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  Abstract 

 
The topic of this tutorial is the effective dimensionality (ED) of a dataset, i.e., the 

equivalent number of orthogonal dimensions that would produce the same overall pattern of 
covariation. The ED quantifies the total dimensionality of a set of variables, with no assumptions 
about their underlying structure. The ED of a dataset has important implications for the “curse of 
dimensionality;” it can be used to inform decisions about data analysis and answer meaningful 
empirical questions. The tutorial offers an accessible introduction to ED, distinguishes it from 
the related but distinct concept of intrinsic dimensionality (ID), critically reviews various ED 
estimators, and gives indications for practical use with examples from personality research. An R 
function is provided to implement the techniques described in the tutorial. 

 
Keywords: Correlation; curse of dimensionality; effective dimensionality; entropy; 

intrinsic dimensionality. 
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1. Introduction  
 

Questions about the dimensionality of data are pervasive in multivariate applications, and 
become especially critical in fields such as molecular biology, ecology, and neuroscience—
where the number of measured variables is often orders of magnitude higher than the degrees of 
freedom of the system under study. However, the problem of dimensionality is central even in 
less data-intensive areas, as for example research on personality and individual differences. In 
this tutorial I introduce the concept of the effective dimensionality (ED) of a dataset, and 
demonstrate how it can be applied in empirical research. In a nutshell, the ED of a set of 
correlated variables is the equivalent number of orthogonal dimensions that would produce the 
same overall pattern of covariation. The ED is a basic index of the total dimensionality of the 
data: as such, it makes no assumptions about the underlying structure of the variables and does 
not attempt to distinguish between “signal” and “noise.” This can be contrasted with other 
approaches to dimensionality that seek to recover a smaller number of latent variables, and/or 
separate the major features of the data from those deemed trivial or negligible. Of particular 
interest, the ED of a dataset plays a major role in determining the severity of the “curse of 
dimensionality”—a shorthand for the statistical challenges that arise as the space of the data 
becomes increasingly high-dimensional (Aggarwal et al., 2001; Altman & Krzywinski, 2018; 
Giraud, 2015).  

 
The ED is a simple metric that can be estimated with minimal assumptions and without 

complex computations; it deserves to be included in the basic toolkit of multivariate statistics. 
Unfortunately, the literature on this topic is scattered across disciplines, frustratingly 
disconnected, and marred by confusing terminology. This tutorial provides a one-stop resource 
on this little-known topic and a function for ED estimation in the R environment (R Core Team, 
2019). I begin by defining effective dimensionality (Section 2) and demarcating it from the 
related but distinct concept of intrinsic dimensionality (Section 3). Next, I review the available 
indices of ED, discuss their rationale and limitations, and compare their behavior in different 
scenarios (Section 4); I then address some important practical issues such as sample size and 
measurement error (Section 5). Finally, I illustrate the use of ED indices with two empirical 
examples from personality psychology (Section 6). 

 
2. What is effective dimensionality? 

 
The definition of ED rests on the notion that the structure of a set of K variables—as 

described by the correlation or covariance matrix—can be summarized by an equivalent number 
n of orthogonal dimensions, with equal variance along each dimension (isotropy). The number n 
can vary continuously from 1 to K, and quantifies the ED of the original variables (Bretherton et 
al., 1999; Gnedenko & Yelnik, 2016; Pirkl et al., 2012; Roy & Vetterli, 2007). The stronger the 
correlational structure of the variables, the smaller the equivalent number of dimensions; in the 
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limit, a set of perfectly correlated variables can be represented by just one dimension of variation 
(n = 1). At the other extreme are cases in which the ED equals the number of original variables. 
The exact conditions under which n = K depend on whether the ED is based on the correlation 
matrix (the variables must be all orthogonal) or the covariance matrix (the variables must be 
orthogonal and have the same variance).  

 
Measuring dimensionality as a continuous quantity is a powerful idea, but also one that 

can be puzzling when encountered for the first time. Figure 1 offers an intuitive geometric 
illustration. The four ellipsoids have the same volume, and represent the distribution of variation 
along three orthogonal axes (x, y, and z). In Figure 1a, variation is the same in all directions, and 
the ellipsoid is a sphere with an ED of 3. In Figure 1b, variation along the z axis is restricted and 
the ellipsoid becomes flattened—that is, effectively more two-dimensional than a sphere. Stated 
differently, it takes less than three full dimensions to describe this pattern of variation; according 
to one of the estimators I introduce in Section 4 (n1), the ED of the flattened ellipsoid in the 
figure is exactly 2.5. In Figure 1c, variation is restricted along both the y and z axes, and the 
ellipsoid has exactly two effective dimensions according to the n1 index. Note that an ED of 2 
does not imply that the structure of variation is well described by a flat, two-dimensional surface. 
This is a useful warning that the number of effective dimensions is not a straightforward 
description of the geometry of the data—an important point that I discuss again in Section 3. In 
Figure 1c, most of the variance lies along the x axis and there is relatively little variation in the 
other directions. The ellipsoid begins to look approximately one-dimensional, and the ED gets 
closer to 1 (specifically, n1 = 1.5). 

 
 

 
 

Figure 1. Geometric illustration of effective dimensionality (ED). The ellipsoids have the same volume, but 
different patterns of variation along the three axes. Index n1 is an entropy-based estimator of ED, as described in 
Section 4. 
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2.1. Implications for the curse of dimensionality 
 

The so-called “curse of dimensionality” is a set of statistical phenomena that occur in 
high-dimensional spaces, violate geometric intuitions that work well in low dimensions, and can 
make the analysis of large-scale data particularly challenging (for a detailed overview see 
Giraud, 2015). For example, a surprising property of high-dimensional distributions is that 
combinations of rare values can become extremely common: as dimensionality increases, a 
larger and larger proportion of the mass of the distribution becomes concentrated in the tails, 
where the probability density is low (Giraud, 2015). This property of multivariate distributions 
led van Tilburg (2019) to note that, as the number of traits used to describe personality increases, 
the frequency of “average” personality profiles (i.e., those close to the distribution centroid 
according to their Euclidean distance) is going to decrease rapidly. With enough traits, one may 
end up in a paradoxical situation in which almost every individual in the population is highly 
“unusual” when compared with the average. 

 
More troubling, the vastness and sparsity of high-dimensional spaces make the very 

notions of distance and similarity problematic and ill-defined (Aggarwal et al., 2001; Altman & 
Krzywinski, 2018). As the number of dimensions becomes larger, the minimal distance between 
two points increases, and all the points become approximately equally distant to one another (this 
is known as the “distance concentration effect”). Since many algorithms for search, 
classification, and outlier detection rely on distance metrics to quantify the similarity between 
data points, their performance in high-dimensional spaces tends to drop sharply unless sample 
size becomes exponentially larger (Aggarwal et al., 2001; Beyer et al., 1999; Houle et al., 2010; 
Zimek et al., 2012). (Other problems that are sometimes discussed in this context are overfitting 
in regression models—estimation errors can become large as small fluctuations cumulate across 
predictors—and the fact that computational complexity may increase nonlinearly as the number 
of dimensions grows; see Giraud, 2015).  

 
In practice, however, the curse of dimensionality is often less severe than one might 

expect—even in datasets with hundreds or thousands of variables that might seem hopelessly 
high-dimensional (e.g., gene expression data; Durrant & Kabán, 2009; Zollanvari et al., 2011). 
As it turns out, the impact of distance-related phenomena does not just depend on the number of 
variables but also on their statistical overlap. If the variables share a strong correlational 
structure, the concentration of Euclidean distances takes place at a much slower pace than 
expected; conversely, the effect becomes more severe if the dataset includes many irrelevant or 
noisy variables that weaken the correlational structure and increase the total dimensionality 
(Durrant & Kabán, 2009; Zimek et al., 2012). Similarly, the average Euclidean distance from the 
centroid is reduced if the variables are not orthogonal but correlated (van Tilburg, 2019). In other 
words, the key governing factor is the effective number of independent dimensions in the 
dataset—precisely the quantity measured by ED. 
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3. Effective vs. intrinsic dimensionality 

 
The ED of a set of variables is a continuous measure of its total dimensionality, without 

distinction between signal and noise. In contrast, intrinsic dimensionality (ID) is defined as the 
minimum number of variables needed to accurately describe the important features of the system 
(Campadelli et al., 2015; Carreira-Perpiñán, 1996). From a geometric point of view, this informal 
concept can be made more rigorous by defining the ID as the dimensionality of the manifold that 
approximately embeds the data, and is itself embedded in the higher-dimensional space of the 
original variables (Campadelli et al., 2015; Carreira-Perpiñán, 1996; Facco et al., 2017; 
Zwiggelaar, 2014). To illustrate with a particularly clear-cut example, the points in Figure 2a are 
identified by three coordinates; however, they lie entirely on a plane within the three-
dimensional space. Since a plane is a two-dimensional manifold, their intrinsic dimensionality is 
2 instead of 3. In Figure 2c, all the points lie on a line, and their ID equals 1 even if they are 
described by three coordinates. Note that the geometry of ID does not have to be linear as in 
Figure 2; in principle, the embedding manifold can be curved and twisted into complex shapes 
(see Carreira-Perpiñán, 1997; Facco et al., 2017). The ID of a set of variables contributes to 
determine the severity of the curse of dimensionality. For example, simulations show that 
algorithms based on similarity can perform well in high-dimensional datasets, provided that the 
ID of the latter (estimated with the fractal dimension methods discussed in Section 3.1) is 
sufficiently low (Korn et al., 2001). 

 
 

 
 

Figure 2. Illustration of the difference between intrinsic dimensionality (ID) and effective dimensionality (ED). In 
both (a) and (b), the points are embedded in a plane (a two-dimensional manifold) and their ID is 2. The ED does 
not just reflect the embedding of the points but also their correlational structure, and is lower in (b) (nonzero 
correlation) than in (a) (zero correlation, ED = 2). The points in (c) are embedded in a line (a one-dimensional 
manifold), the coordinates on the three axes are perfectly correlated, and both ID and ED equal 1. 
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Under the formal definition, the ID does not depend on the correlational structure of the 
variables, but only on the dimensionality of their embedding manifold. Consider the ellipsoids in 
Figure 1: they all have the same ID of 3, but the number of effective dimensions changes 
depending on how variation is distributed along the three axes. Figure 2 is also instructive in this 
regard. ED and ID agree in the case of Figure 2c, in which the manifold is one-dimensional and 
all the variables are perfectly correlated with one another. In Figure 2a, x is uncorrelated with y 
and z, while y and z are perfectly correlated; accordingly, both the ID and the ED equal 2. The 
points of Figure 2b still lie on a plane (ID = 2), but the variables are correlated and thus partially 
redundant, and their ED is lower than 2. Crucially, the summary provided by the ED is not 
intended as a direct representation of the geometry of the data. For example, the ellipsoid in 
Figure 1c has two effective dimensions, but it would be a mistake to infer that its shape is that of 
a two-dimensional disc. If anything, this description is better approximated by the flattened 
ellipsoid of Figure 1b, which however has an ED of 2.5. 

 
Informally, ID quantifies the number of variables needed to accurately describe the 

important features of a system. This broader definition implies that redundancies among the 
original variables may mask a simpler underlying structure; however, ID and ED remain 
critically different. In particular, the purpose of ID is to distinguish between the “important” or 
“relevant” features of the data and the “trivial” or “irrelevant” ones. In contrast, ED is purely 
descriptive: the number n summarizes the overall structure of the variable set, including possible 
sources of noise such as measurement error and the presence of irrelevant features—unless these 
have been statistically controlled for (Section 5.5). As the amount of noise increases, correlations 
among variables become weaker and the estimated ED increases accordingly (see Cangelosi & 
Goriely, 2007).  

 
In sum, ED and ID answer different questions about the data and must not be confused 

with one another. Consider a dataset that, according to a given criterion, can be adequately 
described by m variables (so that ID = m). To the extent that the dataset includes additional 
“minor” dimensions of variation and/or measurement error, the ED will tend to be larger than m. 
But to the extent that the m variables are correlated and hence partially redundant, the ED will 
tend to be smaller than m (see Figure 2). As a result, the ED of a dataset can be larger, smaller, or 
equal to the ID. The point is that ED is not a simpler or approximate version of ID, but a 
conceptually distinct quantity with its own interpretation. 

 
3.1. Methods for estimating intrinsic dimensionality 
 

Even though ID is not the main subject of this tutorial, it can be useful to briefly review 
the methods used to estimate it in practice. Both exploratory factor analysis (EFA) and principal 
component analysis (PCA) can be used to reduce the dimensionality of a dataset by retaining a 
smaller number of meaningful dimensions (factors or components). EFA assumes an underlying 
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causal model in which correlations among observed variables are determined by unobserved 
latent variables; PCA is purely a data reduction technique, and the components are linear 
combinations of the original variables rather than latent constructs (see e.g., Fabrigar et al., 
1999). Both methods are implemented in several R packages, including the user-friendly psych 
(Revelle, 2019). While standard EFA and PCA are linear techniques, there are nonlinear 
extensions that can model a curved manifold (e.g., Carreira-Perpiñán, 1997; Yalcin & Amemiya, 
2001). A number of those extensions can be found in the R package Rdimtools (Suh & You, 
2018). 

 
In both PCA and EFA, the ID is estimated by deciding how many factors or components 

should be retained. Dozens of decision algorithms have been proposed and tested over the 
decades (see e.g., Cangelosi & Goriely, 2007; Peres-Neto et al., 2005). Some consist of simple 
and often arbitrary rules of thumb: for example, retaining enough components to account for 
80% or 90% of the total variance, or discarding the components that explain less variance than a 
preset threshold. More sophisticated methods employ significance testing, randomization, or 
model selection to identify the appropriate number of dimensions to retain (see Peres-Neto et al., 
2005; Ruscio & Roche, 2012). Parallel analysis and its variants rank among the best-performing 
algorithms of this kind (Lim & Jahng, 2019; Ruscio & Roche, 2012). Of note, parallel analysis 
and other algorithms that rely on eigenvalues (see Section 4) may underestimate the ID if the 
underlying factors have a strong correlational structure, and hence a low ED (see Zopluoglu & 
Davenport, 2017). From a Bayesian perspective, various methods have been developed to select 
the number of dimensions with the highest posterior probability (e.g., Conti et al., 2014; Minka, 
2001; Nakajima et al., 2011; Seghouane & Cichocki, 2007).  

 
Besides PCA, other projection methods that can be applied to ID estimation include 

independent component analysis (ICA) and multidimensional scaling (MDS; see Carreira-
Perpiñán, 1997). The R package Rdimtools (Suh & You, 2018) can be used to estimate ID with 
these techniques. More recently, exploratory graph analysis (EGA) has been proposed as a 
method for dimensionality estimation based on network theory (Golino & Epskamp, 2017); EGA 
is implemented in the R package EGAnet (Golino et al., 2019). 

 
An alternative approach to ID estimation is based on fractal dimensions. Intuitively, the 

dimensionality of the embedding manifold can be estimated by how completely the data fill the 
space as one moves from larger to increasingly smaller scales of analysis (Campadelli et al., 
2015; Einbeck & Kalantan, 2013; Zwiggelaar, 2014). Fractal dimension estimators capture the 
self-similarity of data at different scales (Korn, 2001) and are theoretically attractive, but demand 
massive amounts of data to perform well (Zwiggelaar, 2014). Yet another family of ID methods 
is that of nearest neighbors-based estimators. These methods exploit the distribution of the data 
at a local scale (e.g., the distribution of distances between neighboring data points) to estimate 
the dimensionality of the entire manifold (Campadelli et al., 2015; Facco et al., 2017; 
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Zwiggelaar, 2014). The Rdimtools package (Suh & You, 2018) offers an extensive collection of 
ID estimation tools, including several linear and nonlinear projection methods, fractal dimension 
estimators, and nearest neighbors-based estimators. In general, there is no “gold standard” for 
estimating ID; which method performs best depends on the specific features of the dataset in 
ways that are often hard to anticipate (e.g., Zwiggelaar, 2014). For empirical comparisons of 
alternative methods, see Campadelli et al. (2015), Einbeck and Kalantan (2013), and van der 
Maaten et al. (2009). 

 
4. Estimating effective dimensionality  

 
The most common indices of ED (see Table 1 for an overview) are based on the 

eigenvalues of the correlation or covariance matrix, which collectively are known as the 
spectrum of the matrix. There are as many eigenvalues as variables (l1…lN), and their 
magnitude quantifies the variance in the direction of the corresponding eigenvectors. The sum of 
the eigenvalues equals the sum of the variances of the original variables; if the correlation matrix 
is used, the variables are standardized to unit variance, and the sum of the eigenvalues is simply 
their number (K). These notions should be familiar to readers acquainted with the basics of PCA 
(e.g., the spectrum of the correlation or covariance matrix is displayed in the “scree plot;” 
eigenvalues are used to compute the proportion of variance explained by each component). For 
an accessible explanation of eigenvalues and eigenvectors, see Strang (2016).  

 
When all the variables are perfectly correlated, the number of effective dimensions is 1; 

there is only one nonzero eigenvalue, whose magnitude is the sum of the variances (Figure 3a). 
When the variables are all orthogonal (and have equal variance if the covariance matrix is used), 
the number of effective dimensions is K and all the eigenvalues have the same magnitude (Figure 
3c). When there are n clusters of variables that are perfectly correlated within each cluster, but 
orthogonal across clusters (and the clusters have the same total variance if the covariance matrix 
is used), the number of effective dimensions is n. In this case, the spectrum contains n nonzero 
eigenvalues of equal magnitude followed by (K – n) zeroes (Figure 3b). Note that the 
determinant of the matrix equals the product of the eigenvalues, and is zero whenever one or 
more eigenvalues are zero (see Strang, 2016). 
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Figure 3. Examples of 4´4 correlation matrices (left) and their spectra (right). (a) The variables are perfectly 
correlated; there is only one nonzero eigenvalue (l) and the effective dimensionality (ED) is 1. (b) The variables 
form two clusters, with perfect correlations within cluster and zero correlations between clusters. There are two 
equal nonzero eigenvalues and the ED is 2. (c) The variables are all orthogonal; the four eigenvalues are all equal 
and the ED is 4. Note that the sum of the eigenvalues equals the sum of variances (4 in this case). 
 
 
4.1. Entropy-based estimators 
 

The standard approach to ED estimation is based on the information-theoretic concept of 
entropy, which in this context can be defined intuitively as the information content of a 
probability distribution. For discrete distributions, the information content is maximized when all 
the values are equally probable, and hence equally “surprising” (uniform distribution). 
Conversely, if one particular value occurs with a probability of 1 while all the others have zero 
probability, the distribution carries no information and its entropy is zero. See Stone (2015) for a 
tutorial introduction to information theory, and Stone (2019) for a condensed version.  
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The first step in the derivation of ED estimators is to recast the spectrum l of a 
correlation or covariance matrix as a discrete probability distribution. To achieve this, the 
eigenvalues are normalized by their sum: 

 
𝑝! =

"!
∑ ""#
"$%

  (1) 

 
The resulting (pseudo-)probabilities can then be used to calculate the information entropy 

associated with the spectrum (spectral entropy). The spectral entropy is maximized when the 
distribution is uniform (i.e., the eigenvalues are all equal, and the variables are all orthogonal). 
As the correlational structure gets stronger and variables become more redundant, each variable 
provides less unique information and entropy diminishes accordingly. If there is only one 
nonzero eigenvalue, the spectral entropy becomes zero since the variables are completely 
redundant with one another. 

 
Once the spectral entropy of a correlation or covariance matrix has been calculated, it is 

easy to find the equivalent number of orthogonal dimensions that would result in the same 
amount of entropy, and use that number as an estimate of ED. This approach has been used for 
decades in ecology to estimate the “effective number of species,” a basic index of ecological 
diversity within a community (Hill, 1973; Jost, 2006; Tuomisto, 2010). From a social sciences 
perspective, Budescu and Budescu (2012) proposed the equivalent entropy as a summary 
measure of ethnic diversity. The key decision is which measure of entropy to use among the 
many possible alternatives. The Rényi entropy (see Bromiley et al., 2004; Rényi, 1961) is a 
generalized entropy that includes the familiar Shannon entropy as a special case: 

 
𝐻$ =

%
%&$

log'∑ 𝑝!
$'

!(% )  (2) 

 
The limit of Eq. 2 when the order parameter q tends to 1 is the Shannon entropy (H1). In 

the Shannon entropy, the normalized eigenvalues are weighted in proportion to their size. The 
value q = 2 yields the Rényi entropy of order 2 or quadratic entropy (H2). The entropies H1 and 
H2 are both maximized in uniform distributions and have the same maximum value, but H2 
assigns disproportionally more weight to the larger eigenvalues while discounting the smaller 
ones. As a result, H2 drops more steeply than H1 as the spectrum deviates from a uniform 
distribution (Figure 4). This means that the same non-uniform spectrum of eigenvalues will have 
a higher entropy (and more equivalent dimensions) if H1 is used, and a lower entropy (and fewer 
equivalent dimensions) if H2 is used instead. Higher values of q assign progressively more 
weight to the larger eigenvalues. The limit of Eq. 2 when a tends to infinity is the min-entropy 
(H∞), which is entirely determined by the largest eigenvalue (see Figure 4). H∞ discounts all the 
information in the spectrum beyond the largest eigenvalue, and yields the minimum estimate of 
entropy (and hence the minimum number of equivalent dimensions).  
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Figure 4. Illustration of the Shannon entropy (H1), quadratic entropy (H2), and min-entropy (H∞) in the case of a 
random variable with two outcomes and probabilities p and (1 – p). The entropy (i.e., the average amount of 
information provided by the outcome) is always maximized when p = 0.5 (1 bit) and minimized when p = 0 or p = 1 
(0 bits). As outcome probabilities deviate from 0.5, H2 decreases more steeply than H1, and H∞ decreases more 
steeply than H2. 

 
 
The principle of equivalent entropy for estimating ED was employed independently by 

Cangelosi and Goriely (2007), who called the estimator “information dimension;” Roy and 
Vetterli (2007), who interpreted it as “effective rank” (a continuous extension of the rank of a 
matrix, which can only take integer values); and more recently Gnedenko and Yelnik (2016), 
who labeled it simply as “effective dimensionality.” All these authors used the Shannon entropy 
H1 in their derivations, and the resulting index can be labeled n1, consistent with the usage in 
ecology (Hill, 1973): 

 

𝑛% = ∏ , ""
∑ "!#
!$%

-
− ""

∑ "!#
!$%'

)(%   (3) 

 
Because H1 is a “balanced” entropy that does not assign disproportionately more weight 

to the larger eigenvalues, n1 is suitable as a general-purpose estimator of ED. 
 
Drawing on previous work by Fraedrich et al. (1995) and Bretherton et al. (1999), Pirkl et 

al. (2012) derived another entropy-based index of ED, which they called the “effective number 
of uncorrelated measurements.” This estimator is based on H2 instead of H1, and can be labeled 
n2: 
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𝑛* =
+∑ "!#

!$% ,
&
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&#
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  (4) 

 
The choice of H2 means that n2 is generally more conservative than n1. While Eqs. 3 and 

4 give identical results in the special cases illustrated in Figure 3, n2 yields lower estimates of ED 
in most realistic scenarios. 

 
Finally, Kirkpatrick (2009) proposed a simple ED estimator as the sum of the eigenvalues 

divided by the largest eigenvalue. Although this was not the original rationale, Kirkpatrick’s 
index turns out to be the equivalent entropy estimator for the min-entropy H∞; accordingly, it can 
be labeled n∞: 

 

𝑛- = ∑ "!#
!$%

./0
!

"!
 (5) 

 
The n∞ index discards all the information in the spectrum beyond the first eigenvalue, 

effectively assuming a scenario like the one in Figure 3b. As a result, it lacks sensitivity and 
yields extremely conservative estimates of ED.  

 
To summarize, the behavior of entropy-based indices depends on the order of the 

corresponding Rényi entropy. The n1 index can be used in most situations as a general-purpose 
estimator of ED. The n2 index is appropriate when one seeks a more conservative estimate, or a 
reasonable lower bound on the dimensionality of a dataset. The estimates provided by n∞ are 
extremely conservative, and too insensitive to be of use in most practical contexts.  

 
4.2. Other estimators 
 

Cheverud (2001) proposed a non-entropy-based ED index as a method to correct for the 
effective degrees of freedom in multiple significance testing. The same estimator was then used 
by Wagner et al. (2008) to measure the “effective number of traits” in a correlation matrix. This 
estimator can be labeled nC to distinguish it from its entropy-based counterparts: 

 
𝑛1 = 𝐾 − Var(𝜆) (6) 
 
where K is the number of variables. The rationale for nC is that, in a correlation matrix, 

the variance of the eigenvalues is K – 1 when there is only one nonzero eigenvalue as in Figure 
3a (hence nC = 1), and zero when the eigenvalues are all equal as in Figure 3c (hence nC = K). 
Interpolating between these two extremes yields a continuous estimate of ED.  

 
The original formula shown in Eq. 6 only works with correlation matrices, but a simple 

adjustment makes it equally applicable to covariance matrices: 
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𝑛1 = 𝐾 − '&

+∑ "!#
!$% ,

& Var(𝜆)  (7) 

 
The nC index has two main limitations. First, it is not well justified for intermediate 

values between 1 and K; and second, it systematically overestimates the ED, often by a large 
margin (Li & Ji, 2005). For these reasons, nC is not recommended for practical use, and is only 
reviewed here for completeness. 
 
 

Table 1. Overview of four estimators of effective dimensionality (ED). 

ED index Formula  Notes 

n1 !"
𝜆'

∑ 𝜆()
(*+

%
−

𝜆'
∑ 𝜆()
(*+

)

'*+

 

 
- Rationale: equivalent spectral entropy (Shannon entropy, H1) 
- Balanced, general-purpose estimator 

n2 
(∑ 𝜆()

(*+ ),

∑ 𝜆(,)
(*+

 

 
- Rationale: equivalent spectral entropy (quadratic entropy, H2) 
- More conservative than n1 

n∞ 
∑ 𝜆()
(*+

max
(
𝜆(

 

 
- Rationale: equivalent spectral entropy (min-entropy, H∞) 
- Extremely conservative; not recommended 

nC 𝐾 −
𝐾,

(∑ 𝜆()
(*+ ), Var

(𝜆) 

 
- Rationale: interpolation between 1 and K  
- Typically overestimates ED; not recommended 

Legend: 𝜆 = eigenvalues of the correlation or covariance matrix. K = number of variables in the set. 
 
 
4.3. An illustrative comparison 
 

Figure 5 compares the estimators in three illustrative scenarios, based on the correlation 
matrix of four variables. The largest eigenvalue is 2 in all the scenarios. The spectrum in Figure 
5a reproduces that of Figure 3b, with two nonzero eigenvalues of equal magnitude. This is a 
trivial special case, and all the estimators agree on a dimensionality of 2.00. In Figure 5b, there 
are three nonzero eigenvalues, but the first explains twice as much variance as the other two. The 
lack of sensitivity of n∞ is apparent, as it yields the same value as in the first scenario (2.00). On 
the other hand, nC grossly overestimates the ED, and returns a number of dimensions larger than 
the number of nonzero eigenvalues (3.50). Both n1 and n2 estimate an ED of more than 2.5 and 
less than 3, with n2 predictably smaller than n1. Figure 5c shows an even more realistic spectrum 
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with four nonzero eigenvalues of decreasing magnitude. Since n∞ only considers the largest 
eigenvalue, it continues to indicate an ED of 2, whereas nC yields the highest estimate of the set 
(3.63). The estimates provided by n1 and n2 are somewhat above and below 3, respectively. The 
relative difference between the two entropy-based estimators is predictably larger in this 
scenario, since H1 and H2 diverge more strongly for distributions with many intermediate values. 

 

   

Figure 5. Comparison of four estimators of effective dimensionality (ED) in three simple scenarios. The n2 index 
(based on the quadratic entropy) is more conservative than n1 (based on the Shannon entropy). The n∞ index (based 
on the min-entropy) depends only on the largest eigenvalue, yields highly conservative estimates of the ED, and is 
insensitive to differences between scenarios. The nC index typically overestimates the ED and often returns more 
dimensions than nonzero eigenvalues, as in panel (b). 
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4.4. R code 
 

The R function estimate.ED is available at https://doi.org/10.6084/m9.figshare.11954661. 
This function computes the four estimators reviewed in this section—either from raw data or 
correlation/covariance matrices—and implements the error-correction techniques discussed in 
Section 5. 

 
5. Practical issues  

 
5.1. Potential uses of ED 
 

ED indices can be employed in a variety of research contexts. To begin, ED provides an 
initial summary of the correlational structure of the data, and an indication of the likely severity 
of the curse of dimensionality. This can be useful to decide whether approaches such as 
dimension reduction (e.g., via PCA) or variable selection (e.g., via regularization; see James et 
al., 2013; Lever et al., 2016) should be employed to alleviate the analytic problems described in 
Section 2.1. Even after dimension reduction, the ED of the reduced data (e.g., a set of correlated 
factor scores) can be informative, especially if the number of retained dimensions is large. 
Alternatively, researchers may want to analyze the data “as is” without recourse to dimension 
reduction, for example to preserve the meaning of the original variables. In such cases, ID 
becomes less relevant but ED remains a viable measure of dimensionality. When ED and ID are 
used in combination, discrepancies between the two can be explored and may suggest new 
insights into the data.  

 
The fact that ED is a continuous measure is an advantage when one wants to compare the 

correlational structure of the same set of variables across multiple groups, contexts, experimental 
conditions, or time points (e.g., in longitudinal studies). Most methods for ID estimation only 
yield discrete values, and are insensitive to gradual change; moreover, the exact number of 
dimensions selected by algorithms such as parallel analysis can depend on minor fluctuations in 
the data. In contrast, ED provides a fine-grained assessment of dimensionality and is naturally 
suited to comparative research, as demonstrated in Section 6.2.  

 
5.2. Correlation or covariance? 
 

Effective dimensionality can be calculated from either correlations or covariances, raising 
the question of which option is more appropriate in a given case. This is a familiar problem in 
PCA, where principal components can be extracted from the correlation or the covariance 
matrix. In the covariance matrix, the variables with the largest variance dominate the overall 
structure, and tend to overshadow the contribution of the other variables. In the correlation 
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matrix, all variances are standardized to unity, meaning that each variable carries the same 
weight as the others regardless of its original scale.  

 
When the scales of different variables in the set are arbitrary (e.g., rating scales that use 

different numerical ranges) or incommensurable (e.g., variables measuring age, height, and 
income), this may be the only reasonable options. When differences in scale are meaningful and 
non-arbitrary (e.g., a set of variables measuring the length of different anatomical traits), 
researchers need to decide whether it makes sense to equalize the contributions of different 
variables or let the largest variances determine the dimensionality of the dataset. In any event, it 
is important to clearly specify the source of the eigenvalues whenever ED is estimated.  

 
5.3. Linearity and normality 
 

The ED estimators reviewed in this tutorial are based on the spectrum of the correlation 
or covariance matrix, which is a complete description of the data only if the latter follow a 
multivariate normal distribution. If the data are characterized by nonlinear dependencies, ED 
estimators will only capture those aspects of the structure that are reflected in the correlation or 
covariance matrix. Note that the same limitation applies to linear techniques used to estimate ID, 
such as standard PCA and EFA (Section 3.1). 

 
If the distribution of the variables deviates from normality, sample correlations may be 

systematically inflated or deflated compared with their population value. Simulations show that, 
in a range of plausible scenarios, biases due to non-normality tend to become negligible when 
sample size is larger than about 100-200 (Bishara & Hittner, 2015). However, there are cases (for 
example involving pairs of lognormal distributions) in which bias remains substantial even with 
sample sizes in the hundreds of thousands (e.g., Lai et al., 1998). This is not a problem when 
researchers are only interested in the particular sample under consideration. However, in most 
cases the quantity of interest is the ED of the population (see Sections 5.4 and 5.5 for more 
discussion). One should keep in mind that, especially in small samples, the correlational structure 
of the sample may not reflect that of the population if there are marked deviations from 
normality. 

 
A related issue arises when some variables in the dataset are not continuous but 

categorical, either dichotomous (binary) or polytomous (three or more ordered levels). While 
categorical variables do not follow a normal distribution, it is possible to compute tetrachoric 
and polychoric correlations, which estimate the correlation coefficient under the assumption that 
the observed categories reflect a continuous and normally distributed latent variable (Drasgow, 
1988). Tetrachoric and polychoric correlations can be calculated with packages psych (Revelle, 
2019) and polycor (Fox, 2019). The main problem with this method is that the resulting 
correlation matrices may be indefinite—that is, some of the eigenvalues may be negative. A 
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practical solution is to approximate the original matrix with the nearest positive definite matrix. 
Approximation methods include those by Higham (2002) and Knol and ten Berge (1989). The 
function estimate.ED automatically detects indefinite matrices and applies Higham’s (2002) 
method, as implemented in the Matrix package (Bates & Maechler, 2019). 

 
5.4. Correcting for small-sample bias 
 

The eigenvalues of a sample correlation or covariance matrix are not unbiased estimators 
of the corresponding population values. Specifically, the sample eigenvalues tend to be more 
spread out than those in the population, so that estimates of large eigenvalues are biased up 
whereas those of small eigenvalues are biased down (see Lim & Jahng, 2019; Mestre, 2008). As 
a result, ED estimators computed from sample data generally underestimate the effective number 
of dimensions in the population, particularly when correlations among variables are small and 
the population spectrum is close to uniform (see Figure 6 for an illustration). This bias becomes 
more pronounced as sample size gets small relative to the number of variables in the set, and can 
be severe when the number of variables is comparable to (or even larger than) the number of 
observations.  
 

 
 

Figure 6. Illustration of small-sample bias in ED estimation with indices n1 (a) and n2 (b). Lines show the amount 
and direction of bias (i.e., the average sample estimate minus the population value) as a function of population ED 
and sample size. The simulation is based on uniform correlation matrices for 10 variables, with correlations ranging 
from 0 (ED = 10) to 1 (ED = 1). Bias becomes stronger as sample size decreases and correlations among variables 
get smaller (higher ED values). 

 
 
As noted in Section 5.3, the relevance of this issue depends on whether the research 

question concerns the dimensionality of the specific sample at hand, or the dimensionality of the 
same variables in the population. Consider a scenario in which researchers wish to compare the 
correlational structure of the same set of variables across different groups. For example, 
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Lukaszewski et al. (2017) investigated how the degree of covariation among personality traits 
varies across countries (see Section 6.2 for a reanalysis). If there are marked differences in 
sample size between groups, ED estimates are going to be confounded, since—all else being 
equal—smaller samples tend to show smaller values of ED.  

 
A solution to this problem is to use corrected population estimates of ED in place of 

unccorrected sample values. Fortunately, it is easy to correct the small-sample bias of ED 
estimators with shrinkage methods that appropriately reduce the larger eigenvalues and increase 
the smaller ones, thus bringing them closer to their population values. Two examples are the 
adjustment method by Mestre (2008) and the nonlinear shrinkage estimator by Ledoit and Wolf 
(2012, 2015). The latter performs particularly well if the number of variables is comparable to 
(or even larger than) the sample size, and is implemented in the R package nlshrink (Ramprasad, 
2016). The function estimate.ED allows the user to correct for small-sample bias, using Ledoit 
and Wolf’s method if the raw data are available and Mestre’s adjustment otherwise. 

 
5.5. Correcting for measurement error 
 

As noted throughout this tutorial, ED describes the total correlational structure of the data 
without distinction between signal and noise. However, it is always possible to apply corrections 
for measurement error before computing ED to reduce the amount of noise included in the 
estimates. Measurement error adds unsystematic variance and attenuates the correlational 
structure of the data; hence, estimates of ED can be expected to decrease after correction. Such 
corrected estimates approximate the dimensionality that the data would have, if the variables had 
been measured without error. Naturally, the resulting ED estimates refer to a hypothetical 
scenario rather than to the actual data at hand. Corrections for measurement error can be useful 
when one’s research question concerns the dimensionality of the variables as idealized 
constructs. For example, researchers may want to compare the correlational structure of the same 
variables in different samples or at different time points, while adjust the estimated ED values for 
systematic changes in measurement quality (see Section 6.2 for an example). 

 
If the reliability of the variables in the dataset is known, correlations can be disattenuated 

by simply dividing them by the square root of the product of the reliabilities. For example, a raw 
correlation of r = .30 between two variables with reliabilities .70 and .80 would become r = .40 
after disattenuation. Indices of reliability include Cronbach’s alpha (a), as well as McDonald’s 
omega total (wt) and omega hierarchical (wh). (For in-depth discussion of these and other 
indices, see Dunn et al., 2014; McNeish, 2018; Revelle & Condon, 2018; Zinbarg et al., 2005.) 
Generally speaking, reliability indices seek to quantify the proportion of variance attributable to 
the construct being measured (“true score variance,” as contrasted with “error variance”; see 
Revelle & Condon, 2018). Whereas a and wt regard all the variance shared among the items as 
true score variance, wh only considers the variance that can be attributed to a single general 
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factor underlying the items (estimated through hierarchical EFA). In the context of 
dimensionality estimation, this makes wh an especially attractive option; the reason is that wh can 
be used to adjust correlations for irrelevant specific factors that are confounded with the 
construct of interest, in addition to the unsystematic error associated with individual items. The 
function estimate.ED can disattenuate the correlation matrix with a vector of reliabilities 
supplied by the user. 

 
An alternative, more sophisticated approach is to use latent variable methods (most 

commonly structural equation modeling or SEM) to explicitly model the factor structure of the 
measures, estimate correlations between latent variables instead of observed scores, and calculate 
the ED using the latent correlation matrix. If the factor structure is correctly specified, latent 
variable modeling overcomes the limitations of simple reliability indices, and can achieve a 
virtually error-free estimate of the correlation matrix (see Brown, 2015; Kline, 2016).  

 
6. Empirical examples 

 
6.1. Dimensionality of a large-scale personality dataset 
 

The following example demonstrates ED estimation and correction for measurement 
error with a large personality dataset (Kaiser, 2019; original data by Johnson, 2015). 
Specifically, the present analysis focuses on the United States subsample of the dataset, which 
comprises N = 617,180 online respondents (379,323 females; for details see Kaiser, 2019). 
Personality was assessed with the 120-item version of the IPIP-NEO (Johnson, 2014; see 
http://personal.psu.edu/~j5j/IPIP/). The items (on a 1-5 scale from “very inaccurate” to “very 
accurate”) measure 30 narrow facets of the Big Five domains (Openness, Conscientiousness, 
Extraversion, Agreeableness, and Neuroticism; Costa & McCrae, 1992), with six facets per 
domain (e.g., Extraversion comprises Friendliness, Gregariousness, Assertiveness, Activity level, 
Excitement seeking, and Cheerfulness). The 30 facet scores were calculated as averages of the 
four corresponding items. The dataset was retrieved from https://osf.io/9kpc5.  

 
To estimate the ED of this dataset, n1 was calculated from the correlation matrix (pooled 

from the male and female subsamples) with the function estimate.ED. The R script of the 
analysis is available at https://doi.org/10.6084/m9.figshare.11954667. Observed facet scores 
yielded n1 = 17.47, indicating that the structure of the data is markedly lower-dimensional than 
suggested by the number of observed variables. This is unsurprising, since different facets of the 
same domain are expected to correlate with one another. For comparison, the other ED indices 
were n2 = 10.78, n∞ = 4.44, and nC = 28.22. Note that this sample is very large relative to the 
number of variables, so that correcting for small-sample bias would have a negligible effect on 
the eigenvalues.  
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What are the implications for the curse of dimensionality? From the standpoint of data 
analysis, the practical impact of the phenomena described in Section 2.1 depends on the number 
of dimensions in the data, but also on the size of the sample and the details of the statistical 
model one employs (see Giraud, 2015). While there are no simple rules of thumb, the scale of 
this dataset (about 35,000 observations per effective dimension) should minimize the severity of 
the curse for many standard analyses. That said, high-dimensional phenomena also have 
theoretical and empirical implications that do not depend on sample size. For example, the 
concentration of probability in the outer edge of the distribution means that, as the number of 
measured traits increases, the proportion of individuals with “average” personality profiles will 
quickly become vanishingly small (van Tilburg, 2019). With 30 orthogonal dimensions of 
variation, one would expect this effect to be rather extreme, as shown in Figure 7. However, 
observed scores have an ED of about 17; as a result, the average distance from the distribution 
centroid becomes noticeably smaller, and the number of profiles in the vicinity of the centroid 
increases accordingly (Figure 7).  
 

 
 

Figure 7. Density plots of Euclidean distances from the distribution centroid, based on 30 personality facets. The 
dotted line shows the expected distribution for 30 orthogonal variables. The thin line shows empirical distances 
calculated from observed scores; the thick line shows distances from the simulated distribution of latent scores. 

 
 
Of course, observed scores in this dataset include a certain amount of measurement error, 

which contributes to increase the dimensionality of the dataset. From a theoretical standpoint, it 
can be interesting to estimate the dimensionality of the 30 personality facets as idealized, error-
free constructs. To illustrate the difference between alternative correction methods, the observed 
correlation matrix was first disattenuated with Cronbach’s a (obtained with package psych v. 
1.8.12; Revelle, 2019). Then, latent correlation matrices for males and females were estimated 
from a multigroup confirmatory factor analysis model fit to item-level data. The details of the 
analysis are reported in Kaiser (2019); the matrices were obtained from the author of the original 
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study (Tim Kaiser, personal communication, June 20, 2019). The results of this analysis are 
summarized in Figure 8. 

 

 
 

Figure 8. Effective dimensionality (ED) estimated with indices n1 and n2 from the correlations among 30 personality 
facets. Estimates based on observed correlations are compared with those obtained after disattenuation with 
Cronbach’s a and latent variable modeling (confirmatory factor analysis).  

 
  
After disattenuation with a, the estimated ED decreased to n1 = 12.23. As expected, the 

change was even larger using latent correlations, which yielded n1 = 10.35. Computing n2 as a 
lower-bound estimate yielded 7.54 with a disattenuation and 6.47 with latent correlations. These 
results indicate that, once measurement error is accounted for, the dimensionality of the 30 facets 
is effectively equivalent to about 10 orthogonal dimensions, with about 6 dimensions as a 
conservative lower bound. In light of these findings, one may further reconsider the implications 
of van Tilburg’s (2019) argument about the unusualness of personality profiles. If the effective 
number of independent dimensions at the level of latent traits is about 10, the “true” personality 
profiles of most people are going to be even closer to the centroid than their observed profiles 
based on questionnaire scores, which have an ED of about 17 (see Figure 7). 

 
To illustrate the difference between ED and ID in this dataset, parallel analysis was used 

to estimate the number of reliable components in PCA (psych package). The results suggested 6 
components; note that, in large samples such as the present one, parallel analysis converges with 
the classic Kaiser-Guttman rule of retaining the components with eigenvalues > 1 (Guttman, 
1954; see Revelle, 2019). Parallel analysis for EFA is less straightforward, as it requires a priori 
assumptions about the underlying factor structure (see Revelle, 2019). The one-factor approach 
that is the default in the psych package suggested 8 factors. The comparison between the ID 
estimated with parallel analysis (6-8) and the ED estimated after error correction (~10) is 
potentially informative. The n1 index was larger than both the PCA- and EFA-based estimates, 
and the PCA-based estimate was close to the lower bound indicated by n2. The extra 
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dimensionality detected by ED is not readily explained by measurement error in the observed 
variables, since ED indices were calculated from error-corrected matrices. Thus, the discrepancy 
between ED and ID might simply reflect the idiosyncratic content of individual facets, but might 
also point to the presence of meaningful constructs that are not adequately captured by the first 
6-8 dimensions of variation. This possibility is plausible in light of other studies of the Big Five 
model, which have identified 10 intermediate “aspects” of personality between the level of 
narrow facets and that of broad domains (DeYoung et al., 2007).  

 
6.2. Cross-cultural differences in personality covariation 
 

The next example shows how ED can be employed to study patterns of variation in the 
dimensionality of a set of variables—in this case, across multiple samples. Using the cross-
cultural data by Schmitt et al. (2007), Lukaszewski et al. (2017) calculated the degree of 
covariation among the Big Five domains (Openness, Conscientiousness, Extraversion, 
Agreeableness, and Neuroticism) in 55 countries from across the world. The index of covariation 
chosen by the authors was the average r2 between pairs of traits, which ranged from .01 to .21 
(mean r2 = .05). The main hypothesis tested in the study was that personality traits would be 
more differentiated (i.e., less strongly correlated) in countries with higher levels of 
socioecological complexity. Consistent with this hypothesis, the correlation between a composite 
index of socioecological complexity and the average r2 was -.53 (Spearman’s rank correlation 
was r  = -.49). Complexity remained a significant predictor in more complex statistical models 
that will not be discussed here (for details see Lukaszewski et al., 2017).  

 
While the average r2 is a sensible measure of covariation, the ED provides an attractive 

alternative for this kind of study. ED has an intuitive interpretation as the effective number of 
independent personality dimensions in a country; arguably, this provides a more meaningful 
summary of covariation patterns than the average pairwise r2. Conveniently, ED values can be 
easily corrected for small-sample bias in addition to measurement error. In this study, the sample 
size for different countries showed a dramatic range of variation, with N = 62 to 2,793 (median N 
= 216); bias correction can ensure that ED estimates remain fully comparable between small and 
large samples.  

 
The data for key study variables were obtained from the supplementary material in 

Lukaszewski et al. (2017). Correlations among personality traits were used to compute index n1 
with the function estimate.ED. Correlation matrices were disattenuated using the values of a in 
different world regions reported in the original study by Schmitt et al. (p. 185); Mestre’s (2008) 
method was used to correct for small-sample bias. The dataset and R script used for the analysis 
are available at https://doi.org/10.6084/m9.figshare.11954667. 
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With 5 personality traits, the maximum ED is 5 when all the traits are perfectly 
orthogonal; smaller ED values indicate a stronger degree of personality covariation. Across the 
55 countries, n1 ranged from 2.11 (Tanzania) to 4.95 (France), with a mean of 4.15. In other 
words, the average dimensionality of the Big Five domains across countries was equivalent to 
slightly more than 4 orthogonal dimensions. Note that this is probably an overestimate, because 
disattenuation with a is typically less effective than other methods (e.g., disattenuation with wh 
or latent variable modeling). 

 
Predictably, n1 showed a strong negative correlation of -.95 with the average r2 

calculated by Lukaszewski et al. (Figure 9). Socioecological complexity was more strongly 
associated with the corrected n1 (r = .66; Spearman’s r = .59) than with the average r2 employed 
in the original study (r = -.53; Spearman’s r = -.49; all correlations p < .001). The same pattern 
remained after controlling for sample size (log-transformed): the partial correlations of 
socioecological complexity were .60 with n1 and -.49 with the average r2. As it turns out, this 
improvement was due to the correction for measurement error: when the average r2 was 
computed from disattenuated correlations, it performed similarly to the corrected n1 (r = -.64; 
partial r = -.58; Spearman’s r = -.61). In conclusion, this example shows that ED can be 
usefully employed as a comparative measure of trait covariation. ED indices have an intuitive 
interpretation, and can be easily adjusted for unequal sample sizes and/or differences in 
measurement quality.  
 

 
 

Figure 9. The relation between two indices of personality covariation across 55 countries (data from Lukaszewski et 
al., 2017). The indices are the average r2 between pairs of traits (used in the original study), and the effective 
dimensionality (ED) estimated with n1. The n1 index was corrected for small-sample bias and measurement error 
(disattenuation with Cronbach’s a). 
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7. Conclusion 

 
The effective dimensionality of a set of variables is a useful but underutilized measure of 

correlational structure. Alone or in combination with estimates of intrinsic dimensionality, ED 
indices can be used to inform decisions about data analysis and answer meaningful empirical 
questions. Hopefully, this tutorial will encourage more researchers to incorporate this versatile 
tool in their own statistical practice. 
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