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Abstract

Evolutionary information is the primary tool for detecting functional conservation in nucleic acid
and protein. This information has been extensively used to predict structure, interactions and functions in
macromolecules.  Pathogenicity  prediction models  rely  on multiple  sequence alignment  information at
different  levels.  However,  most  accurate  genome-wide  variant  deleteriousness  ranking  algorithms
consider different features to assess the impact of variants. Here, we analyze three different ways of
extracting evolutionary information from sequence alignments in the context of pathogenicity predictions
at  DNA  and  protein  levels.  We  showed  that  protein  sequence-based  information  is  slightly  more
informative  in  the  annotation  of  Clinvar  missense  variants  than  those  obtained  at  the  DNA  level.
Furthermore, to achieve the performance of state-of-the-art methods, such as CADD  and REVEL, the
conservation of  reference and variant,  encoded as frequencies of  reference/alternate  alleles or  wild-
type/mutant residues, should be included. Our results on a large set of missense variants show that a
basic method based on three input features derived from the protein sequence profile performs similarly
to the CADD algorithm which uses hundreds of genomic features.  As expected, our method results in
~3%  lower  area  under  the  receiver  operating  characteristic  curve  (AUC).  when  compared  with  an
ensemble-based algorithm (REVEL). Nevertheless, the combination of predictions of multiple methods
can help to identify more reliable predictions.  These observations indicate that for missense variants,
evolutionary information, when properly encoded, plays the primary role in ranking pathogenicity. 

Keywords: Variant interpretation, Pathogenic missense variants, Evolutionary information, Conservation
score

Introduction

High-throughput  sequencing  technologies  have  changed  our  daily  research  by  rapidly  accumulating
genomic data and helping to profile patient genomes (MacArthur et al. 2014; Claussnitzer et al. 2020) .
These studies make variant interpretation a fundamental challenge in precision medicine (Fernald et al.
2011; Capriotti et al. 2012; McInnes et al. 2021). Missense variants by changing a single amino acid in a
protein sequence can be neutral or induce loss of function. 
In the last two decades several methods have been developed to prioritize functional missense variants
relying on protein sequence/structure information  (Tennessen et  al.  2012; Niroula and Vihinen 2016;
Ancien et al. 2018; Petrosino et al. 2021)  and the protein interaction networks (Rost et al. 2016; Capriotti
et al. 2019; Ozturk and Carter 2021).



It is widely accepted that evolutionary information encoded in multiple sequence alignments of DNAs and
proteins is a major resource for scoring variant pathogenicity. Several methods for scoring the nucleotide
and amino acid conservation have been defined  (Schneider 1997; Valdar 2002) . Although there is no
rigorous test for judging a conservation measure, in general, quantitative conservation measures are site-
specific  scores  calculated  from  a  vector  representing  the  relative  frequency  of  the  amino  acids  or
nucleotides in a given position of a multiple sequence alignment. Among the most commonly used scores
are those calculating the Euclidean distance between two sets of amino acid frequencies (Valdar 2002)
and Shannon’s information-theoretic entropy  (Capra and Singh 2007). Such site-specific scores, which
are important for identifying functionally conserved regions, do not explicitly depend on the pairs of wild-
type  and  mutant  nucleotides/amino  acids  observed  in  a  specific  mutation  process.  For  scoring  the
pathogenicity of a specific variation, we considered the most basic quantitative measures calculating the
frequency of the wild-type and mutant nucleotides/residues in a given site.
This paper evaluates the relevance of this information for missense variant predictions by comparing
simple scores and simple predictors with the widely used and well-performing Combined Annotation-
Dependent Depletion (CADD) algorithm (Rentzsch et al. 2019) and REVEL (Ioannidis et al. 2016). 
We computed the conservation scores on DNA (PhastCons100way and PhyloP100way), the frequencies
of  the reference and alternative alleles in  the genome, and frequencies of  the wild-type and mutant
residues in protein multiple alignments. Our analysis showed that a machine learning method trained on a
few sequence conservation features at DNA or protein levels, achieves similar performance of a state-of-
the-art algorithm. In this work we compared the performance of CADD and REVEL with those reached by
three  different  basic  gradient  boosting  algorithms  on  a  set  of  missense  variants  from  the  Clinvar
database.  Our result indicates that the evolutionary information provides the main features for scoring the
pathogenicity of  missense variants.

Material and methods

Datasets
To evaluate the performance of different machine learning methods for predicting the pathogenicity of
missense  variants  we collected  two  datasets  from the  Clinvar database  (Landrum et  al.  2020).  For
building the two datasets we considered two versions of Clinvar released in June 2020 and August 2021,
respectively.  The  first  dataset  (CommonClinvar)  consists  of  the  missense  variants  annotated  as
Pathogenic and Benign in both versions of the database while the second dataset (NewClinvar) collects
the new missense variants reported in the last version of Clinvar since June 2020 (Fig. S1). The variants
reported  in  the  older  version of  Clinvar not  confirmed in  the last  version were  discarded.  Thus,  the
CommonClinvar consists of 36,751 missense variants from 7,582 proteins 53.5% of which are annotated
as  Benign and the remaining ones (46.5%) as  Pathogenic.  NewClinvar, which includes only the newly
annotated variants, is composed of 5,172 from 1,855 proteins 43,4% of which are reported as Benign and
56.6%  as  Pathogenic.  The  composition  of  the  two  datasets  is  summarized  in  Table  S1.  Both
CommonClinvar and NewClinvar datasets are available as supplementary files.

Conservation features
In this work we analyzed the performance in the prediction of  pathogenic variants using three basic
methods based on sequence conservation features.  Each method considers only three input features,
which are described below.
As a baseline we implemented a method considering two site-specific conservation scores (PPScore)
calculated  on  a  genome  level  multiple  sequence  alignment  and  made  available  through  the  UCSC
genome browser (Kent et al. 2002). The conservation scores used in the first method are calculated by
PhastCons  (Siepel et al. 2005) and PhyloP (Pollard et al. 2010) algorithms.



In the second method (DNAProf), the frequencies of the reference and alternative alleles in the mutated
site  are  calculated  for  each  variant  from  the  multiz100way multiple  sequence  alignments. The
PhastCons100 and PhyloP100way scores as well as the multiz100way alignments for the hg38 human
reference genome are available at https://hgdownload.cse.ucsc.edu/goldenpath/hg38/. 
In the third method (ProtProf), we calculated the frequencies of the wild-type and mutant residues in the
mutated sites for each mutation. These frequencies are derived from the  BLAST (Altschul et al. 1997)
search alignments against the  UniRef90 database  (Suzek et al. 2007) released in June 2020. For the
BLAST search we used an e-value cutoff of 10-9 as suggested in previous works  (Capriotti et al. 2006,
2013, 2017; Calabrese et al. 2009).  By definition, the E-value represents the number of expected hits
found by chance and depends on the number of sequences in the database. In our case, selecting an E-
value threshold of 10-9 for a BLAST search on UniRef90, which contains ~10-8 sequences,  ensures that
less than one random hit can be found by chance from our search.
In summary, for each mutated loci, we considered the PhastCons100way (PC)  and PhyloP10way (PP),
the frequencies of the reference (fref) and alternative (falt) alleles from the multiz100way multiple sequence
alignment, and the total number of aligned genomic sequences (Ng). For the protein-based method the
protein-sequence profile was obtained considering the sequences returned by BLAST.  For each mutated
site, we calculated the frequencies of wild-type (fwt)  and mutant (fmut) residues and the number of aligned
proteins (Np). The nucleotide and amino acid frequencies are calculated as follows: 

f (x i )=
n(x i)

∑
i=1

i=k

n(x i)

Where n(xi) is the number of the nucleotide or amino acid xi in the sequence alignment and k is equal to 5
(including the generic nucleotide  N)  and 20 for DNA and protein sequences, respectively.  Ng and  Np

represent the denominators of the equation above for DNA and protein sequences, respectively.

Machine learning algorithms
Using  the  eight  features  described  above,  we  develop  three  binary  classifiers  (PPScore,  DNAProf,
ProtProf) using the following groups of  three features:

● PPScore: PhastCons100way (PC) and PhyloP100way (PP) scores, and number aligned genomic
sequences (Ng) in multiz100way

● DNAProf: Frequencies of the reference (fref) and alternative (falt) alleles, and number aligned 
genomic sequences in multiz100way (Ng).

● ProtProf: Frequencies of the wild-type (fwt) and mutant (fmut) residues, and number aligned protein
sequences (Np) from a BLAST search on UniRef90.

For each group of features defined above we developed a binary classifier based on the gradient boosting
algorithm as implemented in the scikit-learn package (Pedregosa, F. et al. 2011). The proposed groups of
features are summarized in Table 1.

Training and testing procedure
We first evaluated the performance of each method on CommonClinvar using a 10-fold cross-validation
procedure for a fair  evaluation of the proposed method performance. To reduce at  the minimum the
possible overfitting we mapped each missense variant on the relative  protein sequence and we clustered
all the sequences using the  blastclust algorithm (https://ftp.ncbi.nih.gov/blast/documents/blastclust.html)
with  a  sequence  identity  threshold  of  25% and  a  coverage  of  50%.  Using  the  clustering  based on



sequence similarity we perform a 10-fold cross-validation procedure keeping all the variants belonging to
the same cluster in the same subset. A second test is performed considering the NewClinvar dataset. In
this  case the impact  of  the variants  of  a given protein  are  predicted excluding from the training set
(CommonClinvar) all the variants belonging to proteins of the same cluster. We extracted a balanced set
of Pathogenic and Benign variants from CommonClinvar and NewClinvar dataset for each test, randomly
downscaling the most abundant class.  The reported scoring measures for all the methods are averaged
over ten randomly selected sets.

Benchmarking and performance measures
To characterize the prediction power of the main features described in this work, for each of them we
developed  a  single  feature  binary  classifier  based  on  a  single  threshold.  For  each  feature  the
classification threshold is optimized on the CommonClinvar dataset maximizing both the true positive and
true negative rates.  The optimized threshold  is  tested in  the classification of  the  NewClinvar variant
dataset. 
Finally, the performances of all the binary classifiers described above are compared with those achieved
by the CADD (Rentzsch et al. 2019)  and REVEL (Ioannidis et al. 2016). algorithms. The optimized raw
score threshold for the classification of CADD output was calculated on the CommonClinvar dataset as
binary classifier. The performances of the methods are scored considering two subsets of the NewClinvar
dataset  including  the  consensus  predictions  (Consensus)  and  those  with  at  least  one  predictor  in
disagreement with the remaining ones (NotConsensus). 
All the measures considered for scoring the performance of the methods are defined in Supplementary
Materials.

Results

Feature analysis and single feature classification
In the first part of our work, we analyzed the distributions of the main features used for the classification
task. We focused on the six conservation features (PC, PP, fref, falt, fwt, fmut) comparing their distributions for
the subsets of  Pathogenic and  Benign variants. The average, median and standard deviation of such
distributions are reported in Table S2. As observed in previous works (Kircher et al. 2014; Capriotti and
Fariselli  2017) the  distribution  of  the  PhyloP100way score  (PP)  in  mutated  loci  associated  with
Pathogenic and  Benign variants are significantly different (Fig.  1).  Indeed, the two distributions show
median values of 7.5 and 1.5, respectively, with a Kolmogorov-Smirnov distance (DKS) of 0.57 (Fig. 1B
and Table S2). This distance is greater than the DKS observed for the PhastCons100way score (PC). 
A higher difference between the distributions of the conservation scores for the subset of Pathogenic and
Benign variants is observed when the frequencies in sequence profile from genomic and proteins are
considered. The most remarkable differences are generally detected when comparing the distributions of
the  frequency  of  the  alternative  allele  (falt)  and  the  mutant  residue  (fmut)  for  which  the  DKS is  ~0.60.
Analyzing the frequencies of the reference allele (fref) and wild-type residue (fwt) their DKS is 0.58 and 0.55,
respectively (Table S2). The distributions of the four types of frequencies ( fref ,  falt,,  fwt  , and  fmut) for the
subsets of Pathogenic and Benign variants are plotted in Fig. 2
This  observation  agrees  with  the  results  obtained  in  the  prediction  of  Pathogenic variants  using  a
classification  threshold  on  a  single  feature.  The  classification  threshold  is  optimized  on  the
CommonClinvar dataset maximizing both the true positive and negative rates (Table S3). Applying the
optimized thresholds on the prediction of the variants in the NewClinvar dataset, we found that a simple
classifier based on the frequency of the mutant residue extracted from a protein sequence profile achieve
81% overall accuracy (Q2), 0.63 Matthews correlation coefficient (MCC) and an Area Under the Receiver
Operating Characteristic Curve (AUC) of 0.86 (Table 2). 



According  to  the  previous  observation,  the  PhastCons100way score  (PC)  is  the  least  discriminating
feature. When using the optimized threshold on the classification of the NewClinvar variants, the method
based on a single  PC threshold achieves 74% overall  accuracy, 0.49 MCC and 0.75 AUC (Table 2).
Slightly lower performances are obtained when the frequencies of the reference allele and the wild-type
residue in the sequence profile are considered. In this case the method based on a single fref threshold
results in 78% Q2, 0.56 MCC and 0.84 AUC. These results can also be observed plotting the Receiving
Operating Characteristic (ROC) and Precision-Recall (PR) curves reported in Fig. S2. 

Assessment of the machine learning methods
Starting from the previous observations, we developed three machine learning approaches based on the
different  groups of  conservation features.  The  PPScore method is  based  on the  PhastCons100way,
PhyloP100way scores representing unique conservation measures not describing the type of nucleotides
observed in the mutated loci.  The other two methods consider the frequencies of  the nucleotides or
residues in the original and new sequences that correspond to  fref  ,  falt and  fwt  ,  fmut for  DNAProf and
ProtProf, respectively.  To these groups of measures,  we added a third feature representing the total
number of sequences aligned in the mutated loci (Ng ,Np).  Although these values are not related to the
conservation, they are considered as features for differentiating cases of mutated loci aligned with low
and  high  number  of  sequences. We  implemented  three  machine  learning  methods  for  predicting
Pathogenic variants based on the gradient boosting algorithm with these groups of features. First, the
performance of these methods is tested with a 10-fold cross-validation procedure on the CommonClinvar
dataset. To avoid possible overfitting, we clustered all the proteins based on the sequence identity and
grouped all  their  variants  in  a  unique  subset.  The  average  performance  of  PPScore,  DNAProf and
ProtProf on a balanced set of Pathogenic and Benign variants are reported in Table S4. The results show
that among the three methods ProtProf, which is based on protein sequence profile, achieved the highest
performance reaching 83% overall accuracy (Q2), 0.67 Matthews correlation coefficient and 0.91 Area
Under  the  Receiver  Operating  Characteristic  Curve  (AUC).  PPScore which  is  based  on
PhastCons100way,  PhyloP100way show the lowest performance resulting in ~4% lower AUC and ~9%
lower MCC. An intermediate level of performance is achieved by  DNAProf which results in ~2% lower
AUC and ~3% lower MCC with respect to  ProtProf.  Similar results are obtained when assessing the
performance of the three methods on the NewClinvar dataset. Also, in this case we predicted the impact
of each variant removing from the training set all the variants in the CommonClinvar training set belonging
to the same cluster of proteins. The performance of PPScore, DNAProf and ProtProf on a balanced set of
variants from the NewClinvar dataset are summarized in Table 3. For scoring the contribution of Ng and
Np to the predictions of the three methods, we removed such features from the input and compared their
performances. The results reported in Table S5 show that the methods improve their performance by
~1% for MCC and AUC indices considering Ng and Np in the input features.

Comparison with CADD and REVEL algorithms
In the final part of our analysis we compared the performance of our simple gradient boosting-based
algorithms with those obtained with CADD  (Rentzsch et al. 2019) and REVEL (Ioannidis et al. 2016).
REVEL (Rare Exome Variant Ensemble Learner) is an ensemble method for predicting the pathogenicity
of missense variants on the basis of 13 individual tools. When tested on independent test sets, REVEL
shows  the  best  overall  performance  as  compared  to  any  of  the  individual  tools  and  7  previously
developed ensemble methods. CADD is one of the most accurate and popular methods for predicting
Pathogenic variants in coding and non-coding regions  (Benevenuta et al. 2021). This method, which is
based on more than hundreds of genomic features, was trained on more than 30 million variants. To use
CADD as a binary classifier we considered the raw output of the program and we selected the threshold



that maximizes the true positive and negative rates on the CommonClinvar dataset. The performance of
CADD at the optimal raw score classification threshold of 3.1 is reported in Table S4. This threshold was
used for the classification of the variants in the  NewClinvar dataset. The performances of CADD  and
REVEL  on the  NewClinvar dataset  are  summarized in Table 3. This analysis shows that  CADD and
ProtProf algorithms result in a similar performance in the classification of Pathogenic missense variants in
terms of Area Under the Receiver Operating Characteristic (AUC) and Precision-Recall (AUP) curves on
both  CommonClinvar  and NewClinvar datasets.  As expected REVEL outperforms  ProtProf and CADD
reaching ~3% higher overall accuracy (Q2) and AUC. We can also observe that DNAProf which is based
on the sequence profile extracted from the multiz100way sequence alignments results only in ~3% lower
AUC and AUP. The Receiver Operating Characteristic and Precision-Recall curves for CADD,  REVEL
and the three methods presented in this manuscript are plotted in Fig. 3. 

Analysis and comparison of the predictions
To better understand the difference among the presented methods, we compared the predictions of three
gradient boosting-based algorithms (PPScore, DNAProf and ProtProf). For performing this analysis, we
defined two subsets of the NewClinvar dataset: the Consensus subset where the three predictions agree
and  the  NotConsensus subset  where  the  predictions  differ.  When  performing  such  comparison,  we
observe that predictions overlap in ~73% of the cases in the NewClinvar dataset  (Fig. 4A), while in the
remaining 23%  a single predictor differs from the other. 
ProtProf and  DNAProf provide the highest  prediction similarity,  agreeing in 88% of  the cases with a
correlation of  0.75 (Fig.  4C).  In terms of  performance, when focusing on the  Consensus subset,  the
performance  of  ProtProf reaches  0.91  AUC and 0.81  Matthews  correlation,  while  on  the  remaining
subset, all the methods show an AUC<0.65 and PPScore results on AUC<0.5 (Table 4). The decrease in
the performance can be explained by comparing the distribution of the frequencies of the wild-type and
mutant  residues  on  the  Consensus and  NotConsensus subsets.  Indeed,  the  Kolmogorov-Smirnov
distance (DKS) of the distributions of fwt and fmut decrease by ~50% when considering the NotConsensus
subset (Fig. 5). 
A similar  analysis  is  performed comparing the predictions of  ProtProf,  CADD and REVEL.  Here the
predictions of the three algorithms overlap in ~75% of the cases (Fig. 4B) with an average of ~83% of
common predictions and a correlation of ~0.68  for pairwise comparison (Fig. 4D). The performance of
the methods on the  Consensus subsets achieves ~95% in terms of overall accuracy and ~0.95 AUC,
while for the  NotConsensus subset, the performance of CADD and  ProtProf are similar to those of a
random  predictor.  REVEL  shows  the  best  performance  on  this  subset  of  the  NewClinvar dataset,
achieving 67% Q2 and 0.68 AUC (Table 5).
The analysis of the distributions of fwt and fmut on shows a DKS >0.70 for the Consensus subset, while for
the  NotConsensus it  drops below 0.2 with  both  the distributions of  the fwt  and fmut  for  Benign and
Pathogenic variants strongly overlapping (Fig. 6).

Conclusion and discussion

Here we analyzed different evolutionary information encodings for missense variant pathogenicity
predictions. We compared the encoding at DNA and protein levels, where different multiple alignments
techniques  apply.  The  multiple  sequence  alignment  includes  a  larger  number  of  proteins  and  more
remote  homologs  for  many  genes  than  pre-calculated  genome alignments  from the  UCSC genome
browser. This condition can be the reason why the performance of a method trained using the protein-
based  information  is  slightly  better.  Thus,  at  least  for  the  missense  variants,  an  input  based  on
evolutionary  information  of  the  wild-type  and  mutated  residue   performs  better  than  evolutionary
measures based on DNA sequence alignment in the prediction of pathogenic variants. Indeed, on the



~27% of the variants on which the predictions of  our gradient  boosting algorithms disagree,  ProtProf
reaches  6%  high  overall  accuracy  and  9%  higher  AUC  with  respect  to  DNAProf which  rely  on
precalculated DNA sequence alignment from UCSC.  

With these simple inputs based on evolutionary information,  a machine learning method can
perform comparably to CADD, which uses more sophisticated inputs. When compared with an ensemble-
based approach (RAVEL), our basic method (ProtProf) results in ~3% lower overall accuracy and AUC.
Nevertheless, our analysis based on the comparison of the predictions of different methods allows the
identification of  a more reliable subset of  predictions on which  ProtProf reaches an overall  accuracy
above 90% and AUC>0.9.

Recently, it has been suggested that protein positions have a significant role and can act as  Neutral,
Toggle or Rheostat (Miller et al. 2019). Here we indicate an alternative view of protein positions that can
be seen as a non-linear combination of the frequencies of wild-type/mutant residues at protein level or
reference/alternative allele at DNA level. The results of our analysis suggest that the performances of new
and more sophisticated machine learning algorithms should always be compared with those achieved by
simple  conservation-based  methods.  As  recently  proposed  (Walsh  et  al.  2021),  the  design  of  such
benchmark tests should consider the adoption of specific guidelines for avoiding bias in the training and
testing sets. This procedure is important to exclude overfitting on the context-dependent features (Grimm
et  al.  2015) and  identify  new  important  features  for  improving  the  performance  of  variant  scoring
algorithms.
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Tables

Group Features

PPScore PC PP Ng

DNAProf fref falt Ng

ProtProf fwt fmut Np

      
                  Table 1: Three groups of features used 
                    for the development of the binary classifiers.

Feature Threshold Q2 TNR NPV TPR PPV MCC F1 AUC AUP

PC 1.000 0.737 0.611 0.816 0.862 0.689 0.489 0.766 0.755 0.815

PP 4.704 0.769 0.796 0.756 0.743 0.784 0.539 0.763 0.841 0.828

fref 0.977 0.779 0.815 0.760 0.742 0.801 0.559 0.770 0.836 0.843

falt 0.000 0.794 0.750 0.821 0.837 0.770 0.589 0.802 0.828 0.863

fwt 0.702 0.769 0.806 0.750 0.731 0.791 0.539 0.759 0.844 0.836

fmut 0.005 0.815 0.819 0.812 0.810 0.817 0.629 0.814 0.857 0.856

Table 2. Performance of basic predictors based on a single feature on the NewClinvar dataset  Prediction
threshold are optimized on the CommonClinvar dataset. Q2: Overall Accuracy, TNR: True negative rate,
NPV: Negative predicted value, TPR: True Positive Rate, PPV: Positive Predicted Value, MCC: Matthews
Correlation Coefficient, F1: harmonic mean of precision and sensitivity, AUC: Area Under the Receiver
Operator  Characteristic  Curve,  AUP  Area  under  the  Precision  Recall  Curve.  All  the  performance
measures are defined in Supplementary Materials. 



Method Q2 TNR NPV TPR PPV MCC F1 AUC AUP

CADD 0.844 0.821 0.860 0.867 0.829 0.688 0.847 0.911 0.905

REVEL 0.871 0.918 0.843 0.825 0.909 0.747 0.865 0.945 0.942

ProtProf 0.831 0.865 0.809 0.796 0.855 0.662 0.824 0.910 0.905

DNAProf 0.812 0.780 0.834 0.845 0.794 0.626 0.818 0.881 0.873

PPScore 0.771 0.776 0.769 0.767 0.774 0.543 0.770 0.855 0.846

Table 3: Testing prediction on the NewClinvar variant dataset. Q2: Overall Accuracy, TNR: True negative
rate, NPV: Negative predicted value, TPR: True Positive Rate,  PPV: Positive Predicted Value, MCC:
Matthews Correlation Coefficient, F1: harmonic mean of precision and sensitivity, AUC: Area Under the
Receiver Operator Characteristic Curve, AUP Area Under the Precision Recall Curve. All the performance
measures are defined in Supplementary Materials. For CADD a raw score classification threshold of 3.1
was considered.  

Method Subset Q2 TNR NPV TPR PPV MCC F1 AUC AUP

ProtProf Consensus 0.905 0.907 0.909 0.904 0.901 0.810 0.902 0.905 0.929

ProtProf NotConsensus 0.633 0.740 0.577 0.542 0.712 0.286 0.615 0.641 0.735

DNAProf NotConsensus 0.567 0.402 0.536 0.706 0.583 0.113 0.639 0.554 0.665

PPScore NotConsensus 0.418 0.385 0.369 0.445 0.461 -0.170 0.453 0.415 0.561

Table 4. Performance of  PPScore, DNAProf  and ProtProf on two subsets of the NewClinvar dataset.
Consensus:  Subset  of  NewClinvar (72.6%)   for  which  the  predictions  of  the  three  methods  are  in
agreement.  NotConsensus:  subset  of  NewClinvar (27.4%)   for  which  one  method  differs  from  the
remaining two.  Q2: Overall  Accuracy, TNR: True negative rate, NPV: Negative predicted value, TPR:
True Positive Rate, PPV: Positive Predicted Value, MCC: Matthews Correlation Coefficient, F1: harmonic
mean of precision and sensitivity, AUC: Area Under the Receiver Operator Characteristic Curve, AUP
Area Under the Precision Recall  Curve. All  the performance measures are defined in Supplementary
Materials. 



Method Subset Q2 TNR NPV TPR PPV MCC F1 AUC AUP

ProtProf Consensus 0.945 0.954 0.941 0.935 0.950 0.890 0.943 0.945 0.959

ProtProf NotConsensus 0.479 0.539 0.429 0.431 0.541 -0.029 0.480 0.485 0.616

REVEL NotConsensus 0.662 0.777 0.589 0.570 0.763 0.350 0.653 0.674 0.760

CADD NotConsensus 0.531 0.337 0.458 0.684 0.565 0.022 0.619 0.510 0.628

Table  5. Performance  of  REVEL,  CADD  and  ProtProf on  two  subsets  of  the  NewClinvar  dataset.
Consensus: Subset of NewClinvar (75.5%)  for which  the predictions of the three methods are in agreement.
NotConsensus: subset of  NewClinvar (24.5%)  for which one method differs from the remaining two.  Q2:
Overall Accuracy, TNR: True negative rate, NPV: Negative predicted value, TPR: True Positive Rate, PPV:
Positive  Predicted  Value,  MCC:  Matthews Correlation  Coefficient,  F1:  harmonic  mean of  precision  and
sensitivity, AUC: Area Under the Receiver Operator Characteristic Curve, AUP Area Under the Precision
Recall Curve. All the performance measures are defined in Supplementary Materials.



Figures

Figure 1. (A) Box plot and (B) cumulative distributions of the PhyloP100way score in the variation sites
for the subsets of Pathogenic and Benign variants in the CommonClinvar dataset. The maximum distance
between the two distributions is at 4.7 that corresponds to a Kolmogorov Smirnov distance of 0.57.

Figure 2. Box plots and cumulative distributions of the frequencies of  references  (A,E) / alternative (C,F)
alleles in the variation sites and the frequencies of wild-type (B,G) /  mutant (D,H) residues in protein
mutation sites for the subset of  Pathogenic and  Benign variants in the  CommonClinvar dataset.  In the
cumulative  distribution  plot  (E,F,G,H)  is  reported  the  Kolmogorov-Smirnov  distance  (DKS)  which
represents the maximum distance between the distributions of the frequencies for Pathogenic and Benign
variants.



Figure 3. Receiver Operating Characteristic (A) and Precision Recall (B) curves for the different gradient
boosting algorithms (PPScore, DNAProf, ProtProf), CADD and REVEL on the NewClinvar dataset. 

Figure  4.  Overlap  of  the  predictions  of  the  different  methods on  the  NewClinvar dataset. (A) Venn
diagram of the prediction of the 3 gradient boosting algorithms (PPScore, DNAProf, ProtProf) and (B)
Venn diagram of the prediction of ProtProf, CADD and REVEL. (C) Pairwise overlap of the prediction of
the 3 gradient boosting algorithms and  (D) Pairwise overlap of the prediction of the ProtProf, CADD and
REVEL. The numbers above the diagonal represent the fraction of common predictions while those below
the diagonal are the correlations between the predictions.



Figure 5.  Box plots and cumulative distributions of the frequencies of  wild-type and mutant residues
subset of  NewClinvar for which the predictions of  PPScore, DNAProf  and ProtProf are in agreement
(A,B,E,F)  or  in  disagreement  (C,D,G,H).  In  the  cumulative  distribution  plot  (E,F,G,H)  is  reported the
Kolmogorov-Smirnov distance (DKS) which represents the maximum distance between the distributions of
the frequencies for Pathogenic and Benign variants. Average and standard deviations of the distributions
are reported in Table S6.

Figure 6.  Box plots and cumulative distributions of the frequencies of  wild-type and mutant residues
subset of NewClinvar for which the predictions of REVEL, CADD and ProtProf are in agreement (A,B,E,F)
or in disagreement (C,D,G,H). In the cumulative distribution plot (E,F,G,H) is reported the Kolmogorov-
Smirnov  distance  (DKS)  which  represents  the  maximum  distance  between  the  distributions  of  the
frequencies for Pathogenic and Benign variants. Average and standard deviations of the distributions are
reported in Table S7.



SUPPLEMENTARY MATERIALS

Evaluating the relevance of sequence conservation 
in the prediction of pathogenic missense variants

Emidio Capriotti 1* and Piero Fariselli 2* 
 

1 BioFold Unit, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 
Via F. Selmi 3, 40126 Bologna, Italy.

 2 Department of Medical Sciences, University of Torino, 
Via Santena 19, 10126, Torino, Italy.

Contacts: emidio.capriotti@unibo.it, piero.fariselli@unito.it  

Performance measures for binary classifiers
 

For each prediction, the binary classification (Pathogenic/Benign) is made at the threshold t. Thus,

if a selected score foc Pathogenic classification is >t the variant is predicted to be Pathogenic. For

single feature-based predictors the classification threshold is optimized on the  CommonClinvar

dataset (Table S2) while for the gradient boosting algorithm and REVEL (Ioannidis et al. 2016) the

output threshold is set to 0.5.  For CADD (Rentzsch et al. 2019) a raw score threshold of 3,1 was

used to calculate the performance.

In all  the performance measures -  assuming that  positives indicate  Pathogenic and negatives

indicate Benign - TP (true positives) are correctly predicted Pathogenic Single Nucleotide Variants

(SNVs), TN (true negatives) are correctly predicted  Benign variants, FP (false positives)  Benign

SNVs annotated as Pathogenic, and FN (false negatives) are Pathogenic variants predicted to be

Benign.  Predictor  performance  was  evaluated  using  the  following  metrics:  true  positive  and

negative rates (TPR, TNR),  positive and negative predicted values (PPV, NPV),  F1 score and

overall accuracy (Q2)

[Eq. 1]



We computed the Matthew’s correlation coefficient MCC (Eq. 2) as:

                                    [Eq. 2]

We also calculated the area under the receiver operating characteristic (ROC) curve (AUC), by

plotting the True Positive Rate as a function of the False Positive Rate and the Area and the

Precision  Recall  Curve  (AUP)  at  different  probability  thresholds  of  annotating  a  variant  as

Pathogenic or Benign. Sensitivity = Recall = TPR, Precision = PPV. 

For each method, the reported scoring measures are obtained averaging the performance on ten

randomly selected sets from CommonClinvar and NewClinvar datasets. The selection procedure is

performed for generating balanced datasets of Pathogenic and Benign variants downscaling the

most abundant class of variants.

 



Supplementary Tables

Dataset Annotation Proteins Mutations

CommonClinvar All 7,582 36,751

Benign 6,444 19,659 (53.5%)

Pathogenic 3,117 17,092 (46.5%)

NewClinvar All 1,855 5,172

Benign 935 2,247 (43.4%)

 Pathogenic 1,119 2,925 (56.6%)

Table S1. Composition of the datasets extracted from Clinvar database

(https://www.ncbi.nlm.nih.gov/clinvar/),



Dataset
Feature

s
DKS Pathogenic Benign

  Mean Median Std Mean Median Std

CommonClinvar PC 0.529 0.957 1.000 0.185 0.562 0.893 0.466

PP 0.573 6.523 7.521 2.794 2.120 1.374 2.789

fref 0.579 0.956 1.000 0.108 0.739 0.830 0.270

falt 0.598 0.008 0.000 0.036 0.147 0.047 0.226

fwt 0.545 0.797 0.945 0.261 0.414 0.362 0.270

fmut 0.609 0.011 0.000 0.043 0.092 0.037 0.143

NewClinvar PC 0.473 0.951 1.000 0.198 0.598 0.966 0.460

PP 0.548 6.461 7.509 2.861 2.301 1.521 2.782

fref 0.563 0.953 1.000 0.109 0.734 0.836 0.283

falt 0.590 0.008 0.000 0.037 0.159 0.047 0.244

fwt 0.546 0.802 0.943 0.257 0.420 0.378 0.273

 fmut 0.632 0.010 0.000 0.038 0.096 0.037 0.148

Table S2. Statistics of the distribution of six conservation features for the subset of  Pathogenic and
Benign variants in the CommonClinvar and NewClinvar datasets.  PC: PhastCons100way score. PP:
PhyloP100way score, fref and falt: frequencies of the reference and alternate alleles in the multiz100way
genomic alignment,  fwt and  fmut  :  frequencies  of  the wild-type and mutant  residues from a multiple
protein  sequence  alignment.  DKS is  the  distance  between  two  cumulative  distributions  calculated
through the Kolmogoeov-Smirnov test. 



Feature Threshold Q2 TNR NPV TPR PPV MCC F1 AUC AUP

PCPC 1.000 0.764 0.655 0.838 0.874 0.717 0.541 0.787 0.782 0.836

PP 4.704 0.786 0.815 0.771 0.758 0.804 0.574 0.780 0.856 0.844

fref 0.977 0.789 0.825 0.770 0.754 0.812 0.580 0.781 0.844 0.848

falt 0.000 0.798 0.758 0.824 0.838 0.776 0.598 0.806 0.832 0.865

fwt 0.702 0.773 0.822 0.748 0.723 0.802 0.548 0.761 0.842 0.831

fmut 0.005 0.805 0.807 0.803 0.802 0.807 0.609 0.804 0.851 0.850

Table  S3. Performance of  the  basic  predictors  based  on  a single  feature  on  the  CommonClinvar dataset
Prediction threshold are optimized maximizing both the True Positive Rate (TPR) and the True Negative Rate
(TNR)  dataset. Q2: Overall  Accuracy, TNR: True negative rate, NPV: Negative predicted value, TPR: True
Positive Rate, PPV: Positive Predicted Value, MCC: Matthews Correlation Coefficient, F1: harmonic mean of
precision and sensitivity, AUC: Area Under the Receiver Operator Characteristic Curve, AUP Area under the
Precision Recall Curve. All the performance measures are defined above. 

Method Q2 TNR NPV TPR PPV MCC F1 AUC AUP

CADD 0.841 0.819 0.857 0.864 0.826 0.683 0.845 0.910 0.904

REVEL 0.902 0.933 0.879 0.871 0.929 0.806 0.899 0.961 0.960

ProtProf 0.833 0.868 0.811 0.798 0.858 0.667 0.827 0.906 0.901

DNAProf 0.821 0.791 0.842 0.851 0.803 0.644 0.827 0.888 0.879

PPScore 0.792 0.798 0.788 0.785 0.796 0.583 0.790 0.868 0.859

Table S4: Prediction in cross-validation the  CommonClinvar dataset. Q2: Overall Accuracy, TNR: True
negative rate, NPV: Negative predicted value, TPR: True Positive Rate, PPV: Positive Predicted Value,
MCC: Matthews Correlation Coefficient, F1: harmonic mean of precision and sensitivity, AUC: Area Under

the Receiver Operator Characteristic Curve, AUP Area under the Precision Recall Curve.  For CADD a
raw score classification threshold of 3.1 was considered. All the performance measures are defined
above. 



Features Q2 TNR NPV TPR PPV MCC F1 AUC AUP

PPScore - Ng 0.768 0.772 0.765 0.763 0.770 0.536 0.767 0.847 0.835

PPScore 0.771 0.776 0.769 0.767 0.774 0.543 0.770 0.855 0.846

DNAProf - Ng 0.794 0.739 0.830 0.849 0.765 0.592 0.805 0.868 0.855

DNAProf 0.812 0.780 0.834 0.845 0.794 0.626 0.818 0.881 0.873

ProtProf – Np 0.827 0.829 0.825 0.824 0.829 0.654 0.827 0.895 0.888

ProtProf 0.831 0.865 0.809 0.796 0.855 0.662 0.824 0.910 0.905

Table S5. Testing prediction of the three basic methods (PPScore, DNAProf and ProtProf) excluding Ng and Np from
the features. Q2: Overall Accuracy, TNR: True negative rate, NPV: Negative predicted value, TPR: True Positive
Rate, PPV: Positive Predicted Value, MCC: Matthews Correlation Coefficient, F1: harmonic mean of precision and
sensitivity,  AUC: Area Under  the Receiver  Operator  Characteristic  Curve,  AUP Area under the Precision Recall
Curve. All the performance measures defined above are calculated on the NewClinvar dataset.

Frequency Subset DKS Pathogenic Benign

Mean Std Mean Std

fwt Consensus 0.697 0.858 0.220 0.367 0.249

NotConsensus 0.133 0.657 0.285 0.614 0.266

fmut Consensus 0.798 0.005 0.030 0.114 0.158

  NotConsensus 0.152 0.022 0.054 0.028 0.062

Table S6. Comparison of the distributions of the frequencies of  wild-type and mutant residues  on the
subset of  NewClinvar for which the predictions of  PPScore, DNAProf  and ProtProf are in agreement
(Consensus) or in disagreement (NotConsensus). DKT is the Kolmogorov-Smirnov distance between the
cumulative distributions of the frequencies for Pathogenic and Benign variants.
 



Frequency Subset DKS Pathogenic Benign

Mean Std Mean Std

fwt Consensus 0.697 0.849 0.225 0.386 0.264

NotConsensus 0.133 0.692 0.290 0.525 0.273

fmut Consensus 0.798 0.006 0.030 0.108 0.154

NotConsensus 0.152 0.020 0.053 0.061 0.124

Table S7. Comparison of the distributions of the frequencies of  wild-type and mutant residues  on the
subset  of  NewClinvar for  which  the  predictions  of  REVEL,  CADD and ProtProf are  in  agreement
(Consensus) or in disagreement (NotConsensus). DKT is the Kolmogorov-Smirnov distance between the
cumulative distributions of the frequencies for Pathogenic and Benign variants.



Supplementary figures

Figure S1. Venn diagram showing the intersection and difference between the two versions (August 2021
and  June  2020)  of  Clinvar  database   (https://www.ncbi.nlm.nih.gov/clinvar/)  used  for  generating  the
CommonClinvar and NewClinvar datasets

Figure S2.  Receiver Operating Characteristic (A,B,C) and Precision Recall (D,E,F) curves for single feature
predictors on the  NewClinvar dataset.  PC:  PhastCons100way score.  PP:  PhyloP100way score,  fref and  falt:
frequencies  of  the  reference  and  alternate  alleles  in  the  multiz100way genomic  alignment,  fwt and  fmut  :
frequencies of the wild-type and mutant residues from a multiple protein sequence alignment. 



REFERENCES

Ioannidis  NM,  Rothstein  JH,  Pejaver  V,  et  al  (2016)  REVEL:  An  Ensemble  Method  for  Predicting  the
Pathogenicity of Rare Missense Variants. Am J Hum Genet 99:877–885. 
Rentzsch P, Witten D, Cooper GM, et al (2019) CADD: predicting the deleteriousness of variants throughout
the human genome. Nucleic Acids Res 47:D886–D894. 


