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Abstract
1. Spatiotemporal ecological modelling of terrestrial ecosystems relies on climato-

logical and biophysical Earth observations. Due to their increasing availability, 
global coverage, frequent acquisition and high spatial resolution, satellite remote 
sensing (SRS) products are frequently integrated to in situ data in the develop-
ment of ecosystem models (EMs) quantifying the interaction among the vegeta-
tion component and the hydrological, energy and nutrient cycles. This review 
highlights the main advances achieved in the last decade in combining SRS data 
with EMs, with particular attention to the challenges modellers face for applica-
tions at local scales (e.g. small watersheds).

2. We critically review the literature on progress made towards integration of SRS 
data into terrestrial EMs: (1) as input to define model drivers; (2) as reference to 
validate model results; and (3) as a tool to sequentially update the state variables, 
and to quantify and reduce model uncertainty.

3. The number of applications provided in the literature shows that EMs may profit 
greatly from the inclusion of spatial parameters and forcings provided by vegetation 
and climatic- related SRS products. Limiting factors for the application of such mod-
els to local scales are: (1) mismatch between the resolution of SRS products and 
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1  | INTRODUC TION

Anthropogenic and climate change pressures constitute serious 
threats to the integrity of the delicate ecosystems of several pro-
tected areas, such as National Parks, UNESCO World Heritage sites 
and Natura 2000 sites (Marris, 2011). Ecosystem models (EMs) help 
researchers to understand the dynamics of these terrestrial environ-
ments, and improve monitoring capabilities by filling spatiotemporal 
data gaps and predicting short-  and long- term impacts of different 
management strategies. Mechanistic ecohydrological models that 
couple hydrological and vegetation processes (Chen, Wang, Ma, & 
Liu, 2015) can estimate features like forest productivity and growth 
(Huber et al., 2013), or evaluate the system water stress under dif-
ferent climate scenarios (Bhattarai, Wagle, Gowda, & Kakani, 2017). 
These EMs mainly differ in the complexity of the vegetation compo-
nent and its interaction with the carbon, nutrient and water cycles. 
Research in this field has mainly focused on improving the physical 
description of physiological processes (Chen et al., 2015; Fatichi, 
Ivanov, & Caporali, 2012) to accurately quantify vegetation photo-
synthesis and growth. However, this modelling effort requires the 
measurement or estimation of several biophysical parameters (e.g. 
LAI, canopy height) and input fluxes (e.g. precipitation, land surface 
temperature, irradiation) that are heterogeneous at the landscape 
scales and evolve in time (Fatichi, Pappas, & Ivanov, 2016; Pappas, 
Fatichi, & Burlando, 2016).

Monitoring systems based on in situ, airborne and unmanned 
aerial vehicles (UAVs) measurements may not always be sufficient 
to provide the large amount of data required by EMs. Despite the 
very high spatial resolution (few centimetres), UAV data suffer from 
low spectral resolution, limited flight endurance of drones, and, 
for several countries, strict laws regulating UAV use for research 
purposes (Paneque- Gálvez, McCall, Napoletano, Wich, & Koh, 
2014), while in situ and airborne measurements are time- , cost- , 

and labour- intensive. The constantly expanding list of ready- to- use 
satellite remote sensing (SRS) products is useful to integrate and, if 
necessary, replace these measurements (Lawley, Lewis, Clarke, & 
Ostendorf, 2016) with the main advantages of being freely available 
for the past two or three decades (e.g. since 1972 for Landsat or 
2000 for MODIS), with almost- regular repetition (depending on at-
mospheric conditions), and at high spectral resolution.

In a seminal work, Plummer (2000) highlighted the crucial role 
that SRS was already playing two decades ago for the improvement 
of terrestrial models, defining four strategies for linking SRS data 
and EMs:

1. using SRS data for the estimation of EMs forcings;
2. using SRS data for the calibration and validation of EMs;
3. using SRS data for updating the state variables of EMs;
4. using EMs to interpret SRS data.

As foreseen by Plummer’s conclusions, research efforts in the past 
decade have been promoted by a closer collaboration among ecolog-
ical modellers and the RS community (e.g. the ESA Climate Change 
Initiative), which led to improved SRS products together with the esti-
mation of SRS uncertainties (Merchant et al., 2017). Nowadays, a num-
ber of online repositories allow direct access to images from different 
satellite missions and sensors in near real- time, and to higher level 
global SRS products certified through quality assurance (QA) tests and 
standards. While SRS data have been extensively used for updating 
the state of global terrestrial models, e.g. for hydrological (De Lannoy 
& Reichle, 2016) and carbon cycle (Scholze, Buchwitz, Dorigo, Guanter, 
& Quagan, 2017) models, the potential of combining SRS data and EMs 
for near real- time monitoring at local scales, such as those of small wa-
tersheds and protected areas (area up to few hundreds of km2), is yet 
to be fully exploited. This step is fundamental to achieve the objectives 
of projects such as the ECOPOTENTIAL H2020 project (http://www.

model grid; (2) unavailability of specific products in free and public online reposito-
ries; (3) temporal gaps in SRS data; and (4) quantification of model and measurement 
uncertainties. This review provides examples of possible solutions adopted in recent 
literature, with particular reference to the spatiotemporal scales of analysis and data 
accuracy. We propose that analysis methods such as stochastic downscaling tech-
niques and multi- sensor/multi- platform fusion approaches are necessary to improve 
the quality of SRS data for local applications. Moreover, we suggest coupling models 
with data assimilation techniques to improve their forecast abilities.

4. This review encourages the use of SRS data in EMs for local applications, and un-
derlines the necessity for a closer collaboration among EM developers and remote 
sensing scientists. With more upcoming satellite missions, especially the Sentinel 
platforms, concerted efforts to further integrate SRS into modelling are in great 
demand and these types of applications will certainly proliferate.

K E Y W O R D S
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ecopotential-project.eu), which brought together ecologists, park man-
agers and SRS experts with the goal of monitoring several European 
protected areas through integration of SRS products into EMs.

Given the marked advances since Plummer (2000), we present 
updates on the state- of- the- art approaches and discuss some re-
maining difficulties that modellers may face when integrating SRS 
data into EMs. As high spatial and temporal resolutions of model 
drivers and parameters are particularly important to describe veg-
etation dynamics at local scales, Section 2 highlights the strate-
gies adopted in the literature to properly downscale high- level SRS 
products (i.e. level 2 and level 3 products, Section 2.1) or to directly 
obtain the quantities of interest through processing of the observa-
tions at the sensor level (level 1 products, Sections 2.2 and 2.3). Best 
practices to compare EM outputs to the associated SRS products are 
described in Section 3. Data assimilation (DA) techniques that are 
proving successful to enhance EMs forecast abilities through SRS 
data are described in Section 4, together with techniques for the 
evaluation of model and data uncertainties (Sections 4.1 and 4.2). 
Finally, Section 5 concludes the paper and suggests strategies for 
further advancements.

2  | PREPARING SRS DATA FOR USE IN 
LOC AL TERRESTRIAL EMS

Satellite remote sensing products are useful to characterize spatial 
parameters and forcings related to the hydrological component (pre-
cipitation, evapotranspiration [ET], soil moisture, snow cover, etc.), 
the energy balance (land surface temperature [LST], irradiation, 
albedo) and the vegetation properties (land use, vegetation cover, 
vegetation height/biomass, fraction of absorbed photosynthetically 
active radiation [FAPAR], LAI; Amitrano et al., 2014). Vegetation 
indices (VIs) have been frequently used as indicators of vegetation 
cover type and vegetation photosynthetic activity, and for the esti-
mation of phenological parameters. van der Kwast et al. (2009), for 
example, used the normalized difference vegetation index (NDVI) 
derived from ASTER to estimate the input parameters of the Surface 
Energy Balance System, while Turner et al. (2006) adopted land 
cover and seasonal LAI derived from Landsat Enhanced Thematic 
Mapper+ (ETM+) as input to the Biome- BGC carbon cycle model for 
the estimation of landscape gross primary production (GPP) and net 
primary production (NPP; see Table 1 for further examples).

The spatial resolution, temporal frequency and accuracy of 
“off- the- shelf” high- level SRS products (Table S1) frequently do not 
match modelling requirements for local applications, where grid 
cells from tens to hundreds of metres in size are used. Moreover, 
the assumptions and ancillary data (which are often “hidden” in the 
technical documentation, cascades of scientific articles or provider’s 
websites for more recent changes) used for the computation of these 
high- level products might not be consistent with the assumptions or 
other inputs used in local scale EMs. For example, LAI estimated by 
MODIS are based on specific land cover map characterized by eight 
biomes (Yan et al., 2016), which may differ from those used in the 

EM. We present three typical strategies that modellers are currently 
adopting and combining to address the aforementioned problems:

1. downscaling low-resolution SRS products, which is particularly 
useful for climatic products having resolutions of several kilo-
metres (Table S1);

2. deriving high-resolution products from SRS level 1 data, which is 
relevant to obtain accurate vegetation-related parameters for the 
domain under study (Table S2);

3. applying multi-sensor/multi-platform fusion techniques, which 
can fill temporal gaps among the estimated vegetation 
parameters.

2.1 | Downscaling methods for climatic products

Downscaling helps modellers overcome the scale mismatch between 
high- level (levels 2, 3) SRS products and the desired model resolu-
tion. While applicable to many types of SRS, downscaling methods 
are frequently used for climatic variables (e.g. precipitation and LST), 
which are among the main driving factors of terrestrial EMs describ-
ing ecosystem seasonality and long- term trends.

2.1.1 | Precipitation

Satellite remote sensing- based precipitation measurements (Table S1) 
constitute a valid alternative to datasets obtained through spatial in-
terpolation of in situ measurements. These datasets achieve regional- 
(DAYMET, PRISM over North America) or global- (WorldClim) scale 
coverage with resolutions up to 1 km, but are known to have poor 
reliability in areas where the density of ground sensors is low and 
uneven (Mourtzinis, Rattalino Edreira, Conley, & Grassini, 2017). 
Moreover, from the temporal perspective, the monthly resolution 
of the provided climatologies is too coarse to effectively drive many 
EMs relying on daily or sub- daily forcing data (Table 1). Main prob-
lems arising from SRS- based rainfall products concern spatial cover-
age, because different satellites cover different ranges of latitudes 
(i.e. GPCP, CMAP or GPM), and their generally coarse spatial resolu-
tion, from 2.5 deg (about 280 km at the equator) up to 0.1 deg (about 
11 km). A recent comparison of precipitation datasets derived from 
gauges, models and SRS data also highlighted the variability of differ-
ent products, in particular in SRS- derived seasonal precipitation and 
distribution of extreme events (Sun et al., 2018).

Statistical downscaling has been used to obtain rainfall data at 
about 1 km resolution from e.g. TRMM using classic geostatistical 
analysis (Chen, Liu, Liu, & Li, 2014; Shi & Song, 2015). Covariates 
available at higher spatial resolution (e.g. VIs, elevation and other 
topographic parameters, and in situ weather data) are used to explain 
part of the large spatiotemporal variability of the precipitation field. 
Stochastic methods are particularly suitable to generate synthetic 
precipitation patterns whose statistical properties are consistent 
with those of observed precipitation. One example is represented 
by the Rainfall Filtered Autoregressive Model (RainFARM) based on 

http://www.ecopotential-project.eu
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the extrapolation to the small scales of the Fourier power spectrum 
of coarse- scale precipitation (D’Onofrio, Palazzi, von Hardenberg, 
Provenzale, & Calmanti, 2014; Terzago, Palazzi, & von Hardenberg, 
2018).

2.1.2 | Land surface temperature

Satellite remote sensing measurements provide daily global spatial 
coverages of LST at resolutions that vary from 1 km (Sentinel 3) to 
56 km (AMSRE- E). Higher resolution data (30 m) are provided at 
16 days interval from Landsat 8 (Table S1). Spatial downscaling of 
LST (also known as sharpening or disaggregating) relies on informa-
tion about the soil type, emissivity and vegetation cover, frequently 
using NDVI or LAI as proxy for the latter. Downscaling has been ap-
plied to estimate LST at higher spatial resolution (e.g. 250 m) from 

MODIS and AVHRR data while maintaining their original temporal 
resolution (Liu & Pu, 2008; Metz, Rocchini, & Neteler, 2014). Fusion 
approaches have been tested in keeping the temporal resolution 
of MODIS (daily) while downscaling it down to Landsat resolution 
(30 m) or ASTER (90 m; Weng, Fu, & Gao, 2014; Yang et al., 2016). It 
is worth stressing that LST may differ by several degrees from near- 
surface air temperature measured by surface stations (Good, 2016). 
Approaches to estimate near- surface air temperature from satellite 
observations are still under development, and daily global mapping 
will be accomplished in the EUSTACE H2020 project (Brugnara, 
Auchmann, & Brönnimann, 2017).

It is important to remember that SRS climate products might have 
low accuracy in topographically complex areas mainly due to their 
low resolution. To improve the accuracy for local applications, down-
scaling can be applied in conjunction to bias correction techniques 

TABLE  1 A non- exhaustive list of examples of ecosystem models (EMs) applications at local scales using satellite remote sensing (SRS) 
products to describe model parameters and/or forcings. Detailed model descriptions and references are available in Supplementary 
Information 3

Study EM model EM description
Modelled 
area (km2)

Cell size/
resolution 
(m)

Time 
step SRS products used

Turner et al. 
(2006)

Biome- BGC Process- based model derived 
from Forest- BCG considering 
the physical and biological 
processes governing energy, 
water, carbon and nitrogen 
fluxes among the vegetation 
and soil layers

25 25 1 day Land cover, LAI (esti-
mated from Landsat 
ETM+)

NPP/GPP (from MODIS 
for validation)

van der Kwast 
et al. (2009)

SEBS Single- source model for the 
estimation of turbulent heat 
fluxes and ET

5 90 — Albedo, Vegetation cover 
(estimated from ASTER)

Govind et al. 
(2009)

BEPS- TerrainLab Couples the hydrological model 
TerrainLab with the biophysical 
simulator BEPS

Estimates mass and energy 
fluxes among soil, vegetation 
and atmosphere, together with 
plant growth and C- cycle

~40 25 1 day Land cover (from ESOD)
LAI (estimated from NDVI 

of Landsat TM)

Strauch and Volk 
(2013)

SWAT Semi- distributed watershed 
model for simulations of daily 
discharge, nutrient, pesticide 
and sediment loads. Spatial 
heterogeneities are considered 
by dividing the domain into 
sub- basins

242 — 1 day ET and LAI (from MODIS)

Hwang et al. 
(2008)

RHESSys Ecohydrological modelling 
framework designed to 
simulate carbon, water and 
nutrient fluxes

15.8 30 1 day LAI (estimated from NDVI 
of Landsat ETM+)

Lopes, Aranha, 
Walford, 
O’Brien, and 
Lucas (2014)

Forest- BCG Process- based ecophysiological 
model for NPP estimations 
based on canopy interception, 
evaporation, photosynthesis, 
growth, carbon allocation, litter 
fall, nitrogen mineralization and 
mortality

60 and 24 30 1 day LAI (estimated from EVI 
and NDVI of Landsat 
ETM+)
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and considering the ancillary data used to obtain the original SRS 
products (e.g. Maggioni, Meyers, & Robinson, 2016).

2.2 | Deriving high- resolution SRS products

Assessing the key parameters for describing photosynthesis, ET, and 
NPP is crucial to compute energy, water and carbon fluxes. Several 
global SRS products related to vegetation biogeochemistry are 
freely available (Table S1). Although these products have the clear 
advantage of passing external QA, they differ in terms of algorithms, 
ancillary data and product uncertainty, and might not be consistent 
with the particular requirements and assumptions of EMs, especially 
for local applications. Exploitation of satellite images using empiri-
cal, semi- empirical or physically based approaches may be required 
to obtain consistent products at high spatiotemporal resolutions. 
We underline, however, that a deep expertise on remote sensing 
is needed to exploit correctly the available dataset depending on 
the desired accuracy and application, in particular for assessing the 
uncertainty of the retrieved variables. The indirect nature of SRS 
measurements makes them potentially hard to interpret and relate 
to physically measurable quantities (Disney, 2016).

2.2.1 | Empirical approaches

Empirical approaches establish mathematical relationships between 
SRS data and the biophysical variables of interest via calibration on 
in situ data (Chuvieco & Huete, 2009). Various empirical approaches 
to identify leaf and canopy properties from SRS data have been 
proposed in literature (Tables S2 and S3), including estimations of 
biophysical parameters, such as water content, nitrogen, chlorophyll 
content from VIs or, more recently, from solar- induced chlorophyll 
fluorescence. Empirical models require extensive field measure-
ments for calibration and the modelling results are dependent of 
the site condition, time period and sensor, thus limiting their appli-
cability to other sites (Croft, Chen, & Zhang, 2014). However, their 
reduced computational cost makes them an appreciated asset. For 
instance, recent applications to Sentinel- 2 data have provided LAI 
and chlorophyll content at high resolution (10 m) and 5 days revisit 
period (Clevers, Kooistra, & van den Brande, 2017). Empirical ap-
proaches are also implemented within cloud computing platforms 
such as Google Earth Engine, which contains both raw imagery ar-
chives (including Landsat and Sentinel- 2) and machine- learning algo-
rithms (e.g. robust linear regression, random forest, support- vector 
machines).

2.2.2 | Physically based models

Physically based models attempt to describe the surface reflectance 
through physical laws of the radiation transfer inside the canopy and 
its interaction with the soil surface, and offer an explicit connection 
between the biophysical variables of vegetation and soil and can-
opy reflectance (Banskota et al., 2015; Houborg, Mccabe, Cescatti, 
et al., 2015). Physically based models have strong advantages over 

empirical approaches: they permit to infer causality and perform 
predictions, can be adapted to a wide range of land cover situa-
tions, time periods and sensor configurations, while at the same time 
not requiring the simultaneous acquisition of in situ and SRS data. 
Physically based models are fine- tuned using inversion techniques 
(Chuvieco & Huete, 2009), including quasi- Newton algorithm, look-
 up tables and artificial neural networks (e.g. Sehgal, Chakraborty, & 
Sahoo, 2016). On top of the effort to adequately describe the light 
interaction processes, one of the main challenges of radiative trans-
fer models (RTMs) remains the development of correction factors 
to take into account the uncertainty in the radiative response as-
sociated to 3D- heterogeneous vegetation. The RAMI4PILPS com-
parison experiments (Widlowski et al., 2011), which evaluate the 
consistency of several simple RTMs used within EMs, show that as 
the structure of the plant canopies becomes more complex, model- 
to- model agreements generally deteriorate and model- to- reference 
deviation increases as well.

2.2.3 | Semi- empirical models

Semi-empirical models rely on the theoretical formulations used in 
physical models, while adjusting some parameters through empiri-
cal relationships based on SRS data. Such models reduce the com-
plexity of physical models by reducing the number of parameters 
requiring calibration. A possibility is to approximate the outputs 
of RTMs through surrogate functions, e.g. Gaussian process emu-
lators, whose evaluation is faster. Calibration procedures such as 
Markov Chain Monte Carlo (MC) or DA schemes are necessary for 
the inversion also in this case (Gómez- Dans, Lewis, & Disney, 2016). 
Semi- empirical models have been applied to estimate, among others, 
canopy height and structure and time series of LAI (Kumar, Kumari, 
& Saha, 2013).

2.3 | Multi- sensor/multi- platform approaches

Expert SRS users are frequently adopting multi- sensor approaches 
to overcome the fixed temporal and spatial resolutions of single data 
sources. Data fusion techniques, which require knowledge of sen-
sor limitations and uncertainties, offer advantages for temporally 
continuous mapping of vegetation parameters (Dusseux, Corpetti, 
Hubert- Moy, & Corgne, 2014) and for the spatial extrapolation of in 
situ observations. Limitations of VIs derived from optical data, such 
as saturation effects and dependence on weather conditions, can be 
reduced by integration with radar data, taking into account the dif-
ferences between the responses of optical and radar sensors. In the 
fields of long- term land use mapping and monitoring, a wide range 
of studies employ multi- sensor SRS data, mostly combining Landsat 
with ALOS/PALSAR, Radarsat, or ERS datasets (reviewed in Joshi 
et al., 2016).

LAI products are highly relevant for EM applications, because 
the derivation through physically based RTMs makes LAI directly 
connected to EM parameters and inputs like plant productivity, 
transpiration and energy fluxes (Asner, Scurlock, & Hicke, 2003). 
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Recent studies showed that the low temporal frequency (16 days) 
of LAI products derived from Landsat can be improved by combin-
ing MODIS reflectance and LAI data with higher temporal resolution 
(Myneni, Knyazikhin, & Park, 2015), while keeping Landsat spatial 
resolution (Houborg, McCabe, & Gao, 2015).

Mountain areas pose particular challenges for SRS applications, 
making indispensable the application of thorough topographic and 
atmospheric correction (for optical data), as well as of methods 
to account for foreshortening and layover effects and variations 
in surface water content affecting dielectric properties (for radar 
data, Gupta, 2018). In particular, multi- sensor/multi- platform ap-
proaches require radiometrically homogeneous and consistent re-
flectance among images from different sources and different time 
periods. For instance, Attarchi and Gloaguen (2014) were able to 
develop a statistical model for above- ground biomass in a moun-
tain forest site in Iran by combining corrected and co- registered 
Landsat ETM+ and ALOS/PALSAR data, which quality significantly 
improved compared to the single use of (uncorrected) optical and 
radar data. In (semi- )arid regions, synergistic optical and radar data 
were used to model daily ET (Hu & Jia, 2015), a key parameter in this 
kind of ecosystem. Multi- sensor approaches can also be effective 
in estuarine environments: Chakraborty, Ferrazzoli, and Rahmoune 
(2014) analysed MODIS Enhanced Vegetation Index and AMSR- E 
radar signatures to estimate the amount of vegetation biomass 
that is submerged during monsoon flooding, while Rangoonwala, 
Enwright, Ramsey, and Spruce (2016) related persistence of marsh-
land flooding (radar data) to changes in vegetation (optical data).

While the use of multi- sensor approaches offers new opportuni-
ties with respect to time- series analysis, cross- sensor calibration is a 
challenging task. The long- term availability of data from Landsat and 
SPOT missions makes these sensors still the most suitable for multi- 
temporal analysis. As Sentinel- 2, with the first platform launched in 
2015, has a similar spectral coverage but better spatial and tempo-
ral resolution, current efforts focus on combining it with Landsat 
data to provide near daily global coverage at 30 m resolution (NASA 
Harmonized Landsat- Sentinel- 2 project, Claverie & Masek, 2017). 
Although some research has been carried out to develop methods 
to obtain radiometric homogenization between different sensor 
time series (Padró et al., 2017; Pons, Pesquer, Cristóbal, & González- 
Guerrero, 2014), there are still challenges to be met for the use of 
multi- temporal, multi- source SRS data in ecology.

3  | MODEL C ALIBR ATION AND 
VALIDATION USING SRS DATA

Satellite remote sensing is currently used not only as an input to EMs, 
but also to assess model reliability through validation techniques 
(Bennett et al., 2013). A large number of SRS products have served 
to assess EM results at the ecosystem level such as LAI, FAPAR, soil 
moisture, GPP and NPP (see examples in Table S4).

The operations to process the model outputs to obtain a vari-
able consistent with the measured data constitute the so- called 

“observation operator” (Kaminski & Mathieu, 2017), which is nec-
essary for the implementation of calibration, validation and assim-
ilation schemes. Two strategies can be used to compare the EM 
outputs to SRS data (Plummer, 2000), namely indirect or direct com-
parison, which is related to two different observation operators.

3.1 | Indirect comparison

Indirect comparison considers high- level SRS products (e.g. LAI, FAPAR, 
etc.). In this case, the observation operator adapts model outputs to the 
measurements, typically through downscaling/upscaling procedures. 
The correction of biases due to different assumptions between a par-
ticular EM and products (e.g. over- simplification of the vegetation layer 
in the EM) is a particularly important step that, if not considered, might 
lead to large discrepancies in the results (Liu et al., 2018).

3.2 | Direct comparison

Direct comparison couples ecological and reflectance models, where 
the EM outputs become input of RTMs, so as to directly compare the 
measured and modelled radiances. Direct comparison is particularly 
appealing since it avoids possible discrepancies between SRS prod-
ucts and model outputs, and the inversion of a RTM. Examples are 
the coupling between ecological and reflectance models in hydrologi-
cal applications, e.g. using temperature brightness from SMOS mi-
crowave sensor (De Lannoy & Reichle, 2016), or the computation of 
modelled canopy reflectance to be compared to MODIS data (Quaife 
et al., 2008). The observation operator required for direct compari-
son is not easily implemented in most EMs, because it considers the 
adaptation of the EM outputs to the RTMs inputs, and the operations 
in the RTM including backscatter from soil, vegetation and atmos-
phere. These processes are rarely considered explicitly due to the 
computational burden of complex dedicated RTMs, and simplified 
RT schemes are employed (e.g. 1D, effective LAI, etc.). Thus, direct 
comparison requires the calibration of several additional parameters. 
Due to these difficulties and the free availability of many SRS prod-
ucts, indirect comparison is still frequently adopted, especially when 
validation is simply performed by qualitative approaches (Table S4).

Note that indirect comparison requires the evaluation of error 
metrics between raster maps (Stow et al., 2009), which are typically 
characterized by strong spatial autocorrelation. Due to the errors in-
troduced by SRS downscaling procedures, the accuracy of the sensor 
and the complex nature of environmental systems, classical valida-
tion metrics based on a per- pixel comparison (such as the root mean 
squared error, the Pearson’s correlation coefficient or Nash- Sutcliffe 
efficiency) might not be able to evince common spatial patterns, 
thus limiting the comparison to mere qualitative considerations. In 
these cases, residual- based metrics should be replaced by the anal-
ysis of statistical moments, spectra and other quantitative measures 
of spatial structure that have been developed to objectively reveal 
common patterns among maps (Koch, Jensen, & Stisen, 2015). The 
quantified uncertainties associated with the model results and SRS 
observations are frequently neglected during the validation of model 



1816  |    Methods in Ecology and Evolu
on PASETTO ET Al.

results, but should be included to weigh their relative contribution to 
the error metric (see Section 4.2).

4  | A SSIMIL ATION OF SRS DATA FOR THE 
UPDATE OF MODEL STATE VARIABLES

Ecosystem models suffer from the presence of many sources of 
errors that may propagate in time amplifying the uncertainty on 
the model outputs. Model- Data Fusion techniques (MDFs) reduce 
and control this model uncertainty by consistently combining EMs 
and data (Peng, Guiot, Wu, Jiang, & Luo, 2011). DA schemes are a 
particular family of MDFs mainly developed by the meteorological 
community to improve model forecast by updating the state vari-
ables using measured data. DA has been applied in several fields of 
ecology (Luo et al., 2011), e.g. for modelling the spread of infectious 
diseases, fire, fisheries (Niu et al., 2014), to improve carbon cycle 
models (Benavides Pinjosovsky et al., 2017) and hydrological predic-
tions (Lahoz & De Lannoy, 2014).

Open access repositories such as Open DA, the Parallel DA 
Framework (Kurtz et al., 2016) and the DA Research Testbed (Mizzi, 
Arellano, Edwards, Anderson, & Pfister, 2016) have been developed 
to help the coupling between EMs and state- of- the- art DA methods. 
A particularly useful software for EM applications at local scales is 
ESA’s project EO- Land Data Assimilation System (EO- LDAS, Lewis 
et al., 2012), which provides a Python library for the retrieval of geo-
physical parameters by assimilation of the optical medium- resolution 
data of Sentinel- 2.

The core of DA schemes is the update (or analysis) step that 
corrects the model state variables towards the observations, re-
ducing the forecast uncertainty. Different implementations of the 
update step characterize three main approaches (Montzka, Pauwels, 
Hendricks Franssen, Han, & Vereecken, 2012):

1. Variational methods, which minimize a cost function associated 
with the residual between forecast and observations (Benavides 
Pinjosovsky et al., 2017).

2. Kalman-based methods, which extend the well-known Kalman 
filter to nonlinear/non-Gaussian models, e.g. using MC simula-
tions as in the Ensemble Kalman filter (EnKF; Quaife et al., 2008).

3. Particle filters, which directly apply MC sampling using a Bayesian 
approach (De Bernardis, Vicente-Guijalba, Martinez-Marin, & 
Lopez-Sanchez, 2016).

The analysis step of DA updates the model state variables based on 
a balance between model and observation uncertainties, described by 
estimates of their probability distribution. This is a particularly difficult 
task for both EM outputs and SRS data.

4.1 | SRS measurement uncertainty

The assimilation of SRS data requires the computation of error cross- 
covariances at the pixel level, taking into account the cumulative 

effect of different sources of uncertainty: sensor errors, errors in 
the RTM, errors of representativity (due to upscaling or downs-
caling steps) and errors introduced when processing the data, e.g. 
atmospheric and radiometric corrections as well as filtering or mask-
ing optical encumbrances such as clouds and haze (Pfeifer, Disney, 
Quaife, & Marchant, 2012; Waller, Dance, Lawless, & Nichols, 2014). 
However, the propagation of the instrument and parameter errors 
is frequently neglected during the inversion of RTMs, and the prod-
uct accuracy is assessed a posteriori, by means of costly validations 
against in situ measurements, or comparison with the output of 
calibrated process- based models (Wanders, Karssenberg, De Roo, 
De Jong, & Bierkens, 2012). QA of online products usually provides 
qualitative information on pixel values (e.g. QA band for Landsat 
VIs specifies the pixel condition about cloud, snow, water, etc.) and 
only rarely quantitative information on the accuracy of the data (e.g. 
SD at the pixel level for MODIS LAI/FAPAR) which is what needed 
for DA. The lack of information on the errors of SRS products can 
be relieved by using the statistics associated with the residuals be-
tween EMs outputs and SRS measurements evaluated during the 
DA updates (Crow & Reichle, 2008). Direct coupling represents a 
valid alternative, allowing the assimilation of the optical signal at the 
sensor, thus describing the observation error as the accuracy of the 
sensor (e.g. De Lannoy & Reichle, 2016; Zhang, Shi, & Dou, 2012). In 
this latter case, the evaluation of model uncertainty (see Section 4.2) 
has to be propagated through the observation operator (described in 
Section 3). Moreover, model uncertainties might be amplified by the 
unknown parameters of the RTM. As an example, EnKF assimilation 
of canopy reflectance from MODIS has been shown to improve EM 
estimates of GPP and reduce model uncertainty (Quaife et al., 2008).

4.2 | EM uncertainty

Correct estimation of model error is fundamental for DA. 
Underestimating model uncertainty reduces the relevance of the 
data (the assimilation would marginally correct the system state vari-
ables), with increased risk of divergence from the actual state of the 
system. Overestimating it, instead, would result in poor forecast ca-
pabilities, with the model forecast that spans a large range of possi-
ble solutions. The latter is more favourable to DA analysis, since the 
true system state is more likely to fall within the prediction interval.

Ecosystem Models uncertainties are mainly evaluated during 
the forecast step, which drives forward the state variables until 
the following observation time. The main sources of uncertainty 
are input variables (initial conditions, external forcing), unknown 
parameters, structural uncertainties due to the physical simpli-
fication of the governing processes, and numerical approxima-
tions for the discretization of continuous processes (Refsgaard, 
van der Sluijs, Hojberg, & Vanrolleghem, 2007). MC- based DA 
schemes, such as EnKF and particle filters, estimate forecast 
uncertainties by running an ensemble of EM realizations, each 
associated with different samples of the inputs, forcing term 
and parameter probability density functions (PDFs). The defini-
tion of these PDFs is typically straightforward for the forcing, 
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based on direct error statistics (e.g. De Lannoy & Reichle, 2016). 
Assessment of the parameter PDFs is more difficult and com-
putationally expensive. For many systems, literature provides 
insights into the distribution limits, type of density function 
and modal value, supplemented through local knowledge and 
expertise. PDF tuning can be done through sensitivity analysis 
and Bayesian parameter calibration techniques (Harrison, Kumar, 
Peters- Lidard, & Santanello, 2012). Finally, the characterization 
of model structural uncertainty is non- trivial and constitutes one 
of the main issues in model identification, with important im-
plications for forecasting. Structural uncertainty represents the 
fundamental inability of a model to represent the processes it 
is designed to replicate. Numerical errors, which arise from the 
spatiotemporal discretization of model equations, are frequently 
considered together with the structural uncertainty (El Serafy 
et al., 2011). The simplest approach to account for structural 
uncertainties is to consider the model error as a Gaussian dis-
tribution, where the estimation of the covariance matrix follows 
a procedure developed ad hoc for each model and application 
(Reichle, 2008). As an example of EM uncertainty estimation, De 
Lannoy and Reichle (2016) assigned static perturbation statistics 
for the error of the land surface model GEOS- 5 CLSM. In this 
case, two model state variables are perturbed with an additive 
noise characterized by fix temporal and spatial correlations. In 
a more sophisticated fashion, El Serafy et al. (2011) proposed 
an iterative procedure based on a MC sampling method to esti-
mate the error covariance of a model for suspended particulate 
matter concentration (Delft3D- WAQ). In general, the determi-
nation of structural uncertainties through sensitivity analyses, 
parameterization, adn conceptual models (Matott, Babendreier, 
& Purucker, 2009; Refsgaard, van der Sluijs, Brown, & van der 
Keur, 2006) is heavily reliant on a sufficiently large number of in 
situ data (Uusitalo, Lehikoinen, Helle, & Myrberg, 2015).

Many studies neglect these different sources of uncertainty, thus 
possibly underestimating the model output variances (Matott et al., 
2009). Further research and inquiry are required to provide standard 
methods for the estimation of model structural uncertainty.

5  | CONCLUSIONS

In the two decades since Plummer (2000), the ecological community 
has acquired more confidence in the use of SRS data, mainly owing 
to the increased availability of global products subject to rigorous 
QA tests. Global SRS datasets are nowadays used also by ecologists 
and conservation managers who may not have experience or knowl-
edge of how SRS datasets are generated. For modellers, major risks 
of integrating SRS products into EMs are that the specific assump-
tions underlying their production (e.g. the land cover considered in 
the RTM) might be incompatible with the assumptions of the EMs, or 
that the practices in downscaling the SRS data for local- scale mod-
elling (e.g. nearest neighbour resampling) are inappropriate. Better 
information about the conditions, assumptions and ancillary data 

behind SRS data production needs to be provided by remote sensing 
experts with off- the- shelf products, perhaps via community- driven 
adoption of detailed metadata standards. On the other hand, model-
lers need to be educated to properly use SRS and their QA metadata, 
starting from improved university programmes in ecology and physi-
cal geography, which currently lack sufficient depth on SRS (Bernd 
et al., 2017).

Global SRS products are increasingly available to the ecological 
modelling community, but their application to local scale EMs is 
not straightforward, requiring downscaling, or the adaptation of 
the developed algorithms to higher resolution satellite imagery. 
So far, the lack of shared codes, the difficulties of adapting them 
to different SRS products and the need for larger computational 
resources have hindered the use of such algorithms and products. 
Two emerging trends may be key to changing this. First, the surge 
of cloud computing (e.g. Google Earth Engine, ESA RUS) allows SRS 
experts to upscale their algorithms and produce large- scale cov-
erage (e.g. Pekel, Cottam, Gorelick, & Belward, 2016). This will be 
further pushed by the six Copernicus Data and Information Access 
Services (DIAS) platforms to be launched in 2018. Second, the 
adoption of open research practice (and not just open data) for 
new projects, such as those funded by the European Framework 
Programmes (e.g. Horizon 2020), is pushing the SRS community 
to release the codes developed for local applications. New initia-
tives, such as the “Model Web” within the GEO System of Systems, 
aim to make such models and algorithms accessible and executable 
online.

To fully explore the potentiality of SRS data, we suggest that the 
development of spatially explicit EMs should adopt the following 
strategies:

1. Direct coupling of EMs with RTMs, a strategy that is rarely 
adopted in ecological applications at present. Although direct 
coupling would require the calibration of a larger number of 
model parameters, the possibility of directly simulating the 
system reflectance clearly gives considerable advantages for 
(1) the validation of model outputs, (2) the assimilation of SRS 
data in near real time (without the necessity to wait the pro-
duction of higher level products) and (3) the estimation of 
measurement uncertainties, which is required in DA techniques 
and allows for prediction.

2. structuring the simulation codes, so that they can be easily con-
nected to the available DA platforms. In fact, the relatively small 
investment required in terms of updating model implementation 
would be greatly compensated by the potential to access a num-
ber of state-of-the-art, well-tested algorithms for the assimilation 
of SRS data and the assessment of model uncertainty.

Further collaborations between the remote sensing and the eco-
system modelling scientific communities will help to overcome the out-
lined difficulties and develop standardized techniques to include SRS 
data into EMs. There are promising prospects for new SRS missions, 
and for the development of new algorithms, standards and platforms. 
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Realizing these will require collaborative projects demonstrating the 
use of SRS in EMs, similar to the Horizon 2020 ECOPOTENTIAL proj-
ect whose focus was on improving protected areas management using 
remote sensing.

The coming years promise great potential for SRS and EMs. In 
the next decade, several new missions are planned to be launched, 
including P- band SAR (BIOMASS mission) and ISS- mounted LiDAR 
(GEDI) for estimating biomass, hyperspectral imaging spectrom-
eters for more accurate RTM inversion (EnMAP, HyspIRI, Hisui), 
high- resolution sun- induced fluorescence for estimating plant pho-
tosynthetic activity (FLEX), and a thermal radiometer to monitor 
water stress (ECOSTRESS). In addition, constellations of small and 
less- expensive satellites taking high- resolution imagery of the en-
tire Earth every day, like PlantScope (optical) and ICEYE (SAR), are 
becoming a reality. In combination with longer time- series data from 
Sentinel missions and the computational power of cloud platforms 
such as Google Earth Engine and the upcoming DIAS platforms—the 
sky is the limit for ecological modellers.
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