 4 reports the rejection frequencies for the
case of ARCH and GARCH innovations.

Before looking at other specifics of the simulation results, it is noteworthy
to consider the benchmark case in which 𝜀t ∼ N (0, 1), (note that in this case the
distribution of 𝜀s,t,= 𝜀l,t in (17)). As far asΛ is concerned, Table 2 mainly confirms
previous findings that inference based on first order asymptotic critical values
is markedly inaccurate with excessively high rejection frequencies. Correcting Λ
using the analytical Bartlett factor improves the behavior of the test statistic.
However, Table 2 indicates that the performance of ΛB is highly dependent on
the autoregressive coefficient of the error correction mechanism, 𝜉. When 𝜉 is

Table 2: Estimated rejection probabilities, for the 5% critical value (in percent). Case with
N(0, 1) innovations.

Test 𝝃 = 0.8 𝜼= 0.5

𝜼= −0.5 𝜼= 0 𝜼= 0.5 𝝃 = 0.2 𝝃 = 0.5 𝝃 = 1

T = 50 Λ 25.7 29.5 26.1 9.2 11.9 41.9
ΛB 14.5

(1.559)
17.3
(1.563)

14.4
(1.565)

4.5
(1.407)

5.6
(1.473)

25.3
(1.597)

Λ∗
B 7.4 7.9 7.3 5.1 5.3 11.2

Λ∗ 8.1 8.3 8.6 5.1 5.7 13.1

T = 100 Λ 12.8 16.1 12.8 6.8 7.9 40.8
ΛB 8.4

(1.290)
11.0
(1.281)

8.7
(1.280)

4.8
(1.207)

5.1
(1.233)

32.1
(1.298)

Λ∗
B 5.5 6.0 5.2 4.9 5.1 11.1

Λ∗ 5.4 5.9 5.5 4.8 5.3 13.0

T = 250 Λ 7.7 8.7 7.9 5.6 5.8 40.6
ΛB 6.2

(1.090)
7.0
(1.112)

6.1
(1.116)

5.0
(1.079)

4.7
(1.097)

36.4
(1.120)

Λ∗
B 4.6 5.1 5.0 5.3 5.0 11.0

Λ∗ 4.8 5.1 5.2 5.4 5.2 12.7

T = 500 Λ 5.7 6.7 6.9 5.4 5.3 25.7
ΛB 5.2

(1.003)
6.4
(1.092)

5.2
(1.036)

5.0
(1.054)

4.8
(1.031)

20.3
(1.110)

Λ∗
B 5.2 5.2 5.0 5.4 5.0 8.00

Λ∗ 5.1 5.0 5.1 5.4 5.1 9.02

Note: the estimated rejection probabilities of Λ∗
B and Λ∗ have been calculated using Algorithm

1 in Section 2. For Λ and ΛB, the number of replications is N = 10,000, for Λ∗
B and Λ∗ N = 1000

and B = 800. A 95% confidence interval around the nominal level of 5% is given by (3.6, 6.4).
The Bartlett corrections are given in parenthesis. The asymptotic distribution is 𝜒2(1).
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Table 3: Empirical sizes for the 5% (in percent) critical value. Case with mixture of normal
innovations.

𝜺s,t 𝝃 = 0.8

𝜼 =−0.5 𝜼= 0.5

𝚲 𝚲B 𝚲∗
B 𝚲∗ 𝚲 𝚲B 𝚲∗

B 𝚲∗

T = 50 D1 31.0 18.3
(1.563)

8.6 9.3 31.6 18.4
(1.566)

8.5 9.7

D2 28.0 15.8
(1.564)

8.2 8.8 28.9 16.3
(1.561)

8.4 9.1

D3 32.6 19.1
(1.562)

8.3 9.0 33.2 19.9
(1.559)

8.8 10.5

D4 34.8 20.9
(1.562)

9.3 10.9 34.5 20.3
(1.556)

8.6 10.4

T = 100 D1 18.5 13.2
(1.276)

5.4 6.1 19.0 13.2
(1.281)

6.2 6.7

D2 15.4 10.7
(1.281)

5.2 5.4 15.8 10.7
(1.283)

6.0 6.1

D3 21.0 14.8
(1.283)

6.5 6.7 21.7 15.4
(1.279)

5.8 7.0

D4 23.8 17.7
(1.281)

7.2 8.0 23.4 17.0
(1.281)

5.8 6.1

T = 250 D1 8.6 7.1
(1.107)

4.8 4.6 8.8 7.3
(1.114)

4.7 4.7

D2 7.7 6.0
(1.118)

5.2 5.1 8.0 6.4
(1.115)

4.5 4.5

D3 9.6 8.0
(1.109)

5.7 5.3 9.6 8.0
(1.114)

5.2 5.4

D4 11.1 9.0
(1.113)

4.4 4.2 10.6 8.9
(1.116)

4.1 4.3

T = 500 D1 5.3 5.2
(1.055)

4.9 4.9 5.5 5.3
(1.011)

4.9 4.8

D2 5.5 5.0
(1.061)

5.1 5.4 5.1 5.0
(1.017)

4.9 4.8

D3 5.4 4.9
(1.009)

5.5 5.2 5.4 5.1
(1.011)

5.2 5.0

D4 4.8 6.0
(1.019)

4.9 4.7 5.7 5.9
(1.014)

5.1 5.3

𝜺s,t 𝜼 = 0.5

𝝃 = 0.2 𝝃 = 0.5

𝚲 𝚲B 𝚲∗
B 𝚲∗ 𝚲 𝚲B 𝚲∗

B 𝚲∗

T = 50 D1 10.1 5.3
(1.394)

4.8 4.6 15.2 7.9
(1.471)

6.3 6.9

D2 9.5 5.0
(1.399)

4.4 5.6 13.0 6.4
(1.473)

6.2 5.8

D3 11.0 5.1
(1.396)

5.9 5.8 17.3 9.5
(1.474)

6.0 6.3

D4 12.3 6.2
(1.397)

5.9 5.8 18.7 10.1
(1.473)

6.1 6.6
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Table 3: (continued)

𝜺s,t 𝜼 = 0.5

𝝃 = 0.2 𝝃 = 0.5

𝚲 𝚲B 𝚲∗
B 𝚲∗ 𝚲 𝚲B 𝚲∗

B 𝚲∗

T = 100 D1 7.8 5.4
(1.203)

4.0 4.2 9.2 6.1
(1.239)

5.9 4.6

D2 7.2 4.9
(1.200)

4.7 5.2 8.4 5.4
(1.238)

5.0 5.4

D3 7.5 5.1
(1.202)

5.1 5.0 9.6 6.4
(1.235)

5.4 5.6

D4 8.1 5.6
(1.113)

4.6 4.7 10.5 7.3
(1.235)

5.4 4.8

T = 250 D1 5.8 5.0
(1.079)

4.9 4.7 6.5 5.4
(1.094)

5.0 4.5

D2 5.7 4.9
(1.077)

4.7 5.0 6.2 5.0
(1.096)

5.1 4.6

D3 6.1 5.2
(1.079)

4.7 4.4 6.7 5.5
(1.095)

4.5 4.7

D4 6.1 5.2
(1.078)

4.8 4.7 6.9 5.7
(1.096)

4.5 4.6

T = 500 D1 5.2 5.5
(1.017)

5.1 5.0 5.7 5.2
(1.006)

4.9 5.2

D2 5.1 5.2
(1.031)

5.0 5.2 5.6 5.0
(1.001)

5.0 4.9

D3 5.4 5.0
(1.019)

4.9 4.7 5.2 5.1
(1.031)

4.9 4.9

D4 5.5 5.1
(1.012)

4.9 5.0 5.3 5.4
(1.001)

4.9 5.0

Note: The estimated rejection probabilities of Λ∗
B and Λ∗ have been calculated using Algorithm

1 in Section 2. For Λ and ΛB, the number of replications is N = 10,000, for Λ∗
B and Λ∗ N = 1000

and B = 800. The Bartlett corrections are given in parenthesis.

large (i.e. the speed of adjustment to the cointegrated equilibrium is low), the
correction does not work well. Using the bootstrap to approximate the Bartlett
adjustment factor produces estimated levels that are less sensitive to the value of
𝜉 parameter. The performance of the p-value bootstrap test is also less dependent
on the value of the speed of adjustment parameter. Looking at the simulation
results in Table 2, it appears that when T = 100 and 𝜂 ≠ 0, Λ∗ and Λ∗

B work well
for 𝜉 ≤ 0.8, whereas the empirical levels of ΛB are within the 95% confidence
interval for 𝜉 ≤ 0.5, say. When 𝜉 = 1 the process Yt is a pure I(1) process that does
not cointegrate. In this case, we do not expect the resampling schemes presented
inSection2 towork, since the rootsof thecharacteristicpolynomial of themodel in
(2) are located inside the unit circle, and the process Y∗

t − E
(
Y∗
t
)
is not stationary.

The size distortion of Λ∗
B and Λ∗ is still quite moderate, but there is no reason to

believe that the test statistics would have adequate power. (Note that for the near
unit-root model the bootstrap becomes inconsistent just as the exact unit root
case). Coming to 𝜂, the estimated sizes reported in columns 3–6 show that the
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Table 4: Empirical sizes (in percent) for the 5% critical value. Case with ARCH and GARCH
innovations.

𝜺s,t 𝝃 = 0.5 𝝃 = 0.8

𝚲 𝚲B 𝚲∗
B 𝚲∗ 𝚲 𝚲B 𝚲∗

B 𝚲∗

T = 50 D5 16.7 8.8
(1.474)

5.3 5.6 33.0 19.6
(1.562)

7.7 8.4

D6 19.4 10.6
(1.472)

6.0 6.2 34.8 21.1
(1.560)

8.1 9.3

D7 16.9 9.0
(1.476)

5.7 5.5 31.2 18.6
(1.561)

8.8 9.8

D8 16.5 8.8
(1.468)

5.5 5.5 31.8 18.7
(1.562)

8.6 9.3

T = 100 D5 8.5 5.6
(1.241)

5.2 5.5 19.3 13.5
(1.280)

6.9 7.4

D6 9.5 6.4
(1.235)

5.0 5.2 22.6 16.3
(1.279)

7.7 8.2

D7 9.6 6.4
(1.234)

5.4 5.1 20.9 14.8
(1.281)

6.8 6.9

D8 9.4 6.3
(1.238)

5.2 5.3 20.4 14.3
(1.283)

6.8 6.4

T = 250 D5 6.4 5.2
(1.095)

4.4 4.6 9.3 7.6
(1.113)

4.9 5.4

D6 6.5 6.4
(1.094)

4.6 4.4 10.2 8.6
(1.111)

5.1 5.0

D7 6.4 5.6
(1.096)

5.2 5.1 9.6 7.9
(1.106)

4.5 4.7

D8 6.7 5.7
(1.096)

5.0 5.1 9.5 7.7
(1.110)

4.9 4.8

T = 500 D5 5.5 5.0
(1.005)

5.1 4.9 5.3 5.1
(1.011)

5.1 5.2

D6 5.1 5.6
(1.094)

4.9 4.6 5.4 5.2
(1.010)

5.3 5.2

D7 5.0 5.9
(1.003)

5.3 5.2 6.3 5.5
(1.089)

5.0 4.9

D8 5.6 5.2
(1.008)

5.1 5.1 6.5 5.5
(1.080)

4.9 4.9

Note: the estimated rejection probabilities of Λ∗
B and Λ∗ have been calculated using Algorithm

2 in Section 2. DGP with 𝜂 = 0. For Λ and ΛB, the number of replications is N = 10,000, for Λ∗
B

and Λ∗ N = 1000 and B = 800. The asymptotic size of the tests is 5%. The Bartlett corrections
are given in parenthesis.

error in rejection probability increases when 𝜂→ 0. However, nomatter the value
of 𝜂, bootstrap based inference outperforms ΛB.

Turning to the question of assessing how good is the bootstrap Bartlett cor-
rection when the innovations are fat-tailed, Table 3 suggests that the answer
depends, in a complicated way, on 𝜉, 𝜂, T and the distribution of 𝜀s,t. Looking at
the estimated levels of Λ over the range D1,… ,D4 in the first place, a match with
the excess kurtosis and skewness coefficients in Table 2 reveals that, in general,
the error in the rejection probability of the test increases with |Kurt| and |Ske𝑤|,
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with the highest size distortion for the case ofD3 andD4. Furthermore, comparing
the estimated sizes from the top and the bottom panel in Table 3, it appears that
the effect of non-Gaussian innovations on the estimated level of the test is, once
again, highly dependent on the parameter values of the DGP: it is pronounced
when the speed of adjustment is slow and it is relatively mild when the latter
is fast (i.e. 𝜉 = 0.2). Bewley and Orden (1994) report that Johansen’s estimator
𝛽 produces outliers when the speed of adjustment is slow, while Phillips (1994)
provides a theoretical analysis showing that the finite sample distribution of 𝛽
is leptokurtic. The simulations in Bewley and Orden and the theoretical results
in Phillips explain why Λ behaves so poorly when the combinations of 𝜉 = 0.8
and the non-Gaussian distributions in Table 3 are selected: excess kurtosis in
the innovations magnifies the effect of the slow speed of adjustment increasing
the mismatch between the finite sample and the asymptotic reference distribu-
tion of the test statistic by moving the distribution to the left. In this situation,
ΛB can only be partially successful because the second terms of the asymptotic
expansions of the mean of Λ depend on the skewness and kurtosis of its dis-
tribution, and the conditions, under which this dependence vanishes, have not
yet been established. In contrast, when using Λ∗

B the Gaussian distribution is
replaced with the empirical density function of the innovations. This strongly
mitigates the effects of skewness and kurtosis on the finite sample mean of
the test and makes the finite sample distribution of Λ∗

B closer to the asymptotic
distribution.

The final set of simulation experiments relates the ARCH and GARCH inno-
vations. Table 4 presents the empirical sizes for the inference procedure under
consideration when different values of 𝜚, 𝜓 1, and 𝜓2 are considered. As for the
other cases, the error in rejection probability of Λ and ΛB heavily depends on
the distribution of 𝜀s,t. In contrast, Λ∗

B and Λ∗ behave quite well leaving open the
possibility of extending the bootstrap algorithm presented for the Bartlett correc-
tion in Section 2 to other cases in which the ordinary residual based bootstrap
procedure would fail.

To wrap up the discussion, in Tables 2–4, Λ is greatly oversized in most
instances. The error in rejection probability of the test statistic crucially depends
on the parameter values of the DGP, and violations of the Gaussian assumption
worsen the performance of the test for finite samples. ΛB offers improvements
over the uncorrected statistic but its behavior mimics the performance of Λ and
thus, it is not entirely reliable. In contrast, the two bootstrap procedures are less
sensitive to the parameter values of the DGP and appear to be relatively robust to
both non-Gaussian and conditionally heteroskedastic innovations.
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4.1 Results under the Alternative Hypothesis
It is well known that the Bartlett correction factor is designed to bring the actual
size of asymptotic tests close to their respective nominal size, but it may lead to
a loss in power. Accordingly, the power properties of the proposed procedure are
considered in this section.

For the experiments evaluating the power of the tests, data were generated
under the alternative hypothesis

1: 𝛽 = H𝜑 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0
(1×2)

−g 0
(1×2)

0
(2×1)

I
(2×2)

⎤
⎥
⎥
⎥
⎥
⎦

𝜑
(3×1)

,

where g ∈ (1.2, 1.4, 1.6, 1.8.2) with 𝜉 = 0.5, 𝜂 = 0.5, and 𝜎 = 1 in (17). The results of
this set of experiments are reported in Table 5. Once again, the case of 𝜀t, i.i.d.
N(0, 1) (i.e. the case with 𝜀s,t = 𝜀l,t in (17)) serves as a benchmark, then 𝜀s,t ∼ D1
and 𝜀s,t ∼ D5 are considered. Experiments using the other distributions for the
innovations considered in Tables 3 and 4 produced similar power properties and
results will be omitted in the interest of brevity. Note that simulation results were
obtained using Algorithm 1, for 𝜀t ∼ N(0, 1) and 𝜀s,t ∼ D1, whereas Algorithm 2
was used for 𝜀s,t ∼ D5.

Simulationexperiment resultsunder thealternativehypothesesarepresented
in Table 5. The simulation results show that the sample size and the distance
between the null and the alternative hypothesis play an important role in deter-
mining the power of the test statistics under consideration.4 Considering the
asymptotic test first, it appears that the power of the Λ is badly affected by the
choice of the distribution of the innovations: the test is relatively well behaved
when the innovation are fat-tailed but i.i.d., whereas the performance of the test
deteriorates when ARCH innovations are introduced in the DGP. Turning to the
comparison of the power among the different procedures, overall it is found that
in small samples (i.e. T = 50) correcting the test statistic for the size shifts the
estimated power function down. There is evidence that Λ∗

B and Λ∗ share similar
power properties,withno test uniformly outperforming its competitor. The results
for the sensitivity of the inference procedures to the parameters of the DGP are
not reported in detail here but the simulation experiment showed that a slow
adjustment to the equilibrium worsens the rejection frequencies for Λ∗

B, Λ
∗ and

4 Note that in Table 5 simulation results for the sample size T = 500 are not reported
since the 100% rejection frequency was achieved no matter the innovation distribution under
consideration.
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Table 5: Rejection frequencies under the alternative hypothesis (in percentage) for the 5%
critical value.

𝜺t g= 1.2 g= 1.4 g= 1.6 g = 1.8 g= 2

T = 50 N Λ 71.7 89.8 93.8 95.2 95.7
ΛB 60.7 84.0 89.6 91.6 92.5
Λ∗
B 60.4 83.6 88.7 90.5 90.8

Λ∗ 60.6 83.0 89.2 90.6 91.0

D1 Λ 50.0 72.9 80.7 83.9 85.5
ΛB 37.0 61.6 72.0 75.7 77.5
Λ∗
B 29.3 53.3 59.7 63.9 65.0

Λ∗ 30.2 54.5 61.5 64.8 66.4

D5 Λ 25.3 41.0 52.6 58.8 62.7
ΛB 15.7 28.3 39.3 46.5 50.3
Λ∗
B 11.4 21.5 29.1 33.2 36.6

Λ∗ 11.1 24.4 29.5 33.9 37.3

T = 100 N Λ 98.2 99.9 100 100 100
ΛB 97.5 99.8 99.9 100 100
Λ∗
B 96.8 99.0 100 100 100

Λ∗ 96.8 99.7 100 100 100

D1 Λ 86.1 98.1 99.4 99.7 99.8
ΛB 82.1 97.3 99.0 99.5 99.7
Λ∗
B 80.1 96.7 99.0 99.3 99.4

Λ∗ 79.6 96.7 98.9 99.3 99.4

D5 Λ 44.5 77.2 89.1 93.6 95.3
ΛB 37.7 72.1 85.9 91.4 93.6
Λ∗
B 32.7 66.7 80.9 87.2 89.5

Λ∗ 32.5 66.5 80.9 87.6 89.5

T = 250 N Λ 99.9 100 100 100 100
ΛB 99.9 100 100 100 100
Λ∗
B 99.8 100 100 100 100

Λ∗ 99.8 100 100 100 100

D1 Λ 96.3 100 100 100 100
ΛB 95.8 100 100 100 100
Λ∗
B 95.7 100 100 100 100

Λ∗ 96.7 100 100 100 100

D5 Λ 93.0 99.8 100 100 100
ΛB 92.0 99.8 100 100 100
Λ∗
B 91.9 99.7 100 100 100

Λ∗ 91.9 99.7 100 100 100

Note: the estimated rejection probabilities ofΛ∗
B andΛ∗ have been calculated using Algorithms

1 and 2 in Section 2 using N = 1000 and B = 800. DGP with 𝜂 = 0.5, 𝜉 = 0.5.
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ΛB. On the other side, changing the correlation between the noises does not have
an important impact on the power estimates.

5 Robustness Check
Previous simulation results revealed several insights on the performance of the
Bootstrap Bartlett corrected test. A possible shortcoming is that DGPs with only
one cointegration vector anda limitednumber of lagswere considered. Increasing
the number of nuisance parameters in the DGP is expected to increase the finite
sample size distortion of the asymptotic LR test (see for example Podivinsky 1992).
To investigate the effect of the nuisance parameters on the finite sample perfor-
mance of the inference procedures, a further set of simulation experiments was
undertaken. In this case the simulation design involved: (i) considering the effect
of increasing the number of lags in theDGP; (ii) increasing the cointegrating rank
from r = 1 to r = 2. To complete the picture, the effect of including both greater
dynamic and increasing the cointegration rank was also considered.

In particular, point (i) was addressed by undertaking simulation experi-
ments using the DGP as in Eq. (17) with 𝜂 = 0.5, 𝜉 = 0.5, and N(0, 1) innovations.
To investigate the effect of the nuisance parameters, the number of lags was pro-
gressively increased from k = 1 to k = 3. To address point (ii) a second DGP with
r = 2 was considered. The second DGP, labelled as DGP2, is a four-dimensional
VAR given by

⎡
⎢
⎢
⎢
⎢
⎣

ΔX1t
ΔX2t
ΔX3t
ΔX4t

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝛼11 0
0 𝛼22
0 0
0 0

⎤
⎥
⎥
⎥
⎥
⎦

[
𝛽11 𝛽21 𝛽31 0
0 𝛽22 𝛽32 0

] ⎡
⎢
⎢
⎢
⎢
⎣

X1t−1
X2t−1
X3t−1
X4t−1

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

𝜀1t
𝜀2t
𝜀3t
𝜀4t

⎤
⎥
⎥
⎥
⎥
⎦

where 𝛼11, 𝛼22 = 1, 𝛽11 = 0.4, 𝛽21 = 1.7, 𝛽31 = 0.1, 𝛽22 = 0.3, 𝛽32 = 0.6 and the 𝜀i,t as
in GDP1. In this case the null hypothesis of interest is

0: 𝛽 = H𝜑 =
⎡
⎢
⎢
⎣

I
(2×2)
0

(2×2)

⎤
⎥
⎥
⎦
𝜑

(2×2)
,

where I is an identity matrix. Once again, under alternative hypothesis 𝛽 is
unrestricted.

Table 6 reports the simulation results for the empirical sizes of Λ, ΛB, Λ∗
B

and Λ∗. For ease of interpretation, the empirical sizes in Table 2 for k = 1 are also
reported.
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Table 6: Estimated rejection probabilities, for the 5% critical value (in percent).

𝚲 𝚲B 𝚲∗
B 𝚲∗

T = 50 GDP1 k = 1 11.9 5.6
(1.473)

5.3 5.7

k = 2 24.8 11.9
(1.671)

10.2 10.8

k = 3 39.2 15.2
(1.674)

14.3 14.4

GDP2 k = 1 11.3 6.2
(1.544)

6.1 6.2

k = 2 20.6 11.7
(1.573)

10.4 10.5

k = 3 32.2 12.7
(1.515)

12.3 12.6

T = 100 GDP1 k = 1 7.9 5.1
(1.233)

5.1 5.3

k = 2 11.5 7.9
(1.333)

6.7 7.1

k = 3 15.9 8.3
(1.359)

7.3 7.4

GDP2 k = 1 7.7 5.2
(1.423)

5.5 5.6

k = 2 11.2 7.8
(1.231)

8 7.1 7.4

k = 3 14.9 10.0
(1.451)

10.1 9.8

T = 250 GDP1 k = 1 5.8 4.7
(1.097)

5.0 5.2

k = 2 7.0 5.7
(1.008)

5.0 5.3

k = 3 10.1 6.2
(1.124)

6.6 5.9

GDP2 k = 1 6.1 5.1
(1.002)

6.0 5.6

k = 2 8.1 6.2
(1.182)

6.4 6.2

k = 3 10.1 6.8
(1.183)

7.1 7.2

T = 500 GDP1 k = 1 5.3 4.8
(1.031)

5.0 5.1

k = 2 5.6 5.2
(1.034)

5.1 5.3

k = 3 5.4 5.3
(1.035)

5.3 5.2

GDP2 k = 1 5.5 5.2
(1.031)

5.3 5.0

k = 2 5.7 5.3
(1.032)

5.5 5.5

k = 3 5.6 5.2
(1.031)

5.6 5.4

Note: the estimated rejection probabilities of Λ∗
B and Λ∗ have been calculated using Algorithm

1 in Section 2. For Λ and ΛB, the number of replications is N = 10,000, for Λ∗
B and Λ∗ N = 1000

and B = 800. A 95% confidence interval around the nominal level of 5% is given by (3.6, 6.4).
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As far as the simulation results are concerned the first thing to note in Table 6
is that inference based on first order asymptotic critical values is, once again,
markedly inaccurate with excessively high rejection rates. Increasing the number
of lags, k, dramatically increases the deviation from the nominal levels. By con-
trast, allowing more cointegrating vectors, r, in the system slightly reduces the
size distortion. Turning to empirical sizes forΛB, andΛ∗

B, we can see that they are
much closer to the nominal sizes than the first order asymptotic critical values.
Overall, the results in Table 6 show that correcting the LR test statistic is worth-
while, since all the empirical sizes reported for the corrected test are closer to the
nominal 5% level than the unadjusted test statistic. However, introducing many
nuisance parameters in the model affects the size accuracy of all test statistics
under consideration.

Note that in Table 6 only results with normal innovation are reported. In
line with the results in Table 3, departures from the normal distribution of the
innovations increased the size distortion of theΛ andΛB procedures, whereasΛ∗

and Λ∗
B presented empirical sizes closer to the nominal size (results not reported

but available upon request).

6 An Empirical Application
Asan illustration, thebootstrapBartlett procedurediscussed inSection2hasbeen
applied to investigate purchasing power parity (PPP) relationship. According to
economic theory, once converted to a common currency, national price levels
should be equal. In other words,

P = P̈ + E

where P is the log of the domestic price level, P̈ is the log of the foreign price level,
and E denotes the log of the spot exchange rate (home currency price of a unit of
foreign currency). Therefore, departures from PPP relationship at time t can be
defined as

PPPt = Pt − P̈t − Et. (20)

Equation (20) implies that if the PPP mechanism is functioning, one should
observe the tendency of the two markets to adjust toward the long-run equilib-
rium level of exchange rates, meaning that PPPt should be a stationary stochastic
process. However, using conventional unit root tests a number of studies exam-
ining the empirical validity of the PPP relationship for the period of floating
exchanges rates have failed to reject the null hypothesis of non-stationarity for
PPPt leading to what Obstfeld and Rogoff (2001) define as the “PPP puzzle” (see
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also Rogoff 1996). The progress in econometrics over the past 30 years added
hundreds of papers to the PPP’s literature. Failure to find empirical evidence
of the PPP relationship in the empirical literature has identified the PPP puz-
zle as one of the six major puzzles in international economics (see for example
Chen and Engel 2005; Falahati 2019; Ford and Horioka 2017; Frydman et al. 2009;
HoriokaandFord 2017; Imbset al. 2005; Johansenand Juselius 1992;Razzak 2018).

Reviewing the existing empirical works on PPP a large consensus on two
facts emerges. First, consensus estimates suggest that the marginal distribu-
tions of prices and exchange rates exhibit excess kurtosis and nonzero skewness
such that a Gaussian conditional distribution for the innovations is typically
counterfactual (see for example Tucker and Pond 1988; Fujihara and Park 1990;
Engel andWest 2005). Second, there is fairly persuasive evidence that it takes long
time before PPP returns to its steady-state value, meaning that speed of adjust-
ment toward PPP equilibrium is very slow (see for example Alves et al. 2001;
Costa and Crato 2001; Masih and Masih 2004). Because Λ∗

B is less sensitive to
parameter values of the DGP (the empirical levels of Λ∗

B reported in Table 2
showed much less variation over the grid of parameters considered in the
Monte Carlo experiment) and better able to cope with deviations from the Gaus-
sian assumption, this test statistic may be appropriate when using Johansen’s
procedure for testing PPP hypotheses.

Asanapplicationwe testwhetherornot thePPPrelationshipholds for the real
exchange rate between the US dollar and the currency of a number of countries
(economic regions) using quarterly data from 2000:Q1 to 2020:Q1. Namely, the
countries included in the sample are Canada, UK, China, Australia and the EU
area.5 For the h-country (h = 1,… , 5) let Eh,t be the nominal dollar exchange rate,
Ph,t the domestic consumer price index, and theUS consumer price index

(
P̈USA,t

)
.

As for the estimation results, preliminary analysis on the unrestricted VAR(2)
models ruled out serial correlation; however, evidence of non normality and
heteroskedasticity of the ARCH type was detected for the series

(
Ph,t − P̈USA,t

)
in

all models under consideration. Under these circumstances, the testΛB no longer
constitutes a valid inference procedure. For this reason, ΛB was discarded from
the analysis.

In Table 7, the empirical p-values for Λ,Λ∗
B and Λ∗ are reported. The null

hypothesis under consideration is that
(
Ph,t − P̈USA,t

)
− Eh,t is stationary, or equiv-

alently, that the vector (1,−1)′ ∈ sp(𝛽). This can be formulated as the hypothesis

5 For further examples on the application of the Bootstrap Bartlett corrected LR test, see
Canepa 2020.
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Table 7: Actual rejection probabilities for the PPP relationship between the U.S. and other
countries.

𝚲 𝚲∗
B 𝚲∗

UK 0.002 0.072 0.061
Australia 0.030 0.151 0.132
Canada 0.436 0.567 0.439
EU area 0.055 0.132 0.101
China 0.809 0.901 0.911

0: 𝛽 = H�̂� with
H′ =

[
1 −1

]

versus thealternative1: 𝛽 unrestricted. Empirical levels forΛ∗
B andΛ

∗ in the third
and fourth columns were obtained using Algorithm 2 in Section 2 with B = 5000.
The p-values for Λ were calculated by taking the 95% percentile from the 𝜒2 (1)
and calculating the actual p-value as the frequency of rejection.

From Table 7 it appears in finite samples that the asymptotic LR inference
procedure does not work well as it rejects the null hypothesis in favor of the alter-
native in three cases (i.e. UK, Australia and the EU area), whereas the corrected
LR statistic confirms that the PPP relationship holds between the U.S. dollar and
the other currencies for all countries (economic regions). The Λ∗ also seems to
work well thus providing an alternative test to the corrected LR test.

7 Concluding Remarks
Johansen’s (2000) Bartlett corrected LR test relies on Gaussian innovations. How-
ever, in empirical applications, there is limited information on the distributional
form of the innovations. Therefore, there is a need to investigate procedures that
do not rest on the Gaussian assumption (or on any other specific distribution).

This paper considers a non-parametric bootstrap Bartlett LR test, and finds
that the bootstrap Bartlett correction serves two purposes at once. First, it is
able to control the size distortion generated by a slow speed of adjustment to the
cointegratedequilibriumaswellasothercrucialparametersof thedatagenerating
process. Second, it is robust to violations of the Gaussian assumption. No matter
the distribution of innovations under consideration, (i.e. mixture of normals,
ARCH or GARCH) there is little evidence that the size of the bootstrap Bartlett
statistic depends, in any important way, on the form of innovations. Together,
these results constitute an important improvement with respect to the analytical
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Bartlett correction, particularly in light of the fact that in empirical applications,
the true underlying data generating process is not known.
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