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Abstract
In this paper, we give an overview of the results established in Alonso (http://arxiv.org/
org/abs/2008.05173, 2020) which provides the first rigorous derivation of hydrodynamic
equations from the Boltzmann equation for inelastic hard spheres in 3D. In particular, we
obtain a new system of hydrodynamic equations describing granular flows and prove exis-
tence of classical solutions to the aforementioned system. One of the main issue is to identify
the correct relation between the restitution coefficient (which quantifies the rate of energy
loss at the microscopic level) and the Knudsen number which allows us to obtain non trivial
hydrodynamic behavior. In such a regime, we construct strong solutions to the inelastic Boltz-
mann equation, near thermal equilibriumwhose role is played by the so-called homogeneous
cooling state. We prove then the uniform exponential stability with respect to the Knudsen
number of such solutions, using a spectral analysis of the linearized problem combined with
technical a priori nonlinear estimates. Finally, we prove that such solutions converge, in a spe-
cific weak sense, towards some hydrodynamic limit that depends on time and space variables
only throughmacroscopic quantities that satisfy a suitablemodification of the incompressible
Navier–Stokes–Fourier system.
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1 Introduction

In this paper, we report on some recent results obtained in [3] about the problem of deriving
rigorously some hydrodynamic limit from the Boltzmann equation for inelastic hard spheres
with small inelasticity. Our aim here is to give an account of the main aspects of our work
[3] in a shorter—reader-friendly—version that includes the main results as well as the main
ideas and arguments. We shall only sketch the proofs of our results, referring the reader to
[3] for complete versions and details.

1.1 The Problem

The Kinetic Model

Weconsider here the (freely cooling)Boltzmann equationwhich provides a statistical descrip-
tion of identical smooth hard spheres suffering binary and inelastic collisions:

∂t F + v · ∇x F = Qα(F, F) (1.1)

supplemented with initial condition F(0, x, v) = F in(x, v), where F = F(t, x, v) is the
density of granular gases having position x ∈ T

d
� and velocity v ∈ R

d at time t ≥ 0. We
consider here for simplicity the case offlat torus

T
d
� = R

d/(2π �Z)d (1.2)

for some typical length-scale � > 0. The so-called restitution coefficient α belongs to (0, 1]
and the collision operator Qα is defined in weak form as

∫
Rd

Qα(g, f )(v) ψ(v) dv = 1

2

∫
R2d

f (v) g(v∗) |v − v∗|Aα[ψ](v, v∗) dv∗ dv, (1.3)

where

Aα[ψ](v, v∗) :=
∫
Sd−1

(ψ(v′) + ψ(v′∗) − ψ(v) − ψ(v∗)) b(σ · q̄) dσ, (1.4)

and the post-collisional velocities (v′, v′∗) are given by

v′ = v + 1 + α

4
(|q|σ − q), v′∗ = v∗ − 1 + α

4
(|q|σ − q),

where q = v − v∗, q̄ = q/|q|.
(1.5)
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Here, dσ denotes the Lebesgue measure on S
d−1 and the angular part b = b(σ · q̄) of the

collision kernel appearing in (1.4) is a non-measurable mapping integrable over Sd−1. There
is no loss of generality assuming

∫
Sd−1

b(σ · q̄) dσ = 1, ∀ q̄ ∈ S
d−1.

Notice that one can also give a strong formulation of the collision operator Qα (see
[3, Appendix A]). This strong formulation is simpler in the elastic case (α = 1), we here
give it for later use:

Q1(g, f )(v) =
∫
Rd×Sd−1

(
g(v′∗) f (v′) − g(v∗) f (v)

) |v − v∗| b(σ · q̄) dσ dv∗. (1.6)

The true definition actually involves pre-collisional velocities and not post-collisional veloc-
ities v′ and v′∗ but they match in the elastic case, which explains the formula (1.6).

The fundamental distinction between the classical elastic Boltzmann equation and the
associated to granular gases lies in the role of the parameter α ∈ (0, 1), the coefficient
of restitution that we suppose constant. This coefficient is given by the ratio between the
magnitude of the normal component (along the line of separation between the centers of the
two spheres at contact) of the relative velocity after and before the collision. The case α = 1
corresponds to perfectly elastic collisions where kinetic energy is conserved. However, when
α < 1, part of the kinetic energy of the relative motion is lost since

|v′|2 + |v′∗|2 − |v|2 − |v∗|2 = −1 − α2

4
|q|2 (1 − σ · q̄) ≤ 0.

Notice that the microscopic description (1.5) preserves the momentum

v′ + v′∗ = v + v∗

and, taking ψ = 1 and then ψ = v in (1.3) yields the following conservation of macroscopic
density and bulk velocity defined as

R(t) :=
∫
T
d
� ×Rd

F(t, x, v) dv dx and U(t) :=
∫
T
d
� ×Rd

vF(t, x, v) dv dx,

for some solution F(t, x, v) to (1.1):

d

dt
R(t) = d

dt
U(t) = 0.

Consequently, there is no loss of generality in assuming that

R(t) = R(0) = 1, U(t) = U(0) = 0, ∀ t ≥ 0.

The main contrast between elastic and inelastic gases is that in the latter the granular tem-
perature,

T (t) := 1

|Td
� |

∫
Rd×T

d
�

|v|2F(t, x, v) dv dx

is constantly decreasing

d

dt
T (t) = −(1 − α2)Dα(F(t), F(t)) ≤ 0,
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where Dα(·, ·) denotes the normalised energy dissipation associated to Qα , see [16], given
by

Dα(g, g) := γb

4

∫
T
d
�

dx

|Td
� |

∫
Rd×Rd

g(x, v)g(x, v∗)|v − v∗|3 dv dv∗, (1.7)

where γb is a positive constant depending only on the angular kernel b.

The Problem of Hydrodynamic Limits

To capture some hydrodynamic behaviour of the gas, we need to write the above equation in
nondimensional form introducing the dimensionless Knudsen number which is proportional
to the mean free path between collisions. We then introduce the classical Navier-Stokes
rescaling of time and space (see [5]) to capture the hydrodynamic limit and introduce the
particle density

Fε(t, x, v) := F

(
t

ε2
,
x

ε
, v

)
, t ≥ 0. (1.8)

In this case, we choose for simplicity � = ε in (1.2) which ensures now that Fε is defined on
R

+ × T
d × R

d with T
d := T

d
1 . Under such a scaling, Fε satisfies the rescaled Boltzmann

equation

ε2∂t Fε + ε v · ∇x Fε = Qα(Fε, Fε) on T
d × R

d , (1.9a)

supplemented with the initial condition

Fε(0, x, v) = F in
ε (x, v) := F in( x

ε
, v). (1.9b)

Conservation of mass and density is preserved under this scaling, if Fε solves (1.9a), then

d

dt
Rε(t) = d

dt
Uε(t) = 0

where Rε(t) := ∫
Td×Rd Fε(t, x, v) dv dx and Uε(t) := ∫

Td×Rd Fε(t, x, v)v dv dx, whereas
the cooling of the granular gas is given by the equation

d

dt
Tε(t) = −1 − α2

ε2
Dα(Fε(t), Fε(t)), (1.10)

where Tε(t) := 1
|Td |

∫
Td×Rd |v|2Fε(t, x, v) dv dx and we recall that Dα is defined in (1.7).

The conservation properties of the equation imply that there is no loss of generality assuming
that

Rε(t) = 1, Uε(t) = 0, ∀ ε > 0, t ≥ 0.

In order to understand the free-cooling inelastic Boltzmann equation (1.9a)–(1.9b), we
perform aself-similar change of variables, which allows us to introduce an intermediate
asymptotic and ensures that our equation has a non trivial steady state (see [15–17] for more
details). After this change of variables, we are led to study the equation

ε2∂t fε + εv · ∇x fε + (1 − α)∇v · (v fε) = Qα( fε, fε), (1.11)

with initial condition

fε(0, x, v) = F in
ε (x, v).
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Note that the drift term acts as an energy supply which prevents the total cooling down of the
gas. It has been shown that there exists a spatially homogeneous steady state Gα to (1.11).
More specifically, there exists α0 ∈ (0, 1) (where α0 is an explicit threshold value) such that
for α ∈ (α0, 1), there exists a unique distribution Gα = Gα(v) satisfying

(1 − α)∇v · (v Gα) = Qα(Gα,Gα) with
∫
Rd

Gα(v)

(
1
v

)
dv =

(
1
0

)
. (1.12)

Moreover, there exists some constant C > 0 independent of α such that

‖Gα − M‖L1
v(〈v〉2) ≤ C(1 − α) (1.13)

where M is the Maxwellian distribution

M(v) := (2πϑ1)
−d/2 exp

(
−|v|2
2ϑ1

)
, v ∈ R

d , (1.14)

for some explicit temperature ϑ1 > 0. The Maxwellian distribution M is a steady solution
for α = 1 and its prescribed temperature ϑ1 (which ensures (1.13) to hold) will play a role
in the rest of the analysis.

It is important to emphasize that, in all the sequel, all the threshold values on ε and the
various constants involved are actually depending only on this initial choice.

In order to reach some incompressible Navier-Stokes type equation in the limit ε → 0,
we introduce the following fluctuation hε around the equilibrium Gα:

fε(t, x, v) = Gα(v) + ε hε(t, x, v).

Our problem boils down to look at the following equation on hε:⎧⎪⎨
⎪⎩

∂t hε + 1

ε
v · ∇xhε = 1

ε2
Lαhε + 1

ε
Qα(hε, hε)

hε(t = 0) = hinε := 1

ε
(F in

ε − Gα),
(1.15)

where Lα is the linearized collision operator (local in the x-variable) defined as

Lαh := Qα(Gα, h) + Qα(h,Gα) − (1 − α)∇v · (vh). (1.16)

We also denote by L1 the linearized operator around G1 = M, that is,

L1h := Q1(M, h) + Q1(h,M). (1.17)

From now on, we will always assume that

∫
Td×Rd

F in
ε (x, v)

⎛
⎝ 1

v

|v|2

⎞
⎠ dv dx =

⎛
⎝ 1

0
Eε

⎞
⎠ with Eε > 0 and

Eε − dϑ1

ε
−−→
ε→0

0.

(1.18)

The choice of prescribing as initial energy some constant Eε > 0 satisfying ε−1(Eε−dϑ1) →
0 as ε → 0 for our problem is natural because dϑ1 is the energy of the Maxwellian M
introduced in (1.14) and aswe shall see later on, the restitution coefficientα is intended to tend
to 1 as ε goes to 0 in our analysis (see (1.22)). It is also worth noticing that assumption (1.18)
and (1.12) result in ∫

Td×Rd
hinε (x, v)

(
1
v

)
dv dx =

(
0
0

)
.
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Moreover, equation (1.15) preservesmass andvanishingmomentum since, if hε solves (1.15),
then one formally has

d

dt

∫
Td×Rd

hε(t, x, v)v dv dx =
∫
Td×Rd

∇v · (vhε(t, x, v))v dv dx

= −
∫
Td×Rd

hε(t, x, v)v dv dx .
(1.19)

Consequently, there is no loss of generality assuming that
∫
Td×Rd

hε(t, x, v)

(
1
v

)
dv dx =

(
0
0

)
, ∀ t ≥ 0. (1.20)

Relation Between the Restitution Coefficient and the Knudsen Number

The central underlying assumption in our study is the following relation between the restitu-
tion coefficient and the Knudsen number.

Assumption 1.1 The restitution coefficient α(·) is a continuously decreasing function of the
Knudsen number ε satisfying the scaling behaviour

α(ε) = 1 − ε2(λ0 + η(ε)) (1.21)

with λ0 ≥ 0 and some function η(·) that tends to 0 as ε goes to 0. If λ0 = 0, we assume
furthermore that there exists ε
 > 0 such that η(·) is positive on (0, ε
).

Notice that under this assumption, the hypothesis made on the energy of the initial data
in (1.18) implies that ∫

Td×Rd
hinε (x, v) |v|2 dv dx −−→

ε→0
0. (1.22)

Indeed, using (1.18) and Assumption 1.1 combined with (1.13), we obtain∫
Td×Rd

hinε (x, v)|v|2 dv dx = 1

ε

∫
Td×Rd

(
F in

ε (x, v) − Gα(ε)(v)
) |v|2 dv dx

= Eε − dϑ1

ε
+ 1

ε

∫
Td×Rd

(M(v) − Gα(ε)(v)
) |v|2 dv dx −−→

ε→0
0.

Still under Assumption 1.1, we formally obtain that if ε → 0 in (1.15), then hε → h
with h ∈ KerL1 whereL1 is defined in (1.17). We recall that when seeingL1 as an operator
acting only on velocity on the space L2

v(M−1/2), then

KerL1 = Span{M, v1M, · · · vdM, |v|2M}
and the projection π0 onto KerL1 is given by

π0(g) :=
d+2∑
i=1

(∫
Rd

g�i dv

)
�i M, (1.23)

where

�1(v) :=1, �i (v) := 1√
ϑ1

vi−1, i=2, . . . , d + 1 and �d+2(v) := |v|2 − dϑ1

ϑ1
√
2d

. (1.24)
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We deduce formally that h takes the following form

h(t, x, v) =
(

�(t, x) + u(t, x) · v + 1

2
θ(t, x)(|v|2 − dϑ1)

)
M(v)

with

�(t, x) :=
∫
Td×Rd

h(t, x, v) dv, u(t, x) := 1

ϑ1

∫
Td×Rd

h(t, x, v)v dv,

θ(t, x) :=
∫
Td×Rd

h(t, x, v)
|v|2 − dϑ1

ϑ2
1d

dv. (1.25)

It isworthmentioning that a careful spectral analysis of the linearized collision operatorLα

defined in (1.16) shows that unless one assumes 1− α at least of order ε2, the eigenfunction
associated to the energy dissipation would explode and prevent some exponential stability
for (1.15) to hold true (see Theorem 2.1). Actually, in our study, we will require λ0 to be
relatively small with respect to the spectral gap associated to the elastic linearized operator to
ensure stability in the inelastic case. If one assumes λ0 = 0 (for example, one could assume
1− α of order εq with q > 2), the effect of the inelasticity is too weak in the hydrodynamic
scale and the expected model is the classical Navier–Stokes–Fourier system. In short, we are
left with two cases:
Case 1 If λ0 = 0, the expected model is the classical Navier–Stokes–Fourier system.
Case 2 If 0 < λ0 < ∞ is small enough (compared to some explicit quantities), the cumulative
effect of inelasticity is visible in the hydrodynamic scale and we expect a different model to
the Navier–Stokes–Fourier system accounting for that.

In this nearly elastic regime, the energy dissipation rate in the system happens in a con-
trolled fashion since the inelasticity parameter is compensated accordingly to the number
of collisions per time unit. Other regimes can be considered depending on the rate at which
kinetic energy is dissipated; for example, an interesting regime is themono-kinetic one which
considers the extreme case of infinite energy dissipation rate. In this way, the limit is formally
described by enforcing a Dirac mass solution in the kinetic equation yielding the pressureless
Euler system (corresponding to sticky particles). Such a regime has been rigorously addressed
in the one-dimensional framework in the interesting contribution [11]. It is an open question
to extend such analysis to higher dimensionssince the approach of [11] uses the so-called
Bony functional which is a tool specifically tailored for 1D kinetic equations.

1.2 Notations and Definitions

Let us introduce some useful notations for functional spaces. For any nonnegative weight
function m : R

d → R
+, we define, for all p > 1 the space L p(m) through the norm

‖ f ‖L p(m) :=
(∫

Rd
| f (ξ)|pm(ξ)p dξ

)1/p

,

We also define, for p ≥ 1

W
k,p(m) =

{
f ∈ L p(m) ; ∂

β
ξ f ∈ L p(m) ∀ |β| ≤ k

}

with the usual norm, i.e., for k ∈ N:

‖ f ‖p
Wk,p(m)

=
∑
|β|≤k

‖∂β
ξ f ‖p

L p(m).

123
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For m ≡ 1, we simply denote the associated spaces by L p and W
k,p. Notice that all the

weights we consider here will depend only on velocity, i.e. m = m(v). We will also use the
notation 〈ξ 〉 := √

1 + |ξ |2 for ξ ∈ R
d .

On the complex plane, for any a ∈ R, we set

Ca := {z ∈ C ; Re z > −a}, C


a := Ca \ {0} (1.26)

and, for any r > 0, we set

D(r) = {z ∈ C ; |z| ≤ r}.
We also introduce the following notion of hypo-dissipativity in a general Banach space

(X , ‖ · ‖). A closed (unbounded) linear operator A : D(A) ⊂ X → X is said to be hypo-
dissipative on X if there exists a norm, denoted by |||·|||, equivalent to the ‖ · ‖–norm such
that A is dissipative on the space (X , |||·|||), that is,

|||(λ − A)h||| ≥ λ |||h|||, ∀ λ > 0, h ∈ D(A).

Given two Banach spaces X and Y , we denote with ‖ · ‖X→Y the operator norm on the space
of B(X , Y ) linear and continuous operators from X to Y .

Note also that in what follows, for two positive quantities A and B, we denote by A � B
if there exists a universal positive constant C (which is in particular independent of the
parameters α and ε) such that A ≤ CB.

1.3 Main Results

The main results are both about the solutions to (1.15). The first one is the following Cauchy
theorem regarding the existence and uniqueness of close-to-equilibrium solutions to (1.15).
The functional spaces at stake are L1

vL
2
x -based Sobolev spaces E1 ↪→ E defined through

E := W
k,1
v W

m,2
x (〈v〉q ), E1 := W

k,1
v W

m,2
x (〈v〉q+1) with m > d, m − 1 ≥ k ≥ 0, q ≥ 3.

(1.27)

Theorem 1.2 Under Assumption 1.1, for ε, λ0 and η0 sufficiently small (with explicit bounds),
if hinε ∈ E is such that

‖hinε ‖E ≤ η0,

then the inelastic Boltzmann equation (1.15) has a unique solution

hε ∈ C([0,∞); E) ∩ L1([0,∞); E1
)

satisfying for any r ∈ (0, 1),

‖hε(t)‖E ≤ C η0 exp (−(1 − r)λε t) , ∀ t > 0

for some positive constant C = C(r) > 0 independent of ε and where λε ∼
ε→0

λ0 + η(ε)

with λ0 and η = η(ε) that have been introduced in Assumption 1.1.

Remark 1.3 It is worth pointing out that the close-to-equilibrium solutions we construct are
shown to decay with an exponential rate as close as we want to λε ∼ 1−α(ε)

ε2
(which is

the energy eigenvalue of the linearized operator, see Theorem 2.1 hereafter). The rate of
convergence can thus be made uniform with respect to the Knudsen number ε (notice that
if λ0 = 0, we obtain a rate of decay as close as we want to η(ε), we thus obtain a uniform
bound in time but not a uniform rate of decay).
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The estimates on the solution hε provided by Theorem 1.2 are enough to prove that the
solutionhε(t) converges towards somehydrodynamic solution hwhichdepends on (t, x)only
through macroscopic quantities (�(t, x), u(t, x), θ(t, x)) which are solutions to a suitable
modification of the incompressible Navier-Stokes system. This is done under an additional
assumption on the initial datum that is lightly restrictive. Before stating ourmain convergence
result, we introduce the notation

W� :=
(
W

�,2
x

(
T
d
))d+2

, � ∈ N

andwe furthermore assume that in the definition of the functional spaces (1.27), the following
conditions are satisfied:

m > d, m − 1 ≥ k ≥ 1, q ≥ 5.

Theorem 1.4 We suppose that the assumptions of Theorem 1.2 are satisfied. We assume
furthermore that there exists (�0, u0, θ0) ∈ Wm such that

lim
ε→0

∥∥π0h
ε
in − h0

∥∥
L1

vW
m,2
x (〈v〉q )

= 0,

where we recall that π0 is the projection onto the kernel of L1 defined in (1.23) and

h0(x, v) :=
(

�0(x) + u0(x) · v + 1

2
θ0(x)(|v|2 − dϑ1)

)
M(v). (1.28)

Then, for any T > 0, the family of solutions {hε}ε constructed in Theorem 1.2 converges in
some weak sense to a limit h = h(t, x, v) which is such that

h(t, x, v) =
(

�(t, x) + u(t, x) · v + 1

2
θ(t, x)(|v|2 − dϑ1)

)
M(v), (1.29)

where

(�, u, θ) ∈ C ([0, T ] ; Wm−1) ∩ L2 ((0, T ) ; Wm)

is solution to the following incompressible Navier–Stokes–Fourier system with forcing
⎧⎪⎪⎨
⎪⎪⎩

∂t u − ν
ϑ1

�xu + ϑ1 u · ∇x u + ∇x p = λ0u,

∂t θ − γ

ϑ2
1

�xθ + ϑ1 u · ∇xθ = λ0 c̄

2(d + 2)

√
ϑ1 θ,

divxu = 0, � + ϑ1 θ = 0,

(1.30)

subject to initial conditions (�in, uin, θin) defined by

uin := Pu0, θin := d

d + 2
θ0 − 2

(d + 2)ϑ1
�0, �in := −ϑ1θin (1.31)

where P is the Leray projection on divergence-free vector fields and (�0, u0, θ0) have been
introduced in (1.28). The viscosity ν > 0 and heat conductivity γ > 0 are explicit and λ0 > 0
is the parameter appearing in Assumption 1.1. The parameter c̄ > 0 is depending on the
collision kernel b(·).
Remark 1.5 The data that we consider here are actually quite general. Indeed, the assumption
that we make only tells that the macroscopic projection of hinε converges towards some
macroscopic distribution and we do not make any assumption on the macroscopic quantities
of this distribution. Namely, we do not suppose that the divergence free and the Boussinesq
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relations are satisfied by (�0, u0, θ0), the initial layer that could be created by such a lack
of assumption is actually absorbed in our notion of weak convergence, the precise notion of
which being very peculiar and strongly related to the a priori estimates used for the proof of
Theorem 1.2 (see Theorem 4.2 for more details on the type of convergence).

To prove Theorem 1.4, our approach is reminiscent of the program established in [5, 6, 9,
19] but simpler because our solutions are stronger than the renormalized ones that are used
in [9]. It is based on computations and compactness arguments that were already used in the
elastic case. Let us point out that in our case, additional terms appear due to the inelasticity
and they can be handled in the framework of Assumption 1.1. In Sect. 4, we present the proof
but only mention its main steps and arguments (details can be found in [3,Sect. 6]).

2 Study of the Kinetic Linearized Problem

2.1 Main Result on the Linearized Operator

The first step in the proof of Theorem 1.2 is the spectral analysis of the linearized problem
associated to (1.15). To that end, we introduce

Gα,εh := −1

ε
v · ∇xh + 1

ε2
Lαh.

We are going to state our main result on Gα,ε in the space E defined in (1.27) but our analysis
actually allows to treat even larger spaces (namely, we can obtain the same result under the
softer constraints m ≥ k ≥ 0 and q > 2) but we only state the linear result in this case
because it is the only one that will be used in the rest of the paper. Let us also recall that, in
any reasonable space (in particular in E and Y j for j = −1, 0, 1 defined in (2.6)–(2.8)), the
elastic operator has a spectral gap: there exists μ
 > 0 such that

S(G1,ε) ∩ Cμ
 = {0} (2.1)

where 0 is an eigenvalue of algebraicmultiplicityd+2 ofG1,ε associated to the eigenfunctions
{M, v1M, . . . , vdM, |v|2M}

(recall that Cμ
 is defined in (1.26)). This can be proven by an enlargement argument due to
[10] based on the fact that in the Hilbert space

H := W
m,2
x,v (M−1/2), m > d (2.2)

a result of hypocoercivity has been proven in [7] (the constraint m ≥ 1 would actually be
enough but we will only make use of this result for m > d in the sequel). More precisely,
introducing the other Hilbert space

H1 := W
m,2
x,v (M−1/2〈v〉1/2), (2.3)

there exists μ
 > 0 and a norm equivalent to the usual one uniformly in ε (we still denote it
by ‖ · ‖H and 〈·, ·〉H its associated scalar product to lighten the notations) such that

〈G1,εh, h〉H ≤ −μ


ε2
‖(Id − π0)h‖2H1

− μ
‖h‖2H1
. (2.4)

As we shall see in the following result, the scaling (1.21) in Assumption 1.1 is precisely
the one which allows to preserve exactly d + 2 eigenvalues in the neighborhood of zero
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Fig. 1 The set Cμ \ D(μ
 − μ) and the eigenvalue −λε

for Gα,ε . Let us now state our main spectral result (see Fig. 1 for an illustration where we
have denoted λε := −λd+2(ε)):

Theorem 2.1 Assume that Assumption 1.1 is met. For μ close enough to μ
 defined in (2.1)
(in an explicit way), there are some explicit ε > 0 and λ > 0 depending only on χ := μ
 −μ

such that, for all ε ∈ (0, ε) and λ0 ∈ [0, λ), the linearized operator Gα(ε),ε has the following
spectral property in E:

S(Gα(ε),ε) ∩ Cμ = {λ1(ε), . . . , λd+2(ε)}, (2.5)

with

λ1(ε) = 0, λ j (ε) = 1 − α(ε)

ε2
, j = 2, . . . , d + 1,

and

λd+2(ε) = −1 − α(ε)

ε2
+ O(ε2) as ε → 0.

Remark 2.2 It is worth noticing that the eigenvalue λ1(ε) = 0 corresponds with the property
of mass conservation of the operator Gα(ε),ε. Concerning the intermediate eigenvalues λ j (ε)

for j = 2, . . . , d+1, as one can see on their definition, they may be positive, this is due to the
fact that the collision operatorQα preserves momentum while the drift operator ∇v(v·) does
not. However, using (1.19), one can prove that the vanishing momentum is preserved by the
whole operator Gα(ε),ε , consequently, those eigenvalues won’t affect the long-time analysis
of our problem. Finally, the eigenvalue λd+2(ε) is directly linked to the non-preservation of
energy property of Gα(ε),ε .

We are going to proveTheorem2.1 in two stages. First,we performaperturbative argument
(reminiscent of [21]) in a L2

v,x -based Sobolev space, namely in

Y := W
s,2
v W

�,2
x (〈v〉r ), � ∈ N, s ∈ N

∗, � ≥ s + 1, r > r
 + κ + 2 (2.6)
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where

r
 := 4

√
σ1

σ0
+ 3

2

with σ0 and σ1 defined in (2.9) and κ > d/2. The key point of our approach is to see Gα,ε as
a perturbation of the elastic linearized operator G1,ε. We then use an enlargement argument
(from [10]) to extend the result from Y to the space E defined in (1.27).

Several remarks are in order:

(i) First, let us remind that the global equilibrium of our equation Gα defined in (1.12)
has some exponential fat tail and in particular, decays more slowly than a stan-
dard Maxwellian distribution (see [17]). As a consequence, we can not rely on
classical works on the elastic linearized operator which are developed in spaces of
type L2

v,x (M−1/2) with M defined in (1.14). To overcome this difficulty, we exploit
results coming from [10] in which an enlargement theory has been carried out. The
results proven in [10] include a spectral analysis of the elastic Boltzmann operator G1,1
in larger spaces (in particular of type L2

v,x ) with “soft weights” that can be polynomial
or stretched exponential. In the same line of ideas, these results have been extended to
the rescaled elastic operator G1,ε in [8].

(ii) Let us also point out that the perturbation at stake does not fall into the realm of
the classical perturbation theory of unbounded operators as described in [12] because
the perturbation is not relatively bounded. Indeed, the domain of G1,ε in Y is given
by W

s+1,2
v W

�+1,2
x (〈v〉r+1) while if one wants to be sharp in terms of rate, the best

estimate in terms of functional spaces that we are able to get is

‖Gα,ε − G1,ε‖Y j→Y j−1 = 1

ε2
‖Lα − L1‖Y j→Y j−1 � 1 − α

ε2
, j = 0, 1, (2.7)

where the spaces Y j are defined through

Y−1 := W
s−1,2
v W

�,2
x (〈v〉r−κ−2), Y0 := Y, Y1 := W

s+1,2
v W

�,2
x (〈v〉r+κ+2)

(2.8)

with κ > d/2. These estimates (whose proofs can be found in [3,Lemma 3.3]) are a
generalization and optimisation of estimates obtained in [17] and are sharp in terms of
rate, this sharpness being needed in our analysis since it allows us to deal with the case
λ0 > 0 in Assumption 1.1.

(iii) As a consequence, we have to use refined perturbation arguments whose key insights
come from [21]. Note however that we drastically simplify the analysis performed in
[21] by remarking that the difference operator Gα,ε −G1,ε does not involve any spatial
derivative and that we “only” need to develop a spectral analysis of Gα,ε without being
able to obtain decay properties on the associated semigroup. As a consequence, we
don’t need to use a spectral mapping theorem, nor do we need to use an iterated version
of Duhamel formula and this is crucial in order to reach the optimal scaling (1.21) for
our restitution coefficient.

(iv) Let us finally mention that we perform our perturbative argument inYwhich is a L2
v,x -

based Sobolev space instead of performing it in E (which is L1
vL

2
x -based) directly. This

intermediate step seems necessary because even if Lα − L1 satisfies nice estimates
in L1

v , the use of Fubini theorem is actually crucial to get the rate (1−α)/ε2 in estimates
of type (2.7).
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2.2 Elements of Proof of Theorem 2.1

As mentioned above, the basis of the proof of this theorem is to see Lα as a perturbation of
L1.

We start by giving a splitting of it into two parts: one which has some good regularizing
properties (in the velocity variable) and another one which is dissipative. For any δ > 0, one
can writeL1 = A(δ) +B(δ)

1 withA(δ) and B(δ)
1 defined through an appropriate mollification-

truncation process (see [10, Sect. 4.3.3] and [3, Sect. 2.2] for the details). The elastic collision
operator L1 writes (see the strong formulation of Q1 in (1.6)):

L1g =
∫
Rd×Sd−1

b(σ · q̄)|v − v∗|(M′∗g′ + M′g′∗ − Mg∗) dσ dv∗ −
∫
Rd

M∗|v − v∗| dv∗g

where we have used the shorthand notations g = g(v), g∗ = g(v∗), g′ = g(v′), g′∗ = g(v′∗).
We define

A(δ)g :=
∫
Rd×Sd−1

�δ b(σ · q̄)|v − v∗|(M′∗g′ + M′g′∗ − Mg∗) dσ dv∗

B(δ)
1 g :=

∫
Rd×Sd−1

(1 − �δ) b(σ · q̄)|v − v∗|(M′∗g′ + M′g′∗ − Mg∗) dσ dv∗

−g
∫
Rd

M∗|v − v∗| dv∗

where �δ = �δ(v, v∗, σ ) is an appropriate truncature function.The dissipativity property of
B(δ)
1 comes from the fact that the truncature function �δ is defined so that the first term is

small as δ goes to 0 and the fact that there exist σ0 > 0 and σ1 > 0 such that

σ0〈v〉 ≤
∫
Rd

M∗|v − v∗| dv∗ ≤ σ1〈v〉, v ∈ R
d . (2.9)

As a consequence, B(δ)
1 is going to be dissipative for δ small enough. This leads to the

following decomposition of Lα:

Lα = B(δ)
α + A(δ) , where B(δ)

α := B(δ)
1︸︷︷︸

dissipative

+ [Lα − L1]︸ ︷︷ ︸
small as

α → 1 (2.10)

and then the following decomposition of Gα,ε:

Gα,ε = A(δ)
ε + B(δ)

α,ε , where A(δ)
ε := 1

ε2
A(δ), B(δ)

α,ε := 1

ε2
B(δ)

α − 1

ε
v · ∇x .

(2.11)

Our analysis of this splitting and then of the spectrum of Gα,ε relies on several elements:
the nice properties of the above-mentioned splitting ofL1 = A(δ) +B(δ)

1 coming from [10],
some refined bilinear estimates on the collision operator coming from [1], new estimates
on Gα − M that are reminiscent of estimates proven in [4] (see [3, Lemma 2.3]) and also
new estimates on Qα − Q1 (see [3, Lemmas 2.1 and 2.2]). Concerning the latter point,
we exploit ideas developed in [17] but our situation is more involved because we work in
polynomially weighted spaces whereas in [17], the authors were working with stretched
exponential weights.

In the following lemma, we provide some regularization and hypodissipativity results on
the splitting Gα,ε = A(δ)

ε + B(δ)
α,ε (see [3, Lemma 2.7 and Proposition 2.9]):
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Lemma 2.3 There holds:

(1) For any k ∈ N and δ > 0, there are two positive constants Ck,δ, Rδ > 0 such that
supp

(A(δ)g
) ⊂ B(0, Rδ) and

‖A(δ)g‖
W

k,2
v (Rd )

≤ Ck,δ‖g‖L1
v(〈v〉), ∀ g ∈ L1

v(〈v〉). (2.12)

(2) There exist δ0, α0, ν0 such that for all α ∈ (α0, 1) and δ ∈ (0, δ0),

B(δ)
α,ε + ε−2ν0 is hypo–dissipative in E and Y j , j = −1, 0, 1,

where we recall that the spaces E and Y j are respectively defined in (1.27) and (2.8).

In what follows, we suppose that Assumption 1.1 is satisfied. We introduce ε0 which is
such that α(ε0) = α0 (and thus α(ε) ∈ (α0, 1) for all ε ∈ (0, ε0)) and consider δ ∈ (0, δ0),
ε ∈ (0, ε0). We will denote Gε := Gα,ε as well as Aε := A(δ)

ε and Bε := B(δ)
α,ε but do not

change the notations G1,ε and B1,ε. The following corollary states immediate consequences
of the previous lemma (we denote byR(·,Bε) the resolvent of the operator Bε):

Corollary 2.4 There holds:

(1) For any i, j ∈ {−1, 0, 1}, we have

‖Aε‖Yi→Y j � 1

ε2
.

(2) If ν > 0 is fixed, then for ε small enough (in terms of ν0 and ν) and j = −1, 0, 1,

‖R(λ,Bε)‖Y j→Y j � 1

Re λ + ε−2ν0
� ε2, ∀Re λ > −ν .

The second keypoint to develop our perturbative argument is to have a good understanding
of the spectrum of the operator G1,ε. We here give some estimates on the associated resolvent
that are a consequence of a result of decay of the associated semigroup (see [3,Theorem 2.12]
which gives an improved version of [8,Theorem 2.1]):

Lemma 2.5 There exists ε1 ∈ (0, ε0) such that for j = −1, 0, 1, for any λ ∈ C


μ


and
any ε ∈ (0, ε1),

‖R(λ,G1,ε)‖Y j→Y j � max

(
1

|λ| ,
1

Reλ + μ


)

where μ
 has been defined in (2.1).

Let us now explain how we develop our perturbative argument to prove Theorem 2.1.
The following proposition (which is an adaptation of [21, Lemma 2.16]) is the first step
in the development of the perturbative argument and its proof relies on Corollary 2.4 and
Lemma 2.5.

Proposition 2.6 For all λ ∈ C


μ

, let

Jε(λ) = (Gε − G1,ε
)R(λ,G1,ε)Aε R(λ,Bε).

Then, for any μ ∈ (0, μ
) and λ ∈ Cμ \ D(μ
 − μ), there exists ε2 ∈ (0, ε1) such that for
any ε ∈ (0, ε2),

‖Jε(λ)‖Y→Y � 1

μ
 − μ

1 − α(ε)

ε2
. (2.13)
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In addition, there exists ε3 ∈ (0, ε2) and λ3 > 0 such that for ε ∈ (0, ε3) and λ0 ∈ [0, λ3)
(where λ0 is defined in Assumption 1.1), Id − Jε(λ) and λ − Gε are invertible in Y with

R(λ,Gε) = �ε(λ)(Id − Jε(λ))−1, λ ∈ Cμ \ D(μ
 − μ), (2.14)

where �ε(λ) := R(λ,Bε) + R(λ,G1,ε)Aε R(λ,Bε). Finally, we have for ε ∈ (0, ε3),

‖R(λ,Gε)‖Y→Y � 1

μ
 − μ
, λ ∈ Cμ \ D(μ
 − μ). (2.15)

Sketch of the proof. The estimate on Jε(λ) can be easily deduced from (2.7), Corollary 2.4
and Lemma 2.5. First, fix μ ∈ (0, μ
) and notice that from Corollary 2.4, we clearly have
that there exists ε2 ∈ (0, ε1) (which depends on ν0 and μ) such that for any Re λ > −μ, we
have:

‖Aε R(λ,Bε)‖Y→Y1 � 1.

We can then deduce that for μ ∈ (0, μ
), for any Re λ > −μ, |λ| ≥ μ
 − μ,

‖Jε(λ)‖Y→Y ≤ ∥∥Gε − G1,ε
∥∥
Y1→Y

‖R(λ,G1,ε)‖Y1→Y1 ‖Aε R(λ,Bε)‖Y→Y1

≤ C
1 − α(ε)

ε2
max

(
1

|λ| ,
1

Reλ + μ


)
≤ C

1 − α(ε)

ε2

1

μ
 − μ

(2.16)

for some C > 0. Moreover, one can choose ε3 ∈ (0, ε2) and λ3 > 0 depending on the
difference χ = μ
 − μ, so that if λ0 ∈ [0, λ3) (recall that λ0 is defined in Assumption 1.1
and is such that (1 − α(ε))ε−2 ∼ λ0 + η(ε))

ρ(ε) := C

μ
 − μ

1 − α(ε)

ε2
< 1, ∀ ε ∈ (0, ε3). (2.17)

Under such an assumption, one sees that, for all λ ∈ Cμ \D(μ
 −μ), Id−Jε(λ) is invertible
in Y with

(Id − Jε(λ))−1 =
∞∑
p=0

[Jε(λ)]p , ∀ ε ∈ (0, ε3).

Let us fix then ε ∈ (0, ε3) and λ ∈ Cμ \ D(μ
 − μ). The range of �ε(λ) is clearly included
in D(Bε) = D(G1,ε). Then, writing Gε = Aε + Bε, we easily get that

(λ − Gε)�ε(λ) = Id − Jε(λ)

i.e. �ε(λ)(Id−Jε(λ))−1 is a right-inverse of (λ−Gε). To prove that λ−Gε is invertible, it is
therefore enough to prove that it is one-to-one, which can be done up to reducing the value of
ε3 using (2.7), Lemmas 2.3 and 2.5 . Thus, for ε ∈ (0, ε3), Cμ \D(μ
 − μ) is included into
the resolvent set of Gε and this shows (2.14). To estimate now ‖R(λ,Gε)‖Y→Y, one simply
notices that

‖(Id − Jε(λ))−1‖Y→Y ≤
∞∑
p=0

‖Jε(λ)‖p
Y→Y

≤ 1

1 − ρ(ε)
, ∀ λ ∈ Cμ \ D(μ
 − μ)

(2.18)

from which, as soon as λ ∈ Cμ \ D(μ
 − μ),

‖R(λ,Gε)‖Y→Y ≤ 1

1 − ρ(ε)
‖�ε(λ)‖Y→Y .
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One checks, using the previous computations, that for λ ∈ Cμ \ D(μ
 − μ),

‖�ε(λ)‖Y→Y � ε2 + ‖A‖Y→Y‖R(λ,G1,ε)‖Y→Y (2.19)

and deduces (2.15). This achieves the proof. ��
A first obvious consequence of Proposition 2.6 is that, for anyμ ∈ (0, μ
), there is ε3 > 0

depending only on χ = μ
 − μ such that

S(Gε) ∩ Cμ ⊂ D(μ
 − μ), s ∀ ε ∈ (0, ε3).

We denote by Pε (resp. P0) the spectral projection associsated to the set

S(Gε) ∩ Cμ = S(Gε) ∩ D(μ
 − μ) (resp. S(G1,ε) ∩ Cμ = {0}).
One can deduce then the following lemma whose proof is similar to [21,Lemma 2.17].

Lemma 2.7 For any μ ∈ (0, μ
) such that Cμ ⊂ D(μ
 − μ), there exist ε4 ∈ (0, ε3) and
λ4 ∈ (0, λ3) depending only on χ = μ
 − μ such that if λ0 ∈ [0, λ4) (where λ0 is defined in
Assumption 1.1),

‖Pε − P0‖Y→Y < 1, ∀ ε ∈ (0, ε4).

In particular,

dim Range(Pε) = dim Range(P0) = d + 2, ∀ ε ∈ (0, ε4). (2.20)

Sketch of the proof. Let μ ∈ (0, μ
) be close enough to μ
 so that D(μ
 − μ) ⊂ Cμ and
0 < r < χ = μ
 − μ. One has D(r) ⊂ C



μ. We set γr := {z ∈ C ; |z| = r}. Recall that by

definition

Pε := 1

2iπ

∮
γr

R(λ,Gε) dλ, P0 := 1

2iπ

∮
γr

R(λ,G1,ε) dλ.

For λ ∈ γr , set

Zε(λ) = R(λ,G1,ε)AεR(λ,Bε)

so that �ε(λ) = R(λ,Bε) + Zε(λ). Recall from (2.14) that, for λ ∈ γr ,

R(λ,Gε) = R(λ,Bε)(Id − Jε(λ))−1 + Zε(λ)(Id − Jε(λ))−1

= R(λ,Bε) + R(λ,Bε)Jε(λ)(Id − Jε(λ))−1 + Zε(λ)(Id − Jε(λ))−1

where we wrote (Id − Jε(λ))−1 = Id + Jε(λ)(Id − Jε(λ))−1 to get the second equality.
One also has

R(λ,G1,ε) = R(λ,B1,ε) + R(λ,G1,ε)Aε

[R(λ,B1,ε) − R(λ,Bε)
] + Zε(λ).

One can then obtain (see the proof of [3,Lemma 3.8] for the details)

Pε − P0 = 1

2iπ

∮
γr

�ε(λ)Jε(λ)(Id − Jε(λ))−1 dλ

+ 1

2iπ

∮
γr

R(λ,G1,ε)Aε

[R(λ,Bε) − R(λ,B1,ε)
]
dλ.

The first part is estimated thanks to (2.16), (2.18) and (2.19) combined with Lemma 2.5:

‖�ε(λ)Jε(λ)(Id − Jε(λ))−1‖Y→Y � 1

r2
1

1 − ρ(ε)

1 − α(ε)

ε2
.
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For the second part, notice first that from Lemma 2.5,

∥∥R(λ,G1,ε)Aε

[R(λ,Bε) − R(λ,B1,ε)
]∥∥

Y→Y
� 1

r

∥∥AεR(λ,Bε) − AεR(λ,B1,ε)
∥∥
Y→Y

.

Then, for λ ∈ γr , we have

AεR(λ,Bε) − AεR(λ,B1,ε) = AεR(λ,Bε)
[Bε − B1,ε

]R(λ,B1,ε)

which implies that∥∥AεR(λ,Bε) − AεR(λ,B1,ε)
∥∥
Y→Y

≤ ‖AεR(λ,Bε)‖Y−1→Y ‖Bε − B1,ε‖Y→Y−1 ‖R(λ,B1,ε)‖Y→Y � 1 − α(ε)

ε2
.

Proceeding as in the proof of Lemma 2.6, one can conclude that for any 0 < r < χ = μ
−μ,

‖Pε − P0‖Y→Y ≤ C

r

1 − α(ε)

ε2

(
1

r(1 − ρ(ε))
+ 1

)
:= �(ε). (2.21)

Thanks to Assumption 1.1, one can find ε4 and λ4 depending only on χ such that �(ε) < 1 for
any ε ∈ (0, ε4) and λ0 ∈ [0, λ4). In particular, we deduce (2.20) from [12,Paragraph I.4.6].

��
With Lemma 2.7, we can now end the proof of Theorem 2.1.

Sketch of the proof of Theorem 2.1. The structure ofS(Gε)∩Cμ in the spaceY comes directly
from Lemma 2.7 together with Proposition 2.6. To describe more precisely the spectrum,
one first remarks that

S(Lα(ε)) ∩ Cμ ⊂ S(Gε) ∩ Cμ.

This comes from the fact that for each eigenvalue ofLα(ε), the eigenfunction depends only on
v and thus remains an eigenfunction for the operator Gε. Since, for ε small enough, the same
perturbative argument that we developed above implies that the spectral projection �Lα(ε)

associated to S(Lα) ∩ Cμ satisfies

dim(Range(�Lα(ε)
)) = dim(Range(�L1)) = d + 2 = dim(Range(Pε)),

we get that

S(Lα(ε)) ∩ Cμ = S(Gε) ∩ Cμ , (2.22)

that is, the eigenvalues λ j (ε) are actually eigenvalues of Lα(ε). The development of the
energy eigenvalue λd+2(ε) comes from [17]. The conservation of mass gives us that 0 is an
eigenvalue for our problem. The intermediate eigenvalues λ j (ε) for j = 2, . . . , d + 1 are
obtained thanks to the fact that∫

Rd
Lα(ε)ϕ(v) vi dv = −1 − α(ε)

ε2

∫
Rd

vi∇ · (vϕ(v)) dv = 1 − α(ε)

ε2

∫
Rd

vi ϕ(v) dv.

Notice that all this allows us to find eigenfunctions (that depend only on v) in L2
v,x (〈v〉r ).

Using once more the splitting Lα = A(δ) + Bδ
α defined in (2.10) and the regularizing

properties of A(δ), one can actually prove that our eigenfunctions lie in Y, which yields the
conclusion of Theorem 2.1 in the space Y. To extend the result to the space E, we use an
enlargement argument coming from [10], we omit the details here and just mention that this
argument is based on the splitting Gε = Aε + Bε introduced in (2.11). ��
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3 Study of the Kinetic Nonlinear Problem

Let us recall that the spaces E and E1 are defined in (1.27). In this section, we assume that
Assumption 1.1 is met and consider ε ∈ (0, ε), λ0 ∈ [

0, λ
]
where ε and λ are defined

in Theorem 2.1. As in Sect. 2, to lighten the notations, we write Gε = Gα(ε),ε as well
as Bε = Bα(ε),ε .

3.1 Splitting of the Nonlinear Inelastic Boltzmann Equation

Now that the spectral analysis of the linearized operatorGε in the space E has been performed,
in order to proveTheorem1.2,we are going to prove severalapriori estimates for the solutions
to (1.15). The crucial point in the analysis lies in the splitting of (1.15) into a system of two
equations mimicking a spectral enlargement method from a PDE perspective(see [18, Sect.
2.3] and [8] for pioneering ideas on such amethod).More precisely, using (2.11), the splitting
amounts to look for a solution of (1.15) of the form

hε(t) = h0ε(t) + h1ε(t)

with h0ε solution to⎧⎪⎪⎨
⎪⎪⎩

∂t h0ε = Bεh0ε + 1
ε
Qα(ε)(h0ε, h

0
ε) + 1

ε

[
Qα(ε)(h0ε, h

1
ε) + Qα(ε)(h1ε, h

0
ε)
]

+
[
Gεh1ε − G1,εh1ε

]
+ 1

ε

[
Qα(ε)(h1ε, h

1
ε) − Q1(h1ε, h

1
ε)
]
,

h0ε(0, x, v) = hinε (x, v) ∈ E,
(3.1)

and h1ε solution to
{

∂t h1ε = G1,εh1ε + 1
ε
Q1(h1ε, h

1
ε) + Aεh0ε,

h1ε(0, x, v) = 0.
(3.2)

In order to lighten the notations, in this section, we will write hin, h, h0 and h1 instead
of hinε , hε , h0ε and h1ε . The goal is to obtain nice nested a priori estimates on h0 and h1.
Notice first that our splitting is more complicated than the one of [8] because it relies on
perturbative considerations around the elastic case that come out in the equation satisfied by
h0. As a consequence, our a priori estimates are more intricate and require the use of non
standard Gronwall lemma. Notice also that since the initial datum of h1 is vanishing, we can
study the equation on h1 in any functional space. In particular, we can study it in the Hilbert
spaceH = W

m,2
x,v

(M−1/2) in which we have a good understanding of the elastic linearized
operator G1,ε. Indeed, in this type of spaces, the symmetries of the collision operator Q1

allow to get some nice hypocoercive estimates (see (2.4)).

Remark 3.1 In [10], the authors treat the elastic case (α = 1) of the non-rescaled equation (ε =
1) and they do not resort to such a splitting method to study the nonlinear equation, their
approach is based on the use of a norm which is equivalent to the usual one and is such
that G1,1 is dissipative in this norm in large spaces. Such an approach is no longer usable
when onewants to deal with rescaled equations and obtain uniform in ε estimates. Indeed, the
definition of the equivalent norm in [10] does not take into account the different behaviors of
microscopic andmacroscopic parts of the solutionwith respect to ε: typically, themicroscopic
part of the solution vanishes as ε → 0 whereas the macroscopic one does not. Conversely,
in the splitting method, the equation that defines h1 is treated thanks to hypocoercivity tricks
that allow to distinguish microscopic and macroscopic behaviors.
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3.2 Estimating h0

Concerning h0, let us first mention that the dissipativity properties of Bε stated in Lemma 2.3
can actually be improved a bit. More precisely, one can show that there exist norms on
the spaces E and E1 that are equivalent to the standard ones (with multiplicative constants
independent of ε) that we still denote ‖ · ‖E and ‖ · ‖E1 and that satisfy:

d

dt
‖SBε (t)g‖E ≤ −ν0

ε2
‖SBε (t)g‖E1 (3.3)

where we have denoted by
(
SBε (t)

)
t≥0 the semigroup generated by Bε and ν0 is defined in

Lemma 2.3. Let us also introduce the Banach space E2

E2 := W
k+1,2
v W

m,2
x (� q+2κ+2), κ >

d

2

which satisfies the following continuous embeddings: H ↪→ E2 ↪→ E1 (recall that E1 is
defined in (1.27)). Let us point out that the spaces E1 and E2 allow us to get the following
estimates (see [3, Remark 3.5] and [1, 2]):

‖(Qα − Q1)(g, f )‖E � (1 − α)‖g‖E2‖ f ‖E2 and ‖Qα(g, f )‖E � ‖g‖E‖ f ‖E1 + ‖g‖E1‖ f ‖E
(3.4)

where the multiplicative constants are uniform in α. One can then obtain the following
proposition:

Proposition 3.2 Assume that h0 ∈ E, h1 ∈ H are such that

sup
t≥0

(‖h0(t)‖E + ‖h1(t)‖H
) ≤ �0 < ∞.

For ν ∈ (0, ν0) (where ν0 is defined in Lemma 2.3), there exists an explicit ε5 ∈ (0, ε)
(where ε is defined in Theorem 2.1) such that:

‖h0(t)‖E � ‖hin‖E e− ν

ε2
t + λε

∫ t

0
e
− ν

ε2
(t−s)‖h1(s)‖H ds (3.5)

where we recall that λε ∼
ε→0

1−α(ε)

ε2
is defined in Theorem 2.1.

Sketch of the proof. Using (3.3) as well as (3.4) and recalling that h0 solves (3.1), we can
compute the evolution of ‖h0(t)‖E and estimate it:

d

dt
‖h0(t)‖E ≤ −ν0

ε2
‖h0(t)‖E1 + C

ε

(‖h0(t)‖E + ‖h1(t)‖E1
) ‖h0(t)‖E1

+C
1 − α(ε)

ε2
‖h1(t)‖E2 + C

1 − α(ε)

ε
‖h1(t)‖2E2 . (3.6)

Using that the embedding E2 ↪→ H is continuous, recalling that h0(0) = hin and choosing ε5
small enough so that C ε5 �0 ≤ ν0 − ν, we obtain

‖h0(t)‖E � ‖hin‖E e− ν

ε2
t + λε

∫ t

0
e
− ν

ε2
(t−s)‖h1(s)‖H ds + ε λε

∫ t

0
e
− ν

ε2
(t−s)‖h1(s)‖2H ds.

We conclude to (3.5) by assuming furthermore that ε5�0 ≤ 1. ��
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3.3 Estimating h1

Wenowcomment and study the equation satisfied by h1. Let us point out that getting estimates
on h1 is trickier than in [8], indeed, in the latter paper, the idea is to estimate separately P0h1

and (Id − P0)h1 where P0 is the projector onto Ker(G1,ε) defined by

P0g :=
d+2∑
i=1

(∫
Td×Rd

g�i dv dx

)
�i M (3.7)

where the functions�i havebeendefined in (1.24), and thanks to the properties of preservation
of mass, momentum and energy of the whole equation, one could write that P0h = 0 so that
P0h1 = −P0h0 and directly get an estimate on P0h1 from the one on h0. In our case, the
energy is no longer preserved which induces additional difficulties. However, we keep the
same strategy and start by estimating P0h1 (see Remark 3.4 for a comment on this choice of
strategy).

For the sequel, we also introduce

P0h =
d+1∑
i=1

(∫
Td×Rd

h �i dv dx

)
�i M , �0h =

(∫
Td×Rd

h�d+2 dv dx

)
�d+2 M.

(3.8)

Notice that thanks to Cauchy-Schwarz inequality in velocity, one can easily prove that we
have P0 ∈ B(E,H). One can then obtain the following proposition:

Proposition 3.3 Assume that h0 ∈ E, h1 ∈ H are such that

sup
t≥0

(‖h0(t)‖E + ‖h1(t)‖H
) ≤ �0 < ∞.

For ε ∈ (0, ε5) (ε5 is defined in Proposition 3.2),

‖P0h
1(t)‖E � ‖h0(t)‖E + ‖hin‖E e−λε t

+λε

∫ t

0
e−λε(t−s) (‖h0(s)‖E + ‖(Id − P0)h

1(s)‖H
)
ds

+ελε

∫ t

0
e−λε(t−s)‖h1(s)‖H ds (3.9)

where λε = λε + O(1 − α(ε)) with λε ∼
ε→0

1−α(ε)

ε2
defined in Theorem 2.1.

Sketch of the proof. Due to the properties of preservation of mass and vanishing momentum
of our equation, we have P0h = 0 which implies that P0h1 = −P0h0. Consequently, we
easily get an estimate on P0h1 using that P0 ∈ B(E,H):

‖P0h
1(t)‖H � ‖h0(t)‖E. (3.10)

It now remains to estimate �0h1. To this end, we first notice that

�0h
1 = P0h

1 − P0h
1 = P0h − P0h

0 − P0h
1 = �0h − P0h

0 − P0h
1

where we used that P0h = �0h due to the preservation of mass and vanishing momentum
so, using (3.5) and (3.10), we only need to estimate �0h to get an estimate on P0h1. To this
end, we start by computing the evolution of �0h:

∂t (�0h) = �0(Gεh) + 1

ε
�0Qα(ε)(h, h).
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By direct inspection, using the definition of �0 given in (3.8) and the dissipation of
energy (1.7) (see [3, Lemmas 4.2 and 4.5]), we obtain: as ε → 0,

�0(Gεh) = −λε�0h + O

(
1 − α(ε)

ε2
‖(Id − P0)h‖E

)

with

λε = λε + O(1 − α(ε)) ∼
ε→0

λε.

Similarly, we have by direct computation that

|�0Qα(ε)(h, h)| = (1 − α2)|Dα(ε)(h, h)|�d+2 M
so that, using Minkowski’s inequality to estimate Dα(ε)(h, h), we obtain

‖�0Qα(ε)(h, h)‖E � ε2‖h‖2E. (3.11)

Gathering previous estimates, we are able to deduce that

‖P0h
1(t)‖E � ‖h0(t)‖E + ‖hin‖Ee−λε t

+λε

∫ t

0
e−λε(t−s) (‖h0(s)‖E + ‖(Id − P0)h

1(s)‖H
)
ds

+ελε

∫ t

0
e−λε(t−s) (‖h0(s)‖2E + ‖h1(s)‖2H

)
ds.

With this, inequality (3.9) holds by using ε5�0 ≤ 1 from the proof of Proposition 3.2. ��
Remark 3.4 A natural approach would have been to adapt the method of [8] by applying Pε

(the projector associated to the eigenvalues λ j (ε) for j = 1, . . . , d + 2 of Gε around 0 that
have been exhibited in Theorem 2.1) to our equation instead of P0. It implies that one would
have had to estimate �εh where �ε is the projector associated to the energy eigenvalue
−λε = λd+2(ε) defined in Theorem 2.1. On the one hand, it simplifies the approach because
�εGεh = −λε�εh by definition. On the other hand, this projector is not explicit contrary to
�0 and when applying �ε to the equation satisfied by h

∂t h = Gεh + 1

ε
Qα(ε)(h, h),

nothing guarantees that �ε

[
ε−1Qα(ε)(h, h)

]
remains of order 1 with respect to ε whereas

we have seen in (3.11) that due to the dissipation of kinetic energy, �0
[
ε−1Qα(ε)(h, h)

]
is

actually of order ε. This explains our choice of strategy.

Let us now focus on the estimate of (Id − P0)h1. We can proceed similarly as in [8],
using in particular that P0Q1 = 0. Another crucial point is that the source termAεh0 can be
bounded inH using the fact that Aε ∈ B(E,H) (see Lemma 2.3). Moreover, it is important
to mention that the fact that the bound onAε induces a rate of ε−2 will be counterbalanced by
the fact that the semigroup associated with Bε has an exponential decay rate of type e−νt/ε2

(see (3.3)). We recall that the Hilbert spaceH1 is defined in (2.3) and is such that

‖Q1(g, g)‖H � ‖g‖H‖g‖H1 . (3.12)
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Proposition 3.5 Assume that h0 ∈ E, h1 ∈ H are such that

sup
t≥0

(‖h0(t)‖E + ‖h1(t)‖H
) ≤ �0 < ∞.

For μ ∈ (0, μ
) (where μ
 is defined in (2.1)) and for �0 small enough, we have that:

‖(Id − P0)h
1(t)‖2H � �2

0

∫ t

0
e−μ(t−s)‖h1(s)‖2H ds + 1

ε2

∫ t

0
e−μ(t−s)‖h1(s)‖H‖h0(s)‖E ds.

(3.13)

Sketch of the proof. From (3.2), the fact that P0Q1(g, g) = 0 and the fact that P0 commutes
with G1,ε, we can compute the evolution of �(t) := (Id − P0)h1:

∂t� = G1,ε� + 1

ε
Q1(h

1, h1) + (Id − P0)Aεh
0.

We now use the hypocoercive norm on H for G1,ε introduced in (2.4) and also denote by
�⊥ the microscopic part of �, namely �⊥ := (Id − π0)� where we recall that π0 is the
projection onto the kernel ofL1 that has been introduced in (1.23).We compute the evolution
of ‖�(t)‖2H:

1

2

d

dt
‖�(t)‖2 = 〈G1,ε�(t),�(t)〉H + 1

ε
〈Q1(h

1(t), h1(t)),�⊥(t)〉H
+〈(Id − P0)Aεh

0(t),�(t)〉H.

Notice that we have been able to replace � by �⊥ in the second term due to the conservation
laws satisfied by Q1 and the fact that π0 is orthogonal in H. Then, from the properties of
the hypocoercive norm (see (2.4)), using (3.12) and the facts that P0 ∈ B(H),A ∈ B(E,H)

(from Lemma 2.3) as well as Cauchy-Schwarz inequality, we obtain that

1

2

d

dt
‖�(t)‖2H ≤ −μ


ε2
‖�⊥(t)‖2H1

− μ
‖�(t)‖2H1

+C

ε
‖h1(t)‖H‖h1(t)‖H1‖�⊥(t)‖H + C

ε2
‖h0(t)‖E‖�(t)‖H.

Making an appropriate use of Young inequality to treat the third term, we obtain that for μ ∈
(0, μ
),

1

2

d

dt
‖�(t)‖2H ≤ − μ

ε2
‖�⊥(t)‖2H1

−μ
‖�(t)‖2H1
+ C‖h1(t)‖2H‖h1(t)‖2H1

+ C

ε2
‖h0(t)‖E‖�(t)‖H

≤ −μ
‖�(t)‖2H1
+ C‖h1(t)‖2H‖h1(t)‖2H1

+ C

ε2
‖h0(t)‖E‖�(t)‖H.

In the second term, we decompose h1 into two parts: h1 = P0h1 + � and use that P0 = P2
0

together with the fact that P0 ∈ B(E,H) to obtain

‖h1(t)‖2H‖h1(t)‖2H1
� �2

0

(‖h1(t)‖2H + ‖�(t)‖2H1

)
.

We can thus conclude the proof by taking �0 small enough and integrating the above differ-
ential inequality. Notice that the inequality stated in the Proposition holds for the equivalent
“hypocoercive norm” introduced above and thus also holds for the usual norm onH because
of the equivalence (uniformly in ε) between those two norms. ��

Combining estimates from Propositions 3.2 and 3.5 , one can obtain that
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Corollary 3.6 Assume that h0 ∈ E, h1 ∈ H are such that

sup
t≥0

(‖h0(t)‖E + ‖h1(t)‖H
) ≤ �0 < ∞.

For μ ∈ (0, μ
) (where μ
 is defined in (2.4)), for �0 small enough and for any δ > 0, we
have that:

‖(Id − P0)h
1(t)‖2H � 1

δ
‖hin‖2E e−μt + (�2

0 + δ + λε)

∫ t

0
e−μ(t−s)‖h1(s)‖2H ds.

(3.14)

Remark 3.7 The fact that we are able to obtain a multiplicative constant that can be chosen
small in front of the second term is very important to recover a decay for h1. Indeed, in
Proposition 3.3, in the estimate of P0h1, the term

λε

∫ t

0
e−λε(t−s)‖(Id − P0)h

1(s)‖H ds

is problematic when applying Gronwall lemma if one hopes to recover some decay in time
but the extra small constant that appears in the estimate of (Id − P0)h1 in (3.14) allows us
to circumvent this difficulty.

In the end, we are able to prove the following proposition:

Corollary 3.8 Let r ∈ (0, 1). Assume that h0 ∈ E, h1 ∈ H are such that

sup
t≥0

(‖h0(t)‖E + ‖h1(t)‖H
) ≤ �0 < ∞

where �0 is small enough so that the conclusion of Corollary 3.6 holds. There exists ε6 ∈
(0, ε5) (where ε5 is defined in Proposition 3.2) and λ6 ∈ (0, λ4) (where λ4 is defined in
Lemma 2.7) such that for any ε ∈ (0, ε6) and any λ0 ∈ [0, λ6) (where λ0 is defined in
Assumption 1.1),

‖h1(t)‖H ≤ C ‖hin‖H e−(1−r)λε t

where λε has been introduced in Proposition 3.3 and the constant C depends on r, �0, μ


(defined in (2.4)) and ν0 (defined in Lemma 2.3).

3.4 Estimates on the Kinetic Problem

Combining the previous corollary with Proposition 3.2, we are able to get our final a priori
estimates on h in the space E:
Proposition 3.9 Let r ∈ (0, 1). Assume that h0 ∈ E, h1 ∈ H are such that

sup
t≥0

(‖h0(t)‖E + ‖h1(t)‖H
) ≤ �0 < ∞

where �0 is small enough so that the conclusion of Corollary 3.6 holds. There exists ε† ∈
(0, ε6), λ† ∈ (0, λ6) (where ε6 and λ6 are defined in Proposition 3.8) such that for any
ε ∈ (0, ε†) and any λ0 ∈ [0, λ†) (where λ0 is defined in Assumption 1.1),

‖h(t)‖E ≤ C ‖hin‖E e−(1−r)λε t and
∫ t

0
‖h(s)‖E1 ds ≤ C ‖hin‖Emin

{
1 + t, 1 + 1

λε

}
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where λε ∼
ε→0

(1 − α(ε))/ε2 has been defined in Theorem 2.1 and the constant C depends

on r, �0, μ
 (defined in (2.1)) and ν0 (defined in Lemma 2.3).

Remark 3.10 Notice that for a fixed ε > 0, the second a priori estimate shows that h = hε

belongs to the space L1([0,∞), E1). If one is interested in getting bounds on the family
{hε}ε, then we obtain that if λ0 > 0 (in Assumption 1.1), then the family is bounded in
L1([0,∞), E1) and if λ0 = 0, then for any T > 0, the family is bounded in L1([0, T ), E1).

Thanks to the above a priori estimates, we can prove Theorem 1.2 by introducing a suitable
iterative scheme that is stable and convergent. We refer to [3, Sect. 5] for the details of the
proof. We can actually prove the following more precise estimates (which will be useful in
what follows) on h0ε and h1ε that are respectively solutions to (3.1) and (3.2):

‖h0ε‖L∞([0,∞) ; E) � 1 and ‖h0ε‖L1([0,∞) ; E1) � ε2 (3.15)

as well as

‖h1ε‖L∞([0,∞) ;H) � 1 and ‖h1ε‖L2([0,∞) ;H1)
� 1 (3.16)

where we recall that the spacesH andH1 are respectively defined in (2.2) and (2.3). Notice
that in the previous inequalities, the multiplicative constants only involve quantities related
to the initial data of the problem and are independent of ε.

4 Derivation of the Fluid Limit System

The Cauchy theory developed in the previous results give all the a priori estimates that will
allow to prove Theorem 1.4. To this end, we make additional assumptions in the definition
of the spaces E and E1, namely, in this section, those spaces are defined through:

E : = W
k,1
v W

m,2
x (〈v〉q), E1 := W

k,1
v W

m,2
x (〈v〉q+1) with m > d,

m − 1 ≥ k ≥ 1, q ≥ 5. (4.1)

We assume that Assumption 1.1 is met, consider ε, λ0 and η0 sufficiently small so that the
conclusion of Theorem 1.2 holds in those spaces and consider {hε}ε a family of solutions
to (1.15) constructed in this theorem that splits as hε = h0ε + h1ε with h0ε and h1ε defined in
Sect. 3. We also fix T > 0 for the rest of the section.

4.1 Weak Convergence

We start by the following lemma which in particular tells that the microscopic part of hε

vanishes in the limit ε → 0:

Lemma 4.1 For any 0 ≤ t1 ≤ t2 ≤ T , there holds:∫ t2

t1
‖(Id − π0)hε(τ )‖E dτ � ε

√
t2 − t1, (4.2)

where we recall that π0 is the projection onto the kernel of L1 defined in (1.23).

Proof We first remark that∫ t2

t1
‖(Id − π0)hε(τ )‖E dτ �

(∫ t2

t1
‖(Id − π0)h

0
ε(τ )‖2E dτ

)1/2 √
t2 − t1
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+
(∫ t2

t1
‖(Id − π0)h

1
ε(τ )‖2H1

dτ

)1/2 √
t2 − t1.

The first term is estimated thanks to (3.15), which gives:∫ t2

t1
‖(Id − π0)h

0
ε(τ )‖2E dτ � ‖(Id − π0)h

0
ε‖L∞((0,T ) ; E)‖(Id − π0)h

0
ε‖L1((0,T ) ; E1) � ε2.

Concerning the second one, we perform similar computations as in the proof of Proposi-
tion 3.5. We recall that h1ε solves (3.2) and consider ‖ · ‖H an hypocoercive norm on H
(see (2.4)). We then have for μ ∈ (0, μ
):

1

2

d

dt
‖h1ε(t)‖2H ≤ − μ

ε2
‖(Id − π0)h

1
ε(t)‖2H1

− μ
‖h1ε(t)‖2H1

+C‖h1ε(t)‖2H‖h1ε(t)‖2H1
+ C

ε2
‖h0ε(t)‖E‖h1ε(t)‖H

from which we deduce that

1

ε2

∫ t2

t1
‖(Id − π0)h

1
ε(τ )‖2H1

dτ � ‖h1ε(t1)‖2H

+
∫ t2

t1
‖h1ε(τ )‖2H‖h1ε(τ )‖2H1

dτ + 1

ε2

∫ t2

t1
‖h0ε(τ )‖E‖h1ε(τ )‖H dτ � 1

where we used (3.15) and (3.16) to get the last estimate. Therefore, as for h0ε one has∫ t2

t1
‖(Id − π0)h

1
ε(τ )‖2H1

dτ � ε2

and this allows to conclude to the wanted estimate. ��
Using estimates (3.15), (3.16) and (4.2), one can prove the following result of weak conver-
gence (we refer to [3, Theorem 6.4] for more details on the proof):

Theorem 4.2 Up to extraction of a subsequence, one has{{
h0ε

}
ε
converges to 0 strongly in L1((0, T ); E1),{

h1ε
}
ε
converges to h weakly in L2 ((0, T ) ;H) ,

(4.3)

where h = π0(h). In particular, there exist

� ∈ L2
(
(0, T ); Wm,2

x (Td)
)

, u ∈ L2
(

(0, T );
(
W

m,2
x (Td)

)d)
,

θ ∈ L2
(
(0, T ); Wm,2

x (Td)
)

,

such that

h(t, x, v) =
(

�(t, x) + u(t, x) · v + 1

2
θ(t, x)(|v|2 − dϑ1)

)
M(v) (4.4)

whereM is the Maxwellian distribution introduced in (1.14).

Remark 4.3 Recall that (�, u, θ) can be expressed in terms of h through the following equal-
ities:

�(t, x) =
∫
Rd

h(t, x, v) dv, u(t, x) = 1

ϑ1

∫
Rd

h(t, x, v)v dv,
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θ(t, x) =
∫
Rd

h(t, x, v)
|v|2 − dϑ1

ϑ2
1d

dv. (4.5)

4.2 Limit System

As mentioned in the introduction, the path that we use to derive the limit system follows the
same lines as in the elastic case. The main idea is to write equations satisfied by averages in
velocity of hε and to study the convergence of each term. It is worth mentioning that with
the notion of weak convergence at hand presented above, we can adopt an approach which is
reminiscent of the program established in [5, 6] but simpler. In particular, we can adapt some
of the main ideas of [9] regarding the delicate convergence of nonlinear terms. The detailed
computations and arguments are included in [3, Sect. 6], we only mention the main steps
and keypoints of the proof hereafter. In what follows, we will use the following notation:
for g = g(x, v),

〈g〉 :=
∫
Rd

g(·, v) dv.

Local Conservation Laws

We introduce

A(v) := v ⊗ v − 1

d
|v|2Id and pε :=

〈 1
d

|v|2hε

〉
(4.6)

so that
〈
v ⊗ v hε

〉
=

〈
A hε

〉
+ pε Id. We integrate in velocity equation (1.15) multiplied by

1, vi , 1
2 |v|2, to obtain

∂t

〈
hε

〉
+ 1

ε
divx

〈
v hε

〉
= 0, (4.7a)

∂t

〈
v hε

〉
+ 1

ε
Divx

〈
A hε

〉
+ 1

ε
∇x pε = 1 − α(ε)

ε2

〈
v hε

〉
, (4.7b)

∂t

〈
1
2 |v|2hε

〉
+ 1

ε
divx

〈
1
2 |v|2v hε

〉
= 1

ε3
Jα(ε)( fε, fε) + 2(1 − α(ε))

ε2

〈
1
2 |v|2hε

〉
,

(4.7c)

where we recall that fε = Gα(ε) + εhε and where we have introduced

Jα( f , f ) :=
∫
Rd

[Qα( f , f ) − Qα(Gα,Gα)] |v|2 dv.

The goal is to study the convergence of each term in (4.7a)–(4.7b)–(4.7c). A first important
remark to address this point is that thanks to the estimates recalled in (3.15)–(3.16), one can
prove that for any function ψ = ψ(v) satisfying the bound |ψ(v)| � 〈v〉q , we have the
following convergence in the distributional sense:

〈ψ hε〉 −−→
ε→0

〈ψ h〉 in D ′
t,x (4.8)

where h is defined in (4.4) (see [3, Lemma 6.6]).
Roughly speaking, the convergence of the terms in the LHS of (4.7a)–(4.7b)–(4.7c) is

treated as in the elastic case. The RHS is going to be handled as a source term which takes
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into account the drift term and the dissipation of kinetic energy at the microscopic level. In
this regard, using (4.8), we first remark that under Assumption 1.1,

1 − α(ε)

ε2

〈
v hε

〉
−−→
ε→0

ϑ1λ0u in D ′
t,x , (4.9)

since λ0 = limε→0+ ε−2(1 − α(ε)) and from the definition of u in (4.5). We then present
a result of convergence for ε−3Jα(ε)( fε, fε) in the following lemma in the proof of which
there are not major difficulties. The said proof is thus omitted, we just mention that it is
based on Assumption 1.1, on the estimates on hε coming from (3.15)–(3.16) and involves
the dissipation of energy (1.7), we refer to [3, Lemma 6.9] for more details.

Lemma 4.4 It holds that

1

ε3
Jα(ε)( fε, fε) −−→

ε→0
J0 in D ′

t,x ,

where

J0(t, x) := −λ0 c̄ ϑ
3
2
1

(
�(t, x) + 3

4
ϑ1 θ(t, x)

)

for some positive constant c̄ depending only on the angular kernel b(·) and d and where λ0
is defined in Assumption 1.1.

Incompressibility Condition and Boussinesq Relation

Using (4.8) in the Eqs. (4.7a)–(4.7b), using also that the restitution coefficient satisfies
Assumption 1.1, we can easily obtain the incompressibility condition as well as the Boussi-
nesq relation:

divx u = 0 and ∇x (� + ϑ1θ) = 0 (4.10)

where we recall that �, u and θ are defined in (4.5). Using furthermore that the global mass
of hε vanishes (see (1.20)), we have that

0 =
∫
Td×Rd

hε(t, x, v) dv dx −−→
ε→0

∫
Td

�(t, x) dx in D ′
t

and thus that
∫
Td �(t, x) dx = 0. It implies that we have the following strengthened Boussi-

nesq relation: for almost every (t, x) ∈ (0, T ) × T
d ,

� + ϑ1(θ − E) = 0 with E = E(t) :=
∫
Td

θ(t, x) dx . (4.11)

Remark 4.5 Notice here that the derivation of the strong Boussinesq relation � + ϑ1θ = 0
is not as straightforward as in the elastic case. In the elastic case, the classical Boussinesq
relation ∇x (� + ϑ1θ) = 0 straightforwardly implies the strong form of Boussinesq because
the two functions � and θ have zero spatial averages. This cannot be deduced directly in the
granular context due to the dissipation of energy and we will see later on how to obtain it
(see Proposition 4.8).
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Equations of motion and temperature

In order to identify the equations satisfied by u and θ , as in the elastic case, we start by
studying the convergence of quantities that are related to

�ε(t, x) :=
∫
Rd

hε(t, x, v) dv, uε(t, x) := 1

ϑ1

∫
Rd

hε(t, x, v)v dv,

θε(t, x) :=
∫
Rd

hε(t, x, v)
|v|2 − dϑ1

ϑ2
1d

dv. (4.12)

More precisely, we inverstigate the convergence of

uε := exp

(
−t

1 − α(ε)

ε2

)
Puε and θε :=

〈
1
2 (|v|2 − (d + 2)ϑ1)hε

〉

where P is the Leray projection on divergence-free vector fields. Notice that if we compare
our approach to the elastic case, we have added the exponential term in the definition of uε

in order to absorbe the term in the RHS in (4.7b). We compute the evolution of uε and θε (by
applying the Leray projector P to (4.7b) and by making an appropriate linear combination
of (4.7a) and (4.7c)) and obtain:

∂tuε = − exp

(
−t

1 − α(ε)

ε2

)
P
(
ϑ−1
1 Divx

〈
1
ε
A hε

〉)
(4.13)

where A is defined in (4.6) and

∂tθε + 1

ε
divx

〈
b hε

〉
= 1

ε3
Jα(ε)( fε, fε) + 2(1 − α(ε))

ε2

〈
1
2 |v|2hε

〉

with b(v) := 1

2

(|v|2 − (d + 2)ϑ1
)
. (4.14)

The study of the limit ε → 0 in those equations ismore favorable because compared to (4.7a)–
(4.7b)–(4.7c), the gradient term in (4.7b) has been eliminated thanks to the Leray projector
and also because A and b belong to the range of Id−π0 so that thanks to Lemma 4.1, we know

that the quantities ε−1Divx
〈
A hε

〉
and ε−1divx

〈
b hε

〉
are bounded inWm−1,2

x . Then, applying

a precised version of Aubin-Lions lemma [20, Corollary 4], we are able to prove that up to

the extraction of a subsequence, {uε}ε and {θε}ε converge strongly in L1
(
(0, T ) ; Wm−1,2

x

)
respectively towards

Pu = u and θ0 :=
〈
1
2 (|v|2 − (d + 2)ϑ1)h

〉
= dϑ2

1

2
E − d + 2

2
ϑ1� (4.15)

where we used the incompressibility condition and the strong Boussinesq relation given
in (4.10)–(4.11). We refer to [3,Lemma 6.10] for more details.

About Initial Data

Recall that, in Theorem 4.2, the convergence of hε to h given by (4.4) is known to hold only
for a subsequence and, in particular, at initial time, different subsequences could converge
towards different initial datum and therefore (�, u, θ) could be different solutions to the
same system. In Theorem 1.4, the initial datum is prescribed by ensuring the convergence
of π0hε

in towards a single possible limit where π0 is defined in (1.23) (recall that the initial
data for (�, u, θ) is defined in (1.31)).
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Using Lemma 4.1, one can apply Arzelà-Ascoli theorem to get that Puε and θε converge
strongly in C([0, T ] ; Wm−1,2

x
)
towards respectively u and θ0 defined in (4.15) that also

belong to C([0, T ] ; Wm−1,2
x

)
. We refer to [3, Proposition 6.19] for more details.

Limit Equations

To get the limit equations, we need to study the convergence of the terms ε−1PDivx
〈
A hε

〉

and ε−1divx
〈
b hε

〉
in (4.13) and (4.14). To this end, our approach relies on arguments coming

from [9] (in particular, the tricky convergence of the nonlinear terms is treated thanks to a
compensated compactness argument coming from [13]), the main difference being that we
force the elastic collision operator to appear in our computations, we thus introduce terms that
involve differences between the elastic and the inelastic collision operators. Those remainder
terms vanish in the limit ε → 0 thanks to Assumption 1.1. We refer to [3, Lemmas 6.12-
6.13-6.14] for more details. In the end, writing PDivx (u ⊗ u) = Divx (u ⊗ u) + ϑ−1

1 ∇x p
(see [14, Proposition 1.6]), we obtain the following result:

Proposition 4.6 There are some constants ν > 0 and γ > 0 such that the limit velocity u =
u(t, x) in (4.4) satisfies

∂t u − ν

ϑ1
�xu + ϑ1Divx (u ⊗ u) + ∇x p = λ0u (4.16)

where λ0 is defined in Assumption 1.1, while the limit temperature θ = θ(t, x) in (4.4)
satisfies

∂tθ − γ

ϑ2
1

�xθ + ϑ1 u · ∇xθ = 2

(d + 2)ϑ2
1

J0 + 2dλ0

d + 2
E + 2

d + 2

d

dt
E, (4.17)

where we recall that J0 is defined in Lemma 4.4 and E is defined in (4.11).

Remark 4.7 The viscosity and heat conductivity coefficients ν and γ are explicit and fully
determined by the elastic linearized collision operator L1 (see [3, Lemma C.1]). Notice
also that, due to (4.10), Divx (u ⊗ u) = (u · ∇x ) u and (4.16) is nothing but areinforced
Navier-Stokes equation associated to a divergence-free source term given by λ0u which can
be interpreted as an energy supply/self-consistent force acting on the hydrodynamical system
because of the self-similar rescaling.

To end the identification of the limit equations, we go back to the strong Boussinesq
equation (4.11) and prove the following result:

Proposition 4.8 It holds that

E(t) = 0, t ∈ [0, T ],
where E = E(t) is defined in (4.11). Consequently, the limiting temperature θ(t, x) in (4.4)
satisfies

∂t θ − γ

ϑ2
1

�xθ + ϑ1 u · ∇xθ = λ0 c̄

2(d + 2)

√
ϑ1 θ. (4.18)

where γ is defined in Proposition 4.6, λ0 in Assumption 1.1 and c̄ in Lemma 4.4. Moreover,
the strong Boussinesq relation holds true:

� + ϑ1θ = 0 on [0, T ] × T
d . (4.19)
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Proof Using Lemma 4.4 and averaging in position the equation (4.17), it is easy to prove
that

d

dt
E(t) = c̄0 E(t)

for some some constant c̄0 ∈ R. Moreover, on the one hand, from (1.31), we have

E(0) =
∫
Td

θ(0, x) dx = − 1

ϑ1

∫
Td

�(0, x) dx . (4.20)

On the other hand, from the definition of θ0 in (4.15), we also have

E(0) = 2

ϑ2
1d

∫
Td

θ0(0, x) dx + 2

ϑ1d

∫
Td

�(0, x) dx . (4.21)

We also know that θε converges towards θ0 in C
([0, T ] ; Wm−1,2

x
)
. Consequently, we deduce

that∫
Td

θ0(0, x) dx = lim
ε→0

∫
Td

〈 |v|2−(d+2)ϑ1
2 hε(0, x)

〉
dx = lim

ε→0

∫
Td

〈
1
2 |v|2hε(0, x)

〉
dx

where we used (1.20) to get the last equality. From (1.22), we deduce that∫
Td

θ0(0, x) dx = 0.

Coming back to (4.20)–(4.21), we deduce that

E(0) = − 1

ϑ1

∫
Td

�(0, x) dx = 2

ϑ1d

∫
Td

�(0, x) dx

which implies that E(0) = 0. This concludes the proof. ��
Gathering the results we obtained in Propositions 4.6 and 4.8 , we are able to end the proof
of Theorem 1.4.
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