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Editorial summary 13 

 Single-cell mapping of heterochromatin and euchromatin defines chromatin 14 

velocity. 15 

Chromatin Velocity reveals epigenetic dynamics by single-cell profiling of 16 

heterochromatin and euchromatin [AU:OK? ok] 17 
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Recent efforts have succeeded in surveying open chromatin at the single-cell level, but  47 

high-throughput, single-cell assessment of heterochromatin and its underlying genomic 48 

determinants remains challenging. We engineered an hybrid transposase including the 49 

chromodomain of the heterochromatin protein 1-α  (HP1α) , involved in heterochromatin 50 

assembly and maintenance through its binding to H3K9me3 and  developed  a single-cell 51 

method, scGET-seq (genome and epigenome by transposases sequencing), that unlike 52 

scATAC-seq comprehensively probes both open and closed chromatin, concomitantly 53 

recording the underlying genomic sequences [AU: Please briefly describe in a bit more 54 

detail how the method works and how it differs from previous methods. Abstract word 55 

count limit is 160 words]. We tested scGET-seq in cancer-derived organoids and PDX 56 

models and identified genetic events and plasticity-driven mechanisms contributing to 57 

cancer drug resistance. Next, building upon the differential enrichment of closed and open 58 

chromatin, we devised a method, Chromatin Velocity, which identifies the trajectories of 59 

epigenetic modifications at the single-cell level. Chromatin Velocity uncovered paths of 60 

epigenetic reorganization during stem cell reprogramming and identified key transcription 61 

factors driving these developmental processes. scGET-seq reveals the dynamics of genomic 62 

and epigenetic landscapes underlying any cellular processes. [AU: OK? ok] 63 

  64 
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 Introduction 65 

 66 

 Cancers are characterized by extensive inter-patient and intra-tumour heterogeneity, 67 

down to the single cell level1. This fuels clonal evolution, leading to treatment resistance2, the 68 

leading cause of death for cancer patients. The mechanisms underlying such resistance are still 69 

largely unknown, especially for standard chemotherapeutic and immunotherapeutic regimens. 70 

Increasingly detailed analysis of cancer genomes, before and after treatment, have so far failed to 71 

identify genetic causes which could explain the ensuing refractoriness to therapy. Recently, 72 

epigenetic changes have emerged as key contributors of drug resistance in cancer3–8, suggesting 73 

that only a comprehensive assessment of the genetic changes of the cancer genome, including 74 

somatic mutations and copy number changes, alongside a detailed description of the concomitant 75 

chromatin remodeling events ensuing after treatment, could finally provide the insights required 76 

to tackle this pressing unmet clinical need. 77 

As for single-cell epigenetics, the recent introduction of transposases, such as Tn5, which 78 

allow for the fragmenting and then sequencing of native accessible chromatin in bulk (ATAC-79 

seq,9), as well as at the single-cell level (scATAC-seq,10) is providing key insights on the cellular 80 

status of open chromatin. However, the epigenetic modifications of large portions of the genome 81 

which exert essential roles in cellular physiology are excluded from this analysis. For instance, to 82 

our knowledge, there are no single-cell methods able to probe compacted chromatin, that is, 83 

heterochromatin, which encompasses up to half of the entire genome11, and harbors and regulate 84 

a large array of transposable elements and ncRNAs11–13. Heterochromatin is assembled and 85 

maintained through the tri-methylation of the lysine 9 on histone 3 (H3K9me3) 12,14 and its 86 
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accurate regulation is essential for the cells, for example towards the definition of cell 87 

identity12,13 and the maintenance of genomic integrity15.  88 

While single-cell transcriptomic analysis has fostered ground-breaking insights on the 89 

biology of healthy and diseased tissues, including cancer16,17, a tool which comprehensively 90 

audits, at the single cell level, both the genomic and the epigenetic landscape to our knowledge 91 

has not been reported.  92 

 93 

Results 94 

Tn5 is able to tagment compacted chromatin featuring H3K9me3 95 

We first determined whether Tn5 is able to tagment compacted chromatin, if properly 96 

redirected. To this end, we exploited a Transposase-Assisted Chromatin Multiplex Immuno-97 

Precipitation (TAM-ChIP) approach, which combines the antibody-mediated targeting of 98 

chromatin immune-precipitation with the ability of Tn5 to tagment DNA, leading to chromatin 99 

fragmentation and barcoding of the chromatin surrounding the antibody binding site (Extended 100 

Data Fig. 1a). We choose a primary antibody recognizing the histone mark H3K9me3 (or 101 

H3K4me3, as control), in line with a recent report18, which was then bound by a secondary 102 

antibody conjugated to Tn5. H3K4me3 TAM-ChIP-seq profiles mirrored the corresponding 103 

H3K4me3 ChIP-seq profiles. Instead, when a Tn5-secondary antibody complex recognizing 104 

H3K9me3-specific primary antibody was used, Tn5 tagmented H3K9me3-enriched compacted 105 

chromatin regions (Extended Data Fig. 1b), results confirmed by Real Time-qPCR (Extended 106 

Data Fig. 1c). 107 
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All together, these experiments demonstrate that Tn5 if properly redirected is able to 108 

sever and tag also H3K9me3-compacted chromatin. 109 

  110 

Hybrid CD (HP1α)-Tn5 targets H3K9me3 chromatin regions 111 

  TAM-ChIP towards H3K9me3 was only partially effective in guiding Tn5 transposase 112 

towards closed chromatin. Additionally, this approach relies on immunoprecipitation, which 113 

poses technical challenges. 114 

We hence reasoned that the most straightforward approach to target compacted chromatin 115 

would entail the modification of Tn5 natural tropism. To this end, we extensively reviewed 116 

proteins and domains targeting H3K9me3. We finally selected heterochromatin protein 1-α 117 

(HP1α), one of the hallmark proteins involved in heterochromatin assembly and maintenance, 118 

which specifically binds H3K9me3, through its chromodomain (CD)19–21.  119 

We generated a hybrid protein, whereby the HP1α CD was cloned alongside Tn5 120 

(Extended Data. Fig. 2a). In order to link the chromodomain with Tn5 transposase, 121 

we took advantage of the natural linker that connects the chromodomain and the chromoshadow 122 

domain of HP1α, which we extended with two artificial linkers of different  length (TnH#1-4, 123 

Extended Data Fig. 2a). All four hybrid constructs were as efficient as the native Tn5 (either the 124 

commercial Nextera enzyme or in-house produced, from now on, Tn5) to fragment and insert 125 

oligos on genomic DNA (Extended Data Fig. 2b). 126 

We then determined whether TnH#1-4 were able to target chromatin harboring 127 

H3K9me3 histone modifications by tagmenting native chromatin on permeabilized nuclei 128 

(Extended Data Fig. 2c). Unlike Nextera and Tn5 enzymes, hybrid Tn5 constructs indeed cut and 129 
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inserted oligos in regions enriched for H3K9me3, while retaining affinity toward accessible 130 

sequences (Fig. 1a 1b and Extended Data Fig. 2d and 2e). We identified the construct TnH#3, 131 

from now on TnH, as the most efficient (Fig. 1b and Extended Data Fig. 2d and 2e). 132 

We next reasoned that combining Tn5 and TnH in a single experiment could provide a 133 

comprehensive perspective of both accessible and compacted chromatin (Fig. 1c). We thus 134 

loaded each of the two transposases with a set of specific barcoded oligos, to discriminate Tn5 135 

from TnH tagmentation products (Fig. 1c). We then tested the effect of varying the Tn5-to-TnH 136 

ratio (Extended Data Fig. 3a) or adding sequentially the two enzymes (Extended Data Fig. 3b) in 137 

the transposition reaction. The sequential use of native Tn5, followed by TnH, provided the most 138 

comprehensive mapping of the two chromatin profiles. 139 

All together, these results demonstrate that a sequential combination of Tn5 and TnH is 140 

able to differentiate accessible versus compacted chromatin, thus defining the whole-genome 141 

epigenetic distribution of eu- and heterochromatin. We call this method GET-seq (genome and 142 

epigenome by transposases sequencing). 143 

 144 

GET-seq at the single-cell level (scGET-seq)  145 

  We then attempted to implement this method to single-cell analysis. To obtain droplet-146 

based scGET-seq, we modified the Chromium Single Cell ATAC v1 protocol (10X Genomics), 147 

replacing the provided ATAC transposition enzyme (10X Tn5; 10X Genomics) with Tn5 and 148 

TnH in appropriate enzyme proportions.  149 

We first assessed the distribution of reads assigned to unique cell barcodes, using 10X 150 

Tn5, TnH, Tn5, or a combination of TnH and Tn5 (scGET-seq) in Caki-1 cells, and found that 151 
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the 4 profiles were overlapping (Extended Data Fig. 4a). We next explored the portion of the 152 

genome which was captured by each transposase. TnH had the higher mean distribution of 153 

coverage per cell, with a smaller standard deviation, when compared with either Tn5 or 10X Tn5 154 

(Extended Data Fig. 4b), suggesting that even at the single-cell level, TnH captures genome 155 

areas that are not targeted by conventional transposases. Indeed, when single cell Tn5 and TnH 156 

data were each combined in pseudo-bulks and compared with the ChIP-seq data obtained in the 157 

same cells using H3K9me3 and H3K4me3 antibodies, TnH was able to target regions positive 158 

for H3K9me3 as well as H3K4me3 (Extended data Fig. 4d), in line with the bulk TnH results 159 

(Fig. 1a). 160 

We then determined whether scGET-seq was able to capture cell identity. To this end, we 161 

sequenced a mixture of the cancer cell lines HeLa (20%) and Caki-1 (80%), which originate 162 

from different tissues (cervix and kidney, respectively). Cells were clearly separated in two 163 

clusters sized with the expected proportions (Fig. 2a).   164 

To further confirm the identity of the clusters, we used available bulk ATAC-seq data for 165 

both cell lines and generated a score for each cell line. The respective scores clearly 166 

distinguished each cell line clusters (Fig. 2a), in accordance with standard scATAC-seq results 167 

(Fig. 2b). 168 

In all, these data confirm that GET-seq could be applied to droplet-based single-cell 169 

approaches and is able to easily differentiate cells derived from different genetic backgrounds. 170 

   171 
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Genomic copy number variants at single cell level 172 

The definition of genomic copy number variants (CNVs) using scATAC-seq remains 173 

imprecise since only accessible chromatin regions are surveyed by this approach and the 174 

remaining genomic sequences could only be imputed from adjacent regions22. 175 

As TnH targets also H3K9me3-enriched chromatin regions, we tested whether it could be 176 

harnessed also to define CNVs. Whole genome sequencing (WGS) revealed several CNVs in 177 

both cell lines (Fraction of Genome Altered, FGA: Caki-1 = 0.475, HeLa = 0.508). The 178 

correlation between the genomic profiles obtained with WGS and the average pseudo-bulk 179 

profile obtained from single-cell data was much higher for the TnH signal, when compared with 180 

10X Tn5, at various resolutions (Fig. 2c and Extended Data Fig. 5). 181 

A closer inspection of the segmentation profiles at the single-cell level revealed that 182 

scATAC-seq is able to define CNVs at a coarse resolution (10 Mb), as previously determined22. 183 

Even at this resolution, scGET-seq showed a much higher consistency, for both cell lines, than 184 

10X Tn5 (Extended Data Fig. 5c). Increasing the resolution, up to 500 kb, scGET-seq remained 185 

reliable while the ability of scATAC-seq to identify CNVs degraded, as large swaths of the 186 

genome were excluded from the analysis (Extended Fig. 5a and b). In fact, the signal emerging 187 

from scATAC-seq correlated closely with the location of regulatory elements throughout the 188 

genome, unlike scGET-seq (Fig. 2d). 189 

We tested the ability of scGET and 10x to call CNV events using a machine learning 190 

approach. To this end we called CNVs from bulk WGS sequencing of Caki-1 and HeLa cells. 191 

We then split scGET-seq and scATAC-seq genomic bins into training and test sets (proportion 192 



 
 

 10

70:30) and trained a logistic regression classifier (LR) and a Support Vector Machine with linear 193 

kernel (SVM). We calculated their accuracy and F1-score on the test set. scGET-seq performed 194 

better than scATAC-seq regardless of the classifier and the resolution, with the performance 195 

depending on the number of cells included in the analysis (Fig 2e).  196 

In all, these data show the feasibility of single cell profiling by GET-seq, which allows 197 

for a more precise description of genomic features with respect to scATAC-seq. 198 

scGET-seq identifies clonality in patient-derived organoids 199 

To ascertain the ability of GET-seq to define clonality, we decided to rely on a more 200 

physiological experimental setting than cell lines, patient derived organoids (PDOs). We thus 201 

used a tumour matched-normal design to generate whole-exome data derived from two hepatic 202 

metastases of primary colorectal tumours. The analysis of somatic single nucleotide variants and 203 

allele-specific copy numbers showed high-level of aneuploidy for both samples (CRC6, triploid; 204 

CRC17, tetraploid). From the analysis of allele frequency spectra and cancer cell fractions we 205 

found no evidence of ongoing subclonal expansions, concluding that CRC6 and CRC17 are 206 

monoclonal, a common characteristic of late-stage colorectal cancer23,24 (Extended Data Fig. 6a). 207 

From these samples we generated PDOs (Extended Data Fig. 6b), which we then profiled with 208 

scGET-seq. The CNV analysis confirmed the existence of two main cellular populations, with 209 

defining genomic features, closely mimicking the two CRC6 and 17 cancer populations (Fig. 3a 210 

and Extended Data Fig. 6c). To provide quantitative support to this observation, we also 211 

calculated the posterior marginal probability distribution of the number of observable clones. 212 

This analysis confirmed that scGET-seq could correctly identify 2 clusters, corresponding to 213 

CRC6 and CRC17. Notably, only a minority of the cells assessed were misclassified (Extended 214 
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data Table S1).  A similar analysis on Tn5-derived reads showed a tendency for overclustering 215 

and of cell misclassification (Fig. 3b and Extended data Table S1). We finally explored the 216 

accuracy of variant calling (i.e. presence/absence of a variant) by comparing genotyped clones 217 

with known variants profiled in the bulk samples. We found that the dependency of precision and 218 

sensitivity at different depth thresholds were in line with previous observations25 although values 219 

were slightly smaller and sample-dependent (Fig. 3c). 220 

All together, these results suggest that scGET-seq can be successfully used to 221 

concomitantly obtain detailed information on the single-cell epigenetic landscape as well on the 222 

underlying genomic structure. 223 

Genomic and epigenetic landscape of resistant cancer clones 224 

 To exploit the ability of scGET-seq to capture the genomic and epigenetic landscape of 225 

single cells, we used patient derived xenograft (PDX) models of colon carcinoma where we have 226 

shown that resistance to therapy may arise from the selection of clones endowed with specific 227 

genetic lesions, alongside with features of plasticity that are not driven by genomic modifications 228 

but most likely by chromatin reshaping26,27. We hence followed cancer evolution in one PDX 229 

model throughout several weeks of treatment with the clinically approved EGFR antibody 230 

cetuximab (Extended Data Fig. 7a). Analysis of genomic segmentation by scGET-seq revealed 2 231 

major clones in the absence of treatment (Fig. 3d and Extended Data Fig. 7b). Conversely, cells 232 

were separated into 6 different clones when assessing the pre-treatment epigenetic landscape 233 

(Fig. 3e). When the impact of treatment was assayed, clone A was predominant, while clone B 234 

was present at very low frequency (Fig. 3d). In contrast, the epigenetic landscape of cetuximab-235 
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treated PDX samples was more heterogenous, with epigenetic subclones embedded within 236 

genetic clones (Fig. 3e).  237 

We next sought to identify processes that might provide biological insights into 238 

epigenetic mechanisms of resistance to EGFR blockade. To this end, we performed functional 239 

enrichment analysis using the genes associated to the regions differentially affected in the 240 

various clones (Extended Data Table S2). In the epigenetic clones most associated with 241 

resistance, there was a significant enrichment on pathways linked to with refractoriness to EGFR 242 

inhibitors, including the phospholipase C pathway28, TGFβ signaling29 and the WNT pathway30 243 

(Extended Data Fig. 7c). These results are in line with our previous observations, that cancer 244 

cells exposed to targeted therapies do show resistance patterns related to genomic plasticity 245 

phenotypes, most likely driven by chromatin remodelling phenomena26,27. 246 

As scGET-seq includes sequences for portion of the genome that are eluded by 247 

conventional ATAC-seq, we next sought to determine whether we could also define single 248 

nucleotide variations (SNV) within single cells. While not all exome SNVs were captured by 249 

scGET-seq, nonetheless there was a highly significant correlation between the mutations 250 

identified by bulk exome sequencing conducted on the primary tumour, and the scGET-seq 251 

results (Fig. 3f). Notably, by virtue of the single-cell analysis, it was possible to ascribe the 252 

mutations to specific clones.  253 

scGET-seq was also able to identify mutations not present in the initial bulk exome 254 

sequencing in the starting sample and which affected established cancer genes (tier 1, COSMIC 255 

Cancer Gene Census, version 9231, Extended Data Table S3), including CDKN1B, KDM5A, 256 

CDH11, SRSF2, MSH2, SMO and NCOA2 (Fig. 3g)(the enrichment for COSMIC mutations 257 

was significant for variants profiled at high depth, that is, higher than 15; Odds Ratio=1.55, 258 
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p=3.57⋅10-3, Fisher’s exact test). At this stage, it remains to be ascertained whether the mutations 259 

that were found by single-cell analysis but not by bulk sequencing were developed de novo by 260 

the PDX or were already present in the original population at frequencies too low to be detected 261 

by the limited coverage of exome sequencing.  262 

In all, these results suggest that scGET-seq could be used to comprehensively assess the 263 

tumour genome (including both CNVs and SNVs) and the epigenome, illuminating paths of 264 

cancer evolution, clonality, and drug resistance. 265 

 266 
scGET-seq captures chromatin status at the single-cell level 267 
 268 

We next determined whether scGET-seq might capture the dynamic between accessible 269 

and compacted chromatin at the single-cell level. We have recently demonstrated that the 270 

ablation of the histone demethylase Kdm5c hampers H3K9me3 deposition impairing 271 

heterochromatin assembly and maintenance in NIH-3T3 cells32. We performed scGET-seq in 272 

cells before and after Kdm5c knock-down. We identified two neatly distinguished cell groups, 273 

including shScr and shKdm5c cells, respectively (Fig. 4a). Seeking to find an explanation for this 274 

pattern, we discovered that this distinction was driven by the total number of reads per cell (Fig. 275 

4b). We surmised that this pattern might be driven by the cell cycle status, namely, high 276 

coverage associated with cells in the S and G2/M cell, during or after DNA replication, while 277 

low coverage linked to cells in the G1 cycle phase, before the replication of DNA. To test our 278 

hypothesis, we applied a strategy derived from10, where we analysed the distribution of Repli-279 

seq33–35 signal over differentially enriched DNase I hypersensitive sites (DHS) regions between 280 

high- and low-coverage cells. We found that high coverage cells are characterized by higher, less 281 

variable fraction of early-replicating regions (Extended Data Fig. 8a), in contrast to the highly 282 
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variable values characterizing the low-coverage cells. This pattern suggests that cells with high 283 

coverage are indeed in mitosis, as confirmed by the scores calculated on laminB1 associated 284 

domain data33 (Extended Data Fig. 8b). 285 

To decode the relationship between accessible and compacted chromatin as captured by 286 

scGET-seq, we focused our analysis on major repeats, regions of the genome which undergo 287 

compaction during the cell cycle, through the acquisition of H3K9me3 residues. As Kdm5c acts, 288 

and heterochromatin assembly occurs, during the middle/late S phase we focused on the G1/S 289 

cell cycle phase32,36. The signal emerging from Tn5 was weaker on G1/S cells where Kdm5c was 290 

not knocked down (Fig. 4a and d, black arrow, compared with TnH, Fig. 4c, red arrow), likely 291 

because these cells present a normal assembly of H3K9me3 and heterochromatin, and therefore 292 

Tn5 would be unable to tag compacted DNA. Conversely, the signal from TnH showed a more 293 

even distribution on G1/S cells, irrespectively of Kdm5c status, as TnH targets both accessible 294 

and compacted chromatin (Fig. 4c). 295 

We tested whether our observation was statistically significant fitting a linear model that 296 

considers the enrichment over TnH and Tn5 as interaction term when looking for groupwise 297 

specific markers. We found that the TnH enrichment was significantly higher than Tn5 in groups 298 

3 and 6 (Extended Data Fig. 8c and d), where indeed shScr cells are present in higher percentage, 299 

suggesting that TnH is able to selectively capture regions of the genome, such as chromatin 300 

decorated with H3K9me3, which Tn5 is unable to reach. 301 

All together, these data suggest that GET-seq pinpoints quantitative differences between 302 

the two enzymes arising from the local chromatin status. 303 

 304 
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scGET-seq defines cell identity and developmental paths 305 

 306 

The modulation of H3K9 methylation and chromatin compaction are pivotal mechanisms 307 

underlying organismal development and cellular reprogramming. We thus explored the potential 308 

role of scGET-seq in illuminating these processes. To this end, we explored the single-cell 309 

profiles of cultured fibroblasts (FIB) obtained from two unrelated healthy subjects, undergoing 310 

reprogramming into induced pluripotent stem cells (iPSC), and of iPSC undergoing 311 

differentiation into neural progenitor cells (NPC). In parallel, we performed scRNA-seq analysis 312 

on cells from the same samples. 313 

Low dimensional representation of single cell data from scGET-seq and scRNA-seq 314 

separated FIB, iPSC and NPC into three distinct populations (Fig. 5a and b). Notably, UMAP 315 

representations of both scGET-seq and scRNA-seq data showed that iPSC and NPC were in 316 

close proximity, while FIB were isolated from the other two populations, with the exception of a 317 

small subset of FIB and to a lesser extent NPCs clustering alongside iPSC exclusively in the 318 

scGET-seq data (black arrow in Fig. 5a).  319 

We next explored the genomic regions more closely defining each population. Notably, 320 

the GET-seq sequences most significantly enriched in each cell type were in proximity of genes 321 

which are crucial for the biology of each population, such as collagen for FIB, L1TD1 for iPSC37 322 

and PRTG for NPC38 (Fig. 5c and Extended Data table S4), with concomitant expression in the 323 

corresponding populations.  324 

We next sought to determine whether the epigenetic landscapes depicted by scGET-seq 325 

could be exploited to capture cell fate probabilities. Indeed, it has been recently proposed that 326 

cell fate choices are driven by a continuum of epigenetic choices, more than a series of discrete 327 
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bifurcation alongside developmental paths39. To this end, a tool has been recently devised, 328 

Palantir39, which is able to capture these dynamics from scRNA-seq data. When we applied 329 

Palantir to the GET-seq data set, we found three main fate branches (Extended data Fig. 9a) 330 

defining a group of cells endowed with an intense differentiation potential (Fig. 5d), which 331 

included iPSC and the subset of FIB and NPC clustering alongside iPSC (Fig. 5a).   332 

Intrigued by these results, we then explored the regions defining these cellular 333 

populations endowed with the highest differentiation potential (Fig. 5e). We found that these 334 

regions resided for the most part in pericentromeric regions (Extended data Table S5), in line 335 

with recent reports supporting a crucial role for these genomic areas as drivers of pluripotency 40–336 

43. We hence used the genes associated to these regions to generate a differentiation signature, 337 

which we then applied to scRNA-seq data. This signature highlighted in the scRNA-seq data a 338 

subset of NPC as well as FIB sharing similar features (red arrows in Fig.5f). 339 

In all, these results suggest that GET-seq is able to capture the epigenetic diversity arising 340 

during developmental processes and to identify key factors engaged in the process. Additionally, 341 

this approach may uncover epigenetic events arising before the appearance of the concomitant 342 

transcriptomic events. 343 

 344 
Chromatin Velocity to define epigenetic vectors 345 
 346 

Prompted by the quantitative properties of scGET-seq highlighted in the shKdm5c 347 

experiment, we sought to investigate developmental dynamics in terms of differential unfolding 348 

of chromatin. RNA velocity is a tool recently introduced which uses scRNA-seq data to capture 349 

not only the overall developmental direction of each cell, but also its kinetics, that is, the 350 

differential displacement by which various cells travel through states44. We hence explored 351 

whether it is feasible to obtain single cell trajectories using scGET-seq data. Instead of using the 352 
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ratio between unspliced and spliced mRNA, as in RNA-velocity, we exploited the ratio between 353 

Tn5 and TnH signals, at any given location, under the assumption that an increase in this value 354 

points to a dynamic process leading to a more relaxed chromatin, while the opposite is indicative 355 

of chromatin compaction (Extended Data Fig. 9b). We found that this approach, which we 356 

named Chromatin Velocity, is indeed able to capture not only the overall direction but also the 357 

velocity of chromatin remodeling (Fig. 6a), with a pattern similar to RNA-velocity (fig. 6b). Of 358 

note, the overall pattern of chromatin velocity recapitulates Palantir results in highlighting a 359 

group of cells including iPSC, NPC and FIB from which most differentiation processes appeared 360 

to arise (Fig. 6a and 5d). Also, RNA-velocity revealed that the subset of FIB enriched for the 361 

differentiation signature represented the origin from which the FIB population arose (Fig.6b). 362 

Curious to find the pathways engaged in the differentiation process, we analyzed the 363 

results of the dynamical model and identified the 1,703 DHS regions with highest likelihood of 364 

being subjected to remodeling. The functional analysis on the genes associated to these regions 365 

revealed a strong enrichment for categories related to neural morphogenesis, including 366 

axonogenesis and various pathways linked to neural development and morphogenesis, 367 

suggesting that our approach is indeed able to grasp biological processes relevant to the model 368 

(Fig. 6c and Extended Data Table S6). 369 

As transcription factors (TF) are the key drivers of differentiation, we designed a global 370 

TF dynamic score (Fig. 6d and methods), a cell-by-TF value that is informative of the role of 371 

specific TF in specific cell trajectories. We applied a Projection to Latent Structures regression 372 

analysis (PLS)45 fitting the cell TF scores to cell clusters (Extended Fig. 89c and Extended Data 373 

Table S7) that clearly separated FIB on one site, and NPC and iPSC on the other. Several TFs 374 

already implicated in FIB development and maintenance were included, such as FOSL246, 375 
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TP6347, and NFE2L248. Conversely, NPCs and iPSC were strongly enriched for TFs which are 376 

key for neural differentiation, namely NHLH149 and MECP2, whose mutations lead to mental 377 

retardation50. MECP2, MBD2 e ZBTB33 (KAISO) exert redundant activities in neuronal 378 

development51.. Notably, MECP2 enhances the separation of heterochromatin and euchromatin 379 

through its condensate partitioning properties52. Two TFs were pivotal in these cells, ONECUT1 380 

and LHX3. It has been recently shown that ONECUT1 profoundly remodels chromatin 381 

accessibility, thus inducing a neuron-like morphology and the expression of neural genes53. 382 

ONECUT1 and LHX3, alongside ISLET1, tightly cooperate to dictate the transition from nascent 383 

towards maturing ESC-derived neurons through the engagement of stage-specific enhancers54.  384 

As PLS1 seems to be associated to the development stage of neural cells, we assessed 385 

whether a similar pattern is recapitulated in vivo. To this end, we analyzed expression data of 386 

developing human brain obtained from55, focusing on the early time points (4-20 weeks post 387 

conception). With the exception of DUX4, which was not profiled in that dataset, we found that 388 

TF with the most negative loading on PLS1 have a single peak of expression in the early stages 389 

of brain development (Fig. 6g) and are abruptly downregulated afterwards. Similarly, TF with 390 

the most negative loading on PLS2 include many entries that are also active in the very early 391 

stages of brain development (Extended data Fig 9d), such as MBD2, ONECUT1 and LHX3.  392 

All together, we posit that Chromatin Velocity captures epigenetic transitions underlying 393 

crucial biological processes and illuminates the hidden transcription factor networks and wiring 394 

driving these dynamic fluxes. 395 

 396 

 397 
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Discussion 398 

 399 
In this study, we propose a new single-cell approach, scGET-seq, based on the 400 

engineering of a Tn5 transposase targeting H3K9me3, thus providing a comprehensive 401 

epigenetic assessment of heterochromatin. Additionally, the sequencing of a much larger portion 402 

of the genome allows the accurate and high-resolution identification of CNVs as well as the 403 

detection of SNVs at the single-cell level. We have also harnessed epigenetic data to develop a 404 

computational approach, Chromatin Velocity, which defines vectors of cellular fate and predict 405 

future cell states, based on the ratio between open and closed chromatin.  406 

Several human diseases are the result of disrupted epigenetic processes, including cancer, 407 

where the all-important relationship between genetic-driven events versus plasticity remains 408 

unclear. Indeed, the study of cancer evolution has relied on the definition of genetic lesions 409 

conferring selective advantage, such as the acquisition of somatic mutations or copy number 410 

aberrations. Yet, growing evidence points to epigenetic traits as crucially important in several 411 

cancer-related phenotypes, for instance the acquisition of drug resistance3–8. We envision that the 412 

engineering of additional hybrid transposases, including domains targeting other portions of the 413 

genome, could extend and integrate the information provided by TnH.  414 

Recent enzyme-tethering strategies have been proposed for chromatin profiling such as 415 

TAM-ChIP and most relevantly CUT&Tag56. Indeed, both GET-seq and CUT&Tag are applied 416 

on permeabilized live cells, exploit a streamlined Tn5-based library preparation and are suitable 417 

for low cell number and single cells57. However, CUT&Tag is based on antibody-guided 418 

tagmentation before chromatin tagmentation while GET-seq directly targets chromatin through 419 

Tn5 tropism modification, therefore offering a more expedite procedure and removing 420 

limitations due to specific antibody availability and validation. Finally, to our knowledge GET-421 
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seq is unique in its possibility of multiplexing analysis of different targets in the same reaction 422 

through specific barcodes in MEDS oligonucleotides. 423 

RNA velocity adds the vector of time and direction to scRNA-seq one dimensional 424 

data44. We propose here Chromatin Velocity, which provides a multidimensional information at 425 

the epigenetic level. Bulk analysis has revealed that in development cells undergo epigenetic 426 

changes, such as modulation in the opening of open and closed chromatin, which precedes and 427 

prepares gene expression modifications58–63. Therefore, it stands to reason to anticipate that 428 

RNA- and chromatin velocity are going to capture non-superimposable biological processes.  429 

Retracing the specific engagement of TF from scRNA-seq experiments is challenging64. 430 

Leveraging on a detailed description of the epigenome analysis provides more robust data and 431 

reduces variability, allowing the genome-wide identification of TFs, thus the epigenetic 432 

dynamics of processes such as development. 433 

In summary, we propose a new method, scGET-seq, that captures genomic and chromatin 434 

landscapes and trajectories, as well as key players, which could provide important insights in 435 

fields as diverse as development, regenerative medicine and the study of human diseases, 436 

including cancer. 437 

  438 
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Figure Legends 626 

Figure 1 - Tn5 transposon is able to target H3K9me3-enriched regions. a, Enrichment profile 627 
of H3K4me3 (green) and H3K9me3 (red) -associated regions obtained by ChIP-seq compared to 628 
Tn5 (green) and TnH (red) tagmentation profile obtained by ATAC-seq. ChIP-seq input track is 629 
shown as control (violet). b, Distribution of the enrichment of Tn5 and TnH transposons relative 630 
to genomic background in regions enriched for H3K4me3 (orange) or H3K9me3 (blue) expressed 631 
as log2(ratio) of the signal over the genomic Input. Enrichment over the same regions for 632 
H3K4me3 and H3K9me3 ChIP-seq are reported as reference. Ec: global enrichment over 633 
H3K9me3-marked regions; Eo: global enrichment over H3K4me3-marked regions; Mc: modal 634 
enrichment over H3K9me3-marked regions; Mo: modal enrichment over H3K4me3-marked 635 
regions. c, General scheme of the GET-seq transposon structure. Standard Tn5ME-A oligo was 636 
replaced by 49 nt oligos composed by 22 nt for Read 1 sequencing primer binding, 8 nt tags to 637 
discriminate Tn5 from TnH tagmentation products, and standard 19-bp ME sequence for 638 
transposase binding (created with BioRender.com). Data shown refer to experiments performed 639 
on Caki-1 cells. 640 
 641 
Figure 2 - Assessment of scGET-seq strategy and genomic copy number at the single-cell 642 
level. a, UMAP embedding showing individual cells in a mixture of Caki-1/HeLa at known 643 
proportions (80:20) profiled by scGET-seq. Cells are identified according to a signature calculated 644 
on specific DHS identified from bulk studies. b, UMAP embedding showing individual cells in a 645 
mixture of Caki-1/HeLa at known proportions (80:20) profiled by standard scATAC-seq. Cells are 646 
identified according to a signature calculated on specific DHS identified from bulk studies. c, 647 
Spearman's correlation between the segmentation profile of Caki-1 and HeLa cells at increasing 648 
resolution. Signal from bulk sequencing is compared to average cell signal obtained in single cell 649 
profiling. scGET-seq (orange) shows consistently higher correlation compared to 650 
standard scATAC-seq (blue). d, Spearman's correlation between the segmentation profiles and the 651 
density of regulatory elements in the GeneHancer catalog.  White dot in boxplots reprents the 652 
median, boxes span between the 25th and 75th percentiles, whiskers extend 1.5 times the 653 
interquartile range. n=323 regions. e, Heatmap showing the performance of two different 654 
classifiers on genomic alterations (amplifications, deletions and normal segments) in HeLa and 655 
Caki-1 cells. Each classifier has been trained at increasing resolution on scGET-seq and scATAC-656 
seq data separately. Both classifiers perform worse on HeLa cells than in Caki-1 cells given the 657 
lower numerosity.  658 
 659 
Figure 3 – Analysis of Patient Derived Samples by scGET-seq a, segmentation profile in 660 
individual cells profiled by scGET-seqof two PDO (CRC6 and CRC17). The heatmaps show the 661 
genomic landscape of two discovered clones assigned to each organoid. scGET-seq data are 662 
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expressed as normalized log2(ratio) of the signal in 1Mb windows with respect to the average per-663 
cell coverage. Centromeric regions and genome gaps were excluded from the analysis and colored 664 
in white. Barplots on top of each heatmap represent the absolute copy number evaluated from 665 
whole exome sequencing;b, distribution of the marginal posterior probability of the number of cell 666 
clusters identified using TnH-derived reads (orange) or Tn5-derived reads (blue). Analysis of 667 
clonal structure with Tn5-derived reads, as in scATAC-seq, may lead to overclustering. c, analysis 668 
of the performance of variant calling in PDO samples as a function of coverage on the profiled 669 
variants. The shaded interval represents the range of values for two samples, the solid line 670 
represents the geometric mean. Sensitivity is calculated as TP/(TP + FN), Precision is calculated 671 
as TP/(TP + FP), where TP = alleles correctly identified; FP = alleles identified by scGET-seq and 672 
not by Exome Sequencing; FN = alleles identified by Exome Sequencing and not by scGET-seq. 673 
Depth threshold is applied on variants profiled by scGET-seq; d-e UMAP embeddings of scGET-674 
seq profiles of individual cells derived from PDX samples. Cells are colored according to the 675 
clones derived from segmentation data (panel a) or epigenome analysis (panel b). Below each 676 
UMAP embedding, a barplot represents the abundance of subpopulations over time.;  f Scatterplot 677 
of allele frequency of somatic mutations identified by whole exome sequencing of the primary 678 
tumor in relation to the allele frequency detected by genotyping scGET=seq data. Dot size is 679 
proportional to coverage in scGET-seq, while color matches the clones in panel d; grey dots are 680 
mutations shared by two clones (Pearson r=0.712, p=7.93e-38, n=389); g Representative 681 
mutations of COSMIC Hallmark genes found in scGET-seq data which were not present in the 682 
primary tumor. Each mutation is associated to the corresponding genetic clone using the 683 
appropriate color code. 684 
 685 
Figure 4 -  - scGET-seq profiling of NIH-3T3 cells knocked-down for Kdm5c. a UMAP 686 
embedding showing the location of cells transfected with shKdm5c or shScr. b, UMAP embedding 687 
of individual cells colored by the read coverage. Two main clusters appear depending on the 688 
coverage. c-d, UMAP embedding highlighting the density of cells with high signal over 689 
pericentromeric heterochromatin marked by the major primer (see text), as recovered by TnH, 690 
panel c, or Tn5, panel d. The two signals are unevenly distributed and tend to localize where higher 691 
amounts of shScr cells are. All these data refer to experiments performed on NIH-3T3 cell line. 692 
 693 
Figure 5 – scGETseq defines cell identity and developmental trajectories of FIB, iPSC and 694 
NPC. a, UMAP embedding showing scGET-seq profiling of human fibroblasts (FIB), induced 695 
Pluripotent Stem Cells (iPSC) and Neural Precursor Cells (NPC). Black arrow shows a small 696 
subset of FIB and NPCs clustering alongside iPSC. b, UMAP embedding showing scRNA-seq 697 
profiling of the same cell populations derived from the same samples as in panel a. c, the profiles 698 
show the pseudobulk Tn5 signal for three selected regions among the top differentially enriched 699 
in the three cell types; tracks are colored according to cell types as in panels a and b; a UMAP 700 
embedding colored by the level of expression of the corresponding gene is reported on the right of 701 
each profile. d, UMAP embedding of cells profiled by scGET-seq and colored by entropy 702 
(differentiation potential) as estimated by Palantir. e, heatmap showing the enrichment of Tn5 over 703 
the top 20 regions associated with a high entropy as result of a Generalized Linear Model. The 704 
first annotation row is colored by cell cluster, the second annotation row is colored by the cell type. 705 
f, UMAP embedding of cells profiled by scRNA-seq and colored by the expression signature 706 
derived from genes associated to regions depicted in panel. The red arrows show the subsets of 707 
NPC and FIB that share similar features with iPSC. 708 
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 709 
Figure 6 - Chromatin velocity. a, UMAP embedding of differentiating single cells profiled by 710 
scGET-seq. Cells are colored by velocity pseudotime, arrow streams indicate the Chromatin 711 
velocity extracted using scvelo b, UMAP embedding of differentiating single cells profiled by 712 
scRNA-seq. Cells are colored by velocity pseudotime, arrow streams indicate the RNA velocity 713 
extracted using scvelo. c, Selected terms enriched for genes associated to the top dynamic regions. 714 
d, Schematic representation of the TF analysis. The matrix of velocities calculated over the top 715 
dynamic regions is multiplied by the matrix of Total Binding Affinity calculated for all PWM in 716 
HOCOMOCO v11 over the same regions. The final matrix contains a single value for each cell 717 
for each PWM representing the relevance of a specific TF in the dynamic process happening over 718 
that cell. e, PLS plot of cell TF analysis matrix. Each dot represents the centroid of all cells 719 
belonging to a specific cell group, dots are colored according to cell groups in Fig. S8c. Arrows 720 
indicate the loading of the top 4 PWM in each quadrant. The colored contours indicate the density 721 
estimates of the three cell types. g, Heatmap shows average expression profiles of TF with the top 722 
10 most negative on PLS1 during the early brain development. Darker color indicates higher 723 
expression. w.p.c.: weeks post conception. 724 
 725 

Online Methods 726 

CELL CULTURE 727 
All established cell lines were purchased from American Type Culture Collection (ATCC), except for 728 
HEK293T cell line that was a kind gift from Prof. Luigi Naldini (San Raffaele Telethon Institute for Gene 729 
Therapy, Milan). Cells were cultured in DMEM (NIH-3T3, HeLa, and HEK293T) or RPMI (Caki-1) 730 
supplemented with 10% Fetal Bovine Serum (FA30WS1810500, Carlo Erba for HEK293T and 10270-106 731 
Gibco™ for all the other cell lines) and 1% penicillin-streptomycin (ECB3001D, Euroclone). 732 

TAM-ChIP 733 
TAM-ChIP (Active Motif) was performed following manufacturer's instructions starting from 10,000,000 734 
of Caki-1 cells crosslinked with 38% formadheide; fixation was stopped with 0.125 M glycine. Sonication 735 
was then performed on Covaris E220 with the following parameters: total time 6 min, 175 Peak Incident 736 
Power, 200 cycles per burst. 8 μg of sonicated chromatin was used as input for each experimental condition. 737 
No Antibody (No Ab), Ab anti-H3K9me3 (ab8898 Abcam), Ab anti-H3K4me3 (07-473 Millipore). ChIP-738 
seq, performed as already described in 32, were used as reference for TAM-ChIP-seq (Ab anti-H3K9me3 739 
(ab8898 Abcam) and Ab anti-H3K4me3 (07-473 Millipore) have been used). 740 

TAM-ChIP – qPCR 741 
TAM-ChIP was performed on two biological replicates for each condition (H3K4me3, H3K9me3 and 742 
NoAb). For each biological replicate three technical replicates were analyzed in Real-Time qPCR.  In TAM-743 
ChIP-qPCR one of the two H3K4me3 biological replicate was excluded because no significant signal was 744 
detected for any condition. For each TAM-ChIP condition, 10 ng of final libraries were used as input. Water 745 
was used as negative control. Real time PCR analysis was performed using Sybr Green Master Mix 746 
(Applied Biosystems) on the Viia 7 Real Time PCR System (Applied Biosystems). All primers used were 747 
designed on H3K9me3-enriched chromatin regions derived from reference ChIP-seq data (as previously 748 
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described in32) and used at a final concentration of 400 nM. To determine the enrichment obtained, we 749 
normalized TAM-ChIP-qPCR data for No Ab sample. Primers are listed below.  750 
 751 

Primer Forward sequence Reverse sequence 
FAM5B GCGCCTTCCTTACTTCCATG AGTGGCCATCTCATTTCCCA 
NTF3 AAAGGCCTTGGTCCCAGA ATTGAAGGAACGCAGCCC 
CACNA1E GAGGGAGGAGAAAGCCGA TTGTCCAGACCAGCCCTT 

 752 

Tn5 transposase production  753 
Tn5 transposase was produced as previously described65 using pTXB1-Tn5 vector (Addgene, Plasmid 754 
#60240). For hybrid transposases, the DNA fragment encoding human HP1α was derived from the 755 
pET15b-HP1α (pHP1α-pre) vector66, kindly provided by Dr. Hitoshi Kurumizaka. According to the 756 
cloning strategy, two different lengths of HP1α polypeptide (spanning amino acids 1-93 and 1-112) were 757 
linked to Tn5, using either a 3 or 5 poly-tyrosine–glycine–serine (TGS) linker, resulting in four hybrid 758 
construct, TnH#1-4. TnH#1 made of 1-93aa (HP1α) - 3x(TGS) - Tn5; TnH#2 made of 1-93aa (HP1α) - 759 
5x(TGS) - Tn5; TnH#3 made of 1-112aa (HP1α) - 3x(TGS) - Tn5; TnH#4 made of 1-112aa (HP1α) - 760 
5x(TGS) - Tn5. The 1-93 or 1-112aa spanning regions of HP1α include 1-75aa of CD followed by 18 or 761 
37aa of natural linker, respectively. Construct amino acid sequences are detailed in Supplementary Data 1  762 
 763 

Transposon assembly 764 
Assembly of standard and modified pre-annealed Mosaic End Double-Stranded (MEDS) oligonucleotides, 765 
Tn5MEDS-A, Tn5MEDS-B and TnHMEDS-A was performed in solution following published protocol67. 766 
For single cell GET-seq, standard ME-A oligo65 was replaced by a combination of eight different sequences 767 
containing 8 nt tags before the 19 nt ME sequence to allow differentiation of fragments derived from either 768 
Tn5 or TnH tagmentation. Four sequences were used to replace standard Tn5ME-A (Tn5ME-A.1, Tn5ME-769 
A.2, Tn5ME-A.7, Tn5ME-A.8) and other four sequences for TnHME-A (TnHME-A.4, TnHME-A.5, 770 
TnHME-A.9, TnHME-A.10). A Read 1 primer binding site was reconstituted adding 8 nt (TCCGATCT) 771 
upstream the Tn5/TnH tag.  Modified Tn5ME-A sequences are reported in Supplementary Data 1  772 
Creation of functional transposon was performed following previously published protocol65. 774 
 775 

Bulk tagmentation reaction and ATAC-seq 776 
Bulk tagmentation was performed on Caki-1 genomic DNA (gDNA) following published protocol65. 777 
Specifically, 500 ng of gDNA was incubated for 7 min at 55 °C with 1 μL of functional transposon in 1X 778 
TAPS-PEG8000 buffer in a final 20 μL volume. As control, a parallel reaction was carried out on Caki-1 779 
gDNA but using the Nextera DNA Library Prep Kit according to the manufacturer’s protocol. Reactions 780 
were stopped adding SDS at a final concentration of 0.05% and incubated for 5 min at room temperature 781 
(RT). Then 5 μL of this mixture was used as input for indexing PCR using standard Nextera N7xx and S5xx 782 
oligos and KAPA HiFi enzyme (Roche) using the following protocol: 3 min at 72 °C, 30 sec at 98 °C 783 
followed by 13 cycles of 45 sec at 98 °C, 30 sec at 55 °C, 30 sec at 72 °C . Libraries were then purified 784 
using 1X volume of Ampure XP beads (Beckman-Coulter) and checked for fragment distribution on 785 
TapeStation (Agilent). 786 
ATAC-seq was performed following published protocols9 with minor modifications.  787 
Briefly, 100,000 Caki-1 cells pellets were washed in 100 μL cold 1X PBS, centrifuged for 10 min at 500 788 
*g at 4 °C, and permeabilized in 100 μL of cold lysis buffer (10 mM Tris·Cl, pH 7.4, 10 mM NaCl, 3 mM 789 
MgCl2, 0.1% (v/v) Igepal CA-630), then centrifuged again for 10 min at 500 *g at 4 °C. Tagmentation was 790 
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performed on cell pellets - using either Tn5 or TnH - by adding 100 μL of transposition mix (5x TAPS-791 
PEG8000 buffer mixed with 10 μL of 1.39 μM of functional transposon in a final volume of 100 μL). As 792 
control, a parallel reaction was carried out on 100,000 Caki-1 cells pellets using the Nextera XT DNA 793 
Library Prep Kit (Illumina) according to the manufacturer’s protocol. Reactions were performed at 37 °C 794 
for 30 min and stopped adding SDS at a final concentration of 0.05%.  After 5 min of incubation at RT, 795 
reactions were purified using QIAquick Gel Extraction Kit (Qiagen) and eluted in 15 μL of EB buffer. 5 796 
μL of this reaction was used as input for indexing PCR as described before.  797 
Libraries were sequenced on Illumina platforms with 2x50 bp sequencing protocol. 798 

Single cell ATAC-seq and GET-seq 799 
Single-cell ATAC-seq was performed on Chromium platform (10X Genomics) using “Chromium Single 800 
Cell ATAC Reagent Kit” V1 Chemistry (manual version CG000168 Rev C), and “Nuclei Isolation for 801 
Single Cell ATAC Sequencing” (manual version CG000169 Rev B) protocols. Nuclei suspension was 802 
prepared in order to get 10,000 nuclei as target nuclei recovery. 803 
Single cell GET-seq was performed as previously described but replacing the provided ATAC transposition 804 
enzyme (10X Tn5; 10X Genomics) with a sequential combination of Tn5 and TnH functional transposons, 805 
in the transposition mix assembly step. Specifically, a transposition mix contained 1.5 μL of 1.39 μM Tn5 806 
was incubated for 30 min at 37 °C, then 1.5 μL of 1.39 μM TnH was added for a total of 1 h incubation.  807 
When scGET-seq was performed on 20:80 proportion of HeLa:Caki-1 cells, nuclei suspension was prepared 808 
in duplicate in order to get 10,000 nuclei as target nuclei recovery for each replicate. 809 
Final libraries were loaded on Novaseq6000 platform (Illumina) to obtain 50,000 reads/nucleus with 2x50 810 
bp read length. For GET-seq, the sequencing target was 100,000 reads/nucleus; and a custom Read 1 primer 811 
was added to the standard Illumina mixture (5’-TCGTCGGCAGCGTCTCCGATCT-3’). 812 

Single cell RNA-seq 813 

Single-cell RNA-seq was performed on Chromium platform (10X Genomics) using “Chromium Single 814 
Cell 3ʹ Reagent Kits v3” kit manual version CG000183 Rev C (10X Genomics). Final libraries were 815 
loaded on Novaseq6000 platform (Illumina) to obtain 50,000 reads/cells.  816 

Kdm5c Knock-Down experiment 817 
Lentiviral vectors were produced by transfecting HEK293T cells (a kind gift from Prof. Luigi Naldini, San 818 
Raffaele Telethon Institute for Gene Therapy, Milan) with pLK0.1 plasmid containing shRNAs targeting 819 
Kdm5c 820 
(shKdm5c, CCGGGCAGTGTAACACACGTCCATTCTCGAGAATGGACGTGTGTTACACTGCTTTT821 
) or scramble (shScr)32.  822 
Calcium chloride method was used for transfection. Specifically, a mix containing 30 μg of transfer vector, 823 
12.5 μg of ∆r 8.74, 9 μg of Env VSV-G, 6.25 μg of REV, 15 ug of ADV plasmid, was prepared and filled 824 
up to 1125 μl with 0.1X TE/dH2O (2:1); after 30 min of incubation on rotation, 125 μl of 2.5 M CaCl2 were 825 
added to the mix and, after 15 min of incubation, the precipitate was formed by dropwise addition of 1,250 826 
μl of 2X HBS to the mix while vortexing at full speed; finally 2.5 ml of precipitate was added drop by drop 827 
to 15 cm dishes with HEK293T cells at 50% confluency. After 12-14 h the medium was replaced with 16 828 
ml fresh medium/dish supplemented with 16 μl of NAB/dish. After 30 h the medium containing viral 829 
particles was collected, filtered with 0.22 μm filter and and stored at –80 °C in small aliquots to avoid 830 
freeze-thaw cycles. 831 
NIH-3T3 cells were transduced in 6 well-plate format. To this end, 2 ml of shKdm5c/shScr lentiviral vector 832 
supplemented with Polibrene (final concentration 8 μg/ml) were added to actively cycling (50% confluency) 833 
NIH-3T3; one well of untransduced cells was used as negative control. After 24 h transduced cells were 834 
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splitted in a 10 cm dish and Puromycin selection (final concentration 4 μg/ml) was performed. 48 h post 835 
selection half of transduced cells were detached, washed twice with cold 1X PBS and tested for gene knock-836 
down by Real Time (RT)-PCR as described below. Upon validation of knock-down, 72 h post selection, all 837 
the remaining cells were collected and subjected to scGET-seq as already described. Nuclei suspension was 838 
prepared in order to get 10,000 nuclei as target nuclei recovery. 839 

Gene Knock-down validation by Real Time (RT)-qPCR 840 
Total RNA was isolated using Trizol (Invitrogen, Carlsbad, CA, USA) and purified using RNeasy mini kit 841 
(Qiagen); cDNA was generated using First-Strand cDNA Synthesis ImpromII A3800 kit (Promega), with 842 
random primers. RT-qPCR was performed using Sybr Green Master Mix (Applied Biosystems) on the Viia 843 
7 Real Time PCR System (Applied Biosystems). 10 ng of cDNA were used as input, water was used as 844 
negative control. Amplification was performed using previously validated primers32 and used at a final 845 
concentration of 400 nM except for major that were used 200 nM. Primers for minor ncRNA were taken 846 
from 68 and were used at a final concentration of 400 nM. 847 
 848 
Patient-derived colorectal cancer organoids (PDOs) 849 
 850 
Samples from 2 patients with liver metastatic gastrointestinal cancers were obtained upon written informed 851 
consent, in line with protocols approved by the San Raffaele Hospital Istitutional Review Board, and 852 
following procedures in accordance with the Declaration of Helsinki of 1975, as revised in 2000. PDOs 853 
cultures were established as previously reported69. Briefly, fresh tissues were minced immediately after 854 
surgery, conditioned in PBS/5mM EDTA and digested for 1h at 37°C in a solution composed of 2X 855 
TrypLE™ Select Enzyme (Thermofisher) in PBS/1mM EDTA with DNAse I (Merck) addition.. Release 856 
of the cells was facilitated by pipetting. Dissociated cells were collected, suspended in 120μl growth factor 857 
reduced (GFR) Matrigel™ (Corning™ 356231, FisherScientific), seeded in single domes in 24-well flat 858 
bottom cell culture plate (Corning) and, after dome solidification, covered with 1ml of complete human 859 
organoid medium69 and medium replaced every two/three days. For scGET-seq analysis PDOs were 860 
dissociated to single cells by combining mechanical (pipetting) and enzymatic digestion after 20 min 861 
incubation at 37 °C in a solution of 1X TrypLE™ Select Enzyme in PBS/1mM EDTA, washed in 1X PBS 862 
and processed as previously described. 863 
 864 

Patient-derived colorectal cancer xenografts (PDXs) 865 

Specimen collection and annotation - EGFR blockade responsive colorectal cancer and matched normal 866 
samples were obtained from one patient that underwent liver metastasectomy at the Azienda Ospedaliera 867 
Mauriziano Umberto I (Torino). The patient provided informed consent. Samples were procured and the 868 
study was conducted under the approval of the Review Boards of the Institution. 869 

PDX models and in vivo treatment - Tumor implantation and expansion were performed in 6-week-old male 870 
and female NOD (nonobese diabetic)/SCID (severe combined immunodeficient) mice as previously 871 
described69. Once tumors reached an average volume of ~400 mm3, mice were randomized into 4 treatment 872 
arms that received either placebo or cetuximab (Merck, 20 mg/kg twice weekly, intraperitoneally) as 873 
follows: i) untreated; ii) cetuximab 72 hours; iii) cetuximab 4 weeks; iv) cetuximab 7 weeks. To recover 874 
enough cells from tumors that had shrunk during cetuximab treatment, multiple xenografts were minced 875 
and mixed together to obtain the individual data points of treated arms (n = 1 in case of untreated tumors; 876 
n = 2 for 72 hours; n = 4 for 4 weeks; n = 5 for 7 weeks). The whole experiment was performed twice to 877 
obtain independent biological duplicates for each experimental point. In order to reach the endpoint of all 878 
the experimental groups on the same day, treatments were started asynchronously. Tumor growth was 879 
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monitored once weekly by caliper measurements, and approximate tumor volumes were calculated using 880 
the formula 4/3π ⋅ (d/2)2 ⋅ D/2, where d and D are the minor tumor axis and the major tumor axis, 881 
respectively. Operators were blinded during measurements. In vivo procedures and related biobanking data 882 
were managed using the Laboratory Assistant Suite (DOI 10.1007/s10916-012-9891-6). Animal procedures 883 
were approved by the Italian Ministry of Health (authorization 806/2016-PR).  884 

Single cell GET-seq on PDXA - At the end of treatments, mice were sacrificed and tumors collected. All 885 
the tumors pertaining to each treatment arm were pooled together.. The dissociation step was performed 886 
using the Human Tumor Dissociation Kit (Miltenyi Biotec) with the gentleMACS™ Dissociator (Miltenyi 887 
Biotec) according to the manufacturer’s protocol. Single cells were then subjected to single-cell GET-seq 888 
as already described. Nuclei suspension was prepared in order to get 10,000 nuclei as target nuclei recovery 889 
for each replicate. 890 
 891 

Fibroblast reprogramming towards iPSC and iPSC differentiation towards NPC  892 
Dermal fibroblasts (FIB) obtained from skin biopsies of two different healthy subjects (A and B) were 893 
cultured in fibroblast medium and reprogrammed with the Sendai virus technology (CytoTune-iPS Sendai 894 
Reprogramming Kit, ThermoFisher, Waltham, MA, USA) to generate Human induced pluripotent Stem 895 
Cells (iPSC) clones. iPSC clones were individually picked, expanded and maintained in mTeSR1 on hESC-896 
qualified Matrigel. Human iPSC-derived neural progenitor cells (NPC) were generated following the 897 
standard protocol based on a dual-smad inhibition70. Briefly, iPSCs were differentiated in NPC via human 898 
embryoid bodies. Neural induction was initiated through inhibition using the dual-small inhibition 899 
molecules dorsomorphin, purmorphamine, and SB43152. The small molecule CHIR99021, a GSK3b 900 
inhibitor, was added to stimulate the canonical WNT signaling pathway. The study was approved by 901 
Comitato Etico Ospedale San Raffaele (BANCA-INSPE 09/03/2017). Human FIB, iPSC and NPC derived 902 
from patient A and B were collected, counted and subjected to GET-seq and scRNA-seq as already 903 
described, starting from the same cell suspension. Target recovery was 5,000 cells for scRNA-seq and 5,000 904 
nuclei for scGET-seq. 905 
 906 

Bioinformatics analysis 907 

Data preprocessing 908 
Illumina sequencing data for bulk sequencing were demultiplexed using bcl2fastq using default 909 
parameters. Sequencing data for single cell experiments were demultiplexed using cellranger-atac 910 
(v1.0.1). Identification of cell barcodes was performed using umitools (v1.0.1)71 using R2 as input. 911 
Read tags for GET-seq and scGET-seq experiments, where TnH and Tn5 data are mixed, were processed 912 
with tagdust (v2.33)72, specifying transposase-specific barcodes as first block in the HMM model. Data 913 
preprocessing pipeline is available at https://github.com/leomorelli/scGET  914 
Reads for ChIP-seq, GET-seq, scGET-seq experiments were aligned to reference genome (hg38 or 915 
mm10) using bwa mem v0.7.1273.  916 
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Analysis of bulk sequencing data 917 
Aligned reads were deduplicated using samblaster74. Genome bigwig tracks were generated using 918 
bamCoverage from the deepTools suite75 with BPM normalization.  H3K4me3 enriched regions were 919 
identified using MACS v2.2.776, H3K9me3 enriched regions were identified using SICER v277, using default 920 
parameters. 921 

Definition of epigenome reference sets 922 
We segmented the genome according to DNAseI Hypersensitive Sites (DHS), as previously described78. 923 
Briefly, we downloaded the index of DHS for human79 and mouse genome77, intervals closer than 500 bp 924 
were merged using bedtools80 to create the interval set for accessible chromatin (named “DHS”). We 925 
then took the complement of the set to create the interval set for compacted chromatin (named 926 
“complement”).  927 

Analysis of scGET-seq data 928 
Lists of accepted cellular barcodes were assigned to reads inside aligned BAM files using bc2rg.py 929 
script from scatACC (https://github.com/dawe/scatACC), duplicated reads were then identified at cell-930 
level using cbdedup.py script from the same repository. For each scGET-seq experiment we generated 931 
four count matrices: Tn5-dhs, Tn5-complement, Tnh-dhs and TnH-complement, profiling Tn5 and TnH 932 
over accessible and compacted chromatin respectively. Count matrices were generated using 933 
peak_count.py script from scatACC repository. Each count matrix was processed using scanpy v1.4.6 934 
or v1.6.081; after an initial filtering on shared regions and number of detected regions per cell, matrices 935 
were normalized and log-transformed. The number of regions was used as covariate for linear regression 936 
and data were then scaled with a maximum value set to 10. Neighborhood was evaluated using Batch 937 
balanced KNN82, cell groups were identified with Leiden algorithm83 for cell lines or schist84 choosing 938 
the hierarchy level that maximizes modularity. In order to extract a unique representation of four datasets, 939 
we applied graph fusion using scikit-fusion85: we first extracted a 20-components UMAP reduction of 940 
each view, then we built a relation graph where all views are connected to a 20-components Latent Space 941 
(LS). Matrix factorization was run with 1,000 iterations 5 times. The resulting LS was then added in each 942 
scanpy object as the basis for neighborhood evaluation and cell clustering.  943 

Library saturation estimates 944 
To estimate the library complexity we first downsampled 10 datasets (4 depicted in Figure 2a and 6 945 
randomly chosen) at different proportions (0.1x, 0.2x, 0.5x) and calculated the number of genomic bins (5 946 
kb) that could be found in each dataset. For each dataset we fitted the shape parameter s of a lower 947 
incomplete Gamma function. We then built a linear model fitting the number of cells and the number of 948 
duplicates to predict s (Extended Data Fig. 4c). We obtained the model s = 0.815∙Ncells + 0.406∙(1-d) + 949 
0.2316, where Ncells is the number of cells divided by 1000 and d is the fraction of duplicated reads.  950 
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Analysis of HeLa/Caki-1 cell identity 951 
To identify cell identity in Caki-1/HeLa mixture, we downloaded publicly available bulk ATAC-seq for 952 
HeLa cells (GSE106145,86) and preprocessed as described above. We then generated a count matrix for 953 
HeLa cells and our bulk ATAC-seq for Caki-1 cells over the DHS regions, using bedtools. The resulting 954 
matrix was analyzed using edgeR87 using RLE normalization and contrasting HeLa vs Caki-1 by exact 955 
test. We selected HeLa specific regions by filtering for FDR < 1e-3, logCPM > 3 and logFC > 0 (i.e. 956 
regions enriched in HeLa cells, with detectable read counts), and we took the top 200 regions that were 957 
present in scGET-seq data. We used this list to create a HeLa score using the score_genes function 958 
implemented in scanpy. 959 

Cell cycle analysis 960 
Identification of cell cycle phase using replication data was performed as follows. First, we identified 961 
high-coverage and low-coverage cells in each experiment, by analyzing TnH-complement data, we then 962 
identified the top 500 Tn5-dhs regions characterizing each cluster.  963 
2-stage Repli-seq data for NIH-3T3 cells were downloaded from the 4DNucleome project 964 
(https://data.4dnucleome.org/experiment-set-replicates/4DNES7ZVDD5G/), replicated data were 965 
averaged and the log2-ration between early stage (E) and late stage (L) was calculated. Entries in Tn5-dhs 966 
list were assigned the average log2(E/L) value over its interval.  967 
LaminB1 DamID data for NIH-3T3 cells were also downloaded from UCSC genome browser tables, 968 
converted to bigwig format and lifted over mm10 assembly coordinates using Crossmap88. Average value 969 
of LaminB1 data over Tn5-dhs regions was assigned as described above. 970 
Differences in distribution of log2(E/L) and LaminB1 values were evaluated by Mann-Whitney U-test. 971 

Analysis of Copy Number Alterations 972 
Copy Number Alteration were derived from TnH data quantified over the entire genome, binned at 5 kbp 973 
resolution. Counts were extracted using peak_count.py script from the scatACC repository. After that, 974 
data were processed by collapsing values into larger bins at different resolutions (10 Mb, 1Mb, 500 kb). 975 
The value of each bin is divided by the average per-cell read count; we apply linear regression of per-bin 976 
GC content and mappability 89,  and finally express values as log2 of the scaled residuals. Cell clustering 977 
was performed using schist applied on the kNN graph built with bbknn and using correlation as distance 978 
metric. The number of clusters is defined by the highest level of the hierarchy that splits more than one 979 
group. Evaluation of the posterior distribution of number of groups is performed by equilibration of a 980 
Markov Chain Monte Carlo model with at most 1,000,000 iterations. 981 
 982 
Classification of CNV in Caki-1:HeLa cells 983 
We created a ground truth dataset by calling copy number alterations in Caki-1 and HeLa cells with 984 
Control-FREEC 89 on Whole Genome Sequencing data. We binned the resulting segments according to 985 
the desired resolution in single cell experiments (10Mb, 1Mb and 500kb), retaining three classes (loss, 986 
gain and normal).  987 
We subsampled scATAC-seq cells and scGET-seq cells to match cell numbers and coverage distributions, 988 
to avoid biases due to different data sizes. We split log2ratio matrices into a training and a test set in 989 
70:30 proportion. We trained a Logistic Regression classifier and a Support Vector Machine with the one-990 
vs-rest strategy and increasing the number of iterations to ensure convergence. We recorded accuracy and 991 
F1-score on the test sets. This process was applied on each resolution, cell type and platform. 992 
 993 
Bulk analysis of organoids Whole Exome Sequencing data 994 
Reads were aligned to hg38 reference genome using bwa, reads were then processed using bwa. 995 
Alignment were processed using GATK MarkDuplicates and Base Quality  Score Recalibration89. 996 
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Somatic mutations and copy number segments were identified with Sequenza90 with default parameters. 997 
Evaluation of CNV was performed using CNAqc91, clonal deconvolution was performed using 998 
MOBSTER and BMix 92 with default parameters. 999 
 1000 
Analysis of mutations 1001 
Reads for Tn5 and TnH data were separated to individual BAM files using separate_bam.py script from 1002 
the scatACC repository. Known somatic mutations were genotyped using freebayes v.1.3.2 93  1003 
(parameters: -@ exome_somatic.vcf.gz -C 2 -F 0.01). Only variants with depth > 1 were then considered 1004 
for the analysis. 1005 
Variant calling without priors was performed using freebayes using the same thresholds. VCF files were 1006 
annotated using snpEff v4.3p94 using GRCh38.86 annotation model. Known cancer variants were 1007 
annotated using COSMIC catalog95. Variants were then filtered for depth > 10, quality > 5 if unknown, 1008 
and quality > 1 if profiled in COSMIC. 1009 

Chromatin velocity 1010 
Chromatin velocity was calculated using scvelo96. Normalized count matrices over DHS regions for Tn5 1011 
and TnH were first filtered to include regions common to both. Then a proper object was created injecting 1012 
Tn5 and TnH data in the unspliced and spliced layers respectively. Moments were calculated on the kNN 1013 
graph previously estimated. Dynamical modeling was then applied and final velocity was calculated with 1014 
regularization by latent time. Regions having a likelihood value higher than the 95-th percentile were 1015 
considered as marker regions.  1016 

Analysis of scRNA-seq data 1017 
Reads were demultiplexed using cellranger (v4.0.0). Identification of valid cellular barcodes and UMIs 1018 
was performed using umitools with default parameters for 10x v3 chemistry. Reads were aligned to hg38 1019 
reference genome using STARsolo (v2.7.7a)97. Quantification of spliced and unspliced reads on genes 1020 
was performed by STARsolo itself on GENCODE  v3698. Count matrices were imported into scanpy, 1021 
doublet rate was estimated using scrublet99. Count matrix was filtered (min_genes = 200, min_cells=5, 1022 
pct_mito<20) before normalization and log-transformation. kNN graph was built using bbknn. RNA 1023 
velocity was estimated using scvelo dynamical modeling with latent time regularization.  1024 
 1025 

Total Binding Affinity analysis 1026 
For each DHS region selected for likelihood, we extracted the 500bp sequence flanking summits there 1027 
included, as annotated in the DHS index. We downloaded the HOCOMOCO v11 list of PWM was 1028 
downloaded100 and calculated the Total Binding Affinity as defined in101 using tba_nu.py script from the 1029 
scatACC repository. TBA values for multiple summits within a DHS region were summed. Final values 1030 
were divided by the length of the corresponding DHS region. To obtain a cell-specific TBA value, the 1031 
region-by-TBA matrix was multiplied by the cell-by-region velocity matrix. 1032 
PLS analysis was performed using PLSCanonical function from the python 1033 
sklearn.cross_decomposition library, using cell groups as targets for the matrix transformation. 1034 
 1035 
References for the Methods section 1036 
 1037 
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