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Abstract. The analysis of movements using inertial sensors represents an 
interesting alternative to video cameras, or other instrumentation used in posture 

analysis (treadmills, force plates, pressure plates, EMG).  Inertial-sensor based 

analysis has been shown to be useful to classify Activities of Daily Living for 

situation assessment, healthcare applications, or to understand human emotions 

from body posture. We classify movements using a “lexical-like” approach. We 

use a vector representation of movements using a technique able to extract a great 
number of generic features, and a methods of classification, inspired by text 

mining, and machine learning techniques with some modifications, that transform 

our vector space from the feature-value space into a feature-frequency space. We 
used this method to classify a set of 21 movements performed by 13 people with 

good recognition results. Then we tested our method on the public WARD 1.0 

database outperforming the results presented in literature on that database. The 
method we describe also shows to be technologically independent and 

semantically scalable, uses fast algorithms and appears to be suitable for every 

practical application where runtime movement analysis with big dictionaries could 
be a key factor.  

Keywords. Action recognition, wearable sensors, similarity measures, ranking 

algorithms, lexical approach, movement semantic, public database of movements. 

Introduction. 

Movement recognition with inertial sensors proved to be useful for social surveillance 

applications [2], in neuroscience [5] and for tracking activities [12,13]. Inertial sensors 

can also be used for sport analysis, for gait and posture analysis, for human computer 

interaction and in motion recognition and capture [9,10,12,14,16]. To classify 

movements with inertial sensors could also be an important step to recognize human 

emotions from body movements and posture [6,7]. 

On the one hand, inertial sensors require a certain amount of user cooperation and 

could be considered invasive and cumbersome. On the other hand, since hardware is 

becoming smaller and smaller the user acceptability of body-worn sensors has 

improved and will continue to improve. Moreover, inertial sensors have many 

advantages since they can be directly placed on specific body segments or in clothes 



accessories. This has many implications: we know with certainty to which segment of 

the body the data collected by the sensors refers to, we do not have to solve “hidden 

parts” problems created by video cameras, nor solve color and luminance issues. Also, 

we do not have to interpret/understand the surrounding environment, for example 

separate the body information from the background information, and identify people 

[3,4,15].  

In this work we focus our attention on movement recognition with inertial sensors 

for movement classification, using a generic method, semantically flexible, and 

technological independent. Our method was tested with two very different technologies 

and vocabularies of actions and in all cases performed with good accuracy. 

1. State of the Art. 

Many different approaches were used in the movement recognition area with inertial 

sensors, we can roughly divide them in two different kinds: i) the approaches where 

researchers used a specific set of features that have heuristically been proven to be 

suitable for characterizing a chosen set of movements; ii) the approaches where 

machine learning techniques are used to recognize a movement [12]. Furthermore, 

other techniques interpret a movement as a sequence of hidden states utilizing a Hidden 

Markov Model to predict movement from observables [11]. Many different 

technologies and sensors have been used, both in quality and quantity. Some prefer to 

use many mono dimensional sensors [12], others a single device mounted in a specific 

place of the body [2,12]. Others prefer multimodal approaches conjunctly using audio 

and inertial sensors [9,11]. 

Recently, a new technique was proposed by A.Y. Yang et al. of the University of 

Berkeley called Distributed Sparsity Classifier [1]. For this work a public database of 

movement has been made available, the WARD 1.0 database.  

2. The Sensors Architecture. 

We used an “ad hoc” architecture and a specific instrumentation to develop and test our 

method. In particular, we used five MTx inertial sensors of XSens [16]. Each MTx 

sensors is provided with three devices: an accelerometer, a gyroscope, and a 

magnetometer; each device has three degrees of freedom, providing information on 

acceleration (+/- 50 m/sec2), rate of turn (+/-2 rad/sec), and earth-magnetic field (+/-1 

normalized) in a three-axial reference system. The sample rate is 50 Hz.  

3. Feature Extraction. 

Each device – accelerometer, gyroscope, and magnetometer – yields three dimensional 

data (X, Y, Z). Every datum is also considered in its 2D and 3D norm representation 

(|XY|, |XZ|, |YZ|, |XYZ|). Subsequently, data is filtered with eight transformation 

functions (null, smoothing, low pass, mean, variance, variance with low pass, first 

derivative, second derivative) generating 840 transformations of the original signals. 

Then, 10 generic features are chosen for each transformation, generating 8400 features. 



Feature values are then quantized into 22 intervals for a total of 184.800 intervals. 

When hit, a specific interval is marked 1, otherwise is left to 0. Hence, every action 

generates a sparse vector of 184.800 binary values  (see Figure 1).  

4. Actions-Vocabulary Analysis. 

Some features are more frequent within the population, others can be less frequent 

inside the vocabulary’s actions. In order to take into account this aspects, two weights 

have been introduced: the FF (“Feature Frequency”) and the IVFF (“Inverse 

vocabulary frequency”). Feature Frequency is calculated using the following formula: 
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where      is the number of occurrences of the    feature in the action   , and  | | 

represents the population cardinality.  Inverse vocabulary frequency weights features 

according to their “discriminatory” ability within the dictionary they belong to. Its  

formula is: 
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where | | represents the cardinality of the vocabulary, and  |{       }|  the number 

of actions   where feature    assumes values. The overall weight of a single feature is 

given by the multiplication:                    . 

The FF and IVFF formulas transform the vector space. The FF takes into account 

how frequent is a feature in the given population rising the importance of the features 

that appear in the same class of movements (Eq.1). The IVFF takes into account how 

frequent is a feature in the dictionary. A feature that is present in more actions is 

considered less discriminative, and its weight is lowered according to the formula     

(Eq. 2.). We have to note that distances in the feature-frequency space could be very 

different than in the feature-values space: some dimensions can be canceled or 

enhanced depending on the role of features in the dictionary.  

 



 

Figure 1. Feature extraction process using  an iterative extraction operation. 

 

5. The Evaluation Phase. 

Four our first test we used a Test Set called NIDA (Nomadis Internal Database of 

Actions) of 21 different actions done by 7 different subjects; each action was repeated 

twice by all subjects but one, for a total of 273 actions. This set is larger and more 

varied then most test sets we found in literature. Then a more extended test was done 

on another database, the WARD 1.0.  

Once a set of actions suitable for recognition has been defined and samples 

collected, they are placed into the Feature-Action space and transformed by FFxIVFF 

during the training phase. Then the recognition phase begins. In order to recognize 

which action is the most similar to a given action, we measure which is the closest one 

inside the Feature-Action space using three classification algorithms: a Ranking 

algorithm (Eq.3), an Euclidean Distance (Eq.4), and a Cosine Similarity (Eq.5). We 

also used a “Majority Classification” that selects the action “called” by the majority of 

the three methods. The formulas are the followings:  
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where      represents the weight of the    interval of action    of the Training-Set, and  

     is the IVFF value associated to the feature of query.   



6. Databases NIDA and WARD 

The NIDA 1.0 (Nomadis Internal Database of Actions) database contains movements 

acquired by the NOMADIS Laboratory of the University of Milano-Bicocca. These 

acquisitions have been obtained using 5 MTx sensors positioned on the pelvis, on the 

right and left wrist, and on the right and left ankle. NIDA includes 21 types of actions 

performed by 7 people (5 males and 2 females) ranging from 19 to 44-years-old, for a 

total of 273 actions. The database has a rich vocabulary: it contains both the typical 

movements of Daily Living, and actions like “karate punch”, “karate frontal kick”, 

“karate side kick”. The complete list is the following: 

 

1. Get up from bed. 2. Get up from a chair. 3. Open a wardrobe. 4. Open a door. 5. Fall. 

6. Walk forward 7. Run. 8. Turn left 180 degrees. 9. Turn right 180 degrees. 10. Turn 

left 90 degrees. 11. Turn right 180 degrees. 12. Karate frontal kick. 13. Karate side kick. 

14. Karate punch. 15. Go upstairs. 16. Go downstairs. 17. Jump. 18. Write. 19. Lie 

down on a bed. 20. Sitting on a chair 21. Heavily sitting on a chair 

 

WARD 1.0 (Wearable Action Recognition Database) was collected at UC 

Berkeley. Acquisitions have been obtained positioning 5 sensors on the pelvis, on the 

right and left wrist, and on the right and left ankle [1]. Each sensor contained a 3-axial 

accelerometer and a 2-axial gyroscope; magnetometers were not present. Data have 

been calibrated and normalized to their appropriate unit of measure before using them 

for the training phase. WARD contains 13 types of actions performed by 20 people (7 

women and 13 men) ranging from 20 to 79-years-old with 5 repetition per action, for a 

total o 1200 actions. The complete list of actions is the following: 
 

1.Stand (ST). 2. Sit (SI). 3. Lie down (LI). 4. Walk forward (WF). 5. Walk left-circle 

(WL). 6. Walk right circle (WR). 7. Turn left (TL). 8. Turn right (TR). 9. Go upstairs 

(UP). 10. Go downstairs (DO). 11. Jog (JO). 12. Jump (JU). 13. Push wheelchair (PU). 

7. Testing techniques 

We used a Leave One Out Cross-Validation (LOOCV) method to calculate accuracy. 

We also used Majority Voting combinations that must be intended as an extension of 

the LOOCV test, which carries out the results of Majority Voting among all classifiers, 

varying each time the preference given to a classifier in case of tie.  

The classification accuracies of the algorithms using the NIDA database (273 

actions of 21 type) are the followings: Ranking 89.74%, Euclidean Distance 95.23%, 

Cosine similarity 95.23% , Majority Voting 94.7%. 

The classification accuracies of algorithms using the WARD database are the 

followings: Ranking 97.5%, Euclidean Distance 97.74%, Cosine 97.63% , Majority 

Voting 97.79%. 

We give results of the Cosine Similarity also in a synoptic way with a Confusion 

Matrix (see Figure 2). The columns contain the ground truth, while the rows contain 

the results of our classification algorithm.  

 



 

Figure 2. Confusion Matrix. NIDA Cosine Similarity: accuracy 95.23 % (left). WARD Cosine Similarity: 

accuracy 97.63% (right). 

8. Tests results  

The tests show that the single classifiers with the highest performing rate on both 

databases is the Cosine Similarity: the accuracy is 95,23% on the NIDA database and 

97,63% on the WARD database. Majority voting gives an accuracy of respectively 

94.7% and 97.79%. 

To correctly compare the performances of the NIDA and WARD databases we 

have to weigh the relative accuracies considering the different dimension of the 

dictionaries. An algorithm that chooses randomly could have an accuracy that is 

roughly the inverse of the dimension of the dictionary. We weigh the given accuracy 

with this factor in order to confront the accuracy obtained on both databases. We 

calculate the  ratio with the following formulas : 
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where AccW  refers to WARD accuracy and AccN refers to NIDA accuracy and |Dw| 

|DN| are the respective cardinality of the dictionaries. We see that the ratio gives us a 

results of approximately 1.58 in favor of the NIDA database. As NIDA’s actions are 

more numerous – and also more difficult to be discriminated  (like for “karate frontal 

kick” and “karate side kick”)  –  than WARD’s dictionary of actions  we could  say that 

the accuracy obtained with the NIDA database is higher. 

We also tested the algorithms performance using three out of five sensors both for 

the WARD and the NIDA database, in order to understand the sensitivity of the method 

to the number and the placement of sensors on the body.  

Using cosine similarity with the NIDA database, using 3 sensors on the pelvis, the 

right wrist and right ankle, we obtain a 93.40% accuracy. With 3 sensors on pelvis, left 



wrist and ankle we obtain 92.30% accuracy. We also get interesting results by 

positioning 3 sensor “diagonally”: on the pelvis, the right wrist and left ankle reaching 

a 94.13%; with 3 sensors on the pelvis, the left wrist and right ankle we obtain 93.77%. 

Using cosine similarity with WARD database using 3 sensors on the pelvis, the 

right wrist and ankle give an accuracy of 97.63%. We obtain an identical accuracy by 

using 3 sensors on the pelvis, the left wrist and ankle (97.63%).  Again, we obtain 

interesting results by positioning 3 sensors diagonally on pelvis, right wrist and left 

ankle reaching 96.69% and pelvis left wrist and right ankle reaching 97.48%, just 

0.15 % less than accuracy obtained using 5 sensors. Note that we have reached a better 

accuracy of A.Y.Yang et al. [1]  just using three out of five sensors on their database 

with the same data. 

9. Conclusions  

A representation of movements as a vector in the relevance of feature space,  

resembling methods used in text classification with some important modification seems 

to performs well. Similar actions are discriminated by our method both in a big 

database (WARD), or with a big dictionary (NIDA), accordingly to the hypothesis that 

a “lexical-like” approach is well suited for action recognition with inertial sensors. 

The results show that this classification method is reliable and does not depend on 

technology or specific features; also, it does not require any specific “a priori” or 

biomechanical knowledge about the given movements. Consequently, we do not 

depend on the application domain technology and we can change and improve the 

dimension of the vocabulary at will with satisfactory results. As far as we could find, 

the dimension of these dictionaries are greater than all examples given in the literature. 

Also, our method does not have a strong dependency on the position of sensors or on 

their number, and we have a good accuracy using just 3 sensors on the WARD 

database (having only 3 accelerometers, and 2 gyroscopes per sensor) outperforming 

similar results present in literature on the same database. Other Machine Learning 

techniques can be used to classify a greater range of movements, to understand feature 

dependencies, and to analyze the quality of the movements, extending the method to 

the domain of gait and posture analysis, and to the area of recognizing human emotion 

from body movements and postures. 
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