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Abstract 
 

Statistical tests of differential susceptibility have become standard in the empirical 
literature, and are routinely used to adjudicate between alternative developmental hypotheses. 
However, their performance and limitations have never been systematically investigated. In this 
paper I employ Monte Carlo simulations to explore the functioning of three commonly used tests 
proposed by Roisman and colleagues (2012). Simulations showed that critical tests of differential 
susceptibility require considerably larger samples than standard power calculations would 
suggest. Results also showed that existing criteria for differential susceptibility based on the 
proportion of interaction index (i.e., PoI values between .40 and .60) are especially likely to 
produce false negatives and highly sensitive to assumptions about interaction symmetry. As an 
initial response to these problems, I propose a revised test based on a broader window of PoI 
values (between .20 and .80). Additional simulations showed that the revised test outperforms 
existing tests of differential susceptibility, considerably improving detection with little effect on 
the rate of false positives. I conclude by noting the limitations of a purely statistical approach to 
differential susceptibility, and discussing the implications of the present results for the 
interpretation of published findings and the design of future studies in this area. 

 
Keywords: Diathesis-stress; differential susceptibility; methodology; proportion affected; 

proportion of interaction. 
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The theory of differential susceptibility has achieved a prominent role within 

developmental psychopathology and developmental science more broadly (Belsky, 1997, 2005; 
Belsky & Pluess, 2016; Boyce et al., 1995; Bush & Boyce, 2016; Del Giudice & Ellis, 2016; 
Ellis, Boyce, Belsky, Bakermans-Kranenburg & Van IJzendoorn, 2011). In a nutshell, the theory 
proposes that many of the same individual factors that determine increased sensitivity to the 
effects of negative environments (e.g., high levels of stress, danger, and adversity) also confer 
enhanced responsivity to positive environments (e.g., high levels of safety and emotional 
support). In other words, susceptible individuals respond to the quality of their environment “for 
better and for worse” (Belsky, Bakermans-Kranenburg, & Van IJzendoorn, 2007; Boyce et al., 
1995). Differential susceptibility goes beyond the classic concept of vulnerability or diathesis-
stress, whereby individual factors increase vulnerability in response to negative or stressful 
events (e.g., Hankin & Abela, 2005; Gottesman & Shields, 1972; Monroe & Simmons, 1991; 
Sameroff, 1983; see Belsky & Pluess, 2009, 2013). Differential susceptibility can also be 
distinguished from vantage sensitivity, in which individual factors amplify the effect of positive 
environments but not that of negative environments (Pluess & Belsky, 2013; Pluess, 2015).  
 

The factors that determine susceptibility can be examined at various levels of analysis—
genetic, epigenetic, neurobiological, and temperamental. The shared outcome of these processes 
is the emergence of disordinal or crossover interactions involving an environmental variable 
(e.g., supportive parenting) and the individual moderator (e.g., physiological stress reactivity) 
that determines increased susceptibility at both extremes of the variable (Belsky et al., 2007). In 
short, crossover interactions are the empirical hallmark of differential susceptibility. Figure 1 
illustrates some characteristic interaction shapes for the simplified case in which there are only 
two types of individuals, susceptible and non-susceptible. Figure 1c shows the prototype of a 
crossover interaction reflecting differential susceptibility; Figure 1a shows an interaction 
consistent with a diathesis-stress model, whereas Figure 1d illustrates vantage sensitivity. Note 
that while the lines predicting developmental outcomes for low-susceptibility individuals are by 
definition flatter than those for high-susceptibility ones, they are not necessarily horizontal as in 
Figure 1. Also, studies of differential susceptibility target both dichotomous moderators such as 
single-gene variants and continuous moderators such as temperamental traits, physiological 
reactivity, or graded genotypic scores computed from multiple genetic variants (for recent 
examples see Beaver, Hartman, & Belsky, 2015; Dalton, Hammen, Najma, & Brennan, 2014; 
Davies, Cicchetti, & Hentges, 2015; Elmore, Nigg, Friderici, Jernigan, & Nikolas, 2016; Gallitto, 
2015; Thibodeau, Cicchetti, & Rogosh, 2015). 

 
Tests of Differential Susceptibility 
 

While meta-analyses have found reliable evidence of differential susceptibility in some 
domains (e.g., van IJzendoorn & Bakermans-Kranenburg, 2015; van IJzendoorn, Belsky, & 
Bakermans-Kranenburg, 2012), the findings of individual studies remain considerably mixed. A 
likely contributing factor is the low power of tests for person-environment interactions (see 
below), including genotype-environment (G×E) interactions involving specific candidate genes 
(Visscher & Posthuma, 2010). Given the relatively small sample size of most studies in this area, 
pressing questions have been raised about the validity and replicability of candidate G×E 
findings (Dick et al., 2015; Duncan & Keller, 2011). Another problem in early research on 
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differential susceptibility was the absence of formal criteria for discriminating between 
interaction patterns. Having detected a statistically significant interaction, researchers went on to 
visually inspect the interaction plot and compare it to the prototypes shown in Figure 1; however, 
this kind of subjective evaluation is not statistically robust and can easily generate unreplicable 
findings. 

 
 
 

 
 
Figure 1. Interaction shape and the PoI index. Panel a shows the prototypical pattern predicted by diathesis-stress 
models (susceptibility only in response to negative conditions). Panel b illustrates the calculation of the PoI index 
(proportion of interaction). Panel c shows a symmetric interaction, and highlights the range of PoI values regarded 
as highly consistent with differential susceptibility according to Roisman et al.’s guidelines (PoI = .40-.60). Panel d 
shows the prototypical pattern associated with vantage sensitivity (susceptibility only in response to positive 
conditions).  
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Partly in response to such criticism, a wave of methodological work (Belsky, Pluess, & 

Widaman, 2013; Lee, Lei, & Brody, 2015; Roisman et al., 2012; Widaman et al., 2012) has 
sought to provide researchers with more rigorous methods to identify differential susceptibility 
and distinguish it from other types of interaction. In particular, Roisman and colleagues (2012) 
offered detailed guidelines for identifying differential susceptibility and devised a series of 
“critical tests” that can be applied to significant interactions to determine whether they conform 
to the crossover pattern shown in Figure 1c. The guidelines proposed by Roisman and colleagues 
have been widely adopted, and have become a de facto standard in the differential susceptibility 
literature. In this paper I focus on the Roisman et al. approach because of its popularity with 
researchers. A notable alternative is the model comparison approach advanced by Widaman and 
colleagues, in which a re-parametrized regression equation is used to estimate the location of the 
crossover point (for details and examples see Belsky et al., 2013; Widaman et al., 2012). 

 
The first critical test advocated by Roisman et al. (2012) is based on regions of 

significance (RoS). RoS delimit values of the environmental variable for which the moderator is 
significantly associated with the outcome variable (Kochanska, Kim, Barry, & Philibert, 2011). 
A significant interaction is deemed consistent with differential susceptibility if regions of 
significance extend to both the low and high end of a conventional interval of ±2 standard 
deviations (SD) from the mean of the environmental variable. In the dichotomous example of 
Figure 1, the difference in outcomes between susceptible and non-susceptible individuals must 
be statistically significant—and not just visually detectable—at both the positive and negative 
extremes of environmental quality.  

 
The second critical test is not based on significance but on the shape of the interaction, 

quantified with an index called proportion of interaction (PoI). The PoI is the proportion of the 
total area between the lines of an interaction plot—bounded by ±2 SD of the environmental 
variable—that lies on the positive side of the crossover point, where “positive” refers to the 
quality of the environment (e.g., higher parental support, higher socioeconomic status). It is 
obtained by dividing the amount of change “for better” (area B in Figure 1b) by its sum with the 
amount of change “for worse” (area W)1. A perfectly symmetric interaction with the crossover 
point located at the mean of the environmental variable would have PoI = .50; this is often 
assumed to be the prototype of differential susceptibility (Figure 1c). The prototypical shape 
predicted by diathesis-stress models has PoI = .00 (Figure 1a), whereas PoI = 1.00 corresponds 
to prototypical vantage sensitivity (Figure 1d). Roisman and colleagues suggested that sample 
PoI values between .40 and .60 indicate an effect highly consistent with differential susceptibility 
(dashed lines in Figure 1c); they did not provide similar guidelines for diathesis-stress or vantage 
sensitivity. 

 
As a variant of the PoI test, Roisman and colleagues proposed a test based on a different 

index of interaction shape, the proportion affected (PA). The PA is the proportion of individuals 

 
1 Del Giudice (in press) found that many PoI values in the published literature are incorrect due to confusion on this 
point. Researches sometimes calculate B as the area above the crossover point; however, this is only correct if the 
variable measures a positive dimension of the environment (higher scores = more positive or less negative 
environment). If the variable measures a negative dimension of the environment, B is the area below the crossover 
point. 
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in the sample who fall on the positive side of the crossover point. Based on the assumption of 
approximate normality in the environmental variable, interactions are deemed consistent with 
differential susceptibility if PA > 16%. Although the 16% cutoff was presented as a tentative 
suggestion, most researchers have adopted it in conjunction with the .40-.60 window for PoI as a 
criterion for screening potential differential susceptibility interactions. Other guidelines proposed 
by Roisman et al. (2012) deal with nonlinearity and multiple significance testing (e.g., in 
longitudinal studies), and have been applied less frequently than the three critical tests described 
here. 

 
Distinguishing between different types of interaction patterns is an important goal, and 

the guidelines advanced by Roisman and colleagues have contributed to move the field away 
from subjective criteria and toward a more rigorous, quantitative approach to differential 
susceptibility (see also Widaman et al., 2012). At the same time, there are reasons for concern 
that have not yet been addressed in the literature. The first potential problem stems from the fact 
that existing guidelines focus on preventing the occurrence of false positives, that is, detecting 
crossover interactions when they are not present in the population. While raising the bar for 
differential susceptibility by performing additional tests reduces the risk of false positives, it is 
also likely to increase the rate of false negatives (i.e., failing to detect real crossover 
interactions). Until now, there have been no investigations of how the various criteria adopted by 
investigators affect the risk of false negatives, and how this reflects on sample size requirements 
for studies of differential susceptibility. It is quite possible that, under the most stringent criteria, 
reducing false negatives to an acceptable level may require much larger samples than researchers 
typically realize.  

 
Another concern is that some of the existing tests of differential susceptibility go beyond 

statistical significance and implicitly make assumptions about the expected shape of interactions, 
as captured for example by the PoI index. As it turns out, some of those assumptions are 
theoretically problematic; this is the case of the “symmetry hypothesis,” the idea that the 
expected interaction shape for differential susceptibility is symmetric with PoI = .50 (Figure 1c). 
Recent evolutionary models indicate that strictly symmetric interactions are unlikely to evolve, 
and that—all else being equal—crossover interactions are more likely to be biased toward lower 
PoI values, that is, shifted toward the prototype of diathesis-stress models (Del Giudice, in 
press). A preliminary analysis of published studies supported this prediction and suggested that 
the distribution of PoI values might be centered on a value closer to .40 than .50—which is to 
say, close to the lower bound of the .40-.60 window proposed by Roisman and colleagues (Del 
Giudice, in press). More generally, I am aware of no published work on the sampling distribution 
of the PoI index for different population values and sample sizes; current guidelines rely on 
implicit assumptions about the distribution of PoI values that may or may not turn out to be 
correct. 

 
The Present Study 
 

In this study, I used Monte Carlo simulations to investigate the performance—and 
potential pitfalls—of the critical tests of differential susceptibility proposed by Roisman et al. 
and commonly employed in the empirical literature. I proceeded in two steps. First, I explored 
the sampling distribution of the PoI index by computing it from simulated samples of varying 
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size, repeating the procedure for different values of interaction strength (effect size) and shape 
(PoI) in the population. Second, I applied the three critical tests to the simulated datasets, and 
tracked their ability to detect different types of interactions in a range of plausible conditions. 

 
This straightforward approach revealed some notable and previously unreported 

limitations of existing tests. In part, these limitations concern sample size: to achieve sufficient 
detection rates, critical tests of differential susceptibility require considerably larger samples than 
standard power calculations would suggest. The critical test based on the .40-.60 PoI criterion is 
especially likely to produce false negatives. This test is also very sensitive to the assumption of 
interaction symmetry, so that even minor violations—which are not just possible but 
theoretically plausible—dramatically reduce its performance, particularly when samples are 
large.  

 
As an initial response to the limitations of the standard .40-.60 criterion, I propose a 

simple revised criterion based on an expanded window of PoI values (.20-.80). I show that a test 
based on this revised criterion outperforms existing tests of differential susceptibility, 
considerably improving detection with little effect on the rate of false positives. I conclude by 
noting the conceptual limitations of a purely statistical approach to differential susceptibility, and 
discussing the implications of the present results for the interpretation of published findings and 
the design of future studies in this area. 

 
Method 

 
Model and Parameters 
 

Simulations were performed in RTM 3.2.2 (R Core Team, 2013). Values of an 
environmental variable (X) and a moderator (Z) reflecting individual differences in susceptibility 
were generated from normal distributions. The distribution of X had M = 0 and SD = 1; the 
distribution of Z had M = 1 and SD = 0.2, effectively restricting the moderator to positive values. 
This was done to obtain the specific interaction shape postulated by differential susceptibility 
models, in which the slope of environmental effects in the population may become larger (higher 
susceptibility) or smaller (lower susceptibility), but does not change sign (Figure 1). Note that 
this assumption only applies to the population; in individual samples, it is entirely possible for 
the slope to change sign at different levels of susceptibility. The environmental variable X was 
assumed to reflect a positive dimension of the environment (see Footnote 1). Values of the 
outcome variable were obtained from the model: 

 
𝑌 = −𝑐𝑍 + 𝑋𝑍 + 𝜀 (1) 
 
where c is the location of the crossover point in the population and ε is a normally 

distributed residual term. This simple model reflects the assumption that the effect of the 
environment is fully moderated by individual susceptibility (that is, individuals with zero 
susceptibility are not influenced by the environmental variable X). The variance of ε was 
adjusted to obtain the desired effect size for the interaction term XZ (see below). The location of 
the crossover point was adjusted to determine interaction shape (see below).  
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In each simulation run, individual values of X, Z, and Y were generated for a sample of 
size N. A linear regression model of the form: 

 
𝑌 = 𝑏! + 𝑏"𝑋 + 𝑏#𝑍 + 𝑏$𝑋𝑍 + 𝜀 (2) 
 
was then fitted to the simulated data, and the coefficient of the interaction term (b3) was 

tested for significance. If the test on b3 was significant at p < .05 (two-tailed), it was followed up 
with a sequence of critical tests of differential susceptibility, as detailed below. In each simulated 
sample, the crossover point, PoI value, and regions of significance were calculated from 
regression coefficients following the procedures described in Roisman et al. (2012). Simulations 
were repeated for 4 levels of population PoI (interaction shape), 3 levels of effect size, and 50 
levels of sample size. For each combination of parameters, 10,000 independent samples were 
generated and analyzed, for a total of six million samples (4 × 3 × 50 × 10,000). 

 
Interaction shape. Simulations were run for 4 levels of the population PoI: .50, .40, .10, 

and .00. The corresponding locations of the crossover point are shown in Figure 2. PoI = .50 
corresponds to a symmetric interaction (Figure 1c) with the crossover point at the population 
mean. PoI = .40 represents a deviation from symmetry in the direction of the diathesis-stress 
prototype. Note that this is not a large deviation, as the crossover point for PoI = .40 is located 
about 0.2 SD above the mean for “positive” environmental variables (Figure 2; for “negative” 
variables, the location would be 0.2 SD below the mean). Interactions with PoI = .00 match the 
prototype for diathesis-stress (Figure 1a); the corresponding crossover point is at 2 SD above the 
mean of the environmental variable (for positive variables; 2 SD below the mean for negative 
variables). Finally, PoI = .10 was chosen to explore the effects of deviations from the diathesis-
stress prototype. Because of the nonlinear relation between crossover location and PoI (Figure 
2), the crossover point for PoI = .10 is located midway between that of PoI =. 50 and that of PoI 
= .00, that is, 1 SD above the mean (for positive variables; 1 SD below the mean for negative 
variables). PoI values above .50 were not modeled in the simulations, as the results would have 
been exactly specular to those obtained for PoI values below .50. Thus, simulation results for the 
detection of diathesis-stress apply just as well to the detection of vantage sensitivity. 

 
Effect size. The measure of effect size employed in the simulations was the semipartial ρ2 

for the interaction (sρ2). This is the population equivalent of the semipartial R2, which 
corresponds to the change in R2 when the interaction term is added to the regression model 
(usually reported as ΔR2). The value of sρ2 measures the unique proportion of variance in the 
outcome variable explained by the interaction term. The three values of sρ2 chosen for the 
simulations were .01, .02, and .03. While these values may appear small at first sight, they span a 
realistic range of expected effect sizes for this area of research. Most studies of differential 
susceptibility are non-experimental, and the environmental variables measured by researchers 
(e.g., parental sensitivity, socioeconomic disadvantage) follow distributions in which cases are 
concentrated in the middle (or on one side for skewed distributions) rather than at the two 
extremes. The same applies to continuous moderators such as irritable temperament and 
physiological reactivity. This configuration of variables—which is typical of non-experimental 
studies in psychology at large—dramatically reduces the maximum amount of unique variance 
that can be explained by the interaction term. As a result, even the strongest interactions typically 
end up accounting for no more than a few percent of variance in the dependent variable (for 
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details see McClelland & Judd, 1993). This effect is further exacerbated by the particular 
interaction shape postulated by models of differential susceptibility, whereby the effect of the 
environment is amplified in high-susceptibility individuals but only attenuated (rather than 
reversed) in low-susceptibility ones. Under this assumption, the main effect of the environment 
can be expected to absorb a large amount of variance, further reducing the effect size associated 
with the interaction term. Candidate gene studies usually employ dichotomous moderators (e.g., 
two alleles of a gene), and thus suffer less severely from the reduction in sρ2 associated with 
continuous moderators (McClelland & Judd, 1993). However, genomic association studies 
consistently show that the effect sizes associated with common genetic variants tend to be very 
small, rarely accounting for even 1% of trait variance (Chabris et al., 2015). In principle, 
experimental studies can potentially show larger effects because they allocate participants to 
distinct groups (see McClelland & Judd, 1993). However, the tests of differential susceptibility 
examined here were conceived for non-experimental research, and interaction shape indices such 
as PoI and PA (as currently defined) are only meaningful in that context.  

 
 

 
 

Figure 2. Relation between the PoI index and the location of the crossover point for positive environmental 
variables (higher scores = more positive environment). Specific locations are shown for the four PoI values explored 
in the simulation (PoI = .00, .10, .40, and .50).  

 
 
A survey of effect sizes in the empirical literature supports the present choice of values. 

In a large study that explored temperament as a potential moderator (Roisman et al., 2012), ΔR2 
values for significant interactions ranged from .004 to .044 (average = .009). A similar study by 
Beaver, Hartman, and Belsky (2015) reported ΔR2 values ranging from .010 to .020 (average = 
.016). Large studies of candidate genes show effects of similar magnitude: significant G×E 
interactions had ΔR2 values of .010 in a study by Zhang and colleagues, and ranged from .004 to 
.059 (average = .021) in a study by Belsky and colleagues (2015). Considering that these 
averages are based on significant interactions alone (and thus inflated by capitalization on 
chance), effect sizes between sρ2 = .01 and .02 can be regarded as realistic expectations in most 
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non-experimental scenarios. A population effect of sρ2 = .03 is unlikely to occur in practice, but 
can be useful for comparison as an upper bound on the plausible range of sρ2 values.  

 
Sample size. Sample size was varied from N = 50 to N = 5,000 in 50 logarithmically 

spaced steps. In the recent literature on differential susceptibility, most published studies have 
samples between N = 200 and N = 700. Some studies employ larger samples, from about 1,000 
to 2,500 participants (e.g., Gallitto, 2015; Kogan et al., 2014; Roisman et al., 2012; Thibodeau et 
al., 2015; Zhang et al., 2015). Occasionally, researchers test differential susceptibility hypotheses 
in samples of about 100 participants (e.g., Brett et al., 2015; Montirosso et al., 2015; Summer et 
al., 2015), even if studies of this size lack the power to reliably detect interactions under most 
realistic conditions. The upper limit of N = 5,000 in the simulations is larger than any study of 
differential susceptibility to date. 
 
Analysis of Simulated Data 

 
Sampling distribution of the PoI index. For each combination of parameters, the 

distribution of PoI values was evaluated by computing its 5th, 25th, 50th, 75th, and 95th percentiles 
(based on 10,000 samples). Percentile curves with respect to sample size were obtained by 
smoothing the simulated outcomes with cubic splines (function smooth.spline; smoothing 
parameter = 0.7).  

 
Tests of differential susceptibility. All the interaction terms in the simulated datasets 

were tested for significance at p < .05 (two-tailed). The percentage of significant results 
(calculated on 10,000 samples for each combination of parameters) provided a Monte Carlo 
estimate of statistical power. Significant interactions were further probed with three critical tests, 
as recommended by Roisman et al. (2012). The first test (abbreviated as DS) assessed whether 
regions of significance (RoS; p < .05) included the extremes of a region of interest spanning ±2 
SD from the mean of X. If RoS included both extremes of the ±2 SD region (and the crossover 
point was located within the same range), the interaction was regarded as consistent with 
differential susceptibility. If only the lower extreme (−2 SD) was included in the RoS, or if both 
extremes were included but the crossover point was located above 2 SD from the mean, the 
interaction was regarded as consistent with a diathesis-stress model (abbreviated as D-Str). The 
second test was based on the PoI index (abbreviated as DS+PoI) and required a PoI value 
between .40 and .60 in addition to the RoS criterion. The third and final test was based on the PA 
index (abbreviated as DS+PA) and required that at least 16% of cases lie above the crossover 
point in addition to the RoS criterion.  

 
In total, the interaction in each simulated sample could pass or fail three tests of 

differential susceptibility—a less stringent test based on regions of significance (DS) and two 
more stringent tests based on indices of interaction shape in addition to the RoS criterion 
(DS+PoI and DS+PA). Interactions that failed these tests could be deemed consistent with a 
diathesis-stress model if they passed the relevant test (D-Str). The percentage of samples passing 
each test (calculated on 10,000 samples for each combination of parameters) provided a Monte 
Carlo estimate of detection rates under different criteria. Detection curves with respect to sample 
size were obtained by smoothing the simulated outcomes with cubic splines (the smoothing 
parameter ranged from 0.5 to 0.7).  
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In all the simulations reported here, the moderator Z was modeled as a continuous, 

normally distributed variable (see above). Another set of simulations (not shown here) employed 
a dichotomous moderator and yielded virtually identical results for the same values of model 
parameters (all percentages within ±1.5%). Thus, the results discussed in this paper apply to both 
continuous (e.g., temperament) and dichotomous moderators (e.g., single genetic variants). 

 
Results 

 
Sampling Distribution of the PoI Index  
 

Simulation results for the sampling distribution of the PoI index are shown in Figure 3. 
The first row (Figures 3a-3c) shows the results for a symmetric interaction in the population (PoI 
= .50). When sρ2 = .01 (Figure 3a), the central 90% of the distribution—that is, the range 
between the 5th and 95th percentiles—includes almost the full range of possible PoI values unless 
sample size is larger than about N = 200. Crucially, the .40-.60 window proposed by Roisman 
and colleagues (2012) captures a relatively small portion of the sampling distribution. Samples 
larger than N ≈ 900 are required to make sure that at least 50% of the empirical PoI values will 
fall within the .40-.60 range, while 5,000 cases are still not enough to obtain a 90% capture rate. 
Figures are lower for sρ2 = .02 (Figure 3b), with N ≈ 300 for a 50% capture rate and N ≈ 1,700 
for a 90% capture rate. Even with sρ2 = .03 (an improbably large effect in most non-experimental 
contexts), about 600 cases are needed to obtain a 90% capture rate (Figure 3c).  

 
If interactions in the population are not perfectly symmetric but shifted toward the 

diathesis-stress prototype, as in the second row of Figure 3 (Figures 3d-3f), the capture rate of 
the .40-.60 window is bound to be less than 100% regardless of sample size. With PoI = .40, the 
maximum capture rate is 50%. In other words, if the population PoI is .40 (i.e., the crossover 
point is about 0.2 SD above the mean), empirical PoI values are going to fall within the .40-.60 
window only half of the time even with very large samples. This scenario demonstrates how the 
.40-.60 criterion critically depends on the symmetry hypothesis being true at the population level. 

 
The bottom row of Figure 3 (Figures 3j-3l) shows the sampling distribution of PoI when 

the interaction in the population matches the diathesis-stress prototype. Again, the distribution is 
rather wide for small sample sizes; however, only a minority of cases is expected to fall inside 
the .40-.60 window. Outcomes are not substantially different if interaction shape is shifted 
toward a differential susceptibility pattern, as illustrated in Figures 3g-3i for the case of PoI = 
.10. As discussed in the Methods section, simulations for vantage sensitivity would be specular 
to those for diathesis-stress; specifically, results for PoI = 1.00, .90, and .60 would be identical to 
those for PoI = .00, .10, and .40 (respectively). 
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Figure 3. Simulation results for the sampling distribution of the PoI index (proportion of interaction). The 
semipartial effect size sρ2 is the population equivalent of ΔR2, the change in R2 when the interaction term is added to 
a regression model. Lines show percentiles of the PoI distribution in simulated samples. Gray regions show the 
range of PoI values regarded as highly consistent with differential susceptibility according to Roisman et al.’s 
guidelines. Each plot is based on 500,000 simulated samples. 
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Tests of Differential Susceptibility 
 

Simulation results for the performance of critical tests are shown in Figure 4. As 
expected, the DS test (based on RoS) was more conservative than a simple significance test on 
the interaction term (compare the black line for the DS test with the light gray line for power). 
With PoI = .50 and sρ2 = .01 (Figure 4a), the test requires N ≈ 500 to reach a 50% detection rate 
and N ≈ 900 for 80% detection. For comparison, the sample size required for 80% statistical 
power is about N ≈ 600. This means that, in a study designed to achieve 80% power, the DS test 
will detect a crossover interaction only about 60% of the time. With sρ2 = .03 (Figure 4c), the 
sample size required for 80% detection is N ≈ 100.  

 
When the interaction in the population was symmetric (or nearly so), adding the PA > 

16% criterion to the RoS test did not make any difference to the results—the DS test and the 
DS+PA test always produced the same outcome. In contrast, the DS+PoI test turned out to be 
markedly more conservative than the DS test. With sρ2 = .01, the DS+PoI test requires N ≈ 1,000 
just to achieve a 50% detection rate, and N ≈ 3,100 for 80% detection. Given these figures, even 
the largest differential susceptibility studies published to date (about 2,500 participants) have less 
than 80% probability of detecting a symmetric interaction of this size using the DS+PoI criterion. 
With sρ2 = .02 (Figure 4b), the DS and DS+PA tests reach 80% detection at N ≈ 300, whereas the 
DS+PoI test requires about 1,100 cases to perform at the same level. Even with an effect size of 
sρ2 = .03 (Figure 4c), the DS+PoI test still requires N ≈ 350 to achieve an 80% detection rate. 

 
As expected from the sampling distribution of PoI, even small deviations from interaction 

symmetry reveal the limitations of the DS+PoI test. When PoI = .40 (second row in Figure 4, 
Figures 4d-4f), the detection rate of this test can never be higher than 50%; moreover, the ceiling 
is only reached with large samples—around N ≈ 3,000 for sρ2 = .01, N ≈ 1,000 for sρ2 = .02, and 
N ≈ 400 for sρ2 = .03 (Figures 4d-4f). In the same conditions, the DS and DS+PA tests achieve 
80% detection for N ≈ 100 to 1,000; these figures are close to those obtained with PoI = .50, 
indicating that the DS and DS+PA tests are robust to small deviations from interaction symmetry 
(compare Figures 4a-4b and 4d-4e). An interesting finding is that, even if interactions in the 
population are symmetric or nearly so, increasing sample size within the lower range increases 
the likelihood of detecting diathesis-stress patterns because of increased statistical power (see the 
lines for D-Str in the first and second line of Figure 4). Minimizing the probability of a positive 
D-Str test with symmetric interactions requires large samples—around N ≈ 1,700 for sρ2 = .01, N 
≈ 600 for sρ2 = .02, and N ≈ 300 for sρ2 = .03. 

 
If the interaction in the population matches the diathesis-stress prototype (PoI = .00), 

predictions about test performance are very straightforward (bottom row of Figure 4). The 
detection rate of the D-Str test closely tracks statistical power, while the likelihood of detecting a 
differential susceptibility pattern remains very low (< 3%) regardless of the specific test 
employed (Figures 4j-4l).  
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Figure 4. Simulation results for critical tests of differential susceptibility and diathesis-stress. The 

semipartial effect size sρ2 is the population equivalent of ΔR2, the change in R2 when the interaction term is added to 
a regression model. DS (thin black line) = differential susceptibility test based on regions of significance (RoS). 
DS+PoI (thick black line) = differential susceptibility test based on RoS and the .40-.60 criterion for PoI (proportion 
of interaction). DS+PA (dashed black line) = differential susceptibility test based on RoS and the 16% criterion for 
the PA index (proportion affected). D-Str (dark gray line) = diathesis-stress test based on RoS and/or the location of 
the crossover point. Each plot is based on 500,000 simulated samples. 
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Results become considerably more complex if the interaction shape is shifted toward a 

differential susceptibility pattern. For example, if PoI = .10 (third row of Figure 4) the likely 
outcome of the critical tests changes dramatically depending on sample size. Consider the case of 
sρ2 = .01 (Figure 4g). With relatively small samples, the probability of detecting a diathesis-
stress pattern increases with sample size and remains higher than that of detecting differential 
susceptibility. Past a certain point, however, the detection rate of the D-Str test begins to 
decrease; when sample reaches N ≈ 1,400, a given study is equally likely to detect a diathesis-
stress pattern or a differential susceptibility pattern based on the DS test. As sample size 
increases further, the detection rate of the DS test keeps growing, while that of the DS+PA test 
plateaus at about 50%. As a result, both the DS and DS+PA test have the potential to generate 
contradictory findings when the interaction in the population has a PoI close (but not equal) to 
zero and studies are based on large samples. As expected, the DS+PoI test behaves in a more 
conservative fashion; with PoI = .10, it never exceeds a 3-4% detection rate regardless of sample 
size (Figures 4g-4i). However, the ability of the DS+PoI test to reject false positives at low PoI 
values coexists with a high risk of false negatives when interactions are symmetric or nearly so. 

 
As discussed above, simulation results for the detection of vantage sensitivity would be 

exactly specular to those for the detection of diathesis-stress. For example, the probability of 
detecting a diathesis-stress pattern when PoI = .10 is identical to the probability of detecting a 
vantage sensitivity pattern when PoI = .90.  

 
A Revised PoI Criterion 
 

The results presented in Figure 4 indicate that the DS+PoI test has two major limitations: 
first, it produces a high rate of false negatives under most conditions; and second, it is very 
sensitive to deviations from interaction symmetry. A simple but potentially effective solution to 
these problems would be to expand the PoI window proposed by Roisman and colleagues to 
cover a broader range of values. Inspection of the sampling distribution of the PoI index 
presented in Figure 3 suggests .20-.80 as a promising alternative.  

 
Simulation results using a revised critical test (DS+PoI/R) based on a .20-.80 window are 

shown in Figure 5. This test achieves detection rates almost as high as those of the DS and 
DS+PA tests when interactions are symmetric or nearly so, but much lower detection rates when 
interactions are close to the diathesis-stress prototype. If the goal is to separate prototypical 
patterns as cleanly as possible, the DS+PoI/R tests clearly outperforms both the DS test and the 
DS+PA test (Figures 5g-5i). Moreover, and in contrast with the DS and Ds+PA tests, the 
detection rate for PoI = .10 decreases at large sample sizes and never exceeds that of the D-Str 
test. This attenuates the problem of contradictory findings when the interaction shape in the 
population is close to the diathesis-stress or vantage sensitivity prototype (see above). Figure 6 
shows detection curves of the DS+PoI/R tests for various values of population PoI (with sρ2 = 
.01). Detection rates remain high from about PoI = .30 to .70, and drop off rapidly for values 
below .20 or above .80 (i.e., crossover points about 0.67 SD above/below the mean). While this 
test still has “gray areas” around PoI = .20 and .80 where contradictory findings can arise (Figure 
6), it performs well in separating extreme forms of interaction shape while keeping the rate of 
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false positives reasonably low for PoI values close to .00 or 1.00 (compare Figures 4g-4l and 5g-
5l).  

 
In sum, the DS+PoI/R test achieves the desired goal (reliably discriminating between 

prototypical differential susceptibility and diathesis-stress/vantage sensitivity patterns) better 
than the existing alternatives. As can be seen from Figure 5, the benefits of using the DS test are 
minimal when the population PoI is close to .50, and are outweighed by the costs (false positives, 
contradictory findings) when PoI is close to .00. The DS-PA test adds no information when PoI 
is close to .50, and does not discriminate as well as the DS+PoI/R test when PoI is close to .00. 
Moreover, the DS+PoI/R test should be more robust than the DS-PA test to deviations from 
normality, as the interpretation of the PA index critically depends on the shape of the underlying 
distribution of X (see Roisman et al., 2012). 

 
Discussion 

 
Statistical tests of differential susceptibility have become standard in the empirical 

literature, and are routinely employed to adjudicate between alternative models of the underlying 
developmental processes. However, their performance and limitations have never been 
systematically investigated. In this paper, I employed Monte Carlo simulations to explore the 
functioning of three commonly used tests proposed by Roisman and colleagues (2012). The first 
result was that critical tests of differential susceptibility require substantially larger samples than 
simple significance tests. This can be a major source of false negatives if investigators design 
their studies based on standard power analysis, but then rely on tests with low detection rates to 
interpret their main findings. Under the assumption of a nearly symmetric crossover interaction 
in the population (PoI ≈ .40-.60; Figure 1c), a useful rule of thumb is that tests of differential 
susceptibility based on RoS (DS) or the combination of RoS and the PA > 16% criterion 
(DS+PA) require approximately 50% more cases to achieve 80% detection than to achieve 80% 
statistical power. For example, if power analysis indicates that 500 participants are needed for 
80% power, investigators planning to use these tests should increase sample size to about 750 
participants (“add 50%”). 

 
Notably, criteria for diathesis-stress do not suffer from this limitation when the 

interaction shape in the population matches the diathesis-stress prototype (PoI = .00; see the 
bottom row of Figure 4); their detection rate closely matches the statistical power of significance 
tests on the interaction term. The same applies to tests of vantage sensitivity when the interaction 
shape has PoI = 1.00. Moreover, if the population PoI is .00 or 1.00, the likelihood of detecting a 
differential susceptibility pattern is very low irrespective of sample size and the specific test 
employed. In contrast, the likelihood of detecting diathesis-stress or vantage sensitivity patterns 
can be nontrivial even if the population PoI is .50 (first row of Figure 4). All else being equal, 
both of these effects tend to make “diathesis-stress” and “vantage sensitivity” findings more 
likely than “differential susceptibility” findings for purely statistical reasons. This potential 
distortion should be taken into account in reviews of the existing empirical literature. 
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Figure 5. Simulation results for critical tests of differential susceptibility with the revised PoI criterion. The 
semipartial effect size sρ2 is the population equivalent of ΔR2, the change in R2 when the interaction term is added to 
a regression model. DS (thin black line) = differential susceptibility test based on regions of significance (RoS). 
DS+PoI/R (thick black line) = revised differential susceptibility test based on RoS and the .20-.80 criterion for PoI 
(proportion of interaction). DS+PA (dashed black line) = differential susceptibility test based on RoS and the 16% 
criterion for the PA index (proportion affected). D-Str (dark gray line) = diathesis-stress test based on RoS and/or 
the location of the crossover point. Each plot is based on 500,000 simulated samples. 
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Figure 6. Detection curves of the revised DS+PoI/R test for different values of population PoI (proportion of 
interaction). Effect size: sρ2 = .01. Each line is based on 500,000 simulated samples. 

 
 

 
Finally, simulation results showed that the critical test based on the combination of RoS 

and the .40-.60 PoI criterion (DS+PoI) has severe limitations and should be abandoned or 
revised. First, this test suffers from a high rate of false negatives even when the interaction shape 
in the population is symmetric. Second, it is very sensitive to deviations from strict interaction 
symmetry; if the PoI in the population is .40 instead of .50, the maximum detection rate drops to 
50% regardless of sample size. This feature of the test is especially problematic, as recent 
theoretical findings suggest that the symmetry hypothesis is unlikely to be warranted in most 
scenarios (Del Giudice, in press). Published empirical studies that rely on this test to interpret 
interaction findings should be re-evaluated in light of these limitations. 

 
To overcome the problems of the DS+PoI test, I proposed a simple revision based on a 

.20-.80 window of PoI values. This revised test (DS+PoI/R) turned out to perform better than 
existing tests in separating prototypical diathesis-stress/vantage sensitivity and differential 
susceptibility interaction patterns, while achieving good detection rates and being robust to 
minor deviations from symmetry. Another convenient feature of the DS+PoI/R test is that 
researchers can use the “add 50%” rule of thumb to determine sample size if they anticipate a 
symmetric or nearly symmetric interaction shape in the population. (Under this assumption, 
detection rates for the revised test are very close to those of the standard DS test; see Figure 5.) 
Replacing existing tests of differential susceptibility with the DS+PoI/R test would improve 
accuracy and simplify the interpretation of empirical findings, without increasing the complexity 
of the procedure. 
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Conceptual Issues 
 

To conclude, it is important to consider what statistical tests of interactions can and 
cannot reveal about the nature of the underlying developmental processes. For simplicity, 
throughout this paper I have referred to ordinal and disordinal interactions as representative of 
differential susceptibility vs. diathesis-stress/vantage sensitivity (respectively). However, the 
correspondence is only partial and can be misleading if applied mechanically. For example, the 
core assumption of diathesis-stress models is that susceptible individuals are vulnerable to 
negative environmental conditions such as stress and lack of resources. A diathesis-stress 
scenario in which vulnerable individuals suffer more severe damage in negative environments 
does indeed predict the appearance of ordinal interactions, with PoI = .00 as the prototypical case 
(Figure 1a). However, the converse is not necessarily true. Ordinal interactions with the exact 
same shape can evolve not as a result of vulnerability in susceptible individuals, but rather as a 
result of adaptive developmental processes that match the child’s trajectory to the expected 
characteristics of the environment. In fact, models suggest that PoI = .00 is an evolutionary 
attractor in a broad range of conditions, including scenarios that do not involve vulnerability as 
traditionally conceived (for extended discussion see Del Giudice, in press). Another problem 
with mechanical interpretations of the tests is that interaction shape depends on the range of the 
environmental variable included in a given study. When the range of a variable showing 
differential susceptibility is restricted to one side of the distribution (e.g., studies of high-risk 
children; middle-class samples), the resulting interaction may match a diathesis-stress or vantage 
sensitivity prototype. 

 
In short, low PoI values provide only weak support for diathesis-stress hypotheses that 

involve dysregulation as opposed to adaptive developmental plasticity; conversely, high PoI 
values are only weakly supportive of vantage sensitivity. Distinguishing between these 
alternatives requires in-depth consideration of the functions and constraints of the relevant 
developmental mechanisms, and—ideally—evidence bearing on the biological costs and benefits 
of different phenotypes in different contexts. Statistical tests of interactions shape can be 
informative, but cannot substitute for theory and should never be interpreted in isolation. 

 
In absence of clear theoretical predictions, tests of interaction shape inevitably involve 

arbitrary distinctions between patterns. For example, the revised criterion I proposed here 
operates a relatively clean discrimination between interactions with PoI < .20 and PoI > .20 and 
between interactions with PoI < .80 and PoI > .80 (Figure 6). While these values may align 
reasonably well with researchers’ intuitions about the shape of different interaction patterns, 
there is nothing intrinsically special about the .20 and .80 thresholds, which correspond to 
crossover points located about 0.67 SD above/below the mean. Formal models of differential 
susceptibility may well predict crossover points above that value, depending on the 
characteristics of the environment and the costs and benefits associated with different behavioral 
profiles (for examples, see Del Giudice, in press). It is crucial to understand that, in this context, 
statistical tests work as surrogates for detailed theory—potentially useful but necessarily 
provisional. As theoretical models grow more sophisticated, it should become possible to make a 
priori predictions about interaction shape without the need to rely on conventional thresholds. In 
this perspective, Bayesian methods seem especially promising, as they naturally permit the 
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integration of empirical data and theory-driven expectations. The challenges faced by differential 
susceptibility research have prompted creative responses and led to the development of sharper 
and more sophisticated methodological tools; this trend will surely continue in the future, and the 
whole discipline stands to benefit as a result. 
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