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This paper describes an intelligent home healthcare system characterized by a wireless sensor network
(WSN) and a reasoning component. The aim of the system is to allow constant and unobtrusive
monitoring of a patient in order to enhance autonomy and increase quality of life. Data collected
by the sensor network are used to support a reasoning component, which is based on answer set
programming (ASP), in performing three main reasoning tasks: (i) continuous contextualization
of the physical, mental and social state of a patient, (ii) prediction of possibly risky situations and
(iii) identification of plausible causes for the worsening of a patient’s health. Starting from different
data sources (sensor data, test results, inference results) the reasoning component applies expressive
logic rules aimed at correct interpretation of incomplete or inconsistent contextual information,
and evaluates correlation rules expressed by clinicians. The expressive power of ASP allows
efficient enough reasoning to support prevention, while declarativity simplifies rule-specification and
allows automatic encoding of knowledge. Preliminary evaluations show that the combination of an
ASP-based reasoning component and a WSN is a good solution for creating a home-based

healthcare system.
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1. INTRODUCTION

In many countries the ratio between the number of old and
young people is constantly growing. Figure 1, drawn from data
on the Italian population, shows that the percentage of people
‘over 80’ relative to the total population might increase eight-
fold from 1950 to 2030. This means that the number of old
people will be a sizeable percentage of the whole population.
We want these people to have a very good quality of life while
keeping expenses as low as possible. In many cases this means
helping people stay home as long as possible (no more than 5%
of the elderly in Europe are institutionalized).

The system we are building is targeted at raising as
much as possible the age at which a person needs to be
institutionalized. We believe that constant monitoring through
pervasive technologies is essential to provide more efficient
health assistance at home. In fact, recent studies on the
acceptance of technologies for the elderly [1, 2] show that while
people tend to look for social relationships in activities such as
cleaning or playing cards, in situations related to safety, health
and personal care they are also likely to rely on technological
solutions.

For this reason there has been a strong development of
computer technologies applied to specific fields of medical
sciences in order to allow the delivery of clinical care outside
of hospitals. For example, telemedicine and clinical decision
support systems have been used to collect complex clinical
data and implement diagnosis at-a-distance. The practical use of
these techniques in real contexts has shown that they work well
for some very specific healthcare applications, such as medical
prescriptions [3] or real-time transmission of clinical data. Our
system complements these techniques by taking into account
the contextual setting and the health evolution of patients over
long periods of time.

In our study we address those elderly who are clinically stable
although they might be affected by chronic diseases and physical
decline (more than 90% of the population over 65 has more than
one chronic disease). Since their health conditions do not require
constant monitoring of complex biomedical parameters, these
patients do not need, and are less tolerant of, invasive sensors.

Many user-centred systems that analyse user’s behaviour and
detect emergencies have been developed. They often cater to the
identification of predefined patterns of behaviour rather than to
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FIGURE 1. Size of the Italian population by age groups: each age
group is separately plotted and normalized to the group size in 1950
(source ISTAT and IRP-CNR).

the assessment of health in general, and they are mainly based
on statistical analysis of data, thus needing substantial training
to be adapted to a particular patient.

We use monitoring to support prevention, causal diagnosis
and emergency detection in the same framework and provide
a global representation and reasoning model for general health
assessment, combining medical knowledge, patient’s clinical
profile and context evaluation through sensor data. These data
are combined and interpreted by an inference engine to help
caregivers detect patients’ physical, mental and social status as
it evolves.

Figure 2 shows a very high-level overview of the architecture
of our system and the correlation between its components.

The presence of heterogeneous information makes it possible
to both automatically adapt the results of the reasoning process
when new information is available and deal with user and
context-specific constraints. We use answer set programming
(ASP) because it constitutes a powerful declarative framework
for knowledge representation and reasoning in this application
context. ASP addresses many of the requirements listed in
Section 1.1.

We do not focus on the use of robots for healthcare because,
beyond their high cost of set-up and maintenance, their presence
is rather intrusive and the help they can really provide is
marginal.

Starting from these considerations, we have developed the
first prototype of the SINDI (Secure and INDependent LIving)
system. The principal requirements of the system and the way
we address them are illustrated in Section 1.1.

1.1. System requirements and design issues

As already mentioned in the introduction, the SINDI system has
been designed to support caregivers in monitoring and providing

FIGURE 2. Data flow.

health assistance to the elderly in their home environment by
using wireless sensor technologies and automated reasoning
capabilities, but it also interacts with the elderly to help them
directly. The main aim is not to extend life but to enhance
autonomy and increase quality of life.

For this reason, the main requirements we have been focusing
on are:

• unobtrusiveness: the monitoring system should not affect
the lifestyle and habits of the person being monitored;

• technological soundness: the monitoring system should
use what is already commercially available with respect
to technology;

• affordability: costs should be kept low in order to
be affordable by medium-income families; set-up and
management should also be easy and cheap;

• user-friendly: the elderly may have problems in handling
complex multiple devices, therefore the interface with the
system should be as close as possible to what they are used
to, and the interaction should be intuitive;

• medical soundness: though SINDI does not support
complex medical diagnosis of specific diseases, the
intelligent support should take into account the appropriate
medical knowledge;

• user-centrality: each person has different needs, thus a
system that is supposed to work in a specific home
environment should consider the psycho-social and
clinical setting of the patient when evaluating the evolution
of his health status, rather than mapping his situation to
similar medical cases;
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• adaptivity: to address user-centrality, the system should
incorporate mechanisms to adapt to different patients, both
automatically and by explicit parameters setting;

• context-awareness: sensing activity and reasoning support
should consider not only static user-specific needs, but also
the evolving state of the patient and of the environment
in order to give more accurate results when data are
incomplete and dynamic;

• reactivity: for a long-term monitoring support, data
manipulation and interpretation can be done offline;
however, the system should be able to react in real time to
specific triggers (such as emergency situations, user input,
system feedbacks);

• reliability: collection and aggregation of data, as well
as results of reasoning used to help caregivers in
understanding patient’s health evolution, should be reliable
enough to assure adequate support;

• accuracy: results of the reasoning process should be as
close as possible to what caregivers expect, according to
the available information.

In order to address these requirements, some technical and
methodological choices turned out to be crucial in the design
and implementation of the SINDI system:

• To preserve unobtrusiveness, we decided not to use
cameras in order to avoid the uncomfortable feeling of
being constantly observed. Dynamic data about the person
and the environment are unobtrusively captured by a
wireless sensor network (WSN), composed of several
sensor nodes, a wearable monitoring device and a master
processor.

• The use of commercial nodes readily available on the
WSN market considerably increases the affordability of
this kind of system, at the same time helping the reduction
of overall costs and simplifying configuration and
deployment.

• Although the elder generation is getting closer and closer
to technology, they might have problems in dealing with
complex devices such as a PDA or devices that force them
to read from a small screen, such as portable phones. For
this reason, SINDI allows interactions with the patient
through the TV screen, controlled by a device that is similar
to a TV remote.

• Context-awareness is another important requirement.
The reasoning has its basis on the aggregation and
interpretation of different kinds of information from
heterogeneous sources (such as light, position, movement,
localization, load cells). The idea is that additional
information can help in characterizing the solutions of
the reasoning process, identifying the most plausible
ones, according to the available domain knowledge. This
also enhances reliability since heterogeneous sources
of information that can be interpreted may help in
compensating errors and incompleteness of data.

• If and when new sensors are available, the information they
produce can be easily taken into account by adding new
rules.

• The need to make the system user-centred and medically
sound leads us to include some medical knowledge in the
reasoning phase. In this way it is possible to trace general
habits and their correlation with the patient’s well-being
according to the evaluation methods of clinical practice.
In particular, we want to address the fact that clinicians
need to be supported in:

(i) understanding patients’ physical, mental and social
settings as they evolve,

(ii) predicting what could follow with respect to particular
changes in one or more aspects of patients’ general
health state and

(iii) identifying correlated aspects that may be the cause for
a negative change in the patient’s general health state.

The first aspect is related to the contextualization of worsenings
of the general health status of the patient, not only with respect
to similar clinical cases, but giving more importance to aspects
that turn out to be important for the patient at hand. The
second aspect refers to prediction, i.e. the identification of
health-related aspects (we refer to them as items) that deserve
specific attention regarding a worsening; this makes it possible
to act before more serious side-effects are observed and to plan
appropriate short- and long-term interventions, thus reducing
risks. The third aspect is more similar to diagnosis, but it should
be a local process rather than a case-based one, in that it must
take into account patient’s clinical and environmental settings
and adapt to the specific patient.

• To perform these reasoning tasks and encode the relative
knowledge into a common model, we believe ASP is the
right framework because:

(i) the effectiveness of the implementation makes it
possible to express deductions, default reasoning,
constraints, choices and qualitative preferences;

(ii) declarativity allows the automatic encoding of medical
knowledge, thus making the system easily extensible
and medically sound;

(iii) the use of contextual information and the way new
knowledge can be taken into account, makes it possible
to deal with incomplete information and enhance
context-awareness.

• Medical soundness and context-awareness can help obtain
better solutions because the combination of different
sources of information (sensors, medical knowledge,
clinical profile, user-defined constraints) that change over
time make the system more reliable (i.e. much better able
to disambiguate situations, thus reducing false positives)
and adaptable (easily extended on the face of new available
information).

The Computer Journal, Vol. 53 No. 8, 2010

 at U
niversita M

ilano B
icocca on June 3, 2015

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


1260 D. Merico et al.

FIGURE 3. Architecture overview.

• We also considered the fact that the reasoning process is
run not only periodically but also according to specific
triggers. These triggers can be associated with states of
emergency and specific actions to be performed by the
system. By adding appropriate logical constraints to the
ASP program, emergencies can also be contextualized in
almost real time. This behaviour addresses reactivity.

The general architecture of SINDI and its main components
are illustrated in Fig. 3.

Section 2 describes the design and implementation of
the WSNs supporting SINDI’s intelligence. The reasoning
framework is formally described in Section 3, while details
about the implementation of the knowledge representation and
reasoning model are presented in Section 4. Section 5 reports
some preliminary evaluations and Section 6 contains concluding
remarks.

2. INTELLIGENT SENSOR NETWORKS FOR
HEALTHCARE: OUR VIEW

Wireless Sensor Networks [4, 5] consist of nodes that are
capable of interacting with the environment by sensing or
controlling physical parameters. These nodes use packet radio
communication to collaborate in order to complete their tasks.
This kind of network is typically used to collect data for
long periods of time without assistance. Specific scenarios for
WSNs include habitat monitoring, industrial control, embedded

sensing, medical data collection, building automation, fire
detection, traffic monitoring.

In the last few years, many interesting systems were
developed in the area ofWSNs for assisted living and healthcare,
among which we mention ALARM-NET [6], Sensor Assisted
Independent Living Networks (SAILNet) [7] and CodeBlue [8].

ALARM-NET is a WSN designed for long-term health
monitoring in assisted living and residential environments. The
central design aim was to adapt the behaviour of the system,
including power management and privacy policy enforcement,
to the individual life patterns that are analysed and fed into the
system. The system incorporates a circadian activity rhythm
(CAR) analysis module used in all the reasoning about the
activities performed by the users. SAILNet proposes to apply
the technology of WSNs as a nonobtrusive tool to monitor
the activities of elders living in their apartments, focusing
only on fall detection and pointing out that quick responses
to these alarms are the critical requirement. Therefore, the
project gives much emphasis to the availability of WSNs.
CodeBlue is a wireless communications infrastructure for
critical care environments. It is designed to provide routing,
naming, discovery and security for wireless medical sensors,
PDAs, PCs and other devices that may be used to monitor
and treat patients in a range of medical settings. Given
our application scenario, the cited projects do not fulfil all
requirements.

Similarly to the systems described above, the WSN
of SINDI monitors environmental data, physical behaviour
and weight of individuals. In our framework, in order to
fulfil the requirements of SINDI’s monitoring, we need to
manage specific aspects of WSNs such as (i) hierarchical
organization and topology control, (ii) positioning, localization
and tracking, (iii) synchronization and power management and
(iv) deployment and network configuration.

The WSN we use in SINDI collects environmental data on
light, temperature, humidity and opening and closing of doors
and windows. Data on user’s movement (see Section 2.3),
localization and weight (using load cells under a bed or an
armchair) are also collected. Our aim is to acquire all possible
information about the context in which the user lives instead of
focusing only on medical information.

2.1. WSN architecture

In real deployments, our assistive monitoring system must
be able to cope with dozens of nodes for every room/area.
Moreover, we should consider that the number of nodes can
grow up to one hundred for large environments. Tracking the
position and monitoring the movements of a user could generate
a large amount of network traffic.

Therefore, we need a nontrivial network organization to
manage theWSN of SINDI. In our view, an hierarchical network
organization helps to solve these issues.
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The architecture of SINDI’s WSN is composed of:

• a base node in every zone, always active and connected
to household power, mostly used for network coordination
but also with its own sensing capabilities;

• environment nodes (battery powered) for sensing the
environment data or capturing particular events;

• a wearable monitoring device;
• a master processor.

Both the base nodes and the environmental nodes can sense at
least: temperature (10–40◦ with 1◦ precision), humidity (low–
normal–high), light changes that are meaningful to people, and
received signal strength indication (RSSI) for localization and
proximity. Furthermore, the base node integrates a power supply
(it looks like a telephone charger), a small rechargeable battery
for power outages and can sense the presence of AC supply. The
wearable monitoring device is used for the user’s localization
and includes several sensors (accelerometers, gyroscopes and
magnetometers) for movement detection. The master processor
is the coordinator node of the network. It is the gateway of the
network and it has storage, processing power and main memory
capabilities in the ballpark of an average PC.

The network is organized hierarchically. The environment in
which the user lives is divided into zones and every zone is con-
trolled by one base node. Moreover, every zone can be divided
into several sensing areas where one or more environment
nodes operate. The wearable node can move from zone to zone
without loss of connectivity. The master processor manages
the entire network applying topology-control mechanisms and
routing algorithms. A graphical representation of the network
organization is also shown in Fig. 4.

In the past few years, many new topology-control and data-
routing algorithms have been proposed for hierarchical network
organization in WSNs.

Topology control consists in deliberately restricting the set
of neighbouring nodes of a given node in order to minimize

FIGURE 4. Wireless sensor network architecture.

network traffic and maximize node power. An example of
hierarchical topology control is described in [9].

Routing mechanisms take into account the characteristics
of sensor nodes along with the application and architecture
requirements. Almost all WSNs routing protocols can be
classified as either data-centric, hierarchical or location based
although there are a few protocols based on network flow or
quality of service awareness.

Approaches to hierarchical routing like those described in
Low-EnergyAdaptive clustering Hierarchy [10], Threshold sen-
sitive Energy Efficient sensor Network [11] or Adaptive Peri-
odic Threshold-sensitive Energy Efficient sensor Network [12]
are particularly interesting for their approach to node organi-
zation in clusters (in our settings, a cluster is a zone of the
environment).

The medium allocation (MAC) is handled with the industry
standard IEEE 802.15.4 protocol.

Our hierarchical network organization has several advan-
tages. First of all, the reactivity of the network to unexpected
events is significantly increased by the presence of a base node
always active in every zone of the environment and therefore
quick responses to alarm situations are possible. Moreover, the
localization and tracking of the user at zone level is always
possible (obviously, a better accuracy can be reached using the
environmental nodes). The environmental nodes also have lower
power consumption because the network traffic is reduced by
turning to sleep all the areas where the patient is not detected.
Finally, the process of configuration and the deployment of the
network is notably easier with this organization.

In the following subsections we give more details about these
aspects.

2.2. WSN organization

As we have seen, the WSN of SINDI collects several types of
user and environmental data and every node of the network
has various sensing capabilities. The network nodes are all
similar, but the on-board sensors are heterogeneous. In our
system, we need to configure the behaviour of every node,
changing dynamically its sensing capabilities. Therefore, we
need to use specific software to correctly configure and manage
the network.

Several middleware environments that provide routing,
data aggregation and communication services have been
designed in order to optimize and limit resource consumption.
For instance, middleware like [13] or [14] are good
examples of generic environments based on message exchange
mechanisms optimized for homogeneous sensor networks.
These environments, however, do not provide enough flexibility
to manage heterogeneous sensors and do not meet all our
requirements.

We developed a middleware that provides the following
functionalities: (i) dynamic configuration of the nodes and
simple data aggregation; (ii) communication, routing, power
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control and synchronization; (iii) positioning, localization and
tracking.

2.2.1. Dynamical configuration of the nodes
Every node of the network has several sensory capabilities.
A base node (or the master processor node) manages the
capabilities of the environmental nodes, enabling or disabling
them when needed. In our settings, these capabilities are
represented with a bit mask, where every bit represents a sensory
capability (such as bit 0 for temperature, bit 1 for humidity,
bit 2 for environmental light, and so on.). Therefore, the
configuration of the environment nodes can be easily managed
and single activities can be turned on or off by a base node in
every zone or by the master processor node.

In order to reduce the traffic in the network and eliminate
redundant data, we developed a middleware that manages
simple aggregation rules [15] at the zone level, e.g. temperature
is aggregated in each zone unless the person is in the area and
the temperature at specific locations is required.

Moreover, the zone-based network configuration we use
in our network requires specific configuration tools. These
tools allow the association of nodes with rooms and areas in
a very simple fashion. Due to the presence of specific and
heterogeneous sensors the current version of the system does not
permit the use of fully automatic configuration tools, therefore
we need a scene-analysis phase in which we configure the
system for every specific environment.

2.2.2. Communication, routing, power control
and synchronization

The flow of messages follows the hierarchical structure of the
network. Depending on its active capabilities and within the
same awake cycle, an environmental node reads its sensor values
and sends a message to its base node. In our test setting, the
value of the battery level is always transmitted in order to
monitor the network consumption. An environmental node can
easily change its behaviour when it receives a new configuration
message from a base node. After receiving all messages or after
a small timeout, every base node sends the data to the master
processor for storage and further elaboration.

Finally, the presence of a base node always active in every
zone simplifies data routing because the environmental nodes
are guaranteed to always find a listening base node. Therefore,
they could simply send a message with the proper sensory data
and quickly enter sleep mode without wasting precious energy.

Most of WSN research is focused on the optimization of node
resources. In order to make the batteries last as long as possible,
the duty cycle of a node should be more or less 1%. Moreover,
configuring all the environmental nodes to always use all their
capabilities for every active cycle is wasteful.

A significant reduction of energy consumption could be
achieved by increasing the sleep time of the environmental
nodes when possible. For example, one might set the
environmental nodes to sleep for very long cycles during the

night. Consequently, most of the resources saved at night could
be used in other moments of the day.

2.2.3. Positioning, localization and tracking
Given our application scenario, we do not need a high-
precision localization and tracking system. Real-time, high-
precision tracking of the user does not give our system
significant advantages. Therefore, a range-free algorithm that
uses proximity-based techniques turns out to be sufficient to
accomplish our needs. Instead of computing the precise spatial
position of the patient we divide the environment into several
logical locations, using them for the tracking algorithm.

However, higher accuracy could be achieved for particular
events or alarms by using all the nodes in a zone at the same time.
The locations and tracking computations are distributed among
the base nodes in order to the minimize energy consumption of
the environmental nodes.

The wearable monitoring device broadcasts a localization
message every 2 s in order to provide an RSSI-based position
estimation to the other network nodes. These messages have
a time to live (TTL) equal to 1 to guarantee that only the
nodes closer to the monitoring device receive them without
further routing. This is necessary in order to retrieve coherent
values of the RSSI. We used simple scene-analysis techniques to
optimize the localization and tracking system. Furthermore, the
resource consumption of the wearable device is considerably
reduced by using the on-board inertial sensors. When the user
is stationary, we limit the message broadcast using threshold
detection algorithms.

Section 5 presents an evaluation of the performance of the
tracking component.

2.3. Activity recognition using wearable sensors

Detecting and analysing patient’s movements are key factors
in our home healthcare solution. A viable solution to
understanding patient’s activities is to use inertial wearable
sensors [16–18]. An inertial sensor is well accepted because
it is small enough to go unnoticed when worn.

To understand movements, we use a data-gathering device
with a triaxial accelerometer, gyroscope and magnetometer on
board. We use only one device worn on the hip of the patient,
oriented as follows. The sensor is positioned on the right side of
the pelvis; the y-axis of the sensor reference system is directed
to the ground, parallel to the axis of the body; the x-axis is
directed to the back of the person; the z-axis is parallel to the
pelvis axis and directed outside the body (see Fig. 5).

We assume that the device is always correctly positioned with
the same orientation. The shape of the device helps the patient
to correctly wear the sensor. Using the device on the hip, we
are able to acquire the data generated by the movement of the
centre of the mass of the body. Peripheral body movements
(such as hands, arms movements, the foot impact angle, the
head inclination respect to the body) cannot be detected because
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FIGURE 5. Mobile node positioning.

they cannot be sensed at hip level. Using only one device
is a limitation to what we can understand about the patient’s
activities [19, 20], but the smaller computational cost and the
stronger social acceptance of having only one device to be worn
are strong advantages.

2.3.1. Understanding movements
The activities we need to understand are of three types. One
relative to the way the body is set in space: lying, sitting,
standing. Another, relative to the movement of a person through
space: walking, stepping upstairs/downstairs, staying. The last,
relative to the changes of direction when the person is moving:
forward, right/left turns, back turns.

Data are usually sampled on the wearable device at 50 Hz,
they flow through the WSN and are analysed on the server side at
runtime. Some critical events, like falls, can happen and we need
to recognize them very quickly, but we must acquire enough data
to compute a number of features sufficient for the understanding
algorithms. We store the data generated by the accelerometers
in a temporary buffer (acquisition window) that contains 10 s
of acquired data. This dimension has proved to be large enough
to recognize our set of activities, but small enough to guarantee
that a critical event can be quickly recognized. The acquisition
window must be refreshed and filled with new data as they are
produced by the accelerometers. In order to identify events or
actions that happen on the borders of our acquisition window,
the new acquisition window is overlapped with the old one by
a half of its dimension. Recognized activities are tagged with
initial and end time and are saved in a SQL database, where
they will be used by the reasoning module for immediate or
later consideration.

2.3.2. Segmentation
The data we acquire are a set of ordered values in time.Analysed
in separate dimensions, they appear as a one-dimensional
function in the time domain. First of all, we must correctly
segment the signal, as the quality of the features used for activity
recognition is very sensible to segmentation accuracy. For this
analysis, we use the module of accelerations, which is a quantity

independent from sensor orientation.

magn_accel(t) =
√

x2
t + y2

t + z2
t . (1)

We are interested in identifying a well-known set of
predefined actions (see Table 4 in Section 5). The dispersion
of the signal around the average has proved to be a particularly
useful feature for our aim.

We consider the signal as a population of samples varying
around an unknown average: we calculate the average and
dispersion with a moving window of size 2k+1. The dispersion
of the signal is a highly user dependent value, can be subjective,
and depends on many particular factors. For a given action this
value can be different even when the same person repeats it,
for example, with more force, or determination, or velocity;
but when a person changes movement, e.g. turning left or right
during a walking activity, the variance of the signal changes
significantly. Differences in the variance function are points in
time useful to identify when an action starts or stops.

We use mean error (ME) that is related to the variance of the
signal. Differently from the variance, ME does not use power
operators, reducing computational costs. The dimension of the
moving window is k = 25 and has been chosen heuristically.
This algorithm is also used to understand when the person is
still. A person that is not moving generates a signal with a very
low variance; we consider a person still when ME < 1.

2.3.3. Walking
Walking is recognized by using a decision tree (DT) algorithm.
Walking is a movement that roughly appears as a sequence
of regularly spaced signal peaks: higher peaks coincide with
the right and left steps (see Fig. 6). We detect peaks using a
peak detection algorithm, then we try to understand if they
are equally spaced in time by simply measuring the mutual
distance of peaks. If they are equal with a tolerance of 2% we
consider the movement ‘regular’. The signal generated during

FIGURE 6. An example of walking (a person makes five steps
forward, turns, and then make five steps backwards).
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movements is quite complex and rich in personal features, so
we must denoise it before using the peak detection algorithm, to
eliminate many ‘false peaks’ that are normally present. We use
a FFT with a 15 Hz low pass filter: this value helps to maintain
the most important information of the signal, eliminating all the
noisy details. Parameters of this algorithm have been chosen
heuristically.

2.3.4. Direction
To understand direction we use the information coming from the
x- and z-axes of the magnetometer. The tan−1(xt/zt ) returns
the angle of the body with respect to the north pole. This
operation is quite simple, but in this scenario we must solve
two problems. First, we have to distinguish minor movements
from actual changes of direction. During walking activities
the hip rotates around the ideal centre of the pelvis creating
a sinusoidal-like signal that is not related to real changes of
direction. The second problem is to distinguish low rotations of
the body from an actual and sudden change of direction. For
example, a person making a large 360◦ circular trajectory is not
making what is usually considered a ‘360◦ turn’. This makes
a difference at the reasoning level where a turn is considered
a sudden movement and not a slow and unintentional action.
This is an important semantic difference that must be taken
into account. Given tan−1(xt/zt ) we smooth this function to
eliminate artefacts due to the pelvis movements, and we use the
derivative of the function to understand when a sudden change
of direction occurs. The quicker the movement, the higher the
derivative. When the derivative increases to more than a specific
threshold we consider the movement a significative turn, and we
track the zero crossing prior and after this point to understand
where the turn really started. The angle difference and the sign
tell us about the magnitude of the turn in degrees and if the turn
is in the right or left direction.

2.3.5. Position of the body in space
For the position of the body in space we look at how the
acceleration vector g is positioned with respect to the y-axis of
the sensor. A force is always present on earth, the gravitational
force: accelerometers can measure the intensity of the g
acceleration correlated to this force. When the acceleration
vector g is parallel to the y-axis, the body is parallel to it too,
and the y value of the accelerometer tends to be near the g
value, as its projection is maximum on y. When the body is
lying horizontally, the projection of vector g is orthogonal to the
y-axis and tends to be zero, on average. Sitting is an intermediate
position, with an intermediate value. We diminish the effect of
outliers using a mobile smooth operator (window of 2k + 1
dimension, k = 40). After smoothing we use a threshold to
decide the position of the body in space. We consider the value
y > 7.7 as standing, y < 3.2 as lying and 3.2 < y < 7.7 as
sitting.

2.3.6. Falls
Falls are considered critical events for an elder person, and must
be avoided. But if a fall occurs, we would like to detect it in
order to start an emergency process. When a body falls, it tends
to follow an inertial trajectory and the acceleration vector g
tends to became null in the sensors reference system. Then, as a
consequence of the impact, we register very high accelerations
and rotation values. Therefore, a fall is detected using a DT
algorithm. First, we check if the magnitude of acceleration
becomes smaller than 5 m/s2. If this is the case we control
the rate of turn, the acceleration magnitude, and its derivative
values.

3. THE LOGICAL FRAMEWORK

The declarative logical framework we use is that of ASP. ASP
is based on the stable model semantics proposed by Gelfond
and Lifschitz [21]. The stable model semantics is a declarative
semantics for logic programs with negation that can be seen as
bringing together concepts and results from logic programming
and default reasoning (see Section 3.1 for details).

Thanks to its expressiveness and to the availability of efficient
implementations [22–25],ASP has started to play a relevant role
in solving complex knowledge representation and reasoning
problems [26, 27].

Some preliminary notions are needed in order to understand
the strength of the ASP formalism.

3.1. ASP: some notions

In ASP a given problem is represented by a logic program
viewed as a description of properties and constraints on the
solution. The logic program is written in such a way that results
of the evaluation of the program correspond to the solutions of
the original computational problem. These results are given in
terms of answer sets.

An answer set for a logic program is a minimal (in the sense
of set-inclusion) set of literals satisfying the logic rules included
in the program.

A rule r is an expression of the form

Rj : L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln, (2)

where Li(i = 0 . . . n) are literals, not is a logical connective
called negation as failure and n ≥ m ≥ 0. We define
L0 = head(Rj ) as the head of rule Rj , and body(Rj ) =
L1, . . . , Lm, not Lm+1, . . . , not Ln as the body of Rj .

Furthermore, let body+(Rj ) = {L1, . . . , Lm} and
body−(Rj ) = {not Lm+1, . . . , not Ln}.

Rules Rj with head(Rj ) = ∅ are called integrity constraints,
while if body(Rj ) = ∅, we refer to Rj as a fact. Rules with
variables are taken as a shorthand for the sets of all their ground
instantiations.
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In answer set programs there are no function symbols and
the role of recursion is dramatically restricted, thus enabling a
very efficient computation of the solution. Another appealing
feature of ASP is the possibility of assuming that something is
true and later retracting this conclusion when new knowledge
is available. We refer to this capability as Default Reasoning.
In ASP one can express default reasoning by specifying
general knowledge for standard cases (the defaults) and using
negation as failure to introduce possible exceptions. As long as
there is no evidence of the truth of an exception, the default
holds. New rules can be modularly added to infer the truth
of exceptions (see Example 1). Default reasoning is said to
be nonmonotonic in that, adding new knowledge, you may
be no longer able to conclude what you could before. Such
reasoning capability makes it possible to deal with incomplete
knowledge.

The power of the ASP formalism is also due to its
close connections to the field of satisfiability checking and
constraint satisfaction, declarativity and expressive power
allowing the modelling of nondeterministic choices, priorities
and cardinality constraints with compact encodings.

Thanks to the efficient implementations available, nondeter-
ministic choices and constraints can be used to generate all
possible solutions for a problem and test them via constraint
satisfaction (see Example 2).

These features of ASP make it a powerful knowledge
representation and reasoning framework dealing with abductive
reasoning (finding consistent explanations of some given
observations), belief revision, decision problem solving,
planning and diagnosis.

3.2. Knowledge representation of the home
healthcare domain

A careful analysis of health care in home settings suggests
that health-related items can be classified into three levels:
functionality level representing functional disabilities of the
person monitored, activities of daily living (ADL) level
representing their dependence in performing daily activities,
and risk assessment level characterizing risky conditions.
Significant aspects of health assessment at each level (referred
to as items) have been identified according to the medical
practice in health assessment of the elderly [28] and encoded
in our declarative framework (see Sections 3.2.2–3.2.4 for
details).

A lower layer (state level) contains aggregated context data
as well as static and dynamic evaluations of significant aspects
of patient’s clinical settings (referred to as indicators).

Static aspects of clinical profiles include stable pathologies
characterizing elderly care and drug intake as well as results of
specific complex tests performed periodically by the caregiver.
Predicates used in logic rules to represent the static profile are
illustrated in Table 1.

TABLE 1. Logical encoding of patient’s profile.

Predicate Description
test(Name, Value) Test results
drug(Name) List of drugs
pathol(Name) List of pathologies
profile(X, Name, V ) X = {drug, pathol}

V = {yes, no}

TABLE 2. Logical encoding of dynamic profile.

Predicate Description
lev(L, I ) Association items-level
obs(I, Vi, T 1, T 2) Evaluation of an item
obsind(Ind, Vi, T 1, T 2) Evaluation of an indicator
link(I , Ind) Association item-indicator
range(Ind, Vi) Range of values
ord(Ind, Vi , Num) Order of values

Dynamic aspects of the clinical profile include:

• indicators that can be evaluated through ad-hoc tests
proposed by the system when needed;

• indicators evaluated by the WSN through continuous
monitoring and data aggregation;

• indicators evaluated through logic rules (e.g. the quality of
sleep).

Every time the inference process is run, the system compares
values of indicators from the previous inference with the actual
values (either aggregated by the sensors or inferred by logic
rules) and computes differential evaluations. Admissible values
for each indicator are part of the medical knowledge and are
encoded by the knowledge engineer.

At higher levels, each indicator can be associated with one or
more items. Results of differential evaluations identify which
indicators are subject to worsenings and which items are critical:
the higher the number of worsenings associated with an item,
the more critical the item is.

Predicates used in logic rules for evaluation are listed in
Table 2, where I represents an item, L is a level, Vi are values,
Ind represents indicators and T 1, T 2 are timestamps. Logic
rules used to detect worsenings by using differential evaluations
are presented in Section 4.

We wish to point out that evaluations of items obtained
by the system through specific tests are only partial. In fact,
computer-aided tests can include only a few of the aspects
considered in the complete initial evaluation performed by the
caregivers. The frequency with which these tests are proposed
to the user depends on test scheduling done by the caregiver. As
an example, if the quality of sleep becomes substantially worse,
this can raise a trigger and the system proposes a computer-
aided version of the appropriate test; the worsening can also be
observed by the caregiver who remotely schedules the test for
the patient.
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FIGURE 7. Information flow across levels.

The reasoning process takes also into account medical
knowledge about causal correlations among items, and
combines them with results of differential evaluations to
show how the patient’s health can evolve in terms of
functional disability (functionality level), dependencies in
performing daily activities (ADL level) and risks assessment
(risk assessment level).

Figure 7 illustrates the flow of information across levels:
details about the person and the environment at the state level
are provided by the WSN (eventually aggregated), while values
of items at upper levels are hierarchically influenced by values
of items at lower levels.

In the following subsections we give details about items
at each level and indicators (at the state level) associated
with them. Details about causal correlations and reasoning
capabilities are presented in Section 4.

3.2.1. State level
The state level includes static and dynamic profiles as well
as context-dependent information, which are the results of the
aggregation of sensor data. The static profile includes:

• complete test results evaluated by the caregiver on periodic
examinations using appropriate medical scales: cognitive
state (mini mental test [29] and clock drawing test [30]),
vision (optical tests), mobility (Tinetti-Performance
Oriented Mobility Assessment (POMA) scale [31]),
affective state (Geriatric Depression Scale (GDS) test [32],

nutritional state (mini nutritional assessment [33]) and
ADL dependency (Katz scale [34]);

• intake of drugs, among which we consider ache inhibitors,
benzodiazepines, psychotropes, neurolectic and anti-
parkinson;

• presence of specific age-related pathologies, among
which we consider reduction in visual acuity, hearing
loss, osteoarthritis, cognitive decline, depression, alco-
holism, vascular pathologies, arthritis, cardiac problems,
parkinson, epilepsy, dentistry problems, disthyroidism,
acute pathologies;

Interesting pathologies and drugs, as well as valid tests,
have been identified together with the geriatrics of the
S. Gerardo Hospital in Monza. The declarative nature of
the ASP framework makes it easy to add new information.
However, we are aware of the fact that a user-friendly
interface should be available for clinicians to extend the
medical knowledge of the system without the constant support
of a knowledge engineer. We believe this is feasible since
declarativity allows automatic encoding from a high-level
specification into ASP, through appropriate mapping. We are
investigating this issue.

Context-dependent information includes:

• Personal details: biomedical parameters such as tempera-
ture and weight;

• Environmental properties: average light value, humidity,
temperature, architectural barriers (such as presence of
stairs or carpets in a given room or area of interest);

• Basic activities: movement activity can be easily captured
by the wearable sensor, and we consider it as characterized
by motion (walking, standing still), position (sit, lay, stand)
and orientation (straight, turning);

• Localization: the way the patient moves from one
room/area to another is traced;

• Interaction with objects: we consider two kinds of binary
interaction according to sensors associated with the
specific object, i.e. pressure (chair and bed objects) and
switch (doors, windows and devices).

Context-related data can also be used to infer values of those
indicators that are not directly available from aggregated sensor
data. As an example, consider the indicator quality of sleep. To
understand the quality of sleep it is necessary to reason about
the night activity, taking into account consistent contextual
information (location, state of objects, movement) and some
auxiliary predicates (such as start/end of night time, getting up,
going out of bed). A simplified version of the ASP code to infer
quality of sleep is shown in Section 4.

Consistent interpretations of the context can also be crucial
for caregivers in order to investigate the particular settings
in which worsenings or emergencies are detected, since these
values can be analysed through a visual interface similar to the
one illustrated in Fig. 8.
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FIGURE 8. Caregiver interface to access to context data.

Items at each upper level are characterized by an initial static
evaluation (predicate obs() in Table 2), and a set of indicators
used for differential evaluation (predicate obsind() in Table 2).
As an example, a complete test performed by the caregiver
is encoded by an obs() predicate, while partial (computer-
aided) versions of the same test are encoded as indicators using
obsind() predicates.

In the following subsection we identify preliminary tests
used for initial evaluation and give additional details about the
association of indicators with items.

3.2.2. Functionality level
At this level, the system considers the following functional
disabilities:

• balance and gait, initially evaluated through the appropri-
ate parts of the Tinetti-POMA medical scale; indicators
are represented by aspects of the scale that can be captured
and evaluated through the wearable sensor, i.e. standing,
sitting, turning and walking;

• nutrition, initially evaluated with the mini nutritional
assessment test; the indicator is the body mass index
(BMI);

• vision, initially evaluated through specific optometric tests;
indicators are the level of light during the day and at the
sunset (according to medical practice, keeping the light on
when the blinds are opened and the natural light coming
from the outside is up to a certain level, may indicate a
problem);

• hearing sensibility, evaluated through audiometric tests;
the indicator is the reaction time to a ringing bell;

• mental and cognitive capabilities, evaluated through the
mini mental and clock drawing tests; indicators are

represented by a computer-aided questionnaire, counting
ability and quality of sleep;

• insomnia, evaluated through a questionnaire; indicator is
the quality of sleep;

• emotional stability, initially evaluated through the GDS
test [32]; indicator is the computer-aided version of the
GDS test.

According to the literature, mobility remains one of the
most important aspects to be assessed in order to protect
the elderly from the negative consequences of a fall. The
Tinetti-POMA test has been claimed to be the gold standard
in assessing mobility dysfunctions in the elderly and is an
important fall risk assessment measure. This test was published
by Tinetti in 1986 and it has been designed to evaluate the
position changes and gait manoeuvres used during normal daily
activities.

With respect to complete tests and then computer-aided
versions, a concrete example is represented by the mini mental
and clock drawing tests. These tests are not easily performed
without someone’s assistance. Thus, the evaluation of the
correspondent indicators is done by periodically (once a month)
proposing a reduced version of the test to the user via TV screen:
the abbreviated mental test (AMT) consisting of a small set of
questions [35].

Results of these simple tests are stored in the DB and they
can be accessed by the caregiver at any time.

3.2.3. ADL level
At this level we consider the ADL as evaluated in the Katz scale,
in particular:

• transfer (mobility) has the same indicators as balance and
gait;

• dressing has the same indicators as balance and visual
functionalities;

• feeding has the same indicators as nutrition functionality;
• bathing has no indicators in the current version;
• toileting has no indicators in the current version.

ADLs that are not associated with any indicator cannot
be evaluated to identify worsenings. For this reason, only
prevention is possible, based on correlation rules (see Section 4
for details).

Mobility is evaluated through the Tinetti-POMA scale while
other ADLs are evaluated according to the Katz index. We wish
to point out that reasoning at this level is not aimed at activity
recognition through the identification of patterns of behaviour,
as in other approaches to monitoring [36]. We rather concentrate
on possible inter-dependencies that may arise in performing
ADLs, according to correlations with items at other levels,
because this is useful for prevention.

Instrumental activities of daily living (IADL) from the
Lawton scale [37] have not been included. This choice has
been guided by the fact that their impact on other health-related
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items is less determinant and the evaluation with the state-of-
the-art sensor technology is too complex to be performed in a
nonintrusive way.

3.2.4. Risk assessment level
Risks are identified by the potentially most dangerous situations
for elderly people at home, namely:

• risk of falls, initially evaluated through the Tinetti-POMA
scale; it has the same indicators as balance and gait
functionalities;

• risk of depression, initially evaluated through the GDS
scale; indicators are those of nutrition, balance, gait and
sleep functionalities;

• frailty, initially evaluated through a combination of GDS
test, mini mental test and Katz evaluation; indicators are
the same as those of nutrition, balance, gait, vision and
emotional functionalities plus some additional ones like
walking speed, age, number of pathologies, number of
drugs and number of activities in which the patient needs
help;

• risk of dependency, evaluated through the Katz index; it
has the number of ADLs that cannot be easily performed
as indicator;

• malnutrition, evaluated through the mini nutritional
assessment test with BMI as indicator;

• isolation, having the number of visits and the time spent
out of the house as indicators.

4. THE REASONING CAPABILITIES

In the knowledge representation model of SINDI we describe a
home healthcare scenario by a declarative representation of the
domain at different levels.

At the state level, data provided by the sensors network can
be noisy and imprecise, even after aggregation. The expressive
power of ASP is used to disambiguate unclear situations as
much as possible, by using defaults, nondeterministic choice
and constraints over the solutions.

Let us consider localization as an example of how the
reasoning process helps in the interpretation of context-
dependent data.

Example 1. SINDI’s localization component is based on the
intensity variations of the radio signals exchanged between
nodes. Unfortunately, it is not always true that the higher the
measured intensity of a signal from a node, the closest the person
is to that node.

Given proximity values with a certain accuracy P and defined
over (possibly overlapping) time intervals Ti , Tj , the ASP
program identifies all possible sequences of moves across rooms
and areas. Time intervals are split into temporal segments
as follows: whenever two time intervals T 1, T 2 and T 3, T 4
overlap, a splitting point is added in correspondence to the

TABLE 3. Results of localization for Example 1.

Time Bedroom-Bed LivRoom-Sofa Kitchen-Table
0 10 0 0
1 10 0 45
2 10 0 45
3 10 45 45
4 10 45 45
5 0 0 45

point where overlapping starts and/or ends, dividing the original
intervals into sub-intervals we refer to as segments. Consider
data in Table 3: the localization process returns proximity
to the Bedroom-Bed area from time 0 to 4 with reliability
P = 10, proximity to the LivRoom-Sofa area from time 3 to
4 with P = 45 and proximity to the Kitchen-Table area from
time 1 to 5 with P = 45. The reasoning process generates
proximity segments represented by predicates of the form
proximity_segm(R, A, T 1, T 2, P ), as follows:

proximity_segm(bedroom,bed,0,1,10)

proximity_segm(kitchen,table,1,3,45)

proximity_segm(bedroom,bed,1,3,10)

proximity_segm(bedroom,bed,3,4,10)

proximity_segm(kitchen,table,3,4,45)

proximity_segm(living_room,sofa,3,4,45)

proximity_segm(kitchen,table,4,5,45)

Logical rules state that, by default, proximity to an area A

of a room R in a temporal segment T 1, T 2 is given by the fact
that a signal has been received from the corresponding node in
that temporal segment. This holds unless there is a more reliable
signal received in the same interval from another node:

max_proximity(R,A,T1,T2,P):-

proximity_segm(R,A,T1,T2,P),

not other_max(R,A,T1,T2).

This other signal determines proximity unless additional
contextual data make it invalid (e.g. load cell pressed in a
different area A1 of room R1):

other_max(R,A,T1,T2) :-proximity_segm(R,A,T1,

T2,P),

proximity_segm(R1,A1,

T1,T2,P1),

P1>P, A!=A1.

not invalid(R1,A1,

T1,T2).

invalid(R,A,T1,T2) :- proximity_segm(R,A,T1,

T2,P),

loadcell(R1,A1,Val,T),

Val!=0, T1<T<T2, A1!=A.

According to proximity values and data available from load
cells, results of the computation of consistent proximities for
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each segment may change.As long as no information about load
cells is available, the ASP program computing the maximum
consistent proximity in this example will give the following
solution:

max_proximity(bedroom,bed,0,2,10)

max_proximity(kitchen,table,2,3,45)

max_proximity(kitchen,table,3,4,45)

max_proximity(living_room,sofa,3,4,45)

max_proximity(kitchen,table,4,5,45)

Suppose we add predicate

loadcell(bedroom,bed,68,2).

as a fact indicating that the load cell under the bed has been
pressed at time T = 2, measuring a weight equal to 68 kg. The
new solution is now represented by the following predicates:

invalid(kitchen,table,1,3)

max_proximity(bedroom,bed,0,1,10)

max_proximity(bedroom,bed,1,3,10)

max_proximity(kitchen,table,4,5,45)

max_proximity(kitchen,table,3,4,45)

max_proximity(living_room,sofa,3,4,45)

When disambiguation is no longer possible and multiple
options are available, it can be useful to generate all the
alternatives and to reason about them in parallel. This feature
turns out to be crucial also for diagnosis and prevention when all
possible alternatives are generated according to domain specific
knowledge; constraints based on context-dependent data may
further reduce the space of the solutions.

Example 2. Returning to the situation in Example 1, location
based on contextual data and proximity returns two possible
results in the interval 3–4. In order to identify the solution that
is more consistent with contextual data, it may be necessary
to treat both solutions separately. We can do it in ASP
by using nondeterministic choice and constraints: a choice
rule indicates that for every possible location identified by
predicate max_proximity(R, A, T 1, T 2, P ), the person may be
there (identified by predicate isIn(R, A, T 1, T 2, P ) or not; the
auxiliary predicate aux_isIn(T 1, T 2) is used to check if there
is at least one valid location in the corresponding time interval;
integrity constraints in the last two rules specify that a person
can be at most in one area for each temporal segment, and each
temporal segment must be associated with at least one area when
there is a proximity value from the corresponding node:

{isIn(R,A,T1,T2,P)}:- max_proximity(R,A,T1,

T2,P).

aux_isIn(T1,T2) :- isIn(R,A,T1,T2,P).

:- isIn(R,A,T1,T2,P1), isIn(R1,A1,T1,T2,P2),

A!=A1.

:- not aux_isIn(T1,T2), max_proximity(R,A,T1,

T2,P).

The evaluation of theASP program now returns two solutions
with respect to the isIn() predicate:

Answer: 1

isIn(bedroom,bed,0,1)

isIn(bedroom,bed,1,3)

isIn(living_room,sofa,3,4)

isIn(kitchen,table,4,5)

Answer: 2

isIn(bedroom,bed,0,1)

isIn(bedroom,bed,1,3)

isIn(kitchen,table,3,4)

isIn(kitchen,table,4,5)

A consistent view of the context allows evaluation of
indicators that are not directly available from aggregated sensor
data. Considering the indicator quality of sleep mentioned in
the previous section, the ASP code considers a large amount of
information to determine a consistent value for this indicator,
namely:

• localization details, represented by predicates isIn(R, A,

T 1, T 2);
• state of the wearable device, represented by predicate

w_device(V , T ), where value V can be on or off ;
• values returned by load cells, represented by predicate

loadcell(R, A, V, T );

The reasoning process infers additional information referred
to:

• beginning of the night period, indicated by predicate
nightstart(T 1);

• end of the night period, indicated by predicate
nightend(T 0);

• the fact that the person exits bed at time T , indicated by
predicate exitbed(T );

• the fact that there is a sleep break at time T , indicated by
predicate break(T );

• the fact that the person gets out of the bedroom
between time T a and T b, indicated by predicate
out_bedroom(T a, T b).

We report part of the logical encoding:

nighstart(T1) :- isIn(bedroom,bed,T1,T2),

w_device(off,T1).

nightend(T0) :- exitbed(T0), w_device(on,T),

T0<T,

not exitbed(T2), T0<T2<T,

out_bedroom(T3), T<T3.
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exitbed(T) :- loadcell(bedroom,bed,V,T1), V>0,

loadcell(bedroom,bed,V1,T), V1=0,

not loadcell(bedroom,bed,V2,T2),

V=0, T1<T2<T.

break(T) :- nighstart(T1), nightend(T2),

exitbed(T),T1<T<T2.

out_bedroom(Ta,Tb) :- nighstart(T1),

nightend(T2),

isIn(R,A,Ta,Tb),

T1<Ta<T2.

The following logic rules use defaults to discriminate among
possible values for the indicator quality of sleep (good, medium,
bad), according to the information inferred above:

obsind(sleep,good,T1,T2) :-

nightstart(T1), nightend(T2),

not break(Ta), 1<Ta<T2,

not out_bedroom(Tb,Tc), T1<Tb<T2.

obsind(sleep,medium,T1,T2) :-

nightstart(T1), nightend(T2),

break(T), T1<Ta<T2,

not out_bedroom(Tb,Tc), T1<Tb<T2.

obsind(sleep,bad,T1,T2) :-

nightstart(T1), nightend(T2),

break(T), out_bedroom(Tb,Tc),

T1<Ta<T2, T1<Tb<T2.

In order to deal with emergencies, SINDI can be configured
to detect some triggers. Such triggers can either generate a direct
action (e.g. an emergency call) or rely on the reasoning system.
As an example, temperature over 40◦C is set as a trigger for
an emergency call, while the opening of a window needs to be
contextualized using specific rules in order to check whether it
is an intrusion or not.

At upper levels, inference is performed by separate logic
programs in order to detect:

(i) functional disabilities, every hour;
(ii) dependencies in performing ADL, every day;

(iii) risk assessment, every day.

Besides domain knowledge and consistent interpretation of
the context, two more aspects are necessary in order to reason
about the health status of the person monitored: differential
evaluations and correlation rules.

Differential evaluation of an item I at level L through
the indicators Indi is possible by comparing the value V 0

i

of each associated indicator at the beginning of the previous
inference (time 0) and the (eventually aggregated) value V 1

i

of the same indicator at the time interval being evaluated
(time 1).

For some indicators such as standing and sitting, several
evaluations may be available for the time interval (hour or day)
considered in the inference process. Given that a single value has
to be provided for each indicator in a given interval, the data
extraction module taking data from the database and passing
them to the ASP engine is in charge of computing the most
frequent value for that interval. This choice can be motivated
by the fact that the slow trend of physical and cognitive decline
makes evaluations uniform in a short period of time such as an
hour or a day, and isolated values that are far from the most
frequent one can be due to occasional awkward movements
rather than to a disability.

Though differential evaluations can also indicate improve-
ments, we only consider worsenings, as they are much more
relevant with respect to risk prevention. The reasoning system
can be extended to also consider health improvements and use
them to evaluate response to medical treatments.

Worsenings can be detected applying the following logic rule:

worse(L,I,Ind,T1,T2) :- obsind(Ind,V,T1-1,T1),

obsind(Ind,V1,T1,T2),

link(I,Ind), lev(L,I),

ord(Ind,V1,N1), T1<T2,

ord(Ind,V,N), N<N1.

Correlation rules concern dependencies between a cause (I1)
and an effect (I ). Different dependencies are allowed:

• only negative influence of an item Ij on another item Ik;
• only positive influence of an item Ij on another item Ik;
• directly proportional influence of an item Ij on another

item Ik;
• inversely proportional influence of an item Ij on another

item Ik;

Each of these correlations can be strict or possible. In the
first release of the system we concentrated on strict and possible
negative influence, since they are more significant for prevention
and diagnosis. All other dependencies can be introduced and
encoded in the system in a similar way, and we are considering
this issue in the implementation of the following prototype of
SINDI.

Correlation rules can be specified by clinicians and
automatically mapped into ASP to express negative/possibly
negative influence of an item Ik on another item Ij , respectively
encoded into logic predicates:

neg_influence(I_j,I_k).

poss_neg_influence(I_j,I_k).

Consider the structure of items and correlation rules as
an oriented graph stratified into levels: items are nodes and
correlations are oriented arcs connecting two nodes.

Each item Ij at a levels L, Ij (L), can be connected to another
item Ik(L

′) in two different ways:
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• oriented arc from Ij (L) to Ik(L
′): if Ij (L) gets worse, this

has negative influence on Ik(L
′);

• oriented dotted arc from Ij (L) to Ik(L
′): if Ij (L) gets

worse, this may have negative influence on Ik(L
′).

In addition, the layered structure is used to avoid possibly
infinite propagation of dependencies when the reasoning
process investigates the search space.

As already mentioned, the inference process considers items
at each level separately. No matter which level is being
evaluated, the system first characterizes every item in the graph
as being either stable (none of the indicators become worse for
that item) or unstable (one or more indicators become worse
for that item in the interval being evaluated). When at least
one indicator becomes worse, the item is marked as unstable,
otherwise it is stable:

unstable(L,I,T1,T2) :- worse(L,I,Ind,T1,T2),

lev(L,I).

stable(L,I,T1,T2) :- not unstable(L,I,T1,T2),

lev(L,I).

This distinction is crucial to determine the behaviour of the
system when it reasons about each Ij (L) at the specific level L:

(a) if Ij (L) is stable, the system performs the following
reasoning task:

• makes predictions about the amount of risk for
Ij (L) to get unstable, as follows:
– investigates the direct connections determined

by correlations rules, to identify items Ik(L
′)

that may influence Ij (L);
– check each Ik(L

′) to see whether it is unstable
and, in this case, conclude that Ij (L) can be at
risk due to its correlation to Ik(L

′);

(b) if Ij (L) is unstable, the system performs three different
reasoning tasks at once:

• identifies possible negative effects of the worsen-
ing of Ij (L) on other items Ik(L

′) according to
correlation rules, represented by oriented arcs from
Ij (L) to Ik(L

′)1;
• performs local diagnosis, detecting possible

alternative causes of the worsening of Ij (L) among
the correlated items that have been marked as
unstable;

• contextualizes the worsening of Ij (L) providing
alternative health-related contextualizations and
values of items (both stable and unstable
ones) included in each separate contextualization
scenarios.

1Propagation of negative effects are not considered since the layered
structure of the graph lets us identify them simply by investigating results of
the inference for Ik(L

′) when items at level L′ are evaluated.

Note that diagnosis and contextualization reasoning tasks
may generate alternative solutions. This is due to the fact that
two items I1, I2 that are related to the item being investigated I ,
can be in the same path backwards from I or not. In the second
case, they are part of two different solutions.

Just as an example, we report part of the encoding used for
prediction of functional disabilities, with respect to a stable
function F . This corresponds to point (a) in the description of
the algorithm. Logic rules make it possible to predict negative
effects of the worsenings of I on function F :

% Prediction

poss_neg_pred(func,F,L,I,T1,T2) :-

stable(func,F,T1,T2),

poss_neg_influence(F,I),

unstable(L,I,T1,T2).

neg_pred(func,F,L,I,T1,T2) :-

stable(func,F,T1,T2),

neg_influence(F,I),

unstable(L,I,T1,T2).

To conclude this section, we present a simple example on how
the reasoning tasks can support clinicians in health assessment
of the elderly.

Example 3. Consider the graph in Fig. 9. Suppose that the
reasoning system is investigating ADL dependencies (level 2)
and items are stable at this level (light grey nodes). Suppose
also that visual functionality is marked as unstable (black node).
Results of the inference process with respect to prediction are
illustrated in Fig. 10: ADLs’ dress and eat are both at risk
(dark grey nodes) due to the visual functionality, but in one
case (for the ADL eat) the risk is only possible. This qualitative
interpretation allows the association of worsenings to priorities
and guides caregivers in planning interventions.

Example 4. Suppose now that, in the same setting, the
initial evaluation of ADL dependencies is the one depicted in

FIGURE 9. Example 3: correlations and graph colouring.
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FIGURE 10. Example 3: results of prediction task.

Fig. 11: ADL eat is unstable (i.e. there is an increasing level
of dependency in performing eat), and visual and cognitive
functionalities are unstable too. The inference process returns
the following results:

• Prediction: risk of fragility and nutrition functionality
(represented by the BMI) have to be monitored carefully
since they may get worse due to dependency in performing
eat (Fig. 12); the system also returns that ADL dress is at
risk due to cognitive and visual functionalities;

• Local diagnosis: the increased level of dependency in
performing eat can be due to a functional disability
in vision and/or cognition (Fig. 13); these possible
explanations are treated as separate solutions since
following a path from eat backward, leads to either one
or the other functionality;

• Contextualization: following the links backwards from
the unstable ADL eat, three contextualization sets are
identified for its worsening, as shown in Fig. 14; values

FIGURE 11. Example 4: correlations and graph colouring.

FIGURE 12. Example 4: results of prediction task.

FIGURE 13. Example 4: results of diagnosis task.

of items and related indicators are provided to clinicians
through appropriate interfaces, helping to identify the most
plausible alternative contextualizations of the worsening of
ADL eat (Fig. 14) according to the context.

It is easy to figure out how, in a more complex schema of
dependencies among items, loops and multiple paths can make
reasoning a hard task. For this reason we decided to make the
graph structure hierarchical, in that reasoning tasks for items
at one level are performed separately from the reasoning tasks
for items at other levels. This distinction is both conceptual
and temporal, since inference is run every hour for functional
evaluation and every day for ADL dependency and risk
assessment. In dealing with complex graphs of dependencies,
the expressive power of ASP can be crucial since it makes
it possible to explore complex search spaces maintaining the
computational complexity rather low.
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FIGURE 14. Example 4: results of contextualization task.

5. PRELIMINARY EVALUATION

The evaluation of an assisted-living system like SINDI is very
difficult because it is hard to identify the correct metrics. The
need for a common framework to identify the challenges and
to suggest the metrics is clear. The work described in [38]
proposes an evaluation framework for assessing the quality
of assistive environments. This framework identifies a set of
attributes that are considered critical for user adoption. The
categories identified are the following:

• functionality (correctness, robustness—errors and faults,
reliability—time of continuous operation);

• usability (ease of use, nonobtrusiveness, accessibility);
• security and privacy (such as access modes and

encryption);
• architecture (modularity, interoperability—standard inter-

faces to integrate components);
• cost (installation, maintenance);

This framework could be improved by using separate
evaluation metrics for users and technical experts.

So far we have run the full system for short periods of
time (days) in a mock-up environment without real users.
Nonobtrusiveness stems from the design of SINDI. Details
about the user and the environment are automatically collected
by the WSN, and no complex statistical information or specific
medical knowledge is needed to analyse possible evolutions of
patient’s health and to support understanding. Moreover, the
interaction of SINDI with the patient and the caregivers is fully
intuitive, as we deal with multimedia contents and the patient is
provided with a device that looks like a remote control. Security
and privacy are guaranteed by the use of security standards and
techniques. Modularity and computational efficiency stem from
the declarative nature of ASP and the availability of efficient
solvers. Finally, the use of off-the-shelf components in SINDI
considerably reduces overall costs.

FIGURE 15. Test 1: RSSI values and distance.

In the preliminary evaluation we did several tests on the
WSN and on the inference engine. Details are presented in the
following subsections.

5.1. WSN evaluation

5.1.1. Localization and tracking system evaluation
A preliminary evaluation of the localization and tracking system
has been done configuring a test environment composed by a
master processor, a wearable device, two base nodes and six
environmental nodes assigned to two logical zones.

In the first test, we recorded the RSSI values of many
messages between two nodes of the network at various distances
(10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400 cm).
The nodes have two different types of antenna (ceramic and
plastic) and different battery charge levels (high–medium–low).

The test results are shown in Fig. 15. This test shows that:
(i) the RSSI values are closely tied to environmental conditions
(such as location of the sensors in the room, presence of people,
motion sensors), (ii) the RSSI values are independent of battery
charge-levels, (iii) the type of antenna considerably affects the
RSSI values. For a general assessment of the behaviour of RSSI
see [39].

The aim of the second test is to evaluate the boundary
accuracy of the localization system during a zone change. We
used the same network setting described above and we marked
an imaginary boundary between the two zones. We recorded
many RSSI values at various distances from the boundary
(−200, −150, −50, 0, 50, 100, 150 cm) by asking a person to
walk back and forth on an approximately straight line between
the two zones. We repeated the test 30 times.

The results are plotted in Fig. 16. The localization algorithm
can recognize the correct zone 90% of the time without further
filtering techniques.

5.1.2. Movement recognition evaluation
Tests on movement recognition were done with 20 people aged
between 21 and 55. We worked under realistic conditions, and
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FIGURE 16. Test 2: evaluation of the boundary accuracy of the
localization system.

TABLE 4. Confusion matrix.

a b c d e f g h i z

a 102 – – – – – – – – 7
b 6 83 – – – – – – – –
c – – 40 1 – – – – – –
d – – 1 38 3 – – – – –
e – – – 2 41 – – – – –
f – – – – – 82 – – – 2
g – – – – – – 53 – – 1
h – – – – – – – 74 – 3
i – – – – – – – – 16 4

(a) Walking, (b) staying, (c) lying, (d) sitting, (e) standing, (f) turning
right, (g) turning left, (h) turning back, (i) fall on a sit (z) others.
Column labels represents the ground truth.

we did our activity recognition at runtime. We used just a
single source of information—a single triaxial inertial sensor—
worn on the hip of the person. The algorithms used in SINDI
do not need to be trained. We show our test results of the
activity recognition algorithms with a confusion matrix (see
Table 4).

The activities we wish to recognize are walking, staying,
sitting, lying, standing, turning right, left, back and falling.
Every person was asked to do a specific set of activities in a
natural way to have at least two instances of every activity for
each person. Because of the difficulty of simulating falls with
real people we asked them to do a backward fall on a chair;
this test is not as accurate as we would like because it is not
a ‘real fall’, but we put it in the confusion matrix table for
completeness; we plan to repeat this experiment using a test
dummy. We achieved accuracy rates of 88–96% for walking,
and staying activities, of 95–98% for standing still, sitting, lying
activities, 97–98% for turnings and an accuracy of 67–70% for

TABLE 5. ASP reasoning performance (time is expressed in seconds).

Items State level Correlations Upper levels
(No.) (time) (No.) (time)

WSN/ASP vs. ASP

20 140.05 vs. 205.07 30 0.69
70 1.01

130 2.03
30 169.71 vs. 481.22 120 1.03
40 183.48 vs. 487.17 160 1.11
50 201.32 vs. 589.03 200 1.37
70 241.11 vs. 603.16 250 1.68

fall detections (fall on a chair), with an overall performance
of 88.5% . The test must be extended, especially for the fall
detection case, to a greater number of people, but considering
the context of use these results seem reasonable for movements
recognition in realistic conditions with inertial sensors.

5.2. Inference engine evaluation

In the first testing environment of our system we evaluated ASP
programs using Lparse as grounder and the Clasp solver [24, 40]
as inference engine.

The Clasp solver supports constraints, choice rules and
weight rules [41] and it can solve complex reasoning tasks
very efficiently due to the heuristics used, combining ASP
expressivity with boolean constraint solving.

In the testing phase of SINDI, we used Clasp both to generate
the backlog (a few months of data) and to test the global
performance of the system.

We did some tests on randomly generated instances with
20–70 correlation rules and 10–50 items, obtaining results
in 0.65–2.75 s, once state level data had been aggregated
and interpreted correctly. The worst cases were observed for
instances where the number of correlations was more than
six times the number of items. These results are due to the
high number of bidirectional correlations among items, derived
by the random generation of instances. According to geriatric
practitioners, similar cases are not common in real settings
and, except for those instances, the reasoning process scales
well. Times of execution in sample instances are summarized
in Table 5.

Context aggregation and interpretation at the state level
remains the harder task, since it requires to analysis of up to
24 h of data when reasoning about ADL dependency and risk
assessment is performed. In evaluating indicators, delegating
part of the aggregation process to the WSN nodes lowered
the computational time up to 60% for instances of medium
complexity (i.e. for a person who is active from 30% to 40% of
the time in a day).

These computational costs do not apply to situations in which
emergencies arise, since they are detected almost immediately
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by triggering events and managed by evaluating appropriate
integrity constraints.

6. CONCLUSIONS AND FUTURE WORK

The solution we propose for the delivery of clinical care is
based on state-of-the-art WSN technology that allows cheap
and constant monitoring of a patient, together with efficient
reasoning techniques aimed at preventing risky situations before
they arise.

The logical ASP approach is unobtrusive, modular,
declarative [42] and efficient. Nonintrusiveness is granted by the
fact that information about the user is extracted automatically
by the WSN of SINDI: no complex statistical information or
general medical knowledge is needed to determine the nature
of the emergency. Modularity is given by the default reasoning
and a declarative specification of the problem, while efficiency
relies on the quality of the ASP implementation.

The interaction of the whole system with the patient and the
caregivers is fully intuitive, since it is based on multimedia
contents and the patient is provided with a handheld device
that works like a TV remote.

SINDI’s reasoning process encodes both medical and com-
monsense knowledge. While commonsense rules are specified
by a knowledge engineer, medical knowledge stems from the
formalization of specific medical scales. We believe that the
declarative approach we propose could make it possible for clin-
icians to specify their own scales on the basis of the available
sensors. In this respect, we are investigating the specification
of a high-level language that makes it possible to specify addi-
tional medical scales in action description language fashion,
so that these specifications can be then automatically mapped
into a logic ASP program and used in the inference process.

A further issue is related to the outputs (in terms of evaluation
of risky situations) provided by the system. One of the
interesting aspects of using ASP semantics in this context is
that all possible correlations among factors of different levels
are considered equally important and valid. There are efficient
techniques to enforce priorities and ordering relations among
solutions of anASP program [43, 44], and it would be interesting
to investigate how to apply these techniques in healthcare
applications.

The graphical representation of dependencies and results of
the reasoning tasks at any timestamp suggest that automatic
methods can be applied to the analysis of the history of
inferences. We wish to investigate these issues to include them
in the following release of the system.

Preliminary tests showed that the system could be profitably
employed by home healthcare services supporting the delivery
of care. Nonetheless, we are aware of the fact that more detailed
and extensive experimental results are needed to evaluate the
effectiveness of this approach in different social contexts, and
to provide significant empirical data.
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