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Abstract—Recommender Systems (RSs) are valuable technolo-
gies that help users in their decision-making process. Generally,
RSs are designed with the assumption that a central server
stores and manages historical users’ behaviors. However, users
are nowadays more aware of privacy issues leading to a higher
demand for privacy-preserving technologies. To cope with this
issue, the Federated Learning (FL) paradigm can provide good
performance without harming the users’ privacy. Some efforts
have been devoted to adapt standard collaborative filtering
methods (e.g., matrix factorization) into the FL framework in
recent years.

In this paper, we present a Federated Variational Autoencoder
for Collaborative Filtering (FedVAE), which extends the state-of-
the-art MultVAE model. Additionally, we propose an adaptive
learning rate schedule to accelerate learning. We also discuss the
potential privacy-preserving capabilities of FedVAE. An extensive
experimental evaluation on five benchmark data sets shows that
our proposal can achieve performance close to MultVAE in a
reasonable number of iterations. We also empirically demonstrate
that the adaptive learning rate guarantees both accelerated
learning and good stability.

Index Terms—federated learning, variational autoencoder, col-
laborative filtering, recommender systems, top-n item recommen-
dation

I. INTRODUCTION

With the introduction of the General Data Protection Regu-
lation [1] (GDPR1) in 2018, both service providers and users
have become more concerned about privacy. This concern
also had a considerable impact on the scientific community
that intensified the efforts to find privacy-preserving solutions.
The privacy is particularly important in personalized services
such as recommender systems where data regards users’
preferences. For these reasons, in the last few years, many
privacy-preserving recommender systems have been proposed.
The first attempts were mostly based on data perturbation [2].
Instead of sharing their private data in clear, users first add
some noise to make it “safe” to share. Unfortunately, this
methodology has an evident drawback: the spurious data
negatively affects the recommendations’ quality. However, this
drawback can be addressed using cryptography, specifically
homomorphic encryption [3]–[6]. Homomorphic encryption
(HE) allows computation on encrypted data so that, when
decrypted, matches the result of the operations as if they had
been performed on the plain data. However, HE is compu-

1https://gdpr-info.eu/

tationally expensive, especially for “limited” devices such as
smartphones.

More recently, decentralized approaches, such as secure
multi-party protocols [7]–[9], seem to have attracted re-
searchers attention. In particular, the Federated Learning (FL)
scheme proposed by Google [10], [11] has opened new and
exciting possibilities. The main idea behind FL is that the
training process is computed across multiple decentralized
parties holding private data that do not need to be shared.
Users share parameters/gradients with a central server that
updates and share a global model without having access to
the users’ private data. FL is not a new line of research in the
Recommender Systems community; however, all the proposed
approaches are based on matrix factorization [3], [12]–[14].

In this paper, we propose a Federated Variational Autoen-
coder (FedVAE) for top-N item recommendation. FedVAE
uses the same VAE architecture proposed in [15] and trains
it using the FL framework. A peculiar characteristic of a
Federated RS is the client’s side dataset, which consists of
a single example, that is the user’s ratings themselves. This
fact can cause a slow learning pace, especially in the first
rounds. For this reason, we propose an adaptive learning rate
schedule (FedVAEdec), showing that the simple increase in
the learning rate is not enough. We show that the proposed
schedule enhances the efficiency and also the stability of the
training. We also discuss how FedVAE deals with security and
privacy issues. Security against malicious clients is guaranteed
thanks to a filtering approach able to detect byzantine clients.
Moreover, differential privacy is also implemented “for free”
thanks to the VAE architecture that contains a dropout layer.
The dropout acts like input perturbations on the input data,
which is an effective way to perform differential privacy. An
extensive experimental evaluation on five benchmark datasets
shows that FedVAE achieves performance similar to Mult-
VAE. The experimental results also underline that FedVAEdec
increases both the effectiveness and the efficiency of FedVAE
in terms of the number of rounds to reach high accuracy
values.

The remainder of the paper is structured as follows. Sec-
tion II discusses the related work, while Section III presents
the background knowledge useful to grasp the paper’s content.
Section IV describes the main contributions of the paper. Sec-
tion V shows the carried out experimental evaluation. Finally,
Section VI provides possible future research directions.



II. RELATED WORK

In this section, we focus on recent approaches for privacy-
preserving collaborative filtering. For a more in-depth analysis
of privacy risks and standard methods, we refer the reader
to [16].

Historically, the most used techniques for building privacy-
preserving CF was based on cryptographic approach, random
perturbations, and differential privacy. Cryptographic meth-
ods [3]–[5], [17], [18], are usually based on homomorphic
encryption, which is effective but expensive in terms of
computational cost. On the other hand, techniques based on
random perturbations [2], [7], [8], [19] are cheap, but the
perturbations can harm the quality of the recommendations.
However, they can guarantee good differential-privacy.

In CF contexts, also the use of Federated Learning is not
new. In [20], the Federated scheme is applied to the popular
WRMF [21] recommender for top-N item recommendation.
The method, dubbed FCF, guarantees privacy by design, and
the authors also showed that FCF achieves similar performance
w.r.t. WRMF. However, the authors do not provide any insight
about possible attacks like reconstruction attak [22] or mem-
bership inference attack [23]. In [3], Chai et al. showed that a
federated approach for performing matrix factorization could
leak users’ information. To address this problem, the authors
enhanced the method (called FedMF) with the introduction of
homomorphic encryption. A closely related method is the one
by Jalalirad et al. [12] in which they proposed yet another
federated MF approach for rating prediction.

Ribero et al. [24] proposed yet another federated matrix
factorization for rating prediction. The method uses a shared
item representation approximately computed over the client’s
prototypes. These prototypes are designed to contain similar
information as representing the actual item but in a lower-
dimensional space to minimize the communication load.

Recently, FedRec [25] has been proposed. It implements
a classic matrix factorization for rating prediction [26] in a
federated setting. FedRec protects the user’s privacy through
the addition of noise to the user’s ratings. Specifically, FedRec
samples negative feedback and associates to them a fake
random rating.

Chen et al [13] proposed a federated version of the famous
FISM algorithm [27] by Karypis et al. The optimization is
performed using an Adam procedure [28] similarly as it will
be shown in this paper. Authors also show that an Adam-
based federated recommender is susceptible to attacks from
byzantine clients that can camouflage their gradients to launch
a poisoning attack. For this reason, they propose an Adam-
based robust federated recommendation system, called A-
RFRS, in which byzantine clients are detected by checking
their gradients.

In [14], the authors consider a slightly different federated
setting. Users’ ratings are spread over small datasets, and two
servers are responsible for applying the secure multi-party
computation. The proposed protocol also establishes more
security layers through the use of garbled circuits [29] and
secret sharing.

TABLE I: Notations table.

Variable Definition
U Set of users
I Set of items
Ui Set of users who rate the item i ∈ I
Iu Set of items rated by u ∈ U
n Number of users, |U| = n
m Number of items, |I| = m
R Ratings set
R Binary rating matrix s.t. rui = 1 ⇐⇒ (u, i) ∈ R
ru User u (column) rating vector
rui Rating matrix entry
φ Encoder’s parameters
θ Decoder’s parameters
ω VAE’s parameters
zu Latent user’s representation
T Number of federated rounds
R Number of users per round
I[x] Indicator function s.t. I[x] = 1 ⇐⇒ x is true
Ik Identity matrix in Rk×k

‖x‖p p-norm of x, i.e., p
√∑

i x
p
i

〈·, ·〉 Dot-product

All the just mentioned works are based on matrix factor-
ization techniques, while in this paper, we propose a Feder-
ated recommender system based on a state-of-the-art neural
network-based model (i.e., [15]). There are some analogies
between our work and [13]. We will be discussed these
analogies later in the paper, although the overall approach is
very different. Moreover, in this paper, we focus on top-N item
recommendation, as in [20], while all the other works deal
with rating prediction. Accuracy-wise we will not compare our
solution with FCF [20] since both FedVAE and FCF reflect the
performance of their corresponding “batch” versions, namely
MultVAE and WRMF. MultVAE has shown of being superior
to WRMF [15].

III. BACKGROUND

This section briefly goes through the background material
useful to understand the paper fully. To ease the reading, in
the following, we provide a notations table (Table I), which
summarizes the most used notation throughout the paper.

A. Variational Autoencoder for CF

In this paper, we focus on the top-N recommendation. We
assume of knowing the users’ implicit preferences, that is,
ratings are binary (ru ∈ {0, 1}m). The recommendation task
consists of, given a user u, computing a ranking over the items
where the relevant items for u should be put in the top.

Mult-VAE [15] is a state-of-the-art CF for top-N item
recommendation. It is based on the VAE framework, and its
two main peculiarities are: (i) it assumes a multinomial prior
on the input instead of the classic Gaussian prior used in
standard VAEs; (ii) it employs the β-VAE [30] architecture
in which a hyper-parameter β acts as a trade-off parameter
between the reconstruction loss and the Kullback-Leibler (KL)
loss.

As just said, the basic idea of Mult-VAE is similar to VAE
but with the multinomial distribution as the likelihood function
instead of Gaussian distributions usually used in VAE. For



each user u, the model starts by sampling a k-dimensional
latent representation zu. Then, the model transforms it via a
non-linear function fθ(·) : Rk → Rm to produce a probability
distribution over the m items π(zu) from which the user rating
history ru is assumed to have been drawn:

zu ∼ N (0, Ik) , π (zu) ∝ exp {fθ (zu)}
ru ∼ Mult (‖ru‖1, π (zu)) .

(1)

The non-linear function f is parametrized by a deep neural
network with parameters θ, while π(zu) ∈ Rm is the softmax
function applied to the transformed latent representation.

The log-likelihood for a user u conditioned on the latent
representation zu is:

log pθ(ru|zu) =
m∑
i=1

rui log πi(zu) (2)

To estimate the model parameters θ, for each data point ru,
one needs to approximate the intractable posterior distribution
p(zu|ru). Likewise standard VAE, the true intractable posterior
is approximated with simpler variational distribution q(zu) that
is set to be a fully factorized (diagonal) Gaussian distribution,
q(zu) = N (µu, 〈Ik,σu2〉).

The objective of variational inference is then to opti-
mize the free variational parameters {µu,σ2

u} so that the
Kullback-Leibler divergence KL(q(zu)||p(zu|ru)) is mini-
mized. However, the number of parameters to optimize grows
with the number of users and items in the data set. In
order to solve this problem, the VAE replaces the individ-
ual variational parameters with a data-dependent function
gφ (ru) =

[
µφ (ru) ,σφ (ru)

]
∈ R2k parametrized by φ

and where both µφ(ru) and σφ(ru) k-dimensional vectors.
Thus, the variational distribution is set to be qφ(zu|ru) =
N (µφ(ru), 〈Ik,σ2

φ(ru)〉). Putting together qφ(zu|ru) and
pθ(ru|zu) we end up with a an autoencoder-like architecture.

Finally, the model’s parameters are estimated by construct-
ing an evidence lower bound (ELBO). The resulting Mult-VAE
ELBO [15] is defined as:

LMult-VAE (φ,θ; ru) =

Eqφ(zu|ru) [log pθ (ru|zu)− β ·KL (qφ (zu|ru) ‖pθ (zu))] ,
(3)

where β ≥ 0 is a trade-off hyper-parameter between the
reconstruction loss and the closeness of the approximate
posterior w.r.t. the Gaussian prior.

It is possible to obtain an unbiased estimate of the ELBO
by sampling zu ∼ qφ and performing stochastic gradient
ascent to optimize it. However, the sampling operation has
not derivative. Thanks to the reparameterization trick [31]
we can sidestep this issue. Once the model is trained, the
recommendation can be computed as follows: (i) the user
rating history ru is fed to the encoder network, which outputs
the mean µφ(ru) and the standard deviation σφ(ru) of the
variational distribution; (ii) zu = µφ(ru) is fed into the
decoder network; (iii) the decoder outputs the predicted the
distribution fθ(zu) that is eventually sorted.

B. Federated Learning

Federated learning (FL) [10], [32], [33] (also known as col-
laborative learning) is a machine learning technique in which
the training process is computed across multiple decentralized
parties (e.g., devices or servers) holding private local data
samples that are never exchanged with other parties. The
general idea consists of training local models on the local
private data and then sharing the parameters (e.g., the weights
of a neural network) or the computed gradients to generate
a global model (usually on a centralized server). Thus, the
learning is decentralized for “guaranteeing” privacy, but the
global model stays on the server with only a view of the model
and not the data used during training. Some federated models
work entirely peer-to-peer, but we focus on a server-based
federated scheme in this work. It is important to underline
that Federated learning differs from distributed learning in
terms of the assumptions about the data. Distributed machine
learning aims at parallelizing the computation, but the data are
shared between the different parties (and they usually used the
same data/same distribution). Federated learning instead aims
at training on heterogeneous data sets. In FL, the training
happens in rounds. At each round t: (i) the server shares
the model with all the participants (i.e., clients); (ii) each
client computes the gradient w.r.t. her data, and send back
this information to the server; (iii) the server collects and
aggregates all the participants’ contribution and updates its
model. In the context of FL for recommendations, the data
owned by a user is her ratings.

IV. FEDERATED VAE

In this section, we describe our Federated Variational
Autoencoder for collaborative filtering (FedVAE). We first
introduce the Federated learning algorithm in general (Sec-
tion IV-A), and afterward (Section IV-B), we introduce our
learning rate schedule (FedVAEdec) to improve the efficiency
and effectiveness of the learning process. Finally, we dis-
cuss the privacy and security capabilities of FedVAE (Sec-
tion IV-C).

A. FedVAE algorithm

FedVAE aims at computing a Mult-VAE [15] model using
the Federated Learning (FL) framework. In the FL paradigm,
users (U) are the data owners who wish to train a model
by consolidating their respective data, i.e., ratings (ru). The
learning process is carried out collaboratively by the users
without exposing their private data. In the client-server setting,
FL also considers an additional actor: a server S, which holds
the updated global model, but it does not have direct access to
any of the data owners, i.e., users. The challenge is to maintain
an up to date model by keeping all the user ratings private.

The Mult-VAE model is a (deep) neural network in which
the training is performed using the Adam optimization algo-
rithm. Adam [28] is a Stochastic Gradient Descent (SGD)
based algorithm, and thus it is suitable for performing dis-
tributed machine learning. At the beginning of the training



Algorithm 1: FedVAE
Input: R: number of users per round, T : number of

rounds, η: learning rate, β1: Adam’s first
moment weight, β2: Adam’s second moment
weight, ε: Adam’s correction value

Output: (φT ,θT ): trained parameters of the global
model

1 initialization
2 ω0 = (φ0,θ0)← random initialized from N (0, 1)
3 end
4 for t ∈ [1, . . . , T ] do . Federated rounds

5 Ut ← randomly pick R users from U
6 for u ∈ Ut in parallel do
7 Send: ωt−1 to u
8 Receive: gωu ← LocalGradient(ru) . Client

9 end
10 Gt ← {gωu}u∈Ut . Set of gradient updates

11 ωt ← GlobalUpdate(ωt−1, Gt, η, β1, β2, ε)
12 end
13 return ωT = (φT ,θT )

phase, the server S randomly initializes the model’s parame-
ters. Then, the learning process proceeds in rounds, where at
each round t:

1) the server S shares a copy of the model parameters, i.e.,
ω := (φ,θ), to a subset of users Ut ⊆ U ;

2) (in parallel) each user u compute the gradient update
(on the Mult-VAE loss, Eq. (3)) on its own copy of the
model and sends it back to the server;

3) the server collects and aggregates (e.g., average) all the
users’ contributions;

4) the server updates the model according to the computed
aggregated gradient.

In Algorithm 1, the just mentioned procedure is described
in detail. The LocalGradient(ru) procedure is computed (in
parallel) client’s side and it returns gradient of the loss (3) w.r.t.
the user’s ratings. Users can perform one or more backward
pass on the input to compute the gradient. Experimentally, we
found that a single iteration is enough to guarantee a decent
convergence rate of FedVAE. From a practical perspective, this
is good because it reduces the client’s computational burden.

The GlobalUpdate function is defined in Algorithm 2, and
it follows the Adam optimization steps with the addition of a
users’ filtering function (SecureFilter). The variables mt and
vt are the gradient’s first and the second momentum estimate,
respectively. Both are initialized to 0 at the beginning of the
training process. The function SecureFilter implements the
gradient-based Krum filtering [34] useful to avoid poisoning
attacks by malicious users. A more in-depth discussion about
both the security and privacy capabilities of FedVAE is present
in Section IV-C.

Algorithm 2: GlobalUpdate
Input: ωt−1: current model’s parameters, Gt: set of

gradient updates, η: learning rate, β1: Adam’s
first moment weight, β2: Adam’s second
moment weight, ε: Adam’s correction value

Output: ωt: updated model’s parameters
1 Gt ← SecureFilter(Gt) . Filter byzantine clients

2 gωt ← |Gt|−1
∑

gωu∈Gt

gωu . Average gradient step

3 mt ← β1mt−1 + (1− β1)gωt
4 vt ← β2vt−1 + (1− β2)g2

ωt
5 m̂t ←mt/(1− βt1)
6 v̂t ← vt/(1− βt2)
7 ωt ← ωt−1 − ηm̂t/(

√
v̂t + ε)

8 return ωt = (φt,θt)

B. FedVAE with learning rate decay

In each round of FedVAE, only a relatively small subset of
users participates in the gradient step’s computation causing a
slow learning pace. To mitigate this issue, we can increase
the learning rate “hoping” that bigger gradient steps can
help the training. As we will see in the experimental section
(Section V), this is sub-optimal, and it generally harms the
training as the number of rounds increases. We propose a
decaying learning rate schedule to make the learning stable
and efficient. In particular, we modify Algorithm 2 by adding
the following update just before the return

ωt ← ωt + γt(ωt − ωt−1) (4)

where γt is defined as γt = γδt, γ ≥ 0, δ ∈ [0, 1].
We call γ the learning rate multiplier and δ the decay factor.

Now we show that the parameters update in Equation (4)
is equivalent to changing the learning rate according to the
formula ηt = η(1 + γδt). Let us recall the weights update of
the Adam optimization procedure (Line 5 in Algorithm 2):

ωt ← ωt−1 − η
m̂t√
v̂t + ε

. (5)

Then, by substituting (5) in (4) we obtain

ωt ← ωt + γt(ωt − ωt−1)

= ωt−1 − η
m̂t√
v̂t + ε

+ γt

(
ωt−1 − η

m̂t√
v̂t + ε

− ωt−1
)

= ωt−1 − η
m̂t√
v̂t + ε

− γtη
m̂t√
v̂t + ε

= ωt−1 − (1 + γt)η︸ ︷︷ ︸
ηt

m̂t√
v̂t + ε

.

When δ = 1, no decay is applied, and it is equivalent to
fix the learning rate to η(1 + γ) from the beginning of the
training. Similarly, if δ = 0, then it is equal to use the initial
learning rate η throughout all the training (i.e., Algorithm 1).
With 0 < δ < 1, then given t → ∞ the learning rate will
converge to η. In practice, even with low decay values, such



as δ = 0.9, reaching learning rate values close to η requires
less than an hundred of epochs.

C. Security and privacy of FedVAE

It is well known that the Federated approach helps but
does not guarantee privacy [35]. It has been demonstrated that
an attacker (potentially the server itself) through the gradient
information can partially reconstruct the input data (i.e., the
user’s rating). An off-the-shelf solution may be to employ a
Secure Aggregation approach [36], [37]. Secure Aggregation
would allow the clients to share their gradient updates securely,
even in the presence of an honest-but-curious server. The
communication happens on secure channels, and the encrypted
gradients are shared securely. The server can only access the
decrypted version of the aggregated gradient, while it has no
way to decrypt the single clients’ contributions. The main
practical problem of such an approach is that it requires a
specific set of clients to participate in a particular round. Some
methods try to mitigate this requirement [36], [37], but the
applicability of such protocol is not that obvious. Moreover, it
is computationally more expensive, especially from the clients’
perspective. However, by design, the FedVAE model is based
on Mult-VAE which applies a dropout layer [38] to the input
for regularization purposes. Formally, given a user u and a
dropout rate p ∈ [0, 1], the dropout operation is defined as
∀i ∈ I s.t. rui = 1 then r̂ui = brui, where b ∼ Ber(1− p). In
other words, the (positive) rating of the user u for the item i
is put to zero with probability p.

Computing the dropout can be considered an operation
that performs input perturbation [39]. Input perturbation is a
well-known technique to achieve differential privacy [40]. In
particular, it has been shown that adding noise to the input
data leads to perturbation on the gradient. Applying Gaussian
noise to gradients of an SGD-based optimization algorithm is
demonstrated to be (ε, δ)-differential private for some ε, δ > 0.

The dropout-based perturbation of FedVAE can be approxi-
mated by a clipped Gaussian noise on the positive ratings, that
is, for rui = 1, r̂ui = brui ≈ min(max(0, rui + ξ), 1), where
b ∼ Ber(1 − p), ξ ∼ N (−2p, 1). Even though this approxi-
mation does not allow to directly exploit the results in [40],
it gives some hints about the potential privacy-preserving
capabilities of FedVAE. However, providing a formal analysis
of the differential-privacy of FedVAE is out of the scope of
this paper, and we reserve this for future work.

Regarding the robustness against poisoning attacks (i.e.,
malicious users that inject fake ratings), FedVAE can rely on
the detection mechanism proposed in [13]. Since the server
receives the client’s gradient updates, we can detect byzantine
clients using the gradient-based Krum [34] filter. In Algo-
rithm 2, we refer to this filtering with the function SecureFilter.
The proof of the robustness of this defensive measure is
reported in [34] and [13]. The gradient-based Krum filtering,
in conjunction with the in-design input perturbation, makes
FedVAE robust and secure without adding any particular
computational burden. These characteristics allow FedVAE to

be practically usable both in terms of recommendation quality
and security/privacy.

V. EXPERIMENTS

In this section, we describe the performed experiments to
assess the efficiency and effectiveness of the proposed feder-
ated learning approach. The source code of the experiments is
available as Google Colaboratory notebook 2.

A. Datasets and setting

We compared the different approaches on five benchmark
datasets that are described in the following:
• ml1m: The MovieLens 1M3 data set contains user-movie

ratings collected from a movie recommendation service.
We binarize the explicit ratings by keeping ≥ 4 stars
ratings. Users with less than five ratings are removed.

• citeulike-a: This dataset4 was collected from CiteU-
Like and Google Scholar. The dataset contains articles
associated with users and those are considered as positive
ratings. Users with less than two ratings are removed.

• steam: This dataset5 contains a list of user behaviors
provided by the Steam PC Gaming platform. The be-
haviors included are ‘purchase’ and ‘play’, but we keep,
for each user, a single behaviour with a specific item
disregarding the behaviour’s type. The kept behaviours
are treated as implicit feedback. Users with less than two
feedbacks are removed.

• lastFM: This dataset6 contains social networking, tag-
ging, and music artist listening information taken from
Last.fm online music system. Users with less than two
feedbacks are removed.

• filmtrust: FilmTrust7 is a dataset crawled from the
FilmTrust website 2011. Ratings are in a 1-5 scale, and no
thresholding is applied. Users with less than two ratings
are removed.

Table II reports the details about the datasets. In the experi-
ments, we held out a set of users (Utest ⊂ U) to test/validate the
models, and for each test user u ∈ Utest 80% of her ratings are
used as input, i.e., the known u’s ratings, and the remaining
20% as testing ratings.

To reduce the number of variables between experiments,
we fixed the variational autoencoder architecture to the one
reported in [15]. The Mult-VAE neural network architecture
is symmetric, with the encoder network having the following
structure [|I| ⇒ 600 ⇒ 200], where 200 is the size of the
latent space. In each hidden layer the activation function is a
tanh. We also fixed β = 0.2, and the learning rate η = 0.001
that are the best performing ones in [15]. Differently from [15],
β is not annealed but kept constant during all the training.
Moreover, the dropout rate is fixed to 0.5. For the optimization,

2https://tinyurl.com/155zn06i
3https://grouplens.org/datasets/movielens/1m/
4https://github.com/js05212/citeulike-a
5https://www.kaggle.com/tamber/steam-video-games
6https://grouplens.org/datasets/hetrec-2011/
7https://guoguibing.github.io/librec/datasets.html



TABLE II: Data sets information after the pre-processing:
number of users, number of items, number of ratings, number
of users in the test set, and the size of each batch in each
federated round. Numbers inside the parentheses indicate the
percentage with respect to the total number of users.

Dataset |U| |I| |R| |Utest| R
ml1m 6,034 3,520 575,259 400(6.6%) 250(4%)

citeulike-a 5,551 16,950 210,495 800(14%) 250(4.5%)
steam 6,693 4,943 122,893 103(14%) 250(3.5%)
lastFM 1,884 16,519 91,694 200(10.6%) 150(7.9%)

filmtrust 1,400 1,939 35,252 200(14%) 150(10.7%)

we used the standard values for the Adam’s hyper-parameters,
that is, β1 = 0.9, β2 = 0.999 and ε = 10−8.

We compare results of the following variants:
• Mult-VAE [15]: that is the non-federated baseline upon

which our proposal is based on.
• FedVAE: this is the standard FedVAE variant (Sec-

tion IV-A).
• FedVAEdec: this is the FedVAE variant with the decaying

learning rate. In all the experiments concerning the decay
factor we fixed δ = 0.9.

The learning rate schedule is defined w.r.t. the value of
the unit t, that in Algorithm 1 is defined as a round. In our
experiments, to keep consistencies between rounds and epochs,
we consider the unit t as an epoch. In the federated setting,
an epoch is defined as a sequence of M rounds such that
MR ≥ |U \ Utest| > (M − 1)R, where R is the number of
users per round (see Table II). A user can contribute more
than once, and others may not contribute at all. Thus, E epochs
correspond to EM rounds. We report the results achieved with
the factor γ in the set {1, 3, 5}. Higher values have shown to
be not effective.

It is worth to notice that both FedVAE and Mult-VAE have
not been fine-tuned for these experiments. Most of the hyper-
parameters have been set to the best values reported in [15].
These experiments do not aim to make a thorough comparison
between the batch version (Mult-VAE) with the Federated ver-
sion (FedVAE). FL theory already showed that with t → ∞,
the Federated model converges to the same solution as the non-
Federated version. The purpose of the reported experiments is
to show that FedVAE is effective/efficient and the benefit of
using the proposed adaptive learning rate.

To measure the recommendation quality we used two widely
used ranking-based metrics:
• nDCG@k measures the quality of the prediction based

on the position of an item in the recommended list. In
particular, it uses a monotonically increasing discount to
emphasize the importance of higher ranks versus lower
ones.

• recall@k, differently from the nDCG, considers all items
ranked within the first k to be equally important.

In the experiments we fix the value k = 100 for all dataset
but filmtrust for which k = 20. This difference is due to
the size of the item set, which is rather small compared to the
other considered datasets.

B. Results and discussion

We compared FedVAE and FedVAEdec in terms of the
top-N accuracy as the number of federated rounds increases.
The results are reported in Figure 1. In the plots, we report
FedVAE with different γ values, which means changing the
learning rate of FedVAE according to the rule described in
Section IV-B. Regarding FedVAEdec, the decay value is fixed
to δ = 0.9.

First of all, we can observe that FedVAE (black curve) in all
datasets but filmtrust in 100 epochs converges to the same
nDCG and recall as Mult-VAE. We argue that the training is-
sue on filmtrust is due to the few ratings (and users/items).
Maybe with a smaller network, e.g., fewer neurons in the
hidden layer, the convergence could have been faster and
more stable. Regarding the comparison between FedVAE and
FedVAEdec, we highlight the following interesting behaviors:
• FedVAEdec consistently achieves better or comparable

performance in less epochs/rounds. This is particularly
evident on ml1m, citeulike-a and lastFM. In this
experimental setting, FedVAEdec is also able to achieve
better performance than Mult-VAE. However, we have to
stress that neither method has been fine-tuned.

• The simple increase of the learning rate (via γ) brings
benefit in the first rounds, while it deteriorates the perfor-
mance in the long run. Moreover, learning is highly unsta-
ble. The introduction of the decay schedule (FedVAEdec)
allows retaining the first rounds’ benefit while keeping
stability through the training rounds. This can be easily
seen on steam, lastFM and filmtrust.

• The number of users per round (4% up to ∼ 11%) does
not seem to affect FedVAE. We do not try higher values
because we wanted to test reasonable scenarios where
only a small subset of users participate in each round.

It is also worth to notice that the gain in performance
of FedVAEdec is more noticeable in terms of nDCG. This
means that FedVAEdec helps rearrange the top part of the
rankings, which is a desirable feature. In general, a γ value
of 5 has shown to achieve consistent performance throughout
the datasets. Higher values (not reported here) have shown
highly inconsistent results. From the results, we can observe
that γ represents a trade-off between stability and convergence
speed: values close to zero favor the stability of the learning,
while higher values (close to 5) favor the convergence speed.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a new Federated Learning approach for top-N
item recommendation, dubbed FedVAE. FedVAE is a simple
yet effective and efficient adaptation of the state-of-the-art
Mult-VAE model. Moreover, FedVAE implements effective
measures to cope with potential privacy and security issues.
We also propose an adaptive learning rate schedule that has
empirically shown to improve the efficiency and stability of
the FedVAE training.

In the future, we plan to theoretically study the differential
privacy capabilities of FedVAE. In the paper, we argue that
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Fig. 1: For each dataset: (left) FedVAE vs. (right) FedVAEdec using different values of γ. nDCG and recall metrics are reported.
Side-by-side plots have the same scale (the one on the left side). In all the plots, we reported also the performance of Mult-VAE
(gray dotted curve). In FedVAEdec, δ = 0.9.



the dropout to the input layer can ensure good differential
privacy. However, this must be confirmed through theoretical
analysis. Further analysis needs to be done on the effect of
using an alternative schedule, such as different decays. It
will also be interesting to analyze whether adding a further
layer of perturbations, e.g., directly at the gradient’s level, can
improve privacy without harming the method’s accuracy. We
additionally aim to search for efficient and effective ways to
perform hyper-parameters tuning (especially β and γ) in the
Federated setting. This would hugely improve the practical
applicability of FedVAE. The easiest approach could be to
use a similar annealing schedule, for β, used in [15] at the
server level.
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