A thermal event in the Dolpo region (Nepal): a consequence of the shift from orogen perpendicular to orogen parallel extension in central Himalaya?

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1848787 since 2022-03-11T16:00:34Z

Published version:
DOI:10.1144/jgs2020-261

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
A thermal event in the Dolpo region (Nepal): a consequence of the shifting from orogen perpendicular to orogen parallel extension in central Himalaya?

Laura Nania1,2, Chiara Montomoli3,4, Salvatore Iaccarino 3, Gianfranco Di Vincenzo4, Rodolfo Carosi3

1 Dipartimento di Scienze della Terra, Università degli Studi di Firenze, via La Pira 4, 50121, Firenze, Italy
2 Dipartimento di Scienze della Terra, Università di Pisa, via S. Maria 53, 56126, Pisa, Italy
3 Dipartimento di Scienze della Terra, Università di Torino, via Valperga Caluso 35, 10125, Torino, Italy
4 IGG-CNR via Moruzzi 6, Pisa, Italy

ORCID ID: LN, 0000-0003-2186-7984; CM, 0000-0002-0364-5395; SI, 0000-0002-9844-6005; GD, 0000-0002-9669-9789; RC, 0000-0002-6561-7090

Present addresses: LN, Dipartimento di Scienze della Terra, Università degli Studi di Firenze, 50121, Italy

*Corresponding author (e-mail: laura.nania@unifi.it)

Abstract: In the Lower Dolpo Region (central Himalaya), structurally above the South Tibetan Detachment System (STDS), blastesis of static micas have been recognized. Nevertheless, until now, very little work has been done to constrain the tectonic meaning and the timing of this static mica growth. In this work we investigate samples from the STDS hanging wall, characterized by three populations of micas, defining (i) S1 and (ii) S2 foliations, and (iii) M3 static mineral growth cutting both foliations. New geochronological 40Ar/39Ar analyses on the microtexturally-different micas, complemented by microstructural and compositional data, allow to place temporal constraints on the static (re)crystallization at the STDS hanging wall. Results point out homogeneous chemical compositions and ages of micas within the investigated samples, irrespective of the structural positions. Phlogopite and muscovite on S1 and S2, and post-kinematic biotite yielded 40Ar/39Ar ages within 14-11 Ma with decreasing ages upward. We suggest that mica (re)crystallized under static conditions during a late thermal event at low structural levels (c. 15-18 km), after cessation of the ductile activity of the shear zone. We hypothesize that this later thermal event is kinematically linked to the switch from orogen perpendicular to orogen parallel extension in central Himalaya.

Supplementary material: [Electron microprobe analyses of biotite and white mica] is available at https:

Abbreviated title: Late thermal event in Lower Dolpo

The evolution of orogenic belts is characterized by a long-lasting and complex history leading to a final pattern in which different tectono-metamorphic stages are often recognizable (Ramsay 1967; Williams and Compagnoni 1983; Foster and Lister 2005; Passchier and Trouw 2005). As far as deformation
associated with mountain building processes is concerned, using overprinting criteria at the outcrop scale, different deformation (and/or metamorphic) phases are classically described in many natural examples (Ramsay 1967; Williams and Compagnoni 1983; Fossen et al. 2019 and references therein). However, whether these different phases are related to a continuum, episodic or progressive evolution of the belt and how to correctly identify, separate, and correlate the different deformational phases, represent often a difficult task to figure out, and are still a matter of debate in the geological community (Tobisch and Paterson 1988; Lister et al. 2001; Fossen 2019; Fossen et al. 2019).

The Himalaya is a natural laboratory for modelling polyphase deformations during a collisional orogenic setting (Le Fort 1975; Fuchs 1981; Hodges 2000; Law et al. 2004; Yin 2006; Carosi et al. 2018, 2019). Diachronous still ongoing collision and indentation of the Indian into the Eurasia Plate started at ~59-54 Ma (Hu et al. 2016; Najman et al. 2017; Parsons et al. 2020). Two main tectonic events (see Hodges 2000 for a review), classically referred as Eohimalayan phase (the collisional stage, D1) and as Neohimalayan phase (the main exhumation stage, D2), are recognized in Himalaya. The D1 resulted in crustal thickening and southwest-verging isoclinal folds (Ratschbacher et al. 1994; Carosi et al. 2007; Aikman et al. 2008; Antolin et al. 2011; Dunkl et al. 2011; Montomoli et al. 2017a) under prograde metamorphism. The D2 phase developed with the southward imbrication of the lithotectonic units, determining the main structuring of the belt (Searle et al. 2007; Webb et al. 2017; Carosi et al. 2018). The D2 phase is associated to lower pressure, higher temperature conditions (commonly within the sillimanite-stability field) followed by cooling and decompression. The exhumation of the metamorphic core, the Greater Himalayan Sequence, from mid-crustal levels, occurred during the D2 phase due to the activity of regional-scale shear zones, i.e., the Main Central Thrust Zone, the High Himalayan Discontinuity and the South Tibetan Detachment System (STDS) (see Montomoli et al. 2013 for a review). Within the Tethyan Himalayan Sequence (THS), at the structural top of the tectonic pile of the Himalaya, the D2 is well represented by S2 foliations and northeast-verging folding structures. In northern Himalaya, a late (hereafter defined) D3 phase, still ongoing, is documented by a tectonic transition in structural style from the orogen normal extension to an E-W orogen parallel extension, responsible for crustal thinning. The D3 mainly affects the THS (from its base within the STDS, Fig. 1a) toward the southern Tibetan Plateau (Blisniuk et al. 2001; Hurtado et al. 2001). As the D3 develops mostly at shallow crustal levels, it is typically associated with fault breccias and calcite veins with hydrothermal muscovite (Godin et al. 1999). Regional-extended N-S trending grabens, such as the Tibrikot fault system and the Thakkhola Graben in Central Nepal (Godin et al. 1999; Blisniuk et al. 2001; Garziona et al. 2003; Godin 2003; Larson et al. 2019; Brubacher et al. 2020), the Kung Co Graben (Lee et al. 2011), the Yadong Gulu Graben (Dunkl et al. 2011), and the Cona Graben in Bhutan (east of the Yalaxiangbo Dome, Dunkl et al. 2011; Fig. 1a) are main examples of D3-related structures. Also, partial melting and doming (Blisniuk et al. 2001; Godin 2003; Jessup et al. 2008, 2019; Larson et al. 2019; Brubacher et al. 2020) in the northern sector of the belt (North Himalayan dome in Fig. 1a), occur.

Although a lateral variability is present, the ages of the three main Himalayan events D1, D2 and D3 are well distinguishable, falling in fairly distinct temporal ranges, as: 48/44-25 Ma for the D1 phase (Hodges et al. 1996; Godin et al. 1999, 2001; Carosi et al. 2010; Dunkl et al. 2011); 27-15 Ma for the D2 phase (Guillot et al. 1994; Godin et al. 2006b; Crouzet et al. 2007; Leloup et al. 2010; Dunkl et al. 2011; Carosi et al. 2018).
et al. 2013; Iaccarino et al. 2017b; Soucy La Roche et al. 2018a, b; Lihter et al. 2020), with final cooling ages recorded up to the late Miocene (e.g., McDermott et al. 2015); and, 17-15 Ma for the initiation of the D3 phase in the northern Himalaya (Godin 2003; Dunkl et al. 2011; Lee et al. 2011; Nagy et al. 2015; Larson et al. 2019; Brubacher et al. 2020; see Jessup et al. 2019 for a review). Particularly, the D3 phase coincides with the elevation increase of the Tibetan Plateau (Royden et al. 2008), and two drops in the convergence rate between India and Eurasia, at c. 20 Ma and 13-11 Ma (see also Larson et al. 2019 with references). Commonly, the first drop of convergence rate, coeval with the ending of the STDS shearing and the initiation of the Karakoram fault zone (Fig. 1a, Valli et al. 2007), is linked to the break-off of the Indian Plate (Replumaz et al. 2010). The second convergence rate drop, coeval to the cooling of the STDS and the major N-S graben development (Ratschbacher et al. 2011), has been linked to the coupling between the upper crust (THS metasediments) and the mid-crust (high-grade rocks of the Greater Himalayan Sequence), with an eastward flowing (e.g., Clark and Royden 2000; Larson et al. 2019).

A late post-kinematic blastesis of large micas (typically biotite) in sheared rocks of the STDS and at the bottom of the THS overprints and crosscuts the S1 and S2 foliations. These post-kinematic large micas are a common feature across the Himalaya and have been previously recognized in Bhutan by Gansser (1983), and in the Lower Dolpo in Nepal by Carosi et al. (2007). A biotite growth in pelitic and carbonate-rich sediments, like those commonly affected at the STDS hanging wall, typically requires a temperature of at least c. 400 °C (Ferry 1976; Bucher and Grapes 2011). This suggests that the large micas can be linked to a thermal overprinting of the STDS, as also observed in central Himalaya (Kali Gandaki valley) by Godin et al. (1999). However, whether this thermal effect occurred shortly after the end of the STDS movement or subsequently, e.g., during the D3 event, has not been addressed in depth until now. Indeed, very little work has been done to constrain the post-kinematic micas possible tectonic meaning, as well as their timing. In this contribution, we investigate poly-deformed rocks of the THS cropping out in the Lower Dolpo Region (central Himalaya), characterized by different tectonic foliations defined by aligned mica and by a later static overprint of biotite growth. We present new 40Ar/39Ar data completed through either the laser step-heating and the laser in situ techniques on micas from the different microstructural positions, complemented by compositional data acquired through electron microprobe analyses and by microstructural observations. By comparing 40Ar/39Ar age results of samples from different structural positions with independent local and regional geological constraints, we assign our results to a later thermal event. This event was responsible for the post-kinematic mica growth and the (at least partial) resetting of the 40Ar/39Ar systematics of micas aligned on previous fabrics.

Geological setting

In central Himalaya (Fig. 1a, b) the main architecture can be schematized by the imbrication of four main lithotectonic units, which are: (1) the Neogene-Quaternary molasse sediments of the Subhimalayan unit (out of the geological sketch map in Fig. 1); (2) the middle-to-low grade metamorphic rocks of the Lesser Himalayan Sequence; (3) the middle-to-high grade metamorphic rocks of the Greater Himalayan Sequence (GHS), representing the mid-crustal core of the belt; (4) and the Tethyan Himalayan Sequence (THS). The Lesser Himalayan Sequence and the GHS units (Fig. 1a, b) consist of Precambrian to lower Palaeozoic metasediments and orthogneisses (Le Fort 1971; Pécher 1975; Vannay and Hodges 1996;
Larson and Godin 2009). The upper part of the GHS, made of a thick sequence of upper amphibolite facies calcilicate-bearing marbles and metasediments (e.g., Colchen et al. 1980; Searle 2010; Carosi et al. 2014), reached the highest pressure (in the kyanite stability field) during the D1 phase and it is commonly intruded by Oligo-Miocene leucogranite (Guillot et al. 1993; Vannay and Hodges 1996; Carosi et al. 2002, 2014; Visonà and Lombardo 2002; Searle and Godin 2003; Visonà et al. 2012; Cottle et al. 2015; Montomoli et al. 2017b). Structurally above (Fig. 1a, b), the THS consists of low-grade to sedimentary rocks (Frank and Fuchs 1970; Fuchs 1977; DeCelles et al. 2002; Godin 2003; Carosi et al. 2007). The tectonic boundary between Lesser Himalayan Sequence and the GHS is represented by the Main Central Thrust Zone, a thick heterogeneous north-dipping ductile shear zone with a top-to-the-south sense of shear (Searle et al. 2008 and Martin 2017 for recent reviews), affecting rocks with both Lesser Himalayan Sequence and GHS protoliths affinity during the D2 phase (Fig. 1a, b). Within the GHS, a Late Oligocene-Miocene high-temperature shear zone, referred as High Himalayan Discontinuity (Carosi et al. 2010, 2018, 2019), occurs. The High Himalayan Discontinuity identifies two GHS slices, a lower GHS, and an upper GHSu, respectively. In the Lower Dolpo region, in central Himalaya, the Toijem Shear Zone (TSZ) represents the first recognized segment of High Himalayan Discontinuity (Fig. 1b; Carosi et al. 2007, 2010). At higher structural levels, the top-down-to-the-north low-angle STDS defines the tectonic boundary between the GHS and the THS (Caby et al. 1983; Burg and Chen 1984; Burchfiel et al. 1992; Brown and Nazarchuk 1993). The STDS is defined by a lower ductile detachment zone (the main feature of the system) and an upper brittle fault (e.g., see Carosi et al. 1998; Searle et al. 2003; Iaccarino et al. 2017b; Kellett et al. 2018). The lower ductile detachment, well documented in central Himalaya, involves both the upper part of the GHS and the base of the THS (Carosi et al. 1998, 2002), coupling amphibolite metamorphic facies rocks (Fig. 1b; Fig. 2a, b) of the GHS against greenschist-facies to subgreenschist-facies metasediments of the THS, including marble and metapsammitic rocks (Carosi et al. 1998; Parsons et al. 2016; Iaccarino et al. 2017a; Kellett et al. 2018).

Structural setting of the South Tibetan Detachment System and Tethyan Himalayan Sequence in Lower Dolpo

In the study area (Lower Dolpo Region, Western Nepal), the D1 phase is well preserved in the greenschist facies to non-metamorphic rocks of the THS, where it is related to southwest-verging isoclinal folds (F1) (Carosi et al. 2002, 2007, 2010). The D2 phase (Fig. 2a, b) is the main deformational event and represents the only one that can be recognized within the STDS shear zone (Carosi et al. 2002). In the Lower Dolpo, the STDS is a 2 km-thick ductile shear zone, striking nearly E-W and shallowly dipping to the N (10-20°) (Carosi et al. 2002, 2013) affecting medium to high grade marble and impure marble of the GHS and low-grade marble of the THS (Carosi et al. 2002, 2007). The D2 phase is testified by a S2 foliation, varying from a pervasive and continuous schistosity mainly marked by dark mica (Fig. 2c), within the STDS-sheared rocks, to a spaced cleavage defined by white mica, above in the THS (Fig. 2d) (Carosi et al. 2002, 2007). In the greenschist facies to non-metamorphic packages of the THS, well above the STDS upper limit, the D2 resulted in northeast-verging, tight, km-scale folds (Fig. 2b, see also Carosi et al. 2002, 2007), alternatively interpreted as F1 northeast-verging folds, transposed by the later D2 tectonic event (Kellett and Godin 2009). In Western Nepal, ~50 km westward to the study area,
the end of the STDS ductile shearing is constrained at 23–25 Ma by U–(Th)–Pb monazite and zircon ages on a large undeformed leucogranite body, the Bura Buri granite (Fig. 1b), intruding both the GHS and the THS, and cutting the STDS (Bertoldi et al. 2011; Carosi et al. 2013).

From the upper part of the STDS, up to almost 1 km above, at the bottom of the THS (Fig. 2a, b), static biotite porphyroblasts, with a poikiloblastic fabric, cut both the S1 and S2 (Fig. 2d). Randomly oriented, small quartz, zircon and Ilmenite inclusions are observed within biotite porphyroblasts (Fig. 2e). These porphyroblasts occupy the same structural position of the millimetre-size biotite described in Carosi et al. (2007). Structures linked to the D3 phase are poorly recognized in the study area; however, toward the east (from the southern Tibet to the Mustang region of Nepal), the N-S trending Thakkhola Graben, linked to the D3 phase (corresponding to the D5 phase of Godin 2003), occurs. In the Upper Mustang region, northeast to our study area, the western boundary of this structure is represented by the Dangardzong fault, deforming the pelitic schist of the THS, which has been related to the E-W extension (Larson et al. 2019 with references). The recent time constraints on undeformed plutonic rocks (from the Mugu leucogranite) in the footwall of the Dangardzong fault, coupled with fabric analysis on quartz (by an automated fabric analyser) in the deformed pelitic schist, support that the tectonic change to orogen parallel extension occurred at ~17 Ma (Larson et al. 2019). Moreover, westwards of the study area, in the Karnali valley (Farwestern Nepal), the Gurla Mandhata–Humla fault, a NW-striking, strike-slip–dominated shear zone, overprints the STDS (Murphy et al. 2002; Murphy and Copeland 2005; Nagy et al. 2015 with references). It represents a prime example of structure related to the D3 phase, affecting also the GHS rocks involved by the STDS in central Himalaya, associated to an S3 foliation dated between 13-10 Ma (Nagy et al. 2015).

Methods

Three field-oriented samples were collected at different structural levels from the STDS (THS-affinity rocks) to the THS and studied with petrographic optical microscopy on thin sections cut parallel to the mineral lineation and perpendicular to the main foliation (Fig. 1b and Fig. 2a, b for sample locations). Foliations are classified into continuous and spaced foliations according to Passchier and Trouw (2005).

Polished thin and thick (for 40Ar/39Ar dating only for sample D18-10-64, see below) sections were examined using a Scanning Electron Microscope (SEM - Philips XL 30 operating at 20 kV) at the Dipartimento di Scienze della Terra, University of Pisa. Electron Microprobe analyses (EMPA) were performed by a JEOL 8200 Super Probe, at the Dipartimento di Scienze della Terra "Ardito Desio", Università di Milano Statale (Italy). Full chemical datasets are listed in supplementary materials (Table S1). Structural formulas are calculated on the basis of 11 oxygens.

Mineral separation and 40Ar/39Ar analyses were completed at IGG-CNR (Pisa, Italy). 40Ar/39Ar analyses were performed using both the laser step-heating and the laser in situ techniques. Step-heating analyses were conducted on samples D20-10-69 and D18-10-64, both characterized by dark mica belonging to a single structural domain (the main foliation S2 in sample D20-10-69, which strikes parallel to the STDS trend, and the post-kinematic static phase in sample D18-10-64, see Table 1). Dark mica was separated through standard separation techniques. Due to the complex microstructural features of sample D20-
10-49, $^{40}\text{Ar}/^{39}\text{Ar}$ analyses were completed using the laser \textit{in situ} technique on a rock chip. Based on detailed back-scattered electron (BSE) imaging, a rock chip \sim9 mm in diameter was drilled from a polished thick (\sim0.4 mm thick) section using a diamond core drill. The thickness of biotite flakes was checked in a mineral separate from the same sample and resulted to be in the order of c. 100 μm. Samples, after cleaning by alternating deionized water and methanol, were wrapped in aluminium foil and irradiated in the TRIGA reactor at the University of Pavia (Italy), along with the monitor Fish Canyon Tuff sanidine. Samples were irradiated in three distinct batches: D18-10-64 was irradiated for 2 hours, D20-10-69 for 5 hours and the rock chip from sample D20-10-49 for 60 hours. The neutron flux was determined by total fusion analyses of grains of the Fish Canyon Tuff sanidine, which were melted using a continuous wave CO$_2$ laser (New Wave Research MIR10–30 CO$_2$ laser system). Values of the irradiation parameter J for each sample were calculated by parabolic interpolation between the analysed standards. Step-heating experiments were performed using a continuous wave infrared diode-pumped Nd:YAG (neodymium-doped yttrium aluminium garnet) laser, defocused to a \sim2 mm spot size. \textit{In situ} $^{40}\text{Ar}/^{39}\text{Ar}$ analyses were completed through an ultraviolet laser beam, produced by a pulsed Nd:YAG laser (frequency quadrupled and Q-switched). The ultraviolet laser, operating at 20 Hz and 0.5–1 mJ per pulse, was focused to \sim10 μm and repeatedly rastered, by a computer-controlled x–y stage, over areas typically within 0.010–0.015 mm2 (see supplementary materials, Table S2) and a few ten micrometres deep. Argon isotope compositions for step-heating experiments were determined by a MAP215–50 single-collector noble gas mass spectrometer, fitted with a secondary electron multiplier. Gas purification (10-12 min, including 2 min of lasering) was achieved by two SAES AP10 GP MK3 getters held at 400 °C, one SAES C-50 getter held at room temperature and a liquid nitrogen cold trap. Blanks were analysed every three to four analyses. A polynomial function was fit to blanks analysed during the day of acquisition, and unknown analyses were corrected based on the time of measurement. Maximum blanks are given in the supplementary materials (Table S2). More details are given in Di Vincenzo and Skála (2009). Argon isotope compositions for \textit{in situ} experiments were instead completed through an ARGUS VI (Thermo Fisher Scientific) multi-collector noble gas mass spectrometer. Ar isotopes from 40 to 37 were acquired using Faraday detectors, equipped with 1012 Ω resistors for ^{40}Ar and ^{38}Ar and 1013 Ω resistors for ^{39}Ar and ^{37}Ar. Faraday detectors were cross calibrated for the slight offset using air shots. ^{36}Ar was measured using a Compact Discrete Dynode (CDD) detector. The CDD was calibrated daily for its yield by measuring four to six air pipettes prior to the first analysis. Gas purification (4 min, including \sim3 min of lasering) was achieved using three SAES NP10 getters (one water cooled, held at \sim400 C and two at room temperature). Blanks were monitored every two runs and were subtracted from succeeding sample results (see Table S2). More details about mass spectrometer calibration and analysis can be found in Di Vincenzo et al. (2021). Mass discrimination for both measurements acquired by the MAP215-15 and the ARGUS VI mass spectrometers, was determined before and after sample measurements based on automated analyses of air pipettes (see Table S2). Data corrected for post-irradiation decay, mass discrimination effects, isotope derived from interfering neutron reactions and blank are listed in Table S2. Uncertainties on single runs are 2σ analytical uncertainties, including in-run statistics and uncertainties in the discrimination factor, interference corrections and procedural blanks. Uncertainties on the total gas ages, on error-weighted means or on ages derived from isochron plots also include the uncertainty on the fluence monitor (2σ internal errors). Ages were calculated using an age of 28.201 Ma for Fish Canjon Tuff sanidine (Kuiper et al. 2008).
Results

Studied samples

Three samples, D20-10-69, D20-10-49, and D18-10-64, located in different structural positions (Fig. 1b, Fig. 2a, b, see Fig.s 2c-e, Fig. 3a-f) were selected in order to be suitable for both microstructural investigation and geochronological analysis (Table 1). Sample D20-10-69 (Fig. 2c) is an impure marble within the upper portion of the STDS zone, showing greenschist-facies mineral assemblage defined by calcite + quartz + K-feldspar + plagioclase + white mica + dark mica (phlogopite). Rare quartz crystals, mostly isolated in the carbonate matrix, have straight to slightly undulating grain boundaries, suggesting locally static recrystallization (Fig. 2c). Calcite, which constitutes over 75% of the bulk volume of the rock, is strongly interconnected, with a unimodal grain size distribution, and shows straight grain boundaries and a shape preferred orientation (SPO) parallel to the main foliation (S2 foliation of Carosi et al. 2007). The SPO and the unimodal grain size distribution support that calcite recrystallized in the grain boundary migration regime during the development of the S2 foliation (Lafrance et al. 1994; Rutter et al. 1995). Moreover, the occurrence of some domains where calcite shows straight grain boundaries (Fig. 2c) suggests static recrystallization of calcite after the S2 foliation development (Barnhoorn et al. 2005). Calcite crystals also present Type I e-twins and rare Type II e-twins according to the morphological classifications of Burkhard (1993) and Ferrill et al. (2004), (Fig. 2c). Phlogopite is fine grained and constitutes the S2 foliation planes, although its laths are commonly observed at high-angle to each other (Fig. 3a, b) showing a decussate shape (Vernon, 2018). This aspect could suggest a mimetic static recrystallization of phlogopite originally aligned parallel to the S2 foliation. Locally, sample D20-10-69 includes poikiloblastic white mica subparallel to the S2 planes (Wm in Fig. 3a, b), in which quartz and feldspar inclusions are randomly spread on (110) and (010) crystallographic planes, suggesting a static (re)crystallization for white micas.

Sample D20-10-49 was sampled from a higher structural level, in the THS further afar from the STDS. It is a greenschist-facies carbonate-bearing metapelite, made up of quartz + plagioclase + white mica + calcite + biotite, and minor ilmenite, zircon, rutile, apatite and pyrite (Table 1). In phyllosilicates-rich bands, quartz and calcite are not sufficiently interconnected to be studied for their microstructures (Fig. 2d). However, in calcite rare Type I e-twins occur (Table 1). A continuous crenulated foliation, S1, is preserved in the microlithons of the main spaced, parallel foliation (Passchier and Trouw 2005) referred as S2. These foliations correspond, respectively, to the S1 and S2 foliations in the THS described by Carosi et al. (2002, 2007). Both foliations, S1 and S2, are marked by white mica (Fig. 2d, Fig. 3c), which tends to have a decussate shape within the microlithons (white box in Fig. 3d), suggesting a mimetic growth forming polygonal arcs (Passchier and Trouw 2005; Vernon 2018). In the quartz-rich portions, quartz, feldspars and calcite have straight, angular, and annealed grain boundaries. In these portions, white mica and biotite are poorly oriented and show a decussate fabric, suggesting a post-kinematic recrystallization (the M3 event). The S1 and S2 foliations are both overprinted by coarser millimetre-sized poikiloblastic biotites, with quartz inclusions linearly-to-randomly spread on the (110) planes, suggesting a late static crystallization (Fig. 2d, Fig. 3c, d).
Sample D18-10-64 has been collected at almost one kilometre above the upper boundary of the STDS (Fig. 2b). It is a carbonate-bearing metapsammite belonging to the Palaeozoic rocks of the THS. Mineral assemblage is defined by quartz + calcite + plagioclase + white mica + biotite (Table 1). Biotite crystals are coarser respect to the other samples, showing a poikiloblastic structure with quartz inclusions (Fig. 2e, Fig. 3e, f). Quartz inclusions are linear or convergent on the planes (110), whereas they are circular and concentrated on the edges in the basal sections (001), suggesting a post-kinematic blastesis of biotite (M3 event) with respect to the D2 phase (Passchier and Trouw 2005; Camilleri 2009).

EMP A and SEM analyses

Dark mica in the impure marble (D20-10-69) and in the carbonate-bearing metapelite and metapsammite (D20-10-49, D18-10-64) are compositionally phlogopites and annites (following Deer et al. 1962), respectively (Fig. 4a; more information is available in supplementary materials, Table S1). The potassium content of sample D18-10-64 is slightly lower than expected on stoichiometric basis for biotite (Fig. 4b), with minimum values of ~0.87 a.p.f.u, whereas in samples D20-10-49 and D20-10-69 potassium ranges between ~0.95-1.00 a.p.f.u. These values are in line with other determinations in several Himalayan metamorphic rocks (Vannay and Hodges 1996; Montomoli et al. 2013; Warren et al. 2014; Parsons et al. 2016), and are consistent with an essentially pristine biotite, with no interlayered secondary chlorite. There are no significant intragrain and inter-grain compositional variations within individual samples (Table S1, Fig. 4a-d), and biotite is homogeneous at the scale of investigation. Fig. 4c, d highlight the homogeneity of biotite in sample D18-10-64, irrespective of whether chemical analyses are from fine-grained or coarse-grained poikiloblastic biotites (more information are available in supplementary materials, Table S1). Titanium (Ti) contents vary within 0.17-0.20 a.p.f.u. in sample D20-10-49 and within 0.10-0.20 a.p.f.u. in sample D20-10-64. The Ti content of biotite in aluminous pelites is sensitive to the temperature of formation (Henry and Guidotti 2002; Henry et al. 2005). A geothermometer based on the Ti content of biotite has been developed for graphitic aluminous pelites (Henry et al. 2005), containing a Ti-bearing phase (ilmenite or rutile) and equilibrated in the range of 0.4-0.6 GPa. In our study case, samples D20-10-49 and D18-10-64 (both containing ilmenite, Table 1) are suitable for the Ti-in-biotite geothermometer of Henry et al. (2005). Applying this geothermometer, comparable temperatures of 500-545°C and 520-550°C are obtained for sample D20-10-49 and D18-10-64, respectively. This thermometer has a precision estimated at ± 24°C at lower temperatures (< 600°C) on the original calibration, however a larger uncertainty (±50°C), as used here, was suggested (Warren et al. 2014) for the interpretation of biotite crystallized outside the calibration conditions of the thermometer.

White mica in the impure marble (D20-10-69) and in the carbonate-bearing metapelite and metapsammite (D20-10-49, D18-10-64) (Fig. 4e-h) are phengitic muscovite according to Capedri et al. (2004), with low paragonitic contents (Fig. 4f). The major element differences from sample to sample can be ascribed to a lithological control, moving from the impure marble to the metapelites (Table 1, Fig. 4g). There are no significant compositional variations in Si and Al contents within each sample (Fig. 4e), ranging respectively from 3.10–3.17 a.p.f.u. and 2.48–2.61 a.p.f.u. in the impure marble (sample D20-10-69), and from 3.14–3.26 a.p.f.u. and 2.25–2.49 a.p.f.u. in the metapelite and metapsammite (samples
D20-10-49, D18-10-64, more information is available in supplementary materials, Table S1). It is important to note that the carbonate-bearing metapelite (D20-10-49) has a homogeneous muscovite composition even comparing white micas on the S1 and the S2 foliations (Fig. 4h). The variability in Ti (Table S1) is very little compared to the analytical uncertainty (a difference of 0.05 a.p.f.u.), and the other major element contents do not vary either within the crystal or for different crystals within each sample (Table S1). Taking into account the Si contents of white mica aligned along the S2 foliation for samples D20-10-49 (~3.15-3.20 a.p.f.u.) and D18-10-64 (~3.20-3.25 a.p.f.u.), a rough pressure estimate may be derived applying the experimental work of Massonne and Szpurka (1997). Pressure estimates were derived for temperatures of 500-550°C, assumed as maximum temperature range coupling the metamorphic mineral assemblage and the Ti-in-biotite geothermometer estimates for biotite growth (Henry et al. 2005). The geothermobarometer, based on white mica composition, provided a semi-quantitative pressure value around 0.5-0.6 GPa (0.5±0.1 GPa for sample D20-10-49, and 0.6±0.1 GPa for sample D18-10-64). Assuming a crustal density of 2,700 kg/m³ (Bucher and Grapes 2011), pressure estimates translated into a depth of 15-18 km.

40Ar/39Ar laser step-heating results and interpretations

Age spectra of dark mica separates from samples D18-10-64 and D20-10-69 are reported in Fig. 5a, b. Due to feldspar inclusions in poikiloblastic white mica of sample D20-10-69, only phlogopite aligned along the S2 foliation has been analysed. 40Ar/39Ar data of phlogopite from the structurally lower impure marble (D20-10-69) gave a discordant age profile, with an overall saddle shape (Fig. 5a). However, ten consecutive steps, representing ~85% of the total 39Ar_K released, are indistinguishable within analytical uncertainties [MSWD (Mean Squared Weighted Deviate) of 0.78], and yield an error-weighted mean age of 13.85±0.08 Ma. The few discordant steps at low and high temperatures are characterized by higher Ca/K ratios and are therefore contaminated by mineral impurities, likely calcite.

Biotite D18-10-64 yielded a discordant age profile, with an overall sigmoidal shape (Fig. 5b). Excluding the first two steps, which are characterized by a very low radiogenic Ar content, step ages range within 10.4–15.6 Ma. A few discordant steps at low and high temperature, similarly to phlogopite D20-10-69, are characterized by lower K/Ca ratios, and are likely due to contamination by minor calcite. At intermediate temperatures, six consecutive steps scatter within a relatively narrow, although significant, interval of 11.7–11.0 Ma. An 36Ar/40Ar versus 39Ar/40Ar three-isotope correlation plot reveals for these steps a well-defined negative correlation (MSWD of 0.88), yielding an apparent intercept age of 10.61±0.21 Ma and a 40Ar/36Ar initial ratio of 471±55 (Fig. 6d), significantly higher than that of modern atmospheric Ar. In light of the compositional homogeneity revealed by microchemical data on biotite D18-10-64 (Fig. 4c, d), results may suggest the presence of parentless 40Ar hosted in (1) biotite crystal lattice or, and alternatively, (2) in fluid inclusions within quartz inclusions, which escaped visual inspection under the stereomicroscope. Excess Ar seems to be a recurrent drawback in Himalayan biotites (e.g., Stübner et al. 2017). The ~10.6 Ma date is therefore considered a reliable estimate of the 40Ar/39Ar age of biotite D18-10-64.

Discussion and conclusion

In Himalaya, three deformation phases, D1, D2, and D3 phases, linked to different P-T histories and structures, are typically identified, occurring in different span of time. In this work, we have investigated three samples characterized by different microstructural domains coming from different structural positions within the THS in the Lower Dolpo area (Fig. 7, Table 1). In D20-10-69, sampled from the lowermost structural position, microstructural investigation indicates that the fine-grained phlogopite is oriented along the main S2 foliation together with calcite, the latter representing the weak matrix supporting the deformation (Fig. 7). The main dynamic recrystallization by grain boundary migration of calcite can occur under temperature conditions consistent with greenschist-facies metamorphism (Schmid et al. 1987; Lafrance et al. 1994). However, the local occurrence of straight grain boundaries suggests that calcite also experienced static recrystallization after the development of the S2 foliation. White mica also presents a poikiloblastic fabric in larger flakes, suggesting the occurrence of static recrystallization (Fig. 3, Fig. 7). Moving structurally upward, sample D20-10-49 is characterized by the development of two superimposed tectonic foliations (S1 and S2, previously described by Carosi et al. 2002) and by a later static crystallization of biotite porphyroblasts (M3). However, decussate structures of white mica, subparallel to both S1 and S2 foliations, strongly suggest diffuse static and mimetic recrystallization (Fig. 2d, white box in Fig. 3d and Fig. 7). The structurally uppermost sample D18-10-64 is characterized by a fine poorly defined continuous foliation (S2 foliation) overprinted by the static growth of millimetre-sized biotite porphyroblasts (Fig. 3, Fig. 7).

In pelitic rocks, biotite typically grows at T~430°C (Bucher and Grapes 2011), whereas minimum temperatures of 380 °C are required in carbonate-rich sediments (Ferry 1976). The Ti-content of post-kinemetic biotite in two samples, D20-10-49 and D18-10-64, supports temperatures of 500-550 °C (Henry et al. 2005 geothermometer). The obtained temperatures match those estimated for the THS in the Everest area (Eastern Nepal) (Corthouts et al. 2016; Waters et al. 2019) and along the Marsyandi valley (Manaslu area, Fig. 1a) (Schneider and Masch 1993). Using the Ti-in-biotite and the Ti-in-quartz geothermometers on samples with the same mineral assemblage as our study samples, Corthouts et al. (2016) and Waters et al. (2019) suggested temperatures >510 °C for biotite-calcite-bearing phyllites from the footwall up to the hanging wall of the brittle branch of the STDS. Moreover, thermodynamic modelling of Waters et al. (2019) on such type of samples confirms how, for a reference pressure of 0.5
GPa, the assemblage observed in our samples (Bt-Wm-Cal-Qz-Pl) is stable around 500-540°C. However, contrary to our study case, in the Everest area the recrystallization of biotite, quartz and muscovite in the THS was linked to the D2 phase, occurring at ≥18 Ma (40Ar/39Ar dating of synkinematic muscovite, Corthouts et al. 2016). Along the Marsyandi valley (Manalsu area), at the base of THS, temperatures have been estimated in the range of 510-530 °C from carbonatite solvus thermometry (Schneider and Masch 1993). Temperatures of 350-450 °C are also described in central Himalaya (Crouzet et al. 2007 with references; Parsons et al. 2016) in sections up-to 5-10 km above the contact with the GHSU. These findings support that the deformation temperatures for the D2 phase in the THS vary laterally in central Himalaya. Our temperature estimates of 500-550 °C, as inferred for samples D20-10-49 and D18-10-64, are surprisingly high for the THS commonly associated to greenschist- to subgreenschist-facies metamorphisms of the D2 phase. We have no independent constrains for the deformation temperatures associated to the S1 and S2. We suggest that the medium temperatures herein estimated for post-kinematic biotite are related to a late static thermal overprint (M3).

Samples D20-10-69 and D18-10-64 have been analysed through the 40Ar/39Ar laser step-heating technique, while sample D20-10-49 by the in situ laser 40Ar/39Ar technique, given its microstructural complexity preserving all the previously described microstructures (S1, S2, M3). Despite the different structural level of the three samples and the microstructural positions of dated micas, 40Ar/39Ar analyses on both white mica and dark mica in the three investigated samples, gave a relatively narrow range of ages, from ~14 to ~11 Ma from the structurally lowest to the structurally highest sample (Fig. 5, 6, 7). Furthermore, in sample D20-10-49, where the microstructures were dated separately in situ (Fig. 6d), ages obtained for the S1 and S2 foliations and from the static biotite (M3) are all indistinguishable at ~12.6 Ma (Fig. 6). A recurrent issue involved in the interpretation of 40Ar/39Ar ages in metasedimentary rocks involves understanding whether apparent ages reflect (re)crystallization ages or, and alternatively, the time of cooling below a specific closure temperature (Dunlap 1997; Villa 1998; Schneider et al. 2013, Engi et al. 2017, Halama et al. 2018). In light of temperature estimates of ≥ 500 °C derived for the static biotite of samples D18-10-64 and D20-10-49 and of the retentive properties for biotite, based on both experimental works (e.g., Harrison et al. 1985) and natural examples (e.g., Villa 1998), Ar ages of biotite from both samples should be taken in principle as cooling ages and therefore considered to represent a minimum age for the development of static micas. The same consideration likely holds true for phlogopite of sample D20-10-69. It is widely acknowledged that dioctahedral micas are less susceptible to isotope resetting than coexisting trioctahedral micas, irrespective of the effective loss mechanism (whether volume diffusion, recrystallization or alteration – Dahl 1996). Several field-based studies have demonstrated a negligible re-equilibration of Ar isotopes only in white mica re-equilibrated under temperature conditions below 500-550 °C (e.g., Di Vincenzo et al. 2004; Augier et al. 2005; Warren et al. 2012; Villa et al. 2014; Montemagni et al. 2018, 2020). However, Ar isotopes diffusion can be efficient at medium-high temperature and/or for low pressure (e.g., for decompression) conditions (Warren et al. 2012). Taking into account these considerations, it is possible that phlogopite subparallel to the S2 foliation in the lowermost sample (D20-10-49) provides a cooling age of c. 14 Ma, following cessation of the STDS activity, while biotite 40Ar/39Ar ages from the uppermost sample D18-10-64 give a later crystallization age. Therefore, white micas ages of c. 12-13 Ma in the middle-located sample (D20-10-49) can reflect a partial reset of the 40Ar/39Ar systematic during M3 event. This hypothesis, however, does
not explain the broadly uniform ages and chemical composition for both white mica and biotite in sample D20-10-49. An alternative interpretation is that all the studied samples underwent a later thermal overprint at 500-550 °C that re-equilibrated wholly or in part white mica by volume diffusion. In agreement with this interpretation there are several geological and geochronological constraints from the literature (Fig. 8a, b) suggesting that the tectono-metamorphic events that produced both the S1 and the S2 structures occurred from the Eocene to Oligocene, down to the early Miocene (Fig. 8, see e.g., Ratschbacher et al. 1994; Godin et al. 2001; Carosi et al. 2007; Aikman et al. 2008; Antolin et al. 2011; Dunkl et al. 2011; Cottle et al. 2015; Walters and Kohn 2017; Montemagni et al. 2018; Soucy La Roche et al. 2018a, b). Toward the east of our study area (between the Modi Khola and the Annapurna areas), the D1 ages have been estimated between 36-34 Ma (though U-Pb dating on monazite, see Fig. 8a, Hodges et al. 1996 and Godin et al. 2001; on the kyanite-rich leucosome, Godin et al. 1999; see Guillot et al. 1999 for a review). Concerning the D2 phase in central Himalaya, most authors reported Oligocene-Miocene ages as lower limit for the D2 deformation through zircon, monazite and titanite U–Th-Pb dating on undeformed leucogranites cross-cutting D2 structures (i.e., intruding into the STDS, see Carosi et al. 2013; Mottram et al. 2015). Only 50 km to the NW of the study area (Fig. 1b), the undeformed Bura Buri leucogranite intrusion (Fig. 8b), emplaced within both GHS and THS and cutting the STDS, provides a minimum age for the end of the D2 ductile shearing at ~24 Ma (zircon and monazite U-Pb data, Carosi et al. 2013). Towards north and north-northeast from the study area, the impressive Mugu granite (Fig. 1a and Fig. 8b), hosted within the THS in the Upper Mustang region of west-central Nepal, emplaced ~21-19 Ma ago (Th–Pb monazite data) at a depth of about 18 km (based on garnet - biotite – muscovite - plagioclase barometer), thereby constraining a minimum age for the STDS shearing followed by a rapid exhumation at ~15-16 Ma (Guillot et al. 1999; Lihter et al. 2020). These data agree with those from the Manaslu leucogranite, in the Manaslu area (Fig. 1a, Fig. 8b), for which a minimum age for the STDS (D2 phase) has been constrained at 22-23 Ma, followed by a rapid cooling at 19-16 Ma (^40Ar/39Ar analyses) at a depth of ~8-15 km. It is important to note that for both the Mugu pluton (Guillot et al. 1999; Larson et al. 2019) and the nearby Manaslu leucogranite (Copeland et al. 1990; Guillot et al. 1994) a history of rapid cooling has been reported by linking structure and texture analysis with geochronological data (Larson et al. 2019). Concerning the late E-W orogen-parallel extension (D3 phase in this contribution), ^40Ar/39Ar thermochronology and quartz texture data from the Thakkhola graben of west-central Nepal (eastward to our study area) support that E-W extension started from c. 17 Ma (Larson et al. 2019). In far-western Nepal, the orogen-parallel Gurla Mandhata–Humla fault, overprinting the STDS (Murphy et al. 2002; Murphy and Copeland 2005), has been dated, yielding muscovite ^40Ar/39Ar ages of 13-10 Ma for the corresponding S3 foliation (Nagy et al. 2015). We note that this age interval assigned to the development of the D3 compares remarkably with those obtained in the present work.

There are several lines of evidence suggesting that middle Miocene ages from the present study, at least for samples D20-10-49 and D18-10-64, cannot be simply interpreted as cooling ages but more likely they reflect re-crystallization processes, as also supported by microstructural evidence. In the structurally lowest sample D20-10-69 white mica and calcite microstructures also indicate the occurrence static mineral recrystallization (Fig. 2c and Fig. 3a, b). Although there is a partial overlap between the timing of D2 and the D3 phases in literature (Fig. 8c), the middle Miocene ages (14-10 Ma) obtained in this study
fall in the range of the Himalayan D3 phase linked to the E-W extension, that is younger than the time of
emplacement and cooling of the large granite intrusions (Copeland et al. 1990; Guillot et al. 1994;
Larson et al. 2019; Lihter et al. 2020; Jessup et al. 2019 for a review). This suggests that, although in the
present work structures related to S1 and S2 foliations have been analysed, the dated micas may have
undergone re-equilibration due to a late recrystallization event linked to the M3 phase. Re-
crystallization processes, responsible for the development of static micas and calcite, may have also
affected and re-equilibrated totally or in part the phlogopite in the lowermost sample D20-10-69.
Microstructural arguments also agree with the microscale chemical homogeneity of dark mica and with
the small or negligible compositional variation observed in white micas (Fig. 4). Furthermore, based on
the different retentive properties of dioctahedral and trioctahedral micas, a scenario in which Ar isotope
mobility was ruled by a volume diffusion process would have been likely associated to a discernible
effect in the age of coexisting biotite and white mica of sample D20-10-49, which was not detected by in
situ laserprobe dating. Therefore, we conclude that micas in the investigated samples are statically
recrystallized after the end of ductile deformation responsible for the development of the S2 foliation. If
our interpretation is correct, then white mica could have been recrystallized or at least it reset, wholly or
in part, as neoblasts of dark mica during the same short-lived thermal event. This implies that
temperatures calculated using the geothermometer of Henry et al. (2005) can be combined with
pressure estimates derived from the geothermobarometer of Massonne and Szpurka (1997). Although
the estimated P-T conditions should be considered with caution as solely semi-quantitative, results
suggest that the late thermal event following the cessation of the ductile shearing of the STDS (in Dolpo
region) may have occurred at a depth of 15-18 km, under temperature conditions of ~500-550°C.

Post-kinematic mineral growth, including biotite in the THS, has been recognized also in other areas of
the belt, including the Bhutan of eastern Himalaya (Gansser 1983). Montemagni et al. (2018) described
the static growth of white mica at ~14 Ma in the upper part of the GHS, in NW India. As post-kinematic
micas have been poorly characterized until now, establishing the causes for the thermal overprint is
challenging. The end of the STDS movement can be one of the hypotheses. Indeed, the kilometre-thick
ductile shear zone coupled the mid-crustal GHS, in the footwall, and the upper-crustal metasediments of
the THS, in the hanging wall. This coupling can produce a thermal effect that could have been protracted
even shortly after the movement, causing the post-kinematic recrystallization. Nevertheless, considering
our study area, there is a wide time gap between the end of the STDS movement, dated by the close
Bura Buri intrusion at c. 24 Ma, and the proposed ages for the post-kinematic event (14-11 Ma, Fig. 8a,
b). This gap, therefore, excludes the hypothesis of a thermal effect produced by the STDS movement
itself. An alternative hypothesis is that the thermal event is due to the D3 phase. Our analyses provide a
progressive rejuvenation toward the structural top, passing from ~14 Ma down to ~11 Ma in the Lower
Dolpo (Fig. 7, Table 1). Regionally, the time span (from c. 17/15 Ma up to now) would correspond to the
still ongoing D3 tectonic phase characterized by an extensional component parallel to the orogen,
through the E-W extension (Nagy et al. 2015; Xu et al. 2013; Larson et al. 2019). For our samples, the M3
thermal effect can have been caused by (i) a contact metamorphism from a buried pluton or by (ii) the
regional metamorphism linked to a thermal anomaly due to the orogen parallel extension (D3 phase). In
the study area there are no evidences for buried intrusions. In the central-eastern Himalaya (Makalu
area, close to the Everest area in Fig. 1a), rare andalusite-bearing leucogranites are described, intruding
the upper GHS under P-T conditions of <0.4 GPa and 600-700°C at ~16 Ma (Streule et al. 2010; Visonà et al. 2012). Although the origin of most of leucogranite has often been linked to decompression melting during the Oligo-Miocene (Harris and Massey 1994; Patiño Douce and Harris 1998; Searle 2013), the occurrence of younger (16-11 Ma) andalusite-bearing granites has been explained by low-pressure prograde heating (Visonà and Lombardo 2002), with a heat source located immediately underneath the STDS (Visonà et al. 2012). Alternatively, a regional-scale thermal effect linked to the E-W extension can have propagated from lower to higher structural levels. Upward heat propagation, responsible for the mica (re-)crystallization, can have occurred over time (from deeper to shallower levels) because of the thickness and thermal conductivity of the heated rock volume. This hypothesis, however, does not exclude the presence of a buried pluton linked to the E-W extension.

The combination of our microstructural, compositional and $^{40}{\text{Ar}}/^{39}{\text{Ar}}$ age results with data from the literature, allowed to describe cryptic evidence of mimetic static recrystallization for micas aligned along both the S1 and S2 foliations, together with the development of poikiloblastic biotite, with (at least) partial chemical re-equilibration. Particularly, $^{40}{\text{Ar}}/^{39}{\text{Ar}}$ laser step-heating and in situ data of micas yielded an up-section age variation from ~14 to ~11 Ma. We hypothesize the possible occurrence of a late regional heating stage, which affected the upper part of GHS and THS during the tectonic switch from normal to orogen parallel extension in the northern part of Central Himalaya. The geological causes for the tectonic switch and the possibly associated later thermal pulse, in northern Himalaya are beyond the scope of our study. From a regional point of view, our study highlights that middle Miocene $^{40}{\text{Ar}}/^{39}{\text{Ar}}$ ages, reported for the STDS along the Himalayas, may not simply represent cooling ages, but recrystallization ages associated to a later thermal event.

Acknowledgements

We gratefully acknowledge Dawn Kellett and Jean-Luc Epard for their in-depth reviews that improve the quality of the paper. The Guest Editor, Susanne Schneider, is warmly thanked for the handling of the paper and the careful review.

Author contributions

Laura Nania: Conceptualization, methodology, writing, formal analysis.

Chiara Montomoli: Conceptualization, field work, methodology, writing, project administration, funding acquisition.

Salvatore Iaccarino: Conceptualization, methodology, writing, formal analysis, project administration.

Gianfranco Di Vincenzo: Acquisition, elaboration and interpretation of $^{40}{\text{Ar}}/^{39}{\text{Ar}}$ data, writing.

Rodolfo Carosi: Conceptualization, writing, field work, project administration.
Funding

PRIN 2015 2015EC9PJ5_005 to Montomoli C. This research is part of a PhD program funded by the Tuscany Regional Pegaso doctoral grant.

Data availability

[All data generated or analysed during this study are included in this published article (and its supplementary information files).]

References

Capedri, S., Venturelli, G. and Photiades, A. 2004. Accessory minerals and δ^{18}O and δ^{13}C of marbles from the Mediterranean area. *Journal of Cultural Heritage, 5*, 27–47. https://doi.org/10.1016/j.culher.2003.03.003

Tables

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lithology (Unit)</th>
<th>Mineral assemblage</th>
<th>Mica structural position</th>
<th>Deformation mechanisms/ recrystallization</th>
<th>Electron Microprobe analyses (EMPA)</th>
<th>40Ar/39Ar analysis Age ± 2σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>D18-10-64</td>
<td>carbonate-bearing metapsammite</td>
<td>Qz+Cal+Ab+Wm +Bt±Ilm± Zrn</td>
<td>M3 (Bt)</td>
<td>dark mica (fine-grained, poikilitic, M3): annite</td>
<td>White mica (S2): phengitic muscovite</td>
<td>step-heating</td>
</tr>
<tr>
<td></td>
<td>(Tethyan Himalayan Sequence)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bt poikilitic, M3: 10.61±0.21 Ma</td>
</tr>
<tr>
<td>D20-10-49</td>
<td>carbonate-bearing metapelite</td>
<td>Qz+Cal+Ab+Wm +Bt±Ilm±Ap</td>
<td>S1 (Wm); S2 (Wm); M3 (Bt)</td>
<td>Cal: Type I twin Bt: poikiloblastic Wm: decussate</td>
<td>White mica (S1): phengitic muscovite</td>
<td>in situ analysis</td>
</tr>
<tr>
<td></td>
<td>(Tethyan Himalayan Sequence)</td>
<td></td>
<td></td>
<td>White mica (S2): phengitic muscovite</td>
<td></td>
<td>Wm, S1: 12.60±0.11 Ma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dark mica (poikilitic, M3): annite</td>
<td></td>
<td>Wm, S2: 12.56±0.16 Ma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bt poikilitic, M3: 12.57±0.19</td>
</tr>
<tr>
<td>D20-10-69</td>
<td>impure marble</td>
<td>Cal+Qz+Pl+Kfs+ Wm+Phl</td>
<td>S2 (Phl)</td>
<td>Cal: GBM + annealing + Type II Twin Wm: poikiloblastic</td>
<td>dark mica (S2): phlogopite</td>
<td>step-heating</td>
</tr>
<tr>
<td></td>
<td>(Tethyan Himalayan Sequence)</td>
<td></td>
<td></td>
<td>White mica (S2): phengitic muscovite</td>
<td></td>
<td>Phl, S2: 13.83 ± 0.11 Ma</td>
</tr>
</tbody>
</table>

Table 1. Description of selected samples

Samples selected for mineral chemistry investigation (Electron Microprobe analyses) and 40Ar/39Ar laserprobe analyses. Samples are listed from higher to lower structural levels within the study transects (see Fig. 2a, b for sample location). For each Electron Microprobe analysis, the number and the site of the spots (core/rim) are reported in the electronic appendix (Table S1). 40Ar/39Ar ages, including associated uncertainties, are reported adopting the Isochron (inverse 40*/39 ratio) results for step-heating analysis and the error-weighted mean ages for in situ analysis. Abbreviations: Cal, calcite; Qz, quartz; Pl, plagioclase; Kfs, K-feldspar; Wm, white mica; Bt, biotite; Phl, phlogopite; Ab, albite; Ilm, ilmenite; Ap, apatite; GBM, grain boundary migration.

Figure captions

Fig. 1. (a) Simplified geological map of Himalaya modified after Carosi et al. (2018) and Law et al. (2004), showing the study area (yellow star). (b) Lower Dolpo geological sketch map (modified after Carosi et al. 2018) showing the location of study samples. A-A’ and B-B’ are the traces for S-N geological cross sections in Fig. 2.

Fig. 2. (a) Geological cross section (trace A-A’ in Fig. 1b) crossing the area from where sample D20-10-49 was sampled (D20-10-69 and D18-10-64 are projected through the foliation trend). (b) Geological cross section (trace B-B’ in Fig. 1b), showing the northeast-verging, tight, km-scale F2 folds. D20-10-69 and D18-10-64 samples (and projected D20-10-49 sample) location is shown. (c) Micro photo under polarized nicols of the impure marble D20-10-69, with phlogopite and calcite marking the main foliation
Fig. 3. Backscattered electron (BSE) images of the analysed samples. Samples are listed from bottom to top. (a) Biotite (phlogopite) and white mica crystals are elongated subparallel to the S2 foliation (sample D20-10-69). (b) Poikiloblastic structure of white mica, with quartz inclusion (see white/red stars for examples). (c) Poikiloblastic unoriented biotite porphyroblast overprinting both the S1 and S2 foliations marked by white mica (sample D20-10-49); see also ilmenite, crystals. (d) Key area of sample D20-10-49; in the white box, white micas show partially decussate shapes within the S1 domains (see also white/blue stars) and the S2 cleavage domain (white/red stars), cut by poikiloblastic biotite (white/green star). (e) Coarse-grained biotite crystals in sample D18-10-64. (f) Zoom of the poikiloblastic biotite structure of figure (e), with quartz, ilmenite, and zircon inclusions (sample D18-10-64). Wm, white mica; Bt, biotite; Cal, calcite; Phl, phlogopite; Wm, white mica.

Fig. 4. Chemical variation of mica for the analysed samples from the electron microprobe analyses (a.p.f.u. recalculated per O=11). (a) Discrimination diagram for Mg/(Mg+Fe) in dark mica (after Deer et al. 1962) plotted against titanium content. (b) Dark mica chemical compositions point out K content close to 1 (a.p.f.u.). (c) Zoom of the discrimination diagram for Mg/(Mg+Fe) in biotite from sample D18-10-64, where fine-grained crystals and coarse grained porphyroblasts are plotted. (d) Zoom of the discrimination diagram for K content in biotite from sample D18-10-64 suggests no chemical variations from fine-grained crystals to coarse grained porphyroblasts. (e) Discrimination diagram for white micas (after Capedri et al. 2004). (f) Na/(Na+K) values suggest low paragonitic contents in white mica. (g) White mica chemical variations for Mg/(Mg+Fe). (h) Zoom of the white mica discrimination diagram for Na/(Na+K), where the two populations of micas on the S1 and S2 foliations are plotted. White micas chemical composition overlaps, and no systematic variation in the celadonite composition occur.

Fig. 5. (a, b) 40Ar/39Ar age (light blue spectra) and Ca/K (green profiles, derived from neutron-produced 37ArCa/39ArK ratio) from step-heating experiments on dark mica of sample D20-10-69 (structurally lowest sample) and D18-10-64 (structurally highest sample). For 40Ar/39Ar age spectra, the concordant consecutives steps are highlighted by the light blue areas and the black line (c, d) Isochron diagrams (three-isotope correlation diagrams for the inverse $40^*/39$ ratio) for step-heating data of samples D20-10-69 and D18-10-64.

Fig. 6. (a) The drilled rock chip used for in situ dating of sample D20-10-49. (b) Line drawing of (a) showing the structural interpretation. (c) Cumulative probability plot of 40Ar/39Ar ages from white micas aligned along the S1 (blue line) and the S2 (red line) foliations, and for the porphyroblastic static biotite
(green line). (d) Close-up of (a) showing the rock chip investigated by the 40Ar-39Ar laserprobe technique and the distribution of Ar ages. (e) BSE photo-mosaic showing the investigated areas in the rock chip (a and d). Coloured boxes for the different investigated micas (blue, white mica aligned along S1; red, white mica aligned along S2; green, later M3 static biotite) highlight the sampled pits shown in (d).

Fig. 7. Summary scheme of the main results for the three study samples. Key sample areas are redrawn to highlight the microstructures of the micas (see also Table 1).

Fig. 8. Compilation of deformation and magmatic age events mainly focused on the Nepal Himalaya. (a) Estimated ages for the main deformation/metamorphic phases with different geochronological methods. (b) Estimated ages for the main syn- and post tectonic intrusion (concerning the D2 phase). (c) A brief simplified compilation of the main deformation events is reported as a summary of age estimates in (a) and (b). Legend: Zr/Pb, U-(Th)-Pb geochronology on zircon; Mn/Pb, U-(Th)-Pb geochronology on monazite; Ttn/Pb, U-(Th)-Pb geochronology on titanite; Wm/Ar, 40Ar/39Ar geochronology on white mica; Bt/Ar, 40Ar/39Ar geochronology on biotite or phlogopite; Hbl/Ar, 40Ar/39Ar geochronology on hornblende; K-feld/Ar, 40Ar/39Ar geochronology on K-feldspar; pyrrhotite, geochronology by pyrrhotite remanence; ZrFT, geochronology by zircon fission track; WmRb/Sr, Rb/Sr geochronology on white mica; Zr,Ap/Th/He, U-(Th)/He geochronology on zircon and apatite. For each applied method, numbers correspond to published works (from west to east), as following: (1) Xu et al. (2013), Nyalam, Jilong, and Pulan areas, southern Tibet; (2) Nagy et al. (2015), Karnali valley; (3) Braden et al. (2017), Jumla region and Karnali Valley; (4) Braden et al. (2018), Karnali valley; (5) Soucy La Roche et al. (2016, 2018a), Karnali valley; (6) Montomoli et al. (2013), Mugu Karnali valley; (7) Soucy La Roche et al. (2018b), Jajarkot valley; (8) Carosi et al. (2013), Dolpo/Bura Buri; (9) Mottram et al. (2018), Dolpo/Mugu; (10) Crouzet et al. (2003), Western Dolpo; (11) Crouzet et al. (2007), Dolpo area; (12) Carosi et al. (2015), Kali Gandaki valley; (13) Iacarino et al. (2015), Kali Gandaki valley; (14) Godin et al. (2001), Annapurna range; (15) Larson and Cottle (2015), Kali Gandaki valley; (16) Corrie and Kohn (2011), Modi Khola; (17) Hodges et al. (1996), Modi Khola; (18) Guillot et al. (1999), Mugu granite; (19) Coleman and Hodges (1995), Thakkhola Graben; (20) Larson et al. (2019), Thakkhola Graben; (21) Brubacher et al. (2020), Thakkhola Graben; (22) Lihter et al. (2020), Mugu pluton; (23) Schill et al. (2003), Nar/Phu valley; (24) Godin et al. (2006a), Nar valley; (25) Walters and Kohn (2017), Marsyandi valley; (26) Coleman and Hodges (1998), Marsyandi valley; (27) Guillot et al. (1994), Manaslu pluton; (28) Copeland et al. (1990), Manaslu pluton; (29) Cottle et al. (2019), Manaslu pluton; (30) Inger and Harris (1992), Langtang valley.
b) LOWER DOLPO

- **Tethyan Himalayan Sequence (low- to very low-grade metamorphism)**
- **Tethyan Himalayan Sequence (medium- to low-grade metamorphism)**
- **South Tibetan Detachment System (shear zone)**
- **Upper Greater Himalayan Sequence (medium- to high-grade metamorphism)**
- **Lower Greater Himalayan Sequence (medium- to high-grade metamorphism)**
- **Main Central Thrust Zone (MCTZ) (shear zone)**
- **Lesser Himalayan Sequence (medium- to low-grade metamorphism)**

Additional geological features and locations mentioned in the document.
figure 2

Click here to access/download figure; Fig2_rev.pdf
(a) D20-10-69 (Phl subparallel to S2) - sample at the base

Cumulative 39Ar Released (%)

Age (Ma)

13.85 ± 0.08 Ma

(b) D18-10-64 (Bt poikiloblasts, M3) - sample at the top

Cumulative 39Ar Released (%)

Age (Ma)

(c) D20-10-69 (Phl subparallel to S2) - sample at the base

ISOCHRON

40Ar/36Ar

10.61 ± 0.21 Ma

40Ar/36Ar

471.38 ± 55.12

(d) D18-10-64 (Bt poikiloblasts, M3) - sample at the top

ISOCHRON

40Ar/36Ar

13.83 ± 0.11 Ma

40Ar/36Ar

306.68 ± 24.49

Ca/ K

36Ar / 40Ar

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Ca/ K

36Ar / 40Ar

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Click here to access/download;figure;Fig5_rev.pdf
D20-10-69 (THS - STDS top)
Phl: 13.83 ± 0.11 Ma

D20-10-49
(THS - lower Palaeozoic)
Bt: 12.57 ± 0.19 Ma
Wm: 10.60 ± 0.11 Ma

D18-10-64
(THS - upper Palaeozoic)
Bt: 10.61 ± 0.21 Ma

Legend

THS (upper Palaeozoic)
THS (lower Palaeozoic)
Upper GHS

SSW
NNE

Click here to access/download;figure;Fig7_rev.pdf
Click here to access/download supplementary material
Nania et alii_revised Table S2.csv