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Effective drug combinations in breast, colon 
and pancreatic cancer cells
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Combinations of anti-cancer drugs can overcome resistance and provide new 
treatments1,2. The number of possible drug combinations vastly exceeds what could 
be tested clinically. Efforts to systematically identify active combinations and the 
tissues and molecular contexts in which they are most effective could accelerate the 
development of combination treatments. Here we evaluate the potency and efficacy 
of 2,025 clinically relevant two-drug combinations, generating a dataset 
encompassing 125 molecularly characterized breast, colorectal and pancreatic 
cancer cell lines. We show that synergy between drugs is rare and highly 
context-dependent, and that combinations of targeted agents are most likely to be 
synergistic. We incorporate multi-omic molecular features to identify combination 
biomarkers and specify synergistic drug combinations and their active contexts, 
including in basal-like breast cancer, and microsatellite-stable or KRAS-mutant colon 
cancer. Our results show that irinotecan and CHEK1 inhibition have synergistic 
effects in microsatellite-stable or KRAS–TP53 double-mutant colon cancer cells, 
leading to apoptosis and suppression of tumour xenograft growth. This study 
identifies clinically relevant effective drug combinations in distinct molecular 
subpopulations and is a resource to guide rational efforts to develop combinatorial 
drug treatments.

Single-agent targeted therapies for patients with molecularly defined 
tumours are transforming cancer treatment. Nonetheless, many 
patients still lack effective treatments and pre-existing or acquired 
resistance limits the clinical benefit of even the most advanced medi-
cines2. Empirically developed combinations of chemotherapy drugs 
are used to treat cancer patients1. Combination therapies using tar-
geted anti-cancer agents have the potential to overcome resistance, 
enhance the response to existing drugs, reduce dose-limiting single 
agent toxicity and expand the range of treatments2, as exemplified by 
triple combination therapy for patients with BRAF-mutant colorec-
tal cancer3. However, our ability to predict effective combinations is 
limited4. Molecularly annotated cancer cell line panels5 are increas-
ingly being used to identify active drug combinations4,6–8. Studies 
performed so far have limitations, including testing relatively few 
combinations, using few molecularly targeted drugs, or using a lim-
ited number and sub-optimal range of drug concentrations. Further-
more, previous studies have employed a limited number of cell lines4 
(a maximum of 85), making it difficult to link combination activity 
and molecular context.

 
Drug combination screens in cancer cells
To systematically identify active drug combinations, we used the 
Genomics of Drug Sensitivity in Cancer (GDSC) cell line screening plat-
form5 to measure the effects of 2,025 pairwise drug combinations (Sup-
plementary Table 1) in 125 cell lines (Supplementary Table 2), including 
breast (n = 51), colorectal (n = 45; hereafter referred to as colon) 
and pancreatic (n = 29) cancer (Fig. 1a). We produced 296,707 drug 
combination viability measurements for 108,259 combination–cell  
line pairs, making it the second largest drug combination dataset by 
number of combinations and experiments, with the largest number 
of cell lines tested4,6–8.

Each cell line has mutation, copy number alteration, methylation and 
gene expression data available (Extended Data Fig. 1a, Supplementary 
Table 2). We selected drugs for each tissue including chemotherapeu-
tics and targeted agents approved by the United States Food and Drug 
Administration (FDA), drugs in clinical development and investigational 
compounds (Extended Data Fig. 1b, c). We enriched for drugs against 
key targets and pathways (n = 20), such as ERBB2 inhibitors in breast 
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and drugs targeting MAPK signalling in colon and pancreas (Extended 
Data Fig. 1d, Supplementary Table 1). We tested 121 combinations in 
all three tissues.

To screen efficiently we used a 2 × 7 concentration matrix, or 
‘anchored’ approach. We screened each anchor compound at two 
optimised concentrations and a discontinuous 1,000-fold (7-point) 
dose–response curve of the library compound (Extended Data Fig. 1e). 
Single-agent and combination viability measurements were fitted per 
cell line and multiple parameters derived including: (1) anchor viability 
effect, (2) library and combination viability effect at the highest-used 
library concentration (library Emax and combination Emax, respectively), 
and (3) the estimated library drug concentration producing a 50% 
viability reduction (IC50) for the library and combination (Extended 
Data Fig. 1f). We compared observed combination response of cells to 
the Bliss independence-predicted response9 based on monotherapy 
activity, and classified drug combinations on the basis of shifts beyond 
Bliss in potency (ΔIC50; that is, increased sensitivity) or efficacy10 (ΔEmax; 
that is, reduced cell viability) (Extended Data Fig. 1g). We classified 
combination-cell line pairs as synergistic if, at either anchor concentra-
tion, combination IC50 or Emax was reduced eightfold or 20% viability 
over Bliss, respectively (Extended Data Fig. 1h). Stringent quality control 
was applied to all screening data: technical and biological replicates 
were highly correlated and library IC50 values were highly correlated 
with IC50 values from independent screens (Extended Data Fig. 2a–e, 
Supplementary Table 2).

Dimensional reduction (using t-distributed stochastic neighbour 
embedding (t-SNE)) on the 121 pan-tissue combinations showed moder-
ate mixing of cell lines by tissue, indicating that tissue has some effect on 
combination response, but is not on its own a major driver of variation 
(Extended Data Fig. 2f), as previously described by others8. Clustering 
by ΔIC50 for all tissue-specific and pan-tissue combinations, we observed 

that combinations fall into three major groups: (1) broadly active, 
(2) minimally active, and (3) variable activity (Fig. 1b, Extended Data 
Fig. 2g–i). All data are available for download or exploration through 
GDSC Combinations, https://gdsc-combinations.depmap.sanger.ac.uk/.

The landscape of drug interactions
Overall, 5.2% of the 108,259 combination–cell line pairs showed syn-
ergy, with the highest rate in pancreas (7.2%), then colon (5.4%) and 
breast (4.4%). Only 27.5% of synergistic combination–cell line pairs 
were observed at both high and low anchor concentrations, suggest-
ing that synergy is detected within a specific range of concentrations 
(Fig. 2a) and pointing to the utility of aggregating synergy calls from 
both anchor concentrations. Synergy occurred most frequently in 
a background of weak to moderate single-agent activity, enhancing 
existing drug responses (Extended Data Fig. 3a). 54.9% of synergistic 
measurements affected either efficacy (22.2%) or potency (32.7%), 
whereas 45.1% affected both, indicating that these two metrics describe 
complementary responses (Fig. 2b). Although synergy overall was 
rare, most frequently observed in less than 3 cell lines per tissue, 192 
combination–tissue pairs (7.8%; 60 breast, 52 colon and 80 pancreas) 
were synergistic in at least 20% of cell lines from their respective tissue 
(Supplementary Table 1). The relative frequency and context specificity 
of synergy was retained independent of the synergy threshold applied 
(Extended Data Fig. 3b).

Rescreening a subset of 45–59 frequently synergistic combinations 
(51 breast, 45 colon and 59 pancreas) in 30 cell lines per tissue resulted 
in a validation dataset of 4,881 combination–cell line pairs. Primary and 
validation datasets correlated well for single-agent and combination 
response metrics (r = 0.69–0.84, all P < 0.001), and synergy classifica-
tions were consistent for all tissues (F-score: 0.62–0.7; recall: 0.61–0.76; 
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Fig. 1 | A large-scale drug combination screen. a, 2,025 drug combinations 
were screened in breast, colon and pancreas cancer cell lines (n = 125). Synergy 
was evaluated on the basis of efficacy (ΔEmax) and potency (ΔIC50) for 108,259 
drug responses and integrated with cell line molecular features to identify 
biomarkers. b, Heat map of ΔIC50 values for 1,275 combinations in 51 breast 

cancer cell lines: clustering by combination and annotation by combination 
type, anchor and library pathway. ΔIC50 limits are clipped to −4 and 4, rows are 
sorted by conditional mean ΔIC50 on cell line identity. Chemo., 
chemotherapeutic agent.
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precision rate: 0.56–77; original screening set defined as ‘positive’) 
(Extended Data Fig. 3c–e). Differences in classifications were frequently 
borderline cases and larger synergy effects were most reproducible 
(Extended Data Fig. 3f).

Of the 65 drugs in our screen, 10 were chemotherapeutic agents 
and 31.2% of all combinations contained one (28.7%) or two (2.5%) 
chemotherapeutic agents. Chemotherapeutic–chemotherapeutic 
combinations had lower ΔIC50 and ΔEmax shifts than combinations with 
targeted compounds (Extended Data Fig. 3g), resulting in low synergy 
rates (21 out of 2,337 combination–cell line pairs (0.9%)) compared with 
3.2% and 6.1% for chemotherapeutic–targeted and targeted–targeted 
combinations, respectively.

We observed significant enrichment of synergy when chemothera-
peutics were paired with drugs targeting apoptotic signalling and cell 
cycle inhibitors (hypergeometric test, adjusted P ≤ 0.05). More than 76% 
of synergies between chemotherapeutics and cell cycle inhibitors per tis-
sue occurred with AZD7762 (CHEK1/2), pairing well with 5-fluorouracil, 
gemcitabine, cisplatin and irinotecan (Extended Data Fig. 3h).

Combinations with the apoptosis regulator navitoclax (an inhibi-
tor of BCL-2, BCL-XL and BCL-W) comprised 25.4% of all synergistic 
combination–cell line pairs (1,418 out of 5,580), despite only repre-
senting 5.4% of combinations (109 out of 2,025). Seventy-eight per 
cent (137 out of 175) of combination–tissue pairs with navitoclax were 
synergistic in at least three cell lines (average per combination–tissue:  
19.6% synergy). Navitoclax showed a synergy rate of more than 50% 
when combined with TOP1 inhibitors (irinotecan in pancreas and 
camptothecin in breast and colon) or microtubule stabilisers (doc-
etaxel or paclitaxel) and destabilisers (vinorelbine) (Extended Data 
Fig. 3i). Targeted drugs that were synergistic with navitoclax were 
mostly tissue-specific (Fig. 2c). Navitoclax had particularly high syn-
ergy rates in breast when combined with either of the three aurora 
kinase (AURK) inhibitors alisertib, tozasertib or ZM447439 (61%, 60% 
and 53%, respectively). Navitoclax with alisertib and ZM447439 were 

tested and had reproducible synergy in the validation screen (94% 
and 88%, respectively). Notably, synergy was frequently observed for 
at least two out of three navitoclax–AURKi combinations in all PAM50 
subtypes (63% (12 out of 19 cell lines) in basal-like, 73% (8 out of 11) in 
LumA and 75% (3 out of 4) in LumB), with the exception of HER2 cell 
lines (17%, 1 out of 6 cell lines) (Fig. 2d). These data support ongoing 
efforts to use combinations suppressing anti-apoptotic adaptation in 
cancer11, but indicate that in defined cancer types, pairing with specific 
targeted drugs is most likely to be effective.

For the 67% of combinations involving two targeted compounds, 
we investigated pathway relationships between drug targets and their 
synergy rate. We overlaid drug targets for all 57 targeted compounds 
onto a protein–protein interactome of 14,431 protein nodes and 110,118 
edges based on the IntAct12 database, filtered to unique human pro-
tein–protein interactions (confidence threshold: 0.5). We calculated 
the shortest finite network distance between the drug target nodes and 
found that on average combinations whose targets are between one 
and two nodes away from each other yield the most synergy (Fig. 2e), as 
reported previously4, which indicates that there is an optimal average 
target distance to induce synergy.

To further understand how targeted–targeted drug combinations 
work at the pathway level, we grouped combinations into unique 
curated pathway pairs by tissue on the basis of the nominal therapeu-
tic target(s) of each drug (excluding navitoclax combinations, as dis-
cussed separately, Supplementary Table 1). Eighteen per cent (25 out 
of 136) of pathway pairs were significantly enriched in synergy in at 
least one tissue (hypergeometric test, P ≤ 0.005, false discovery rate 
(FDR) ≤ 5%) (Fig. 2f). Five pathway pairs were enriched in synergy in 
all three tissues, including dual targeting of receptor tyrosine kinase 
(RTK) signalling, targeting of RTK signalling with downstream PI3K 
or MAPK pathways, or targeting of PI3K and MAPK pathways. Taking 
PI3K and MAPK pathways as examples, we examined inter-pathway 
versus intra-pathway combinations. Inter-pathway targeting of PI3K 
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and MAPK pathways resulted in 2–5 times higher synergy rates than the 
tissue average: breast: 10.1% (versus 4.4%), colon: 17.1% (versus 5.4%) and 
pancreas: 36.4% (versus 7.2%). Conversely, intra-pathway targeting of 
the MAPK or PI3K pathways showed below or close to average rates of 
synergy (MAPK combinations: 2.2%; PI3K combinations: 6.7%; all com-
binations: 5.2%) (Extended Data Fig. 3j). Despite low intra-PI3K path-
way synergy, we detected a distinct combination-specific synergy of 
MK-2206 (AKT1/2) combined with MTOR inhibitors OSI-027 or AZD8055 
in breast (24% and 25% synergy rates, respectively), particularly in the 
PAM50 subtype HER2 (50–75%; 4 or 6 out of 8 cell lines) (Extended Data 
Fig. 3k). This combination may work by inhibiting feedback activation 
of AKT in HER2 breast cancer due to mTOR inhibitor-induced activation 
of PI3K signalling13. Numerous MAPK and PI3K inter-pathway combina-
tions are currently in clinical trials, and preliminary data suggest that 
intermittent drug administration, isoform-selective PI3K inhibitors 
and site-specific delivery of drugs could maximise clinical activity 
while increasing tolerability14.

Overall, we find that drug synergy, on the basis of complemen-
tary potency and efficacy metrics, is rare but frequent for a subset 
of combinations. Synergy most frequently enhances weak to modest 
single-agent drug response and rates are highest for combinations of 
targeted compounds. Combinations containing the apoptosis regula-
tor navitoclax show high synergy rates. Whereas some trends are univer-
sal across all three tissues, such as high synergy rates for inter-pathway 
targeting of MAPK and PI3K pathways, other synergistic effects are 
tissue-specific, including navitoclax plus AURK inhibition in breast.

Combination response molecular markers
Associations between molecular features and drug response, referred 
to here as biomarkers, can provide insights into the cellular behaviour 
that dictates response to drug treatment and can inform clinical devel-
opment of therapies. We used GDSCTools15 to identify multi-omics 
biomarkers of combination (ΔIC50, ΔEmax and combination Emax) and 
single-agent (IC50) responses. Multiple analyses were performed, group-
ing cell lines in molecular contexts, including pan-tissue (3 tissues), 
individual tissues and seven molecular ‘baskets’ representing specific 
molecular subgroups (TP53, KRAS, PIK3CA, breast PIK3CA, basal-like 
breast cancers, colon KRAS and colon microsatellite-stable (MSS)) 
(Fig. 1a). TP53, KRAS and PIK3CA are the most frequently mutated genes 
across the cell lines, and the intra-tissue molecular baskets represent 
cancers with unmet clinical need.

We performed 7,941,266 analysis of variance (ANOVA) tests, out 
of which 8,078 associations were significant and of large effect size 
(P ≤ 0.001, FDR ≤ 5%, Glass deltas for positive and negative populations 
both ≥ 1) (Fig. 1a, Supplementary Table 3). Biomarkers of all feature 
types were found for all drug response inputs, except for CRIS and 
PAM50 classifications (Extended Data Fig. 4a). Some 3,280 biomarkers 
(40.6%) were significantly associated with monotherapy IC50 including 
multiple previously described associations5 such as taselisib (PI3K 
inhibitor) sensitivity in PIK3CA-mutant cell lines (Extended Data Fig. 4b). 
We identified 4,798 significant combination response biomarkers, of 
which 18.4%, 15.8% and 65.7% were associated with potency (ΔIC50), effi-
cacy (ΔEmax) and combination activity (combination Emax), respectively 
(Fig. 3a, Extended Data Fig. 4c). Of note, 76.8% of the ΔIC50 and ΔEmax 
biomarkers are associated with either ΔIC50 (43.0%) or ΔEmax (33.8%) 
but not with both, consistent with the complementary nature of these 
synergy metrics. Of the 2,025 combinations, 28.7% had at least one 
combination response biomarker (for combinations with one or more 
biomarkers: median: 2, range: 1–152; Extended Data Fig. 4d). We identi-
fied more than 2,050 combination biomarkers unique to the molecular 
basket analyses, demonstrating the benefit of testing for biomarkers 
within defined molecular subgroups.

Of the 1,645 ΔIC50 and ΔEmax associations, we identified only three 
in pancreas-specific analyses: of these, low CDH1 gene expression, 

which is associated with epithelial-to-mesenchymal transition, sen-
sitised cells to irinotecan (TOP1 inhibitor) plus AZD7762 (CHEK1/2 
inhibitor) (Extended Data Fig. 4e). Among known combination bio-
markers, we identified BRAF mutation as a biomarker for dabrafenib 
(BRAF) paired with EGFR inhibitors afatinib and sapitinib screened 
in colon (Extended Data Fig. 4f), with synergy occurring exclusively 
in BRAF-mutant cell lines16 (4 or 6 synergistic cell lines, respectively). 
Combinations of EGFR antibodies and BRAF inhibitors are a clinically 
approved regimen in BRAF-mutant metastatic colorectal cancer17. 
These examples show that our screen can identify known clinical 
biomarkers and candidate markers of combination response war-
ranting further investigation.

To understand the relationship between drug targets and the molecu-
lar features in cells that influence drug synergy, we overlaid single-agent 
and combination biomarkers onto the previously described IntAct 
protein–protein interactome. We mapped 42.2% (633 out of 1,501) 
of features onto protein nodes; mapping was impossible for certain 
features such as clinical subtyping. We calculated the shortest finite 
network distance between each of the drug target and feature nodes 
for 582 and 124 unique combination and single-agent biomarkers, 
respectively (Extended Data Fig. 5a). Both types of biomarkers have a 
median shortest node distance of 3 (interactome diameter or maximum 
distance = 12); however, sensitivity biomarkers that were the drug target 
themselves (that is, a shortest distance of zero) were rarer for combina-
tions (2.75%) than for single-agents (12.33%; Extended Data Fig. 5a). This 
was confirmed using Reactome18, an alternative interactome (Extended 
Data Fig. 5b), and randomly shuffling biomarkers to simulate entirely 
false-positive associations eliminated the observation (Extended Data 
Fig. 5c for IntAct and Extended Data Fig. 5d for Reactome). These data 
are consistent with synergy being mediated through combined drug 
activity and indicate that drug combination biomarkers can be difficult 
to determine by single-agent activity alone.

Examples of combination biomarkers that are drug targets are high 
gene expression of PARP1 in olaparib (PARP1/2 inhibitor) combina-
tions, and a copy number gain of CDK12, ERBB2 and MED24 (feature: 
‘gain:cnaPANCAN301’) as predictor of sensitivity to ERBB2-targeting 
combinations such as lapatinib (targeting EGFR and ERBB2) with vori-
nostat (a histone deacetylase inhibitor) in breast. Low expression of 
NRAS predicted response to dabrafenib (BRAF inhibitor) plus trametinib 
(MEK1/2 inhibitor) in breast, consistent with NRAS expression modulat-
ing BRAF inhibitor sensitivity19. This represents a biomarker one node 
away from a combination drug target (Fig. 3b). Mutation of PIK3CA pre-
dicted response to linsitinib (which targets IGF1R) + MK-2206 (AKT1/2 
inhibitor) in a pan-tissue KRAS-mutant context, and is two nodes away 
from targets of both drugs (Fig. 3c).

Considering the combination–tissue pairs with more than three syn-
ergistic cell lines, we find that 164 out of 662 (24.8%) have at least one 
associated ΔEmax or ΔIC50 biomarker (Fig. 3d, Supplementary Table 4).  
We found several examples in which the identified feature associated 
with combination response is closely associated with synergy. For 
instance, all seven breast cell lines synergistic for the combination of 
sapitinib (EGFR and ERBB2/3 inhibitor) and JQ1 (an inhibitor of BRD2, 
BRD3, BRD4 and BRDT) show a gain in ERBB2 (Fig. 3e). Similarly, six out 
of nine breast cell lines that show synergy for MK-2206 (AKT1/2 inhibitor) 
and alpelisib (PI3Kα inhibitor) have a mutation in PTEN. In a pan-tissue set-
ting, KRAS mutation significantly associates with sensitivity to trametinib 
(MEK1/2 inhibitor) and MK-2206 (AKT1/2 inhibitor), and 74% of synergistic 
cell lines are KRAS mutants (Fig. 3f). These examples demonstrate that 
many synergistic combinations can be linked with a biomarker.

Our comprehensive analysis identified drug combination response 
biomarkers, including for many synergistic combinations, which could 
be used for patient stratification in pre-clinical and clinical follow-up. 
Combination biomarkers are more likely than single agents to be emer-
gent properties arising from combinatorial drug activity in the context 
of signalling networks.
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Combinations in cancers with unmet need
We leveraged the number and molecular diversity of the cell lines to 
investigate synergy rate, biomarkers and clinical trials for combina-
tions screened in three populations with unmet clinical need: patients 
with basal-like breast cancer (n = 22), MSS colon cancer (n = 31) or 
KRAS-mutant colon cancer (n = 25).

We compared combination synergy rates within each of these 
populations with the other cell lines from the same tissue (Fig. 4a, 
Extended Data Fig. 6a, b). Between 3% and 5% (n = 107) of all combi-
nations have synergy in at least 25% of cell lines from these popula-
tions (41 combinations for basal-like breast cancer, and 28 and 38 
for MSS and KRAS-mutant colon cancer, respectively), with some 
having exquisite specificity of synergy in the population of interest. 
Of these 75 unique combinations, we identified 11 combinations with 
matching trials on clinicaltrials.gov for basal-like breast (10 trials) or 
MSS colon (1 trial) cancer (Fig. 4b, Supplementary Table 5). Cisplatin 
(a DNA crosslinker) combined with gemcitabine (a pyrimidine anti-
metabolite) or MK-1775 (WEE1 and PLK1 inhibitor; using MK-1775 as 
anchor) was highly synergistic in basal-like breast cancer (47% and 
59% synergy rate, respectively) and both combinations are in clini-
cal trials in clinically related triple-negative breast cancer (Fig. 4a).  
Synergy for cisplatin + gemcitabine was tested and robust in the 
validation screen (88% synergy overlap). Furthermore, several com-
binations showed repurposing potential: for instance, combined 
MK-1775 (WEE1 and PLK1 inhibitor) and irinotecan (TOP1 inhibitor) 
treatment, screened with camptothecin as the TOP1 inhibitor, had 

a 26.7% synergy rate in MSS colon cancer (versus 6.7% in microsatel-
lite unstable (MSI)), is currently in a trial in rhabdomyosarcoma and 
blastomas (NCT02095132). Phase 1 safety studies of navitoclax (BCL2, 
BCL-XL and BCL-W inhibitor) paired with chemotherapeutics such as 
gemcitabine, docetaxel and paclitaxel are ongoing, all of which had 
high synergy rates in basal-like breast (63%, 41%, and 38%; Fig 4a), 
with navitoclax + gemcitabine, the only one of the three that was 
part of the validation screen, having robust synergy (100% overlap 
between screens).

A third or more of top-ranking combinations in populations of unmet 
need had at least one ΔEmax or ΔIC50 biomarker, some of which were 
identified within the molecular basket that defines the population 
(Fig. 4b, Supplementary Table 5). For example, in the KRAS-mutant 
colon group, cell lines with loss of ERCC3 were associated with sensi-
tivity to linsitinib (IGF1R inhibitor) plus MK-2206 (AKT1/2 inhibitor) 
(Extended Data Fig. 6c). Our data can identify specific combinations in 
populations of unmet need, provide support for ongoing clinical trials, 
and identify biomarkers and repurposing opportunities for combina-
tions already in trials.

Irinotecan and CHEK1i synergize in colon
One of the top synergistic combinations was camptothecin (TOP1 
inhibitor) with AZD7762 (CHEK1/2 inhibitor). Camptothecin is an 
analogue of the standard-of-care chemotherapeutic irinotecan 
used to treat colon cancer, and CHEK1 inhibitors can potentiate 
responses of DNA-damaging compounds through abrogation of DNA 
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damage-induced cell cycle arrest20–22. This combination yielded high 
synergy rates in MSS colon cancer cell lines (62.1% and 53.3% for both 
orientations), with significantly higher potency and efficacy in MSS cell 
lines than in MSI cell lines (Student’s t-test, P < 0.005; Fig. 4c, Extended 
Data Fig. 6d, Supplementary Table 5). Furthermore, KRAS-mutant colon 
cell lines showed high synergy rates for this combination (46% and 48%) 
and KRAS–TP53 double-mutant cell lines had significantly stronger 
combination responses than KRAS single-mutant cell lines (Extended 
Data Fig. 6e, Supplementary Table 5). Thus, we identified two poten-
tial patient populations, MSS and KRAS–TP53 double-mutant colon 
cells, showing notable benefit from inhibition of both CHEK1/2 (CHEKi) 
and TOP1 (TOP1i).

We next combined camptothecin with six CHEK1/2 inhibitors with 
different selectivity. CHEK1-selective inhibitors SAR-020106 and rabu-
sertib produced large shifts in potency (median ΔIC50: 8.5- to 10.5-fold 
shift) and efficacy (median ΔEmax: 0.22–0.24) in combination with camp-
tothecin in 4 cell lines, whereas the CHEK2-selective inhibitor CCT-
241533 did not (Fig. 4d). Combining SN-38, the active metabolite of the 
TOP1 inhibitor irinotecan, with small interfering RNA (siRNA) against 
CHEK1, but not CHEK2, resulted in a synergistic viability reduction 
(Extended Data Fig. 7a–d), and at least sevenfold reduction in the IC50 
of SN-38 (Extended Data Fig. 7e). Our results indicate that combination 
effects of TOP1i + CHEKi are primarily mediated through inhibition 
of CHEK1. This is corroborated by reports of the potentiating effect 
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of CHEK1 inhibition, but not CHEK2 inhibition, with DNA-damaging 
agents such as topoisomerase 1 inhibitors23.

In colony formation assays, combining low concentrations of 
SN-38 with rabusertib (CHEK1 inhibitor) resulted in fewer colonies 
and increased cell death (Fig. 4e, Extended Data Fig. 7f–i) than either 
drug alone, or when combining SN-38 with CCT241533 (CHEK2). Cell 
death effects of SN-38 + rabusertib surpassed an additive response for 
many colon cell lines (Fig. 4e), particularly in cell lines with weak to 
moderate response to SN-38 alone, consistent with CHEK1 inhibition 
potentiating the effect of TOP1 inhibition. The combination effects 
ranged from less than additive to robust potentiation, with all MSS and 
most KRAS–TP53 double-mutant cell lines showing at least additive 
response (Fig. 4e). The combination induced activation of the apoptosis 
markers caspase 3/7 and PARP cleavage (Fig. 4f, Extended Data Fig. 7g, i;  
For gel source data, see Supplementary Fig. 1).

We engrafted three colon cancer cell lines (LS-1034, SW837 and SNU-
81) in NOD/SCID mice and treated them for 24–35 days with irinotecan 
(TOP1 inhibitor), rabusertib (CHEK1 inhibitor), or with a combination 
of the two drugs. In LS-1034 and SW837, which showed more cell 
death with combined TOP1i and CHEK1 inhibition than SNU-81 in vitro 
(Fig. 4e), the effect of the combination therapy on end-of-treatment 
tumour volumes and on tumour growth inhibition over time was more 
pronounced than that for irinotecan alone (Welch’s t-test, P < 0.05) 
(Fig. 4g, Extended Data Fig. 8a). In SNU-81, although the response to 
combination therapy was more similar to treatment with irinotecan 
alone, the resumption of tumour growth after drug withdrawal was 
delayed in mice treated with the combination compared to those 
treated with irinotecan alone (log-rank Mantel–Cox test; end point 
750 mm3), suggesting a fitness disadvantage (Fig. 4h). Combination 
treatment led to more DNA double strand breaks (phospho-H2AX posi-
tive cells), less proliferative and more apoptotic tumour cells than in 
irinotecan-treated LS-1034 tumours 72 h after treatment start (Fig. 4i; 
Extended Data Fig. 8b).

These data validated combined TOP1 and CHEK1 inhibition as a 
potent combination in MSS and KRAS–TP53 double-mutant colon 
cancer cells, and demonstrate the potential for follow-up of other 
synergistic drug combinations identified here.

Discussion
The scale and breadth of our study provides insights into combination 
response. We establish that evaluating combination potency and effi-
cacy are complementary, a recently introduced concept10, and could 
identify combinations leading to dose reduction, improved efficacy or 
both, relative to single agents. We demonstrate that synergy is rare, as 
has been described6,7, that it varies within tissues and between molecu-
lar backgrounds, and that combinations of targeted drugs are more 
likely to synergise than combinations involving chemotherapy. This 
indicates that combinations of targeted agents in molecularly defined 
patient populations are most likely to be synergistic. We identified 
many highly synergistic combinations, notably for cancers of unmet 
clinical need. We recommend detailed validation of promising drug 
combinations reported here. As proof of concept, we validated in vitro 
and in vivo a combined irinotecan and CHEK1 inhibition. Although 
combinations of CHEK1i with DNA-damaging agents have been linked 
to TP53- and KRAS-mutant cancer24,25, to our knowledge, this is the 
first report of notable activity in MSS and KRAS–TP53 double-mutant 
colon cancer. Clinical trials combining CHEKi with chemotherapy show 
variable toxicity and anti-tumour activity, particularly for unstratified 
patient populations. Since irinotecan is approved for the treatment 
of colon cancer, and rabusertib (a CHEK1-selective inhibitor) has an 
acceptable safety profile in phase 1 trials26, our data indicate that this 
combination—with appropriate consideration of potential toxicity—
could be particularly effective for patients with MSS or KRAS–TP53 
double-mutant colon cancer.

The data presented here are a rich resource and augment existing 
genomic, transcriptomic and functional datasets for cell lines available 
as part of the Cancer Dependency Map27. Future screens in additional 
cancer types, focused studies using more complex culture models, 
and screening of higher-order combinations, will support and extend 
our observations. The testing of combinations in non-cancer cell lines 
may help to estimate clinical toxicity. Our findings that drugs with 
weak single-agent activity, and those separated by one or two nodes in 
a protein–protein interaction network are most likely to yield a syner-
gistic interaction could improve the design of future screens. Similarly, 
our data could improve computational approaches, which currently 
lack training datasets, for predicting effective drug combinations in 
different contexts4,28,29. In conclusion, the data and analyses presented 
here are fertile ground for catalysing new discoveries and a basis for 
effective rational combinatorial therapies.
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Methods

Statistics
Statistical tests are two-sided Welch’s t-tests unless otherwise specified. 
Enrichment analyses were performed using the phyper function for 
hypergeometric tests in R. Multiple testing correction was performed 
based on the Benjamini–Hochberg method. Biomarker analysis was 
performed using GDSCTools as described below. Box plots depict the 
median value as the centre bar, first and third quartiles as box bound-
aries, and whiskers extending to either first quartile minus 1.5 × the 
inter-quartile range (lower boundary), or third quartile plus 1.5 × the 
inter-quartile range (upper boundary). Points beyond this region are 
individually plotted.

Cell lines
Cell lines were acquired from commercial cell banks. All cells were 
grown in RPMI medium (supplemented with 10% FBS, 1% penicillin/
streptomycin, 1% glucose, 1 mM sodium pyruvate) or DMEM/F12 
medium (supplemented with 10% FBS, 1% penicillin/streptomycin) 
(Supplementary Table 2) at 37 °C in a humidified atmosphere at 5% 
CO2. To prevent cross-contamination or misidentification, all cell lines 
were profiled using a panel of 94 single nucleotide polymorphisms 
(Fluidigm, 96.96 Dynamic Array IFC). Short tandem repeat (STR) analy-
sis was also performed, and cell line profiles were matched to those 
generated by the cell line repository. All cell lines are routinely tested 
for mycoplasma and are negative for mycoplasma. Further information 
on the cell lines used in this study, including their source and molecular 
profiling datasets can be found in Supplementary Table 2 and in the Cell 
Model Passports database30 (https://cellmodelpassports.sanger.ac.uk).

Compounds
Compounds were sourced from commercial vendors (Supplementary 
Table 1). DMSO-solubilized compounds were stored at room tempera-
ture in low humidity (<12% relative humidity), low oxygen (<2.5%) envi-
ronment using storage pods (Roylan Developments). Water-solubilized 
compounds were maintained at 4 °C. For 8 compounds their identities 
and purity were confirmed by UHPLC-MS. Identity was confirmed by 
mass spectrometry (6550 iFunnel Q-TOF LC/MS, Agilent Technolo-
gies) using electrospray ionization in positive and/or negative modes. 
Anchor and library concentrations were drug- and tissue-specific and 
determined using a two-step process. First, drug concentrations were 
selected based on primary literature, in vitro data of minimum concen-
trations inhibiting relevant target activity and viability31, clinical data 
indicating achievable human plasma concentrations, or where known 
concentrations that induce sensitivity in a biomarker positive cell line. 
Additionally, a pilot screen, testing a 1,000-fold concentration range of 
each drug in 9–13 cell lines per tissue (breast: 13, colon: 9, pancreas: 12),  
was performed and concentrations optimized to give a range of sensi-
tivities across the cell lines. Anchor drugs were screened at two fixed 
concentrations with a 2-, 4- or 10-fold difference between them to 
give moderate activity (50–90% viability) across the cell lines within 
each cancer type. Screening concentrations (Supplementary Table 1) 
typically did not exceed 10 μM and were in the range of human plasma 
exposures achievable in patients32. Library drugs were screened at seven 
concentrations spanning a 1,000-fold range with a non-equidistant log2 
design of four 4-fold steps followed by two 2-fold dilution steps starting 
at the lowest used concentration. The use of this design was based on 
the observation that higher concentrations were most informative and 
would benefit from denser profiling. As an alternative to μM concentra-
tion ranges, drug concentrations and IC50 values can be visualized on a 
standardized log2 scale, with 9 being equivalent to the highest screened 
concentration. Each screening plate contained five replicates of the 
anchor alone (high and low concentrations) and four replicates of the 
library alone (full dose response). A single replicate of the combination 
dose response was performed in the primary screen.

Screening
Cells were transferred into 1,536-well plates in 7.5 μl of their respec-
tive growth medium using XRD384 (FluidX) dispensers. The seeding 
density was optimised prior to screening to ensure that each cell line 
was in the exponential growth phase at the end of the assay. For this, 
six seeding densities with a two-fold dilution step were each dispensed 
into 224 wells of a single 1,536-well assay plate (XRD384 (FluidX) dis-
penser) and cells were incubated for 96 h. Cell number was quantified 
using CellTiter-Glo 2.0 (Promega). The maximum density tested varied 
based on cell type, typically 5,000 cells per well for suspension cells and 
1,250 cells per well for adherent cells (Supplementary Table 1). Assay 
plates were incubated at 37 °C in a humidified atmosphere at 5% CO2 
for 24 h then dosed with the test compounds using an Echo555 (Lab-
cyte). Final DMSO concentration was typically 0.2%. Following dosing 
with compounds assay plates were incubated, and the drug treatment 
duration was 72 h. To monitor cell growth over the duration of drug 
treatment, a parallel undrugged control plate was assayed at the time 
of drug treatment and referred to as a ‘day = 1’ plate. This was repeated 
each time that a cell line was screened. To measure cell viability, 2.5 μl 
of CellTiter-Glo 2.0 (Promega) was added to each well and incubated 
at room temperature for 10 min; quantification of luminescence was 
performed using a Paradigm (Molecular Devices) plate reader.

Assay plate quality control
All screening plates contained negative control wells (untreated wells, n = 6; 
DMSO-treated wells, n = 126) and positive control wells (blanks—that is, 
medium-only wells, n = 28; staurosporine-treated wells, n = 20; and 
MG-132 treated wells, n = 20) distributed across the plate. We used 
these positive and negative control wells to test whether the plates 
meet defined quality control criteria. A maximum threshold of 0.18 
was applied to the coefficient of variation (CV) of the DMSO-treated 
negative controls (CV = σN/μN, where σN is the s.d. of the negative control 
and μN is the mean of the negative control). Using the DMSO-treated 
negative control (NC1) and the two positive controls (PC1 and PC2), 
we determined Z-factors (also known as Z′; Z-factor = 1 – 3 × (σP + σN) /  
(|μP − μN|), where σN and σP are the s.d. of the negative and positive 
controls, respectively, and μN and μP are the mean of the negative and 
positive controls, respectively). The Z-factors were calculated for all 
plates that indicate sensitivity of the cell lines to the positive control 
(ratio of NC1:PC ≥4). In case a cell line is insensitive to both positive con-
trol drugs, the Z-factors were calculated based on blank wells instead. 
Z-factors were required to exceed a minimum threshold of 0.3 for indi-
vidual plates and a mean of 0.4 across all plates within a screening set. 
Where a cell line was sensitive to both positive controls, it had to pass 
Z-factor thresholds for both positive controls. Plates that did not meet 
these requirements were excluded from the study. Overall, 3,106 (>70%) 
of 1,536-well microtitre screening plates passed coefficient of variation 
and Z-factor thresholds. Wherever possible, failed plates were repeated, 
leading to dataset completeness of more than 96% for all three tissues 
(breast: 96.5%, colon: 99.8% and pancreas: 99%).

Curve fitting
For each plate, the raw fluorescent intensity values were normalised 
to a relative viability scale (ranging from 0 to 1) using the blank (B) 
and negative control (NC) values (viability = (Fluorescence of treated 
cells − B)/(NC − B)). Anchor viability was determined from the mean 
across the five replicate wells screened on each plate. All library drug 
dose responses were fitted as a two-parameter sigmoid function33.  
The dose–response curves for the combinations were fitted similarly, but 
with two notable differences: (1) the cell line parameters were obtained 
from the library drug fits; (2) the maximum viability was capped at 
the anchor viability (rather than from 0 to 1). We use the 50% (inflec-
tion) point of the sigmoidal curve between zero and the anchor 
viability for both the expected Bliss and the observed combination.  

https://cellmodelpassports.sanger.ac.uk


We extended the model to nest each replicate within the drug or cell line 
to obtain stable estimates from the replicate experiments. To assess the  
quality of the fits, we computed the root mean square error (RMSE) and 
excluded curves with RMSE > 0.2 (equalling 1.5% of measurements). 
The Emax and the IC50 are based on the fitted curves. Emax is reported at 
the highest tested concentration for the drug.

Classifying synergy
To detect synergy we compared observed combination responses to 
expected combination responses. For the latter, we used Bliss inde-
pendence9 of the response to the anchor and the library drug alone. 
Conceptually, every point on the Bliss dose response curve is defined 
as the product between the anchor viability and the corresponding 
point on the library dose response curve. Shifts in potency (∆IC50) 
and in efficacy (∆Emax) were calculated as the difference between the 
observed combination response and expected Bliss (∆IC50 = Bliss IC50 −  
combination IC50, and ∆Emax = Bliss Emax − combination Emax). ∆IC50 is 
reported on a log2 scale.

A given measurement was synergistic if the combination IC50 was 
less than twice the highest screened library concentration and either 
the ∆IC50 or the ∆Emax was above a specific threshold: ∆IC50 ≥ 3 (23 is 
equivalent to an 8-fold shift in IC50) or the ∆Emax ≥ 0.2 (20% shift in viabil-
ity). Replicate measurements of ‘anchor-library–cell line’ tuples were 
summarized as synergistic if half or more of the replicate measure-
ments showed synergy. To summarize both anchor concentrations, 
we considered a ‘combination–cell line’ pair as synergistic if synergy 
was observed at either anchor concentration.

Reproducibility
To assess the reproducibility within a screen, we generated 2–18 bio-
logical replicates for 4–5 cell lines per tissue (breast: 5 (AU565, BT-474,  
CAL-85-1, HCC1937, MFM-223); colon: 4 (HCT-15, HT-29, SK-CO-1, 
SW620); pancreas: 5 (KP-1N, KP-4, MZ1-PC, PA-TU-8988T, SUIT-2)). 
Single-agent and combination responses were averaged across tech-
nical replicates (typically 3 per biological replicate) and correlated 
(Pearson correlation coefficient; minimum of 322 biological replicate 
pairs per ‘metric-tissue’ pair).

To assess the reproducibility of the screen, we rescreened a subset 
of combinations in each tissue (breast: 51 combinations in 34 cell lines; 
colon: 45 combinations in 37 cell lines; pancreas: 59 combinations in 
29 cell lines; Supplementary Table 2). Drug combination responses 
were averaged across replicates within a screen and key metrics of 
single-agent and combination response were correlated between the 
two screens (Pearson correlation coefficient). To determine the quality 
of synergy calls, the original screen was considered as ground truth and 
numbers of true positive (TP), false positive (FP), true negative (TN) 
and false negative (FN) synergistic combination–cell line pairs were 
calculated. These were used to calculate F-score (F-score = TP/(TP + 0.5 ×  
(FP + FN))), recall (recall = TP/(TP + FN)), and precision (precision =  
TP/(TP + FP)) per tissue. To investigate the strength of effects of 
ΔEmax and ΔIC50 of FP and FN measurements, the distance to ΔEmax 
and ΔIC50 synergy thresholds was calculated for each ‘anchor 
concentration-library–cell line’ tuple based on combination responses 
averaged across replicates (n = 9,570 tuples).

Biomarker analysis
Matrices of single-agent (library IC50) and combination response (com-
bination Emax, ∆IC50, ∆Emax) metrics were used as input for GDSCTools 
ANOVAs15. To obtain a single combination Emax, ∆IC50 and ∆Emax value per 
cell line–combination pair, responses were averaged across replicates 
for each anchor concentration-library–cell line tuple and the combi-
nation metrics were compared for the two anchor concentrations: 
the larger of the two ∆IC50 and ∆Emax values and the smaller of the two 
combination Emax values were used for biomarker discovery in order to 
capture the largest effects of the combination. A range of binary feature 

files were used, including multi-omics binary event matrices (MOBEMs) 
composed of genes known to be mutated, amplified or homozygously 
deleted in human cancers5 (number of features = 1,073), CELLector 
signatures34 (n = 227 for breast, n = 261 for colon), RNA-seq gene expres-
sion35 (n = 1,184; original dataset accession number E-MTAB-3983), 
CRIS36 and PAM5037,38 classifications. Gene expression was limited to 
a curated panel of genes composed of targets of the drugs used, addi-
tional members of the BCL2 family and apoptosis-associated genes39, 
genes annotated as clinically relevant for cancer40, and genes whose 
mutations were listed as features in the MOBEMs5,40 and CELLector5,34,40 
feature files. Continuous values of gene expression were binarized 
by z-scoring each variable across the subset of cell lines used for the 
molecular context tested, and substituting a z-score ≥ 2 for a binary 
value representing that feature being elevated (that is, ‘Gene_up’), 
and a z-score ≤ −2 for a binary feature representing that feature being 
decreased (that is, ‘Gene_down’). Overall significance thresholds were 
P ≤ 0.001 and FDR ≤ 5%.

Network overlays
An interactome of binary, undirected interactions was built in 
the iGraph R package (https://cran.r-project.org/web/packages/
igraph/citation.html) using the Reactome18 human interactions 
file (accessed April 2021), and all human interactions reported in 
IntAct12 (accessed July 2021). All non-protein nodes and duplicated 
interactions were removed, resulting in a non-directed network 
of 5,556 Uniprot protein nodes and 25,731 edges for the Reactome 
interactome. For the IntAct interactome, an evidence filter of 0.5 
was applied, and all non-protein nodes and duplicate interactions 
were removed, resulting in a non-directed network of 14,431 protein 
nodes and 110,118 edges. Drug targets and biomarkers features were 
manually mapped to their Uniprot proteome identifiers (UPID), with 
overall 57 out of 66 (86.3%) drug target profiles being mapped to 
one or more UPIDs, and 633 out of 1,501 (42.2%) biomarker features 
being mapped for one or more UPIDs. UPID mapping was not possible 
for chemotherapeutics, PAM50, CRIS, and not done for methyla-
tion sites not associated with a cancer driver gene. A distance matrix 
between all nodes was calculated using iGraph: infinite values were 
reported for nodes that did not exist in the same network. When 
calculating the shortest distance between drug targets or drug tar-
gets and biomarkers, distances were calculated for all target-target 
or target-biomarker pairs and the smallest distance was reported. 
For example, for a drug with two targets combined with a drug with 
three targets, the shortest of six target-target distances would be 
reported. To simulate false positive biomarker associations, the bio-
marker features used in the genuine distance plot were randomly 
shuffled without replacement, before re-calculating the shortest  
distance between the new, ‘false’ biomarker and drug targets.

Clinical trials
Clinical trials data were extracted from the API at https://clinicaltrials.
gov/ (accessed March 2021) using an R script and searches in the format 
‘drug1 + drug2 + cancer + tissue’. Obtained lists of trials were manually 
curated to ensure that drugs were exact matches and to remove trials 
using radiotherapy alongside drug combination treatment. Searches 
were limited to 81 combinations with ≥ 25% synergy in populations of 
clinical need.

Specificity of CHEK inhibition
To test CHEK specificity we seeded SW620, SW837, SNU-81 or LS-1034 
cells in 96-well plates (770–2,750 cells per well) and treated them with 
camptothecin (anchor, 0.025 μM) in combination with six CHEK inhibi-
tors (libraries, all dosed at 1 μM highest used concentration unless 
indicated): AZD7762 (CHEK1, CHEK2), prexasertib (CHEK1, CHEK2), 
MK-8776 (CHEK1, CHEK2, CDK2), SAR-020106 (CHEK1), rabusertib 
(CHEK1) and CCT241533 (CHEK2; 2 μM). After 96 h of drug treatment 
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viability was measured with CellTiter-Glo 2.0 (CTG; Promega). Drug 
response curves were fitted as described above.

For siRNA experiments, SW837 and SNU-81 cells (8,000 and 16,000 cells 
per well, respectively) were reverse transfected with siRNAs of a non-targeting 
pool as negative control (siNT; Dharmacon, D-001810-10-05), polo-like 
kinase 1 (PLK1) pool as positive control (Dharmacon, L-003290-00-0010),  
CHEK1 pool (Dharmacon, L-003255-00-0005) or CHEK1 individual 
siRNAs (LQ-003255-00-0005), and CHEK2 pool (Dharmacon, L-003256- 
00-0005) using lipofectamine RNAiMax (Thermofisher). After 30h, 
0.025 μM or a dose range of 0.001–9 μM SN-38 or DMSO were added 
and viability was measured 72 h later with CTG. Signal was normalised 
to siNT+DMSO controls. Statistical significance between conditions was 
tested using a two-sided Welch’s t-test.

Real time cell death and caspase-3/7 activity
Cells were seeded in 96-well plates (typically 5,000–16,000 cells per 
well). After 24 h drugs (0.125 μM staurosporine (positive control), 
0.025 μM SN-38, 0.75 μM rabusertib, 0.75 μM CCT241533) or DMSO 
and real-time fluorescent reagents for detection of cell death (CellTox 
Green; 1:1,000; Promega) or caspase-3/7 activity (IncuCyte Caspase-3/7 
Red; 1:1,000; Essen Bioscience) were added. Pictures were recorded 
every 2 h for 96 h using an Incucyte (Essen Bioscience). Recorded 
fluorescent signals were measured as mean intensity per cell area and 
normalised to time 0 h.

Colony formation
Cells were seeded in 6-well plates at 50,000 cells per well. Drugs (0.1 nM 
SN-38, 0.5 μM rabusertib, 0.5 μM CCT241533) or DMSO were added on 
day 1 and were refreshed through medium change on day 8. 14 days 
after drug treatment started the cells were fixed in 4% paraformal-
dehyde (Sigma-Aldrich) in PBS for 10 min at room temperature, and 
then stained with Giemsa (10%; Sigma-Aldrich) for at least 30 min at 
room temperature.

Western blot
SW837 (1 million) or SNU-81 (1.5 million) cells were seeded in 10 cm 
dishes and treated with drugs (0.025 nM SN-38, 1.5 μM rabusertib, 
1.5 μM CCT241533, 2 μM MG-132 (positive control)) or DMSO the day 
after. After 72 h, live and dead cells were collected and lysed in RIPA 
buffer (Sigma-Aldrich) supplemented with 1 mM DTT (Cayman Chemi-
cals) and protease and phosphatase inhibitors (Roche). Total protein 
content was determined using Bradford reagent (ThermoFisher) and 
around 20 μg of lysate were loaded onto a 4–12% Bis-Tris gel (Invitrogen) 
for SDS–PAGE followed by protein transfer from the gel onto a PVDF 
membrane. Membranes were blocked in 5% milk (in TBST) and incu-
bated overnight with the appropriate antibodies. Blots were washed in 
TBST and incubated with secondary antibody for 1 h at room tempera-
ture. Blots were washed in TBST before the signal was enhanced with 
Super Signal Dura and visualised. The following primary antibodies 
were used for immunoblot analysis: anti-PARP (Cell Signaling Technolo-
gies, 9542, 1:1,000; rabbit), and anti-β-tubulin (Sigma-Aldrich, T4026, 
1:5,000; mouse) as loading control.

For experiments with knockdown of CHEK1 and CHEK2, SW837 or 
SNU-81 cells were reverse transfected with siNT, siCHEK1 or siCHEK2 as 
described above. Cells were collected 72 h after transfection and lysed 
in RIPA buffer (Sigma-Aldrich, R0278) and protein concentrations were 
determined using the BCA assay (Novagen, 71285-3) as per manufac-
turer’s instructions. SDS–PAGE and western blots were conducted as 
described above and the following primary antibodies were used for 
immunoblot analysis: anti-CHEK1 (Santa Cruz Biotechnology, sc-8408, 
1:200; mouse), anti-CHEK2 (Cell Signaling Technologies, D9C6, 1:1,000; 
rabbit), and anti-β-actin (Abcam, ab6276, 1:5,000; mouse) as a load-
ing control. Anti-Mouse IgG (GE Healthcare, NA931) and anti-rabbit 
(GE Healthcare, NA934; 1:2,000) HRP-linked secondary antibodies 
were used as secondary antibodies. PageRuler Plus Prestained Protein 

Ladder, 10–250 kDa (ThermoFisher, 26620) was used as a molecular 
weight marker.

In vivo tumour xenograft studies
A total of 4.5 × 106 LS-1034 cells, 5 × 106 SW837 cells or 2.5 × 106  
SNU-81 cells in 30% Matrigel were injected subcutaneously into the right 
flank of male and female 6-week-old NOD/SCID mice. Once tumours 
reached an average volume of approximately 300–400 mm3, mice were 
randomized into treatment arms, with n = 12 (irinotecan and irinote-
can + rabusertib) or n = 6 (vehicle and rabusertib) per group. Rabusertib 
was administered orally, 200 mg kg−1 daily (vehicle: 16.66% Captisol; 
CyDex, in 25 mM phosphate buffer, pH 4); irinotecan was administered 
intraperitoneally, 25 mg kg−1 twice a week (vehicle: physiological saline). 
Tumour size was evaluated once weekly by calliper measurements, 
and the approximate volume of the mass was calculated using the for-
mula (4π/3) × (d/2)2 × (D/2), where d is the minor tumour axis and D is 
the major tumour axis. Results were considered interpretable when 
a minimum of 4 mice per treatment group reached the prespecified 
endpoints (at least 3 weeks on therapy or development of tumours with 
average volumes larger than 2,000 mm3 within each treatment group 
in trials aimed to assess drug efficacy; at least 3 weeks after treatment 
cessation or development of individual tumours with volumes larger 
than 750 mm3 in survival experiments aimed to assess tumour control 
by therapy). A major tumour axis of 20 mm is the endpoint permitted 
by the Italian Ministry of Health in authorization no. 806/2016-PR, in 
accordance with national guidelines and regulations. This endpoint 
was not exceeded in any experiment. Operators were blinded during 
measurements. In vivo procedures and related biobanking data were 
managed using the Laboratory Assistant Suite41. All animal procedures 
were approved by the Institutional Animal Care and Use Committee 
of the Candiolo Cancer Institute and by the Italian Ministry of Health.

Statistical significance for tumour volume changes during treatment 
was calculated using a two-way ANOVA. For endpoint comparisons, 
statistical analysis was performed by two-tailed unpaired Welch’s t-test. 
Statistical analyses in the survival experiments were performed by 
log-rank (Mantel–Cox) test. For all tests, the level of statistical signifi-
cance was set at P < 0.05. Graphs were generated and statistical analyses 
were performed using the GraphPad Prism (v9.0) statistical package.

Immunohistochemistry
Morphometric quantitation of Ki67, active caspase-3, and 
phospho-H2AX immunoreactivity was performed in xenografts from 
mice treated with vehicle (until tumours reached an average volume of 
1,500 mm3) or the indicated compounds (after 72 h). Tumours (n = 1–3 
for each treatment arm) were explanted and subjected to histologi-
cal quality check and immunohistochemical analysis with the follow-
ing antibodies: mouse anti-Ki-67(MIB-1) (Dako, GA626, 1:100), rabbit 
anti-cleaved caspase-3 (Asp175) (Cell Signaling, 9661, 1:200) and rab-
bit anti-phospho-histone H2AX (Ser139) (20E3) (Cell Signaling, 9718, 
1:400). After incubation with secondary antibodies, immunoreac-
tivities were revealed by DAB chromogen (Dako). Images were cap-
tured with the Leica LAS EZ software using a Leica DM LB microscope. 
Morphometric quantitation was performed by ImageJ software using 
spectral image segmentation. Software outputs were manually verified 
by visual inspection of digital images. Each dot represents the value 
measured in one optical field (40× for Ki67 and phospho-H2AX; 20× 
for active caspase-3), with 2–10 optical fields (Ki67 and phospho-H2AX) 
and 3–5 optical fields (active caspase-3) per tumour depending on the 
extent of section area (n = 12–30 for Ki67 and phospho-H2AX; n = 8–15 
for active caspase-3). The plots show mean ± s.d. Statistical analysis by 
two-tailed unpaired Welch’s t-test.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.



Data availability
All drug sensitivity data generated for this study are included in this pub-
lished article (and its supplementary information files) or available in 
a Figshare repository (https://doi.org/10.6084/m9.figshare.16895371, 
https://doi.org/10.6084/m9.figshare.16843600 and https://doi.
org/10.6084/m9.figshare.16843597) and GDSC Combinations data-
base (https://gdsc-combinations.depmap.sanger.ac.uk/). The cell 
line genomic datasets are available from the Cell Model Passports 
database (http://cellmodelpassports.sanger.ac.uk/). The following 
databases were accessed for this study: IntAct database (http://www.
ebi.ac.uk/intact), the Reactome database (https://reactome.org/), the 
Cell Model Passports database (http://cellmodelpassports.sanger.
ac.uk/) and the GDSC database (http://www.cancerrxgene.org/). Users 
have a non-exclusive, non-transferable right to use data files for inter-
nal proprietary research and educational purposes, including target, 
biomarker and drug discovery. Excluded from this licence are use of 
the data (in whole or any significant part) for resale either alone or in 
combination with additional data/product offerings, or for provision 
of commercial services. Source data are provided with this paper.
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