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ABSTRACT
The Covid-19 pandemic has placed epidemic modeling at the forefront of worldwide public policy
making. Nonetheless, modeling and forecasting the spread of COVID-19 remains an open problem.
Modeling this kind of complex systems requires the estimation of several parameters and domain as-
sumptions that can faithfully describe the analysis scenario and its dynamics. This task becomes even
more challenging for an air-borne disease when a fine grained simulation has to be combined with
a large-scale scenario as for Covid-19. In this paper, we modeled Covid-19 spreading in the most
populated region of Italy (Lombardy) with about 10 million people. In order to achieve this result we
propose a framework that implements: a scale-free modeling of the social contacts combining a so-
ciability rate, demographic information and geographical assumptions; a multi-agent system adopting
the actor model and using ActoDeS to efficiently implement 10 million concurrent agents exploiting
the High Performance Computing technology. Finally, we simulated the epidemic scenario from Jan-
uary to April 2020 and from August to December 2020, modeling the lockdown policies, to extract
valuable information about the transmission rate and probability of Covid-19.

1. Introduction
At the end of 2019, a novel coronavirus disease (COVID-

19) was declared as a major health hazard by World Health
Organization (WHO). This disease has grown rapidly inmany
countries, and the global number of COVID-19 cases has in-
creased at a rapid rate. Most governments all over the world
enacted severe measures in full emergency to limit the im-
pact of this new virus among their communities, in particular
lockdown rules and social distancing to reduce social con-
tacts. However, we have witnessed several outbreaks which
were difficult to manage and to accurately predict. Most of
the difficulties are related to the nature of the virus itself, for
example the existence of asymptomatic infectious patients,
several days of incubation before the emergence of symp-
toms, and a lack of knowledge about many aspects of SARS-
Cov-2 transmission and its dynamics. In light of this context,
the possibility of modeling complex and large scenarios to
simulate covid spreading becomes a key factor for preven-
tion, sustainability of public health services and policy mak-
ing. Different approaches can be considered to achieve this
result, depending on the desired granularity and the level
of details known a priori about the context. Covid-19 is an
air-borne disease whose transmission is facilitated by social
contacts in situations where physical distancing is difficult to
avoid, for example: job places, transportations, schools, con-
viviality, free time activities and family interactions. In this
research work, our desiderata is to simulate each single per-
son’s social behaviors, in a large community of about 10 mil-
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lion habitants (Lombardy region population in 2019), taking
also into account their province of residence. In order to
model this system we exploited Agent-Based Modeling and
Simulation techniques (ABMS). Each agent represents an in-
dividual who each day has a certain number of social interac-
tions depending on his own age, work and level of sociabil-
ity, that we introduced as an individual’s feature. We aimed
to model covid transmission with a fine-grained resolution,
also to simulate scenarios with and without social distancing
and lockdown policies. However, executing millions of con-
current agents could represent a bottleneck for ABMS. To
overcome this issue, we built an efficient framework that im-
plements the agents as distributed and concurrent actors who
share asynchronous messages to communicate and to orga-
nize their behaviors. Finally, we combined this software ar-
chitecture with the High Performance Computing facility of
the University of Parma to scale and distribute the computa-
tional workload on the available resources. Finally, we sim-
ulated the Covid-19 outbreaks in Lombardy from January to
April 2020 and from August to December 2020, namely the
first and second waves of coronavirus disease-19 outbreak.
The main contribution of this paper are: (a) a simulation
framework for fine-grained and large scale scenarios; (b) a
model for social interactions based on sociability rates, de-
mographic based with a power-law degree distribution; (c)
modeling for the lockdown policies and mask wearing ef-
fects; and (d) an estimation of the real impact of Covid-19
in Lombardy during that waves. The paper is organized as
follows: TO DO

2. Literature review
Differentmodeling techniques have been proposed tomod-

eling and solve real and complex epidemic scenarios. Two
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widely used techniques are system dynamics (SD) and agent
based modeling (ABM). System dynamics allows analyzing
the modeled system at a high level of abstraction where the
population is divided into compartments. A common case is
the SEIR model (Susceptible Exposed Infective Recovered)
[1], where the population can move from one compartment
to another according to predefined flow rates. However, the
traditional SEIR model is not fine-grained enough to model
lockdown policies as for the case of Covid-19 management
and control. This limit with the Covid-19 world pandemic
has motivated several research works that aim to extend that
model in order to allow more heterogeneity and flexibility
[2, 3, 4]. However the extensions do not address the main
key-issue that is related with the main parameter, the basic
reproduction number (R0) that is not policy-invariant. In-
deed, it depends on the number of contacts each person has
and the infection probability of the contacts. It is hard to
translate a real policy into the value of R0 it will induce [5].On the other hand, Agent-based approach models the be-
havior of each individual agent and the interaction between
agents. ABM can be used to study the system at different
levels of abstractions, ranging from high-level to low level
of abstraction that is close to the real world systems. For a
discussion about ABM and its advantages over system dy-
namics models, we refer the reader to [6] and [7].

Covid-19 spreading estimation is challenging and requires
to take into account heterogeneous interaction rates among
people. These requirements can be easily modeled using
ABMS. In [8] and [9] individuals are modeled as moving
particles. Covid-19 infections take place when two particles
come closer than a certain contact radius. Social distancing
for Covid-19 is modeled as changes in the contact radius or
momentum equation of the particles but introducing several
parameters that are difficult to estimate for large scenarios.
In [10], the authors model Covid-19 spreading by replacing
the moving particles with contact networks for households,
work and random contacts. An extension of this approach
is considered also in [11] to simulate the effect of the Ger-
man lockdown in November 2020. Moreover, the structure
of the contact network significantly affects the disease spread
as demonstrated also for the case of Covid-19 in [12]. Con-
tact networks are usually modeled with a power-law distri-
bution because the scale-free property ensure to have few
people who have contact with many different people while
most people interact with a smaller consistent set [13]. How-
ever, to the best of our knowledge we found a lack of models
to simulate the outbreaks and the lockdown policies with a
fine-grained detail in real large scenarios. Most of the ex-
amples in literature are suitable to model a limited number
of individuals to achieve statistics that enable to project the
results in the most general large case.

3. ActoDeS
ActoDeS is a software framework that has the goal of

both simplifying the development of concurrent and distributed
complex systems and guarantying an efficient execution of

applications [14]. In particular, an application is based on a
set of actors [15] that perform tasks concurrently and inter-
act with each other by exchanging asynchronous messages.
ActoDeS has a layered architecture composed of an applica-
tion and a runtime layer. The application layer provides the
software components that an application developer needs to
extend or directly use for implementing the specific actors
of an application. The runtime layer provides the software
components that implement the middleware infrastructures
to support the development of standalone and distributed ap-
plications. Depending on the complexity of the application
and on the availability of computing and communication re-
sources, one or more actor spaces can manage the actors of
the application. An actor space acts as “container” for a set
of actors and provides them the services necessary for their
execution. In particular, an actor space contains a set of ac-
tors (application actors) that perform the specific tasks of
the current application and two special actors called execu-
tor and service provider. The executor manages the concur-
rent execution of the actors of the actor space. The service
provider enables the actors of an application to perform new
kinds of action (e.g., to broadcast a message or to move from
an actor space to another one). Each actor has a system-wide
unique identifier called reference that allows it to be reached
in a location transparent way independently of the location of
the sender (i.e., their location can be the same or different).
Communication between actors is buffered: incoming mes-
sages are stored in a mailbox until the actor is ready to pro-
cess them; moreover, an actor can set a timeout for waiting
for a new message and then can execute some actions if the
timeout fires. After its creation, an actor can change several
times its behavior until it kills itself. Each behavior has the
main duty of processing a set of specific messages through a
set of message handlers called cases. Therefore, if an unex-
pected message arrives, then the actor mailbox maintains it
until a next behavior will be able to process it. ActoDeS has
been used for modeling and simulation [16] , for the devel-
opment of data analysis tools [17, 18] and their use for the
analysis of social networks data [19]

4. Simulator architecture
The number of people that live in Lombardy is about ten

millions, therefore a distributed architecture is necessary to
achieve the simulation with fine-grained behaviors and de-
tails. Due to the large amount of concurrent agents involved
in the simulation process, enough memory and processing
resources are unavailable on a single computational node.
For this reason, we have exploited ActoDeS to design and
efficiently implement a distributed epidemic simulator using
the actor model []. Every actor represents a generic person
with an age, a province of residence, and his own level of so-
ciability. Furthermore, each person has a stochastic behavior
depending on some other parameters that will be discussed
later [SECTION?]. The simulation process is divided into
several “epochs”, where every epoch represents a different
day. Moreover, people can change their behavior depend-
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ing on the current epoch (e.g., normal period or lockdown
period). At the end of every epoch, the simulator creates
a report file useful to resume the simulation process from a
specific point. Individuals are created and divided according
to two criteria:

a. Partitioning according to their belonging
province;

b. Splitting in equal size subsets, depending on the num-
ber of actorspaces involved in the simulation.

As a typical distributed framework, the simulator involves a
set of computational nodes whose execution is driven by a
set of schedulers and managers. In particular, each manager
has the duty of creating the subset of agents for its computa-
tional node and synchronize the execution of the simulation
with the execution of the other computational nodes. More-
over, one of such managers assumes the role of “master”,
who has the duties of partitioning the agents involved in the
simulation; it sends to the other managers the information
they need for creating the agents under their control.

ActoDeS uses passive and active actors to allow large-
scale development; this feature can be exploited to optimize
and improve the simulation process according to the best
suited algorithm for a particular situation.

The simulation process can be described by the follow-
ing steps:

1. Master manager creates the agents and sends informa-
tion for creating a subset of agents to each scheduler
(including itself).

2. Each manager creates all the actors of its subset.
3. Repeat until the end of the simulation:

a. Managers send a synchronization message to the
other managers and wait for the corresponding
messages from them.

b. Schedulers perform an execution step of all their
actors.

c. Scheduler send a "end step" message to all their
actors and managers.

In this architecture, every actorspace acts as a manager. The
last generated actorspace plays the master role.

ActoDeS provides a very simple scheduler called "Cy-
cleScheduler". This one can be used in a wide variety of
applications, more specifically, also in ABMS applications.
Furthermore, this schedulermanages the passive actors within
its actorspace and cyclically repeats the same actions until
the simulation ends:

1. Send a “step” message to all agents and increment
the “step” value; this operation triggers the transition
from one epoch to the next one.

2. Perform an execution step of all the agents.
In figure 1 there is a diagram that shows the simulator

architecture. In the diagram, the population is split in N
actorspaces; the last one acts as a master. However, every
actorspace coordinates and manages a subset of the popula-
tion. Every subset includes, generically, the agents that go

from (n − k) ⋅ p − 1 to (n − k + 1) ⋅ p − 1. Where n is the
number of partitions, k identifies the actual partition and p
represents the constant p = population

N .

Actor
Space

(manager)

Step

Actor
Space
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Step

Actor
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Step
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1 N - k N
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Messages Messages

Figure 1: Simulator architecture

4.1. Communication management
The agents need to exchange data and often such inter-

actions involve agents on remote nodes; therefore, the par-
tition of agents on several computational nodes may add a
significant communication cost. An important solution to
reduce the cost of communication is to reduce the frequency
of interactions, merging multiple interactions together. In
a conservative distributed simulation system, that synchro-
nizes the simulation step of all the computational nodes in-
volved in the simulation, a solution is to group all the mes-
sages directed to the agents of a specific computational node
into the message that identifies the subsequent synchroniza-
tion message.

5. Data collection
In this section we present all of the sources we used to

collect data for the simulation of the epidemic scenario in
Lombardy and to estimate some of the modeling parameters.

• We retrieved data about COVID-19 spreading in Lom-
bardy from the official institutions [20] and [21]. From
these sources we collected data about new daily cases
and deaths registered in the Lombardy region over time

• We used also demographic information about popula-
tion of Lombardy, including its number of inhabitants
and their age distribution [22], Table 2

• As a starting point for social interactionsmodeling, we
used data from the National Institute of Health [23]
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and [24]. These data reported in Table 1 have been
collected by the researchers in order to better under-
stand how respiratory infections might spread. They
recruited 7,290 people from eight European countries
(Belgium, Germany, Finland, Great Britain, Italy, Lux-
embourg, The Netherlands, and Poland) to participate
in their study. They asked the participants to fill out a
diary that documented their physical and nonphysical
contacts for a single day. Physical contacts included
interactions such as a kiss or a handshake. Nonphysi-
cal contacts were situations such as a two-way conver-
sation without skin-to-skin contact. Participants de-
tailed the location and duration of each contact.

• To model Covid-19 compartments we use preelimi-
nary data collected by [25], [26] and the age suscepti-
bility to COVID-19 virus [23]

• Themodeling of the Italian lockdown required various
information about the set of “essential workers” [27].
Moreover, we collected data indicating what percent-
age of the population used protective devices [28] and
their effectiveness [29]

• To have a comparison, in order to prove our results, we
finally used the results of the seroprevalence survey
conducted during the same period in Lombardy.

.
Age Total Home School Work Transport Free time Other activities
0-4 16.54 4.49 5.27 0 0.98 3.06 2.75
5-9 20.49 4.61 8.87 0 1.12 4.53 1.37
10-14 27.38 4.43 11.98 0.2 1.35 5.62 3.8
15-19 29.28 4.59 13.22 0.05 1.74 6.83 2.87
20-24 22.15 3.51 1.17 4.49 0.96 7.23 4.8
25-29 21 3.47 2.23 5.21 1.13 6.3 2.66
30-34 18.03 3.55 0.85 3.92 0.76 5.24 3.72
35-39 21.25 4.38 0.68 7.78 1.05 3.92 3.45
40-44 22.35 3.88 2.53 7 0.67 4.48 3.79
45-49 19.27 2.99 2.61 8.24 0.88 1.93 2.64
50-54 22.3 2.75 5.54 8.05 0.52 2.02 3.41
55-59 18.27 2.88 1.41 4.6 0.68 3.62 5.06
60-64 18.43 3.28 1.07 6.05 0.87 3.53 3.63
65-69 12.74 3.1 0.55 0.48 0.95 3.33 4.33
70+ 10.55 3.24 0.06 1.04 0.22 4.22 1.77

Table 1: Average number of interactions by age from [24]

Age Male Female Total
%

0-4 205.299 194.557 399.856 4,0%
5-9 239.046 224.761 463.807 4,6%
10-14 254.391 238.914 493.305 4,9%
15-19 247.380 230.340 477.720 4,7%
20-24 253.912 229.596 483.508 4,8%
25-29 262.010 250.130 512.140 5,1%
30-34 282.410 275.681 558.091 5,5%
35-39 313.625 306.736 620.361 6,1%
40-44 369.540 359.909 729.449 7,2%
45-49 420.573 409.422 829.995 8,2%
50-54 425.683 420.177 845.860 8,4%

Age Male Female Total
%

55-59 374.754 381.832 756.586 7,5%
60-64 305.783 324.981 630.764 6,2%
65-69 269.084 295.617 564.701 5,6%
70-74 256.056 292.193 548.249 5,4%
75-79 200.480 250.519 450.999 4,5%
80-84 157.532 222.870 380.402 3,8%
85-89 80.444 149.594 230.038 2,3%
90-94 26.783 73.420 100.203 1,0%
95-99 4.737 20.880 25.617 0,3%
100+ 248 2.070 2.318 0,0%
Totale 4.949.770 5.154.199 10.103.969 100,0%

Table 2: Age distribution of the Lombardy population [22]

6. Social interactions modeling
Modeling physical contacts among people is crucial to

simulate an air-borne disease transmission like Covid-19.

However, this is still an open problem, when fine-grained
details are necessary for the simulation. To tackle this kind
of problems, we propose a model of social interactions based
on the real daily contacts from [24], that is enriched with a
sociability rate that divides people with an high, medium and
low level of sociability. These factors are designed in order
to increase or decrease the average number of daily contacts
of people based on their age. To define these parameters we
retrieve a common hypothesis in network science that as-
serts that social networks have commonly a power-law dis-
tribution with an exponent between 2 and 3, also known as
the scale-free property [30]. Moreover, the entire population
is partitioned in 12 groups, accounting for the provinces of
Lombardy. This subdivision ensures that the interactions are
not purely casual. Indeed, a generic personmeets most of his
contacts in his own belonging province. Only a small frac-
tion of interactions will occur with people belonging to an-
other province. The Italian demographic structure and the
heterogeneity of social contacts, at different ages, is also
taken into account, to estimate the correct average number
of interactions that a person should have, daily (See Table
1). More specifically, every agent is charachterized by the
following attributes:

– Identification number
– Belonging province
– Age
– Social interaction ratio
– Number of contacts
– Current infection phase
– If he/she will use a protective device during the lock-

down
– If he/she is an essential worker during the lockdown

Some of these parameters will be further explained in the
following sections.
6.1. Habitual contacts’ modeling

In the first simulation week, a set of contacts is created
for each person. This set will represent, for the entire sim-
ulation period, the habitual contacts’ set. More specifically,
this set contains all those people that a generic person usually
meets during his typical day. For example: family members,
friend, co-workers, etc.

It has been assumed that an agent can meet a certain
number of people who belong to this set and a certain people
number who don’t belong to it. Moreover, it is inferred from
table 1, that 65% of the daily meeting of a generic agent is
generated by its habitual contacts’ set, while the remaining
35% is made up by new contacts. The formula used to find
this percentages is:

K
∑

i=0

Home[i]+Scℎool[i]+W ork[i]
T otal[i]

K
(1)

The values of i in the above formula represent the age
groups which are in table 1.
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6.2. Sociability rate estimation
The social network generated by the interactions can be

theoretically mapped and measured using network science
techniques. We assume that a generic agent represents a
node in the social graph and the outgoing and incoming edges,
from this node, represent respectively: the contacts met by
the node and the contacts that meeting the node.

The social interactions’ distribution is a determining fac-
tor for studying the epidemic spread. For this reason, various
hypothesis have been evaluated, but in the end we decided to
focus our studies on a power law distribution type. A power
law model fits very well with many real-word use cases and
can be used to represent a social interaction model.

In a typical modern society there are different aggrega-
tion places: offices, schools, parks, provinces, etc. These
situations give place to a particular category called hub. A
hub is a special node that has a greater interaction degree
than the others. In a typical power law distribution, nodes
with relatively high degree are more likely to form. This last
assumption makes the power law suitable for shaping our
social network.

To estimate the sociability rate, the attention is focused
on the degree graph distribution, generated by the social in-
teractions. The degree of a node is the number of edges con-
nected to the node. The distribution degree is a function so
defined: pk ∶ ℕ → [0, 1], which associates a degree k with
the probability that a node has that degree:

pk =
Nk
N

(2)
whereN is the number of total nodes andNk is the number
of nodes that have that k degree.

We have aimed at achieving a power law scale-free dis-
tribution [30], because it is characterized by the presence of
many hub nodes that create, in their representation graph,
a "long tail". A "scale-free" distribution does not change its
shape if scaled in dimension. To analyze the distribution, we
have referred to the state of the art of curve fitting [31], using
the Likelihood ratio test and Kolmgorov-Smirnov distance
to to determine which probability distribution is compati-
ble with our data looking for a power law distribution. We
have exploited the Complementary cumulative density func-
tion (CCDF), because CCDFs are frequently preferred for
visualizing a heavy-tailed distribution. A CCDF measures
the probability that a certain value has its degree greater than
a reference variable x, equation 3

pk =
∞
∑

q=k+1
pq (3)

If pk follows a power law trend, then the cumulative distri-
bution scales following the law:

pk ∼ K−
+1 (4)
People are modeled according to their own social inter-

action degree, which can be different from the others. They
can be identified according to their Sociability rate, that can

have four different values: high, medium, low e quarantine.
Furthermore, according to this ratio, an agent can meet more
or less people in a single simulation day. The interactions oc-
cur randomly, generating an interaction graph. People with a
high degree meet an above average number of people, those
with medium degree meet exactly the average number, and
people with a low degree meet a lower than average num-
ber of people. The population is made up of 20% of agents
with an high andmedium degree and the remaining 80%with
a low degree. To achieve this distribution, we have intro-
duced three different social interaction multipliers that scale
the number of people to meet in a generic simulation day.
People withmedium degreemeet exactly the average number
of people specified in Table 1, so this particular multiplier
is equal to one. To estimate the remaining multipliers we
have performed a grid-search over the parameters looking
for the optimal combination that returns a power-law distri-
bution with a scale-free property ??. Low and high param-
eters range respectively between 0.1-0.9 and 1.1 to 1.9. The
particular case of quarantine will be further detailed later.

We have analyzed the CCDFs obtained with each config-
uration of the grid-search. In Figure 2, we report some of the
results with a comparison with the power-law distribution.

In order to choose the optimal configuration, we have
analyzed three different parameters:

– Likelihood: The result of the likelihood-ratio test. This
tool enables to compare two candidate distributions
with the empirical data. The result is positive if the
data are more similar to the first distribution and is
negative if the data are more similar to the second one.
The robustness of this test is also evaluated against the
null hypothesis measuring the P-value.

– KS test: It is the Kolmogorov-Smirnov distance. This
tool tests the distance between a single candidate with
the empirical data. In our case it is used to compare a
sample with our reference distribution, that is a power
law.

Table 3 shows the results obtained according to the used
multipliers.

Hence, in light of the results in Table 3, we have decided
to use the configuration 0.2 - 1 - 1.8. This set of multipliers is
suitable because it returns the highest likelihood ratio value
and in particular a power-law exponent � equal to 2.64, with
an xmin equal to 4. A distribution is scale-free if � < 3.

7. Modeling methodology
In this section, we present the details about the epidemic

diffusion model used for the simulations, the main hypothe-
sis we adopted to model the Covid-19, and the methodology
we propose to model the lockdown phase and the wearing of
protective masks among the population.
7.1. Epidemic diffusion model

We have implemented a Covid-19 diffusion model start-
ing from the compartments of the mathematical model SEIR
(Susceptible-Exposed-Infective-Recovered)[1]. This model
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Figure 2: Complementary comulative density function according to interaction multipliers
- Red line (PowerLaw Fit) , Blue line (Empirical Data)

Multiplier Likelihood P-value KS test
Low Medium High 1° Distributon

Powerlaw
2° Distribution
Lognormal

0.1 1 1.9 1.99 ≃ 0 0.11
0.2 1 1.8 364 ≃ 0 0.21
0.3 1 1.7 -1.46 0.145 0.116
0.4 1 1.6 -150 ≃ 0 0.122
0.5 1 1.5 -403 ≃ 0 0.093
0.6 1 1.4 -465 ≃ 0 0.113
0.7 1 1.3 -205 ≃ 0 0.12
0.8 1 1.2 -301 ≃ 0 0.09
0.9 1 1.1 -803 ≃ 0 0.127

Table 3: Grid-search results of the sociability rates considering the most promising distribution candidates

represents one of themost widely adoptedmathematicalmod-
els to characterize epidemic dynamics and to predict possi-
ble contagion scenarios. It is based on a series of dynamic
ordinary differential equations that consider the amount of
the population subject to contagion, the trend over time of
individuals who recover after infection, and the individuals
who unfortunately die. However, a limit of the SEIR model

is its coarse grain nature with respect to individuals behav-
iors. In light of this, we have used the same compartments
provided by SEIR, adding an intermediate one specifically
for the Covid-19 context between Infective and Recovered,
named Positive. This additional compartments is required to
distinguish people who are officially recognized as positive
to the virus using throat swabs in the real data. Moreover,
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this distinction has an impact on the behavior definition: it
is supposed that a generic positive will be quarantined, to
prevent the infection spread, while an infected patient can
theoretically be asymptomatic and unaware of his condition,
leading a normal life with a normal number of social inter-
actions. Finally, this difference between Infected and Pos-
itive is fundamental to analyze the epidemic dynamics, es-
pecially during the first wave, when the possibility of test-
ing large amount of people was limited. This has probably
introduced significant estimation errors in the official data,
about the real number of infected people. Since our work
is agent-based, we have not used the differential equations
model but we have defined the individual behaviors of the
actors. To describe the pathogen spread dynamics, we have
assumed that a generic person can transition through vari-
ous phases when he/she contracts the disease. Such phases
represent the virus life cycle inside the human body. At the
beginning, all persons are in a susceptibility stage. In this
stage, every person can be infected by another one, who is
contagious. A person who is infected, moves from a sus-
ceptibility phase to an incubation phase and remains in this
stage for a certain time period and then moves into an infec-
tion stage. A person in this condition can infect other people.
When this phase ends, the person becomes positive. After
a certain time amount, a positive can heal or die. There is
no death probability, but deaths follow the real death curve
trend, in Lombardy. When a person heals, he/she cannot be
infected any more. In particular, the incubation phase lasts
from 7 to 14 days, that infectious one from 3 to 7 days, and
the positive one from 14 to 30 [25] [26]. In Figure 3 there is
a diagram that represents a generic infection cycle.

Moreover, people susceptibility is different according to
their age [23], as shown in Table 4.

Age Susceptibility
0-14 31%
15-64 47%
65+ 100%

Table 4: Susceptibility by age

7.2. Lockdown modeling
On 8 March 2020, the Italian government decided to ap-

ply some containment measures to the whole national ter-
ritory to stop the COVID-19 spread. We will refer to this
condition as the “Lockdown”. Additionally, these measures
included:

– non-essential activities closure,
– crowd prohibition,
– travel prohibition, if not justified by proven needs.
In this phase there was a significant decrease in the over-

all social interactions. For most people, the reduction was
homogeneous, because they could meet only family mem-
bers or cohabitants, except for the few times they need to
buy groceries. To model the lockdown condition, we have
exploited the information shown in Table 1. We compute the
average number of interactions allowed for each age range
using formula 5, assuming that these interactions are habit-
ual contacts.

Home[age]
T otal[age]

⋅ 100 (5)

However, a small percentage of people in working age
were still allowed to go to their job place because of the es-
sential nature of their job 5. Those essential workers experi-
enced a different decrease in interactions. Indeed, to model
this different condition we compute a different average num-
ber of interactions for the essential workers that takes into
account the possibility of meeting people at home, at work
and on public transports. This hypothesis collapses into for-
mula 6, where the fields always refer to Table 1:

Home[age] +W ork[age] + T ransports[age]
T otal[age]

⋅100 (6)
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Age Essential activities
20-29 14.6 %
30-39 25.4 %
40-49 28.7 %
50-59 22.7 %
60+ 8.5 %

Table 5: Percentage of the Italian population divided by age,
that was allowed to work in presence during the lockdown
phase because of the essential nature of their job [27]

7.3. Protective devices
With the Lockdown, people started to wear protective

devices (e.g., surgical masks). According to the study of
[28], about 83.81% of Italian population used a protective
mask during the Lockdown period, with a 2.23% approxi-
mation error. When the simulation starts, it is defined which
people will use a mask during the Lockdown and which ones
not. The masks’ effectiveness is based on the study per-
formed by [29]. Three different masks types were consid-
ered: cloth ones, surgical ones, and N95 ones. A mask’s
inward efficiency could range from 20 to 80% for a cloth
one, 70-90% for a typical surgical mask and >95% for a N95
masks. Moreover, outward efficiency could range from 0 to
80% for cloth mask, while surgical masks and N95 ones are
likely 50-90% and 70-100% outwardly protective, respec-
tively. The effectiveness of a generic mask is gotten from
the average effectiveness of the three previous types. The
effectiveness reduces the virus transmission probability and
protects inwardly from 62 to 90% and outwardly from 40 to
90%
7.4. Covid-19 transmission probability and

contagion modeling
The transmission probability, in this model, shows what

is the probability to be in a condition that support the virus
spread. In theory what has been asserted is that the spread-
ing is favored when people are in a closed place, slightly
ventilated and less than onemeter away from an infected per-
son for more than 15 minutes. Modeling this situation is not
trivial, thus we decided to model the contagion with a trans-
mission probability that is related and specific for the virus,
namedCovid-19 Transmission Probability (CTV). This choice
is common in several modeling approaches, however cur-
rently in literature there are no referral to this parameter.In
light of this, we decided to estimate this parameter empir-
ically with a data-driven approach, that will be further de-
scribed in section 8.2. The contagion mechanism is stochas-
tic and is based on all of the probabilities mentioned in sec-
tion 7. Each actor is described by a transmission probability
(TP) that represents the ability of transmit his state to an-
other actor. Practically, the only actors that can transfer their
state are the one that are in the infectious and positive stages
. This probability is described in Figure 4 where the gen-
eral transmission probability of Covid-19 and the outward
mask protection probability of the actor (Poutward) is consid-ered. The Contagion probability (CP) for a susceptible actor

Awhomeets an infectious actor B is presented also in Figure
4, where: TPA is the transmission probability of actor A and
Pinward is the inward mask protection probability of actor A.
Finally the contagion happens by randomly sampling from a
uniform distribution considering the Contagion probability
and the susceptibility of actor A.

Actor B - InfectiousActor A - Susceptible

CP = TPB
  (1 - Pinward A )

TPA
  = CTV  (1- Poutward A ) TPB

  = CTV  (1- Poutward B )

Figure 4: Covid-19 transmission

8. Experimentation for the Lombardy region
In order to evaluate our simulator and the social inter-

actions model, we considered as use-case the Covid-19 out-
breaks in Lombardy (Italy) during 2020. In particular, we
are mainly interested into modeling the first wave from Jan-
uary to April 2020. Secondary, the second wave between
August andDecember has been taken in consideration to val-
idate the model and its parameters.

8.1. Initial conditions
When the simulation starts, every agent are born in the

susceptibility stage. However, this way no one can start an
hypothetical contagion. Thus, at the beginning of the sim-
ulation, more specifically when the population is created,
some actors are randomly chosen and start directly from the
incubation phase. Moreover, these people are selected in
such a way to respect the real positives’ number between 20
and 29 February in Lombardy on a provincial basis. The
data used are shown in Table 6.

Date Positive people by province
BG BS CO CR LC LO MN MI MB SO PA VA

2020-02-20 1 0 0 0 0 2 0 0 0 0 0 0
2020-02-21 1 0 0 3 0 24 0 1 1 0 1 0
2020-02-22 3 0 0 9 0 19 0 0 0 0 1 0
2020-02-23 3 1 0 18 0 13 0 1 2 1 8 0
2020-02-24 10 2 0 25 1 10 1 6 1 0 5 0
2020-02-25 23 5 1 21 1 26 0 7 0 2 5 2
2020-02-26 36 11 0 26 0 17 0 7 1 0 16 1
2020-02-27 43 11 1 30 1 32 0 11 1 0 17 1
2020-02-28 76 25 0 36 1 37 3 10 2 0 12 1
2020-02-29 75 32 2 20 1 78 6 14 3 0 13 1

Table 6: Positive people between 20 and 29 February in
Lombardy
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Figure 5: Positive people on 8 March with different transmission rates

8.2. Covid-19 Transmission Probability estimation
We estimated this probability with a random search over

the probability space with a data-driven procedure. We es-
timated this value in two different scenario. The first one,
considering the early stage of the pandemic in the period
before the national lockdown and when people were not us-
ing protective devices. In particular, we considered a key
date, the 8th March, that represents the last day before the
lockdown. The transmission probability parameter is a pos-
itive real number that ranges between 0 and 1. Our goal was
to find a value that in the simulation without lockdown and
without the usage of protective device could return a positive
people number close to that identified in real data until the
8th March 2020. The value satisfying these hypotheses in
the first scenario is: 0.3. The simulation result is a random
process, therefore an average of five tests were made for ev-
ery single tested value. A summary histogram is shown in
figure 5.

On the other hand, the second scenario we took into ac-
count is the second outbreak occurred after the summer (sec-
ondwave) that is deeply analyzed in section 9.2 in the results.
This second estimation was necessary because real-data in
that period are more robust and significant due to the higher
number of Covid-19 tests performed each day in Italy among
people.

9. Results and discussion
In this section we present the results we obtained simu-

lating different scenario and considering each time an aver-
age of 10 different runs since the entire simulation process
is stochastic in most of its steps. For each case we mea-
sured the simulation goodness using the Pearson correlation
and the Root-mean-square error(RMSE) between simulation
data and real data from the Italian government [21]. The Per-
son correlation express any linear relationship between two
statistical variables. This value ranges from−1 to 1, where 1

corresponds to a strong linear correlation, 0 corresponds to
the absence of a correlation and −1 corresponds to a nega-
tive linear correlation. In our case, this particular correlation
will explain how much the simulated contagion curve has a
similar trend to the real one, see equation 7.

r =
∑

(

x − mx
) (

y − my
)

√

∑
(

x − mx
)2∑(

y − my
)2

(7)

where mx is the vector x mean value and my is the vector ymean value. The Root-mean-square error instead, shows the
difference between the predicted values and those observed
in the real data, Equation 8

√

√

√

√

1
n

n
∑

i=1

(

fi − oi
)2 (8)

where n is the samples number, f are the predictions and o
are the observed real data. Figure 6 shows the results about
the simulation of the early-stage of the pandemic between
January andApril 2020with the Covid-10 Transmission prob-
ability (CTP) equal to 0.3. The blue curve represent the real
contagion data, while the read one represents the simulated
ones. Table 7 show the values regarding the Person corre-
lation and the RMSE. We analazyed the Pearson correlation
and the RMSE until April 30th. The number of positives
obtained, in Figure 6, thanks to the use of the simulator, ex-
ceeds by about 53,000 units the number of real positives on
that date.

Pearson correlation Root Mean Squared Error
0.992 38818

Table 7: Pearson correlation and RMSE referred to Figure 6

9.1. Comparison with national screening activities
The result previously obtained would support the thesis

and the hypothesis. However, the comparison with the sero-
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Figure 6: Simulation results with real data with starting assumptions (CTP=0.3) - Incre-
mental positives representation

logical investigations made by ISTAT [32] revealed a differ-
ent scenario. The study about the seroprevalence showed
that, on July 15, the real cases number in Lombardy was
about eight time greater than the data reported from Covid-
19 tests, more specifically 7.92 times greater. This study,
through the national screening campaign, showed that about
the 7.5% of the Lombard population had developed antibod-
ies for the novel Corona virus. The Lombardy’s population
is made up of about 10.060.000 people. The 7.5% of the
population is therefore equivalent to about 754.500. On the
other hand, the positive people number identified by throat
swab on July 15 was only 95.236. Hence, the numerical ratio
is obtained by doing:

754.500
95.236

= 7.92 (9)
This means that, most likely, the data gathered in the spring
were underestimated. Assuming that this ratio is constant
over time, we can retro-project this data and observe how
many positive people can be obtained. The resulting value
can be used as a comparison for the model.
9.2. Second wave: parameters fine tuning

Thanks to the lockdown period, in March and April, the
contagion curve has slowly decreased. The curve lowering
led to a grip loosening of the restrictive measures on the
population. The second wave of contagions produced new
epidemiological data that can be analyzed to improve the
model proposed in this paper. We have already highlighted
that, most likely, the data gathered in the first epidemic wave
were inaccurate, because the country found itself in a situ-
ation that it was not able to deal with. Moreover, there was

not any working contagion tracking system and not even the
number of throat swab to carry out a correct infections track-
ing. Instead, when the second wave hit Italy, there were the
necessary tools to be able to face and analyze the epidemio-
logical data in a more correct way.

A first approach was to use the model previously ob-
tained and validate, to verify if the simulated data followed
the real data in a suitable way. The used time window cov-
ered a temporal period from 15 September 2020 to 30 Octo-
ber 2020. Obviously, the initial conditions have been changed
to make the simulator compatible with the autumn data, ta-
ble 8.

Date Positive people by province
BG BS CO CR LC LO MN MI MB SO PA VA

2020-09-15 25 28 11 9 0 1 5 89 34 0 11 0
2020-09-16 0 37 0 7 0 8 2 80 21 0 12 27
2020-09-17 44 36 0 0 28 0 32 144 0 0 10 14
2020-09-18 28 36 0 18 0 0 29 185 56 0 6 21
2020-09-19 0 28 44 0 0 0 7 86 0 8 0 0
2020-09-20 20 14 0 11 0 0 0 47 40 0 2 12
2020-09-21 0 30 0 4 17 9 8 100 25 0 24 0
2020-09-22 21 24 16 7 3 5 13 88 14 5 16 53
2020-09-23 11 17 7 7 0 4 0 91 0 0 14 26
2020-09-24 15 41 6 4 12 3 28 78 53 0 21 23

Table 8: Positive people between 15 and 24 September in
Lombardy

The values obtained greatly underestimated the real data.
In Figure 7 is possible to observe a comparison between the
two curves: simulated data (red one) and real data (blue one).
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Figure 7: Simulation results with real data with starting assumptions (CTP=0.3) - Autumn
case - Incremental positives representation

Pearson correlation Root Mean Squared Error
0.988 27145

Table 9: Pearson correlation and RMSE referred to Figure 7

Due to the estimate imprecision, we decided to estimate
again the transmission probability parameter, using the au-
tumn data. We searched for a value that correctly followed
the contagion curve in the previously specified time period.
The best value that satisfied our hypothesis was: 0.53. See
Figure 8

Pearson correlation Root Mean Squared Error
0.996 6405

Table 10: Pearson correlation and RMSE referred to Figure
8

9.3. Final Projections
In the light of the considerations and the results in the

previous section, we decided to simulate the spring case again
with the new transmission probability value. Moreover, we
considered also the data obtained from the comparison with
the national screening activity. The whole process is repre-
sented graphically in figure 9. The blue curve represents the
real data, the green one represent the serological data pro-
jection on the real data and the red one represents the simu-
lated data with transmission probability equal to 0.53. The
second estimation of the Covid-19 Transmission Probabil-
ity using the autumn data is confirmed as a better choice to
validate our model. Indeed, the results we obtained simulat-
ing the early-stage are in line with the scientific observations

based on the seroprevalence study. The difference with the
serological data projection on 30Th April, that corresponds
to the last simulation day , is only 83.369 units. Seropreva-
lence analysis is much more reliable than the data collected
during the months of March and April, because it also takes
into account the asymptomatic people, a very crucial factor.
We believe that the data accordance confirms the validity of
our hypothesis and of the simulation model.
9.4. Social interactions changes due to the

Lockdown
As reported, modeling the lockdown phase involves a

general reduction of social interactions although some peo-
ple were allowed towork because essential workers. We ana-
lyzed the dynamic changes of social contacts during the lock-
down, in particular we analyzed the likelihood ratio of the
degree distribution in different time snapshots to understand
what kind of distribution could better describe this condi-
tion. In particular, we considered two candidate distribu-
tions pairs: power-law and log-normal, log-normal and ex-
ponential, table 12. In figure 10 it is possible to observe the
CCDF’s trends during the lockdown. Observing the results
it is possible to infer that, during the lockdown period, the
social interactions distribution follows mostly a log-normal
trend. (SE MARIO IPOTIZZA ALTRI COMMENTI IN
MERITO SONO I BENVENUTI)

10. Conclusions
In this paper we presented a framework that aims to com-

bine large-scale epidemic scenario with a fine-grained level
of simulation. This result is achieved by exploiting an effi-
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Figure 8: Simulation results with real data with transmission probability equal to 0.53 -
Autumn case - Incremental positives representation
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Figure 9: Simulation results with real data with transmission probability equal to 0.53 -
Spring case - Incremental positives representation

cient multi-agent systems approach combined with the HPC
facility. Moreover, we analyzed as use case the outbreaks of
Covid-19 in Lombardy (Italy) during 2020. We propose also
a modeling for Covid-19 that involves demographic data,
lockdown policies, protective devices and a social interac-
tions network modeling. We validated our simulation archi-
tecture using real-data andmaking comparisonwith themost

recent results of the seroprevalence study in Italy. Finally we
contribute to estimate a transmission probability for Covid-
19 that can be useful for future works in this field. The re-
sults prove the goodness of our model that is able to predict
a number of infectious people that is close to the projection
of the seroprevalence among the inhabitants of Lombardy.
Moreover they confirm that our fine-grained simulation and
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Data 1 - Data 2 Pearson correlation Root Mean Squared Error
Simulated data - Real Data 0.996 249529

Simulated data - Serological data projection 0.996 56009
Table 11: Pearson correlation and RMSE referred to Figure 9

Epoch Likelihood
#1 P-value

Likelihood
#2 P-value

1° Distribution
Power-law

2° Distribution
Log-normal

1° Distribution
Log-normal

2° Distribution
Exponential

40 -340 ≃ 0 2114 ≃ 0
61 -267 ≃ 0 337 ≃ 0
92 -360 ≃ 0 349 ≃ 0

Table 12: Social interactions distribution analysis during the lockdown period

hypothesis could be used in real context to simulate epidemic
scenario and to support decision about lockdown policies.
Finally, as expected, our results are in line with the diffused
hypothesis that during Spring 2020 the number of real cases
in North of Italy were probably underestimated due to the
difficulties into performing massive tests and the presence of
asymptomatic patients. Future works are related to improve-
ments of this model considering different scenario, scaling
to larger scenarios and fine-tuning for the social modeling
when more results will be available.
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