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Abstract. Computational Fluid Dynamics (CFD) consists of numeri-
cally solving the fluid dynamics equations and has become a major tool
in designing and evaluating any physical structures, like airplane, rotors,
or even nuclear plants, where the flow of a fluid can be a critical effi-
ciency or security aspect of these structures. Our first contribution is a
brief review of the core characteristics a CFD solver should have (based
on two common functionalities they usually provide) and the state of
the art of CFD tools. Indeed, research on this field principally focuses
on specific numerical or computation methods, software architecture is
rarely discussed. Moreover, to the best of our knowledge, all CFD tools
have major structural flaws that limit their capacities to integrate new
methods and take advantage of new hardware. Our second contribution
is a new approach that aims to solve these flaws. We exploit formal meth-
ods (namely, order-sorted algebra and Delta-Oriented Programming) to
build a flexible CFD framework in which new methods can be added
as modules. By exploiting dataflow automatic generation, our approach
adds no runtime overhead. We implemented our approach and tested it
on a simple example.

1 Introduction

Over the past 30 years, aerodynamic numerical simulation tools (also called
CFD tools) [41, 28, 48, 8] has been largely used and become essential for the de-
velopment, sizing and maintenance of products manufactured in the aeronautics
sector, like airplanes, turbines, etc. These tools calculate the flow properties and
the mechanical stress (like a wind shock, a drag or a lift) applied on the manu-
factured products, and this information is used by the designers of the different
products to guide them in their tasks (e.g., development, sizing or maintenance).
Aerodynamics is described by the Navier-Stokes (NS) equations [12] which have
no known analytic solution [38], and so, CFD tools are structured around two

⋆ The authors of this paper are listed in alphabetical order. This work was partially
supported by the SONICE project, granted by the French Directorate General for
Civil Aviation (DGAC).



approximations: first, they use equations that approximate NS; second, they use
physical configurations that approximate the volume in which the fluid flows.
Many equations and many meshes have been designed over the years, each of
them having a specific usage: some are more suited to some specific physical con-
ditions (e.g., supersonic speed), some trade-off precision for efficiency. But even
for very efficient equations and meshes, on realistic usecases these computations
are very memory and computation intensive and require massive and efficient
hardware.

Consequently, CFD tools face two design challenges that seem in opposition.
On one hand, they must be flexible enough to support a large catalogue of NS ap-
proximations and meshes, so they can be used to analyse different manufactured
products. Moreover, since the research on NS approximation and on meshes is
very active, the CFD tools must regularly be updated to integrate these new re-
sults, which also requires flexibility. On the other hand, these tools must be very
specific and close to the hardware in order to be as efficient as possible: a simple
cache-miss in a loop could have desastrous effect on the computation time and
make the tool useless in practice. Moreover, heterogeneous computations (i.e.,
distributing the computation on different kind of computation units, like CPU
and GPU) must also be fine-tuned, to avoid costly transfert of control and data
between the different computation units. Finally, even though CFD tools must
be fine-tuned to take as much advantage of the hardware as possible, the work-
stations on which these tools run are all different and in constant evolution, with
the rise of new hardware technologies (GPU, TPU, VE [19], etc).

In this paper, on the occasion of Reiner Hähnle’s 60th birthday, we present
our ongoing research on an approach for solving the apparent incompatibility
between the requirements of flexibility and fine-tuning of a CFD tool. This ap-
proach is based on Delta-oriented Programming [53, 26, 14, 15] and on an ad-hoc
code generation to enable flexibility and fine-tuning, respectively. Reiner Hähnle,
as part his academic work, provided outstanding contributions in the develop-
ment of formal methods and tools for supporting rigorous software engineering
approaches – see, e.g., the KeY tool [2] and the ABS modelling language [24]. No-
tably, his research has always looked at practical applications – see, e.g., the EU
FP7 project HATS (Highly Adaptable and Trustworthy Software using Formal
Models) [22], the EU FP7 coordinating action Eternals (Trustworthy Eternal
Systems via Evolving Software, Data and Knowledge) [23], the EU FP7 project
Envisage (Engineering Virtualized Services) [25], and the DB Netz AG project
FormbaR (Formal modelling and analysis of Railroad operations) [33]. We there-
fore believe that the research activity reported in this work fully falls in Reiner
Hahnle’s research interests.

Outline. Section 2 briefly outlines Computational Fluid Dynamics (CFD) and
its challenges. Section 3 describes the characteristics of the current approaches,
focusing in particular on the elsA tool [8]. Section 4 introduces our approach, and
Sections 5 and 6 focus on the data model and the variable operators aspects of
the approach, respectively. Section 7 present our initial results. Finally, Section 8
concludes the paper and provides and outlook on future work.
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2 Computational Fluid Dynamics Challenges

This Section presents the different characteristics required of a CFD tool, and
the challenges in implementing them. We structure this Section in two parts:
first, we discuss the functional characteristics of such a tool, i.e., what are the
functionalities expected by the user; second, we discuss its computational char-
acteristics, i.e., how to perform the actual computation on a given hardware.

2.1 Functional Characteristics

Equilibrium State Computation. The main functionality of a CFD tool consists of
computing an equilibrium state [50] of a given physical configuration [52, 51]. This
state usually consists of the temperature, the velocity and the pressure of the
fluid, at every point of the volume considered in the given physical configuration.

Consider for instance the configuration depicted in Figure 1. This configu-

      zone 3  zone 1 zone 2

Legend

: wall

: zone

: input flow

: output flow

: connexion

Fig. 1: CFD Physical Configuration Example

ration corresponds to a simple 2D tube: the space where the fluid can flow is
modelled by the three connected zones zone 1, zone 2 and zone 3 bounded by
walls on the top and on the bottom, with an input gas flow on the left and a
possible exit flow on the right. Depending on the fluid property, the input and
output flow conditions, the friction on the walls, the computation could return
an equilibrium state that can greatly vary.

The principle of the equilibrium computation is quite simple: the different
zones in the configuration are implemented with meshes storing default values
(2D meshes in our example in Figure 1), and the constraints given by the differ-
ent boundary conditions (BC) in the configuration (the input flows, the output
flows and the wall in our example) are iteratively propagated in the meshes,
thus changing the stored values until the value modifications derived from these
constraints are negligible.

Numerical Optimization. Another essential functionality integrated in most CFD
tool is called Numerical Optimization. Any realistic simulation depends on many
parameters, e.g., the shape of a plane wing, that can have a great influence on
some objective functions that should be minimized, e.g., the plane drag. A first
approach to minimize these objective functions is to perform a large number
of simulations, each of them with a different parameter configuration. This ap-
proach is not very practical however, due to size of the configuration space to
explore.
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An interesting alternative approach is to compute the derivative of the ob-
jective functions: since the zeros of these derivatives correspond to local minima
and maxima of the objective functions, it is enough to perform the computation
on these configurations, thus greatly reducing the search space. There exist two
main approaches to compute these derivatives. The first one introduces a pertur-
bation to the problem inputs and computes theirs influences on the result of the
objective functions (this approach is called forward or linearised mode). It is also
possible to introduce a perturbation to the result of the objective functions and
study their influences on the inputs (this approach is called backard or adjoint
mode). The two modes of computing this derivate have different properties: the
forward/linearized mode is more efficient when number of objective functions
is greater than the number of parameters, while the backward/adjoint mode
is more efficient in the opposite case. In practice, the number of parameters is
several order of magnitude bigger that the number of objective functions, and
so the backward/adjoint mode is the most efficient. However, the backward/ad-
joint mode add huge constraints in term of software architecture because all the
derivatives must be propagated and computed backwards [34].

Kenway et al. in [34] give an in-depth discussion on the different methods to
compute the derivatives necessary to solve the numerical optimization problem,
and give clear motivations why discrete adjoint approaches must in general be
preferred over continuous direct approaches. Additionally, they compare different
implementations for computing such a discrete adjoint, and a code generation
technique called Automatic differentiation (AD) gives the best result, in term of
memory usage, speed and accuracy.

AD thus is a very powerful technique, but it has one important limitation. It
is a source to source transformation techniques that generates from the imple-
mentation of a function a code computing the derivative of that implementation.
And in order to produce correct code, AD expects that the input implementation
follows a simple workflow pattern.

Hence it is important to structure a CFD tool in a way so that the com-
putation it performed is expressed as a simple workflow that matches the AD
restrictions.

Functional Variability. While the computation of a physical configuration’s equi-
librium state is always a fixpoint loop, one of the main difficulty in designing a
CFD solver is to manage the fact that the content of that loop has a very large
number of variants, and that this number is always increasing. This very large
variability has three causes, two of which we already introduced:

1. The approximation method. As previously discussed, many approxima-
tion methods for NS have been and are still being designed [4, 36, 29, 32],
each of them having their own advantages and disadvantages, e.g., are more
suited to specific physical configurations, to specific data computation, etc.
Additionally, many of these methods use constants (modelling some physical
properties) that must be set by the user. Finally, some of these methods are
designed in a way so they are incompatible with other variable elements,
e.g., some physical configurations.

4



2. The physical configuration. Each configuration is unique and requires
a tailored computation. First as previously discussed, the BCs describe the
constraints on the flow of the fluid going through the space modelled by the
zones, and each of them has a specific implementation. Then, the flow follows
the links between the zone, and so the topology of the physical configuration
has a direct impact on the computation.
Of course it is possible to design (as it has already been done in the past) a
unique spaghetti code that can manage all possible physical configurations.
However such a code would be unmaintainable and highly inefficient. Indeed,
such a centralized code needs to have direct access to all the arrays and
matrices during the physical simulation, which causes important latency in
accessing the memory for physical configuration of regular size. This issue is
discussed in more detail in Section 2.2.

3. The user requested data. The user can request the computation of some
specific data (e.g., an objective function), which must be included in the
fixpoint loop. The computation of this data may require internally the com-
putation of some other temporary information on the flow of the fluid, which
adds a layer of complexity in the construction of the fixpoint loop. Moreover,
in some case the precision of the requested data can be configured, which in
turns may require to change how the temporary information are computed.

Runtime Checkup. Finally, it could be very useful to be able to insert monitoring
and controlling capabilities at key points in a CFD computation. Indeed, such
computations can take a very long time. So, it could first be very useful to
be able to regularly store a snapshot of the current computation so in case of
hardware failure we might not lose hours or even days of computation. Moreover,
convergence of the fixpoint loop is not guaranteed in many cases: monitoring and
controlling capabilities could be very useful to detect when the computation is
not converging and to update some of the solver’s options in order to solve the
problem, or stop the computation if no solution can be found.

2.2 Computational Challenges

Like many other HPC applications, CFD is in general very memory and compu-
tation intensive, and so it is very important to use as efficiently as possible the
available hardware.

Distribution. The first difficulty in using efficiently the hardware is data lo-
cality [58, 35, 46]. Indeed, in many cases the meshes of a physical configuration
count several millions or even billions of points, and standard SMP memories
(that can be accessed uniformly by all the CPU in a workstation) cannot scale
to such sizes: the latency in accessing the memory becomes too big. The NUMA
memory design (which stands for Non Uniform Memory Access) solves this scal-
ing issue by structuring the memory in nodes, each one having a guaranteed good
latency with one CPU. Consequently, it is important to partition the meshes in
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chunks that can be stored in one node of memory, and to partition the compu-
tation so that each part of the computation is performed on the CPU close to
the data it manipulates.

Communication. Some functions, called stencil functions [30, 9], compute a value
on a node of a mesh by looking at the neighbours of that node (similarly to
the convolution operation in Artificial Intelligence). However, since the mesh
is distributed, some neighbours are not locally available on a CPU: it can be
necessary before running a stencil function to fetch the value of these neighbours
from the NUMA node that hosts them.

Computation Reordering. A well known method to optimize catch access is to
reorder some computation, so that those that use the same data are executed
together. This optimization is implemented in most compilers, but can only be
applied on a fine-tuned program: any CFD tool with some flexibility will not be
optimized by the compiler. Hence it is important to find a way for a CFD tool
to perform this optimization itself.

Heterogeneous Hardware. Now-a-days, workstations have several kind of process-
ing units (PU), e.g., CPU and GPU. Moreover, several means of communication
(with different properties) exist between these PUs, e.g., PCIe and NVLink.
Since some computation are more efficient on some hardware (e.g., a GPU han-
dles well repetitive computation over large sets of data), and some cannot be
performed on them (e.g., GPUs do not have function pointers), it is important
to design a distribution plan that put the computation on suited PUs, while
taking in account the latency of data transfer.

Variable Hardware. The final difficulty is to be able to manage the fact that a
CFD tool will be executed on several workstation, each of them with its own
hardware. Hence, the hardware itself becomes variable in this context, and the
distribution plan discussed in the previous paragraph must be generated and
tailored for workstation running the tool.

Figure 2 illustrates the shape of the a possible distribution plan of the physical
configuration of Figure 1. In this example, we consider an hardware architecture
with two NUMA nodes, the first one hosting zone 1 and zone 2 and the second
one hosting zone 3 of our physical configuration example of Figure 1. The first
NUMA node is linked to a dual core, the first core having two threads while the
second having only one. The second NUMA node is linked to a highly parallel
architecture, like a GPU. The arrows between NUMA nodes and caches repre-
sent the different communications that are necessary for the computation of the
equilibrium states.

Communication between a NUMA node and the local caches is quick and all
the data stored in the node must at one point of the computation be sent in the
cache. But it is still better to avoid useless transfer between the NUMA node
and the cache. Communication between NUMA nodes is slower, and should be
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Fig. 2: CFD intended Running Architecture

perform only when necessary. In opposite to the communication between NUMA
nodes and caches however, the data exchanged between NUMA nodes is far less
than the whole content of the nodes.

3 State of the Art

In this Section, we give a brief presentation of the main CFD tools, and then
focus on elsA [8] which has been developed at ONERA for the last 20 years.
Many mature tools (like elsA) have been developed in research centre but in
close relation to industry. Consequently, while documentations on how to use
these tools are freely available, in-depth description of their internals and how
they deal with the challenges presented in Section 2 are (to the best of our
knowledge) not published. This is the case of FUN3D [5] (developed at NASA),
TRACE [48] and Flucs [39] (developed at DLR), and elsA [8] (developed at
ONERA).

On the other hand, less mature but more documented open source CFD tools
are now available. SU2 [49] and OpenFOAM [31] are developed in pure C++,
and largely advertise the use of classes and inheritance to: i) structure their code
in modules; ii) reuse the code in different part of their toolchain; and iii) use
uniform APIs to have more generic code. However, having modular and generic
code is not enough to capture all the flexibility expected from a CFD tool, and all
the management of the user requested data, of the input physical configuration
and of the hardware must be implemented directly by the user. Moreover, these
tools do not implement numerical optimization and can only run on CPUs (due
to the language limitation).

pyFR [57] is a tool implemented in python and uses the many libraries avail-
able in this language to perform quite well. While the sympy library is used to
provide an abstract DSL in which the user can write his mathematical formula,
the orchestration of these formula (how and when they are executed) must be
written in python by the user. Then, at runtime, when a mathematical formula
must be executed, pyFR translates it into C or CUDA code (for an execution
on CPU or on GPU), and compiles and runs the code. This tool does not im-
plement numerical optimization. Devito [40] is similar to pyFR. It also uses the
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sympy library to express mathematical formula in python, but uses its own DSL
to orchestrate them. That way, the whole computation (the formula and the
orchestration) can be translated into C code and run in parallel. However, since
GPUs cannot perform orchestration, Devito does not run on GPU for now. While
pyFR and Devito have very interesting approaches, these tools suffer from the
same main issues as SU2 and OpenFOAM: the orchestration of the mathemati-
cal formula (which includes the management of the user requested data, of the
input physical configuration and of the hardware) must be implemented directly
by the user.

3.1 elsA’s Approach

elsA is a mature CFD tool and solves, at least partially, the gap between flex-
ibility and fine-tuning. Its solution relies on its 3 parts structure which, for
historical and performance reasons, are all implemented in a different language.
First, similarly to pyFR and Devito, elsA distinguishes between mathematical
functions and orchestration: mathematical functions are called operators in elsA
and are implemented in Fortran 90 [45]3 which is a very efficient language for
physic simulation and that is simple enough to support automatic differentia-
tion; orchestration is implemented in python, but in the opposite of pyFR and
Devito, it is handled by elsA directly and requires almost no setup by the user.
The third part of elsA, called HPC layer, handles the hardware, in particular
the management of the distribution of the computation, and is implemented in
C++17 [55].

The transition between flexibility and fine-tuning is handled by an initial
analysis of all the inputs by the orchestrator, which produces a plan of which
function to execute, in what order and on which hardware. This initial analysis
is structured in 3 steps, and once it completes, the actual computation, i.e., the
execution of the generated plan, starts.

Step 1: Loading the inputs. First, elsA loads the different inputs:

– It queries the available MPI [47] library for the NUMA and CPU structure
(GPU are not supported by elsA). elsA at this stage assumes for simplicity
that the only kind of computational units in the hardware architecture are
identical CPUs. This hypothesis ensures that the cache sizes of all CPUs are
the same.

– The physical configuration is loaded from a CGNS file [52, 51], which is
a standard format for CFD physical configuration. This file format stores
among other data the topological structure of the physical configuration
with all the BC setups, which makes it de facto one of the main standards
to store this part of the configuration space.

3 Mathematical DSLs like sympy that could be translated in efficient code did not yet
exist when elsA was already mature.
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– The user requested data is also loaded from the CGNS file. They are speci-
fied in special entries, distinct from the ones describing the topology of the
physical configuration. These entries inform elsA about which data to com-
pute and on which zone to compute it. Currently, the set of data the user
can request is fixed (this set is specified by an enum in the elsA API).

– The approximation method options are loaded from a elsA-specific python
file. There is no well structured and clear management of the options in elsA.
In order to manage the very large number of option, an initial dependency
mechanism has been implemented, based on an ad-hoc usage of python dic-
tionaries. But this system is difficult to maintain and cannot express all the
dependencies and conflicts the options actually have, and currently, it only
performs basic checks while many configuration errors are detected during
computation.

Step 2: Managing Hardware Flexibility. Once the setup has been loaded, elsA
uses its homogeneous hardware hypothesis to uniformly distribute the physical
configuration over the CPUs. This is done by splitting the zones into subzones
and distributing them over the NUMA nodes, so that every subzones are hosted
on one unique NUMA node, and that all this data is equally distributed between
the available CPUs. Additionally, elsA reorders the information within each sub-
zone so that all data that should be access together are contiguous in memory,
thus avoiding useless cache misses.

Note that information about the structure of the data distribution is kept
by elsA’s HPC layer which is responsible of managing the distribution of the
computation. That way, it is able to give in parameter to each executing operator
the data hosted in the local NUMA node.

Step 3: Managing Functional Flexibility. In order to manage the approximation
method options and the user requested data, elsA uses an ad-hoc and powerful
architecture that generates the list of all the operator to execute for each CPU
on the workstation. This architecture, called Factory, is illustrated in Figure 3.

The factory is structured in two parts. The first part is a hard-coded reg-
istration of all the operators available in elsA with: i) their dependencies (i.e.,
when some input data is computed by another operator); and ii) how they
are triggered or disabled by the different inputs. The dependencies and triggers
are mainly implemented with simple if conditions and result in a rather large
spaghetti code. This part takes in input the approximation method options and
the user requested data, and produces an initial, non optimized list of operators
to execute. The second part of the factory cleans and restructure the list of oper-
ator to make it more efficient by applying standard optimization techniques, like
operator reordering. Moreover, this part also insert communication operators in
the list to ensure that the local data is consistent with the data on other CPUs.

The result of the Factory’s computation (on the right of Figure 3) is a list
of operators and communications to be executed for a given subzone: the fac-
tory is executed on every CPU hosting data, to compute what this CPU needs
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Fig. 3: elsA Factory

to do. Moreover, this list has an essential property for the numerical optimiza-
tion capabilities of elsA: it can be efficiently differentiated. Indeed, since all the
operators (implemented in Fortran) can be automatically differentiated, so is a
simple sequence of these operators.

3.2 elsA’s Approach Limitations

While elsA and its workflow is used in production to solve complex industrial
usecases, it should be clear now that it has strong limitations both in its man-
agement of the hardware and functional flexibility.

Hardware Flexibility. The first limitation of elsA is its uniform CPU architec-
ture hypothesis. Heterogeneous architectures involving different kind of compu-
tational units are getting ubiquitous [1, 18], and this hypothesis is simply no
longer realistic.

Functional Flexibility. In this context, elsA suffers from 4 main issues. The first
one concerns the approximation method options. elsA currently contains more
that 2000 of these interdependent options, without any validation tool: when the
user is lucky, an erroneous configuration makes the factory fail and gets an er-
ror message almost instantaneously; however for many erroneous configurations,
the factory can generate a plan, and the user needs to wait the result of the
computation to see that something went wrong, without knowing where.

The second one is the difficulty to maintain the specification of the depen-
dencies between operators and their activation conditions. Simple conditionals
do not scale to manage hundreds of operators and thousands of options.
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The third one concerns numerical optimization. While the operator list gen-
erated by the factory can be differentiated, many operators and communications
in that list are not relevant for the derivation of many objective functions, and so
the automatic differentiation implemented in elsA performs many useless com-
putation and should be optimized.

Finally, elsA is too restrictive in its specification of user requested data.
Indeed, as previously stated, elsA only provides a fixed list of possible data to
compute to the user. This limitation make it so that every time a user wants to
analyse some new data, or some new interesting objective functions is designed,
the user needs to ask the elsA team to implement the computation of that specific
data, even if all the operators necessary to compute it are already implemented.
This could cost a lot time and effort to the user and the elsA team, and having
a more generic approach to user request could significantly reduce this cost.

4 Our Approach

As stated in the introduction, the goal of our approach is to bridge the gap
between the requirements of flexibility and fine-tuning in a CFD tool. This step
is necessary to answer the different challenges described in Section 2. To achieve
this, our approach follows the 3 parts structure of elsA, with a complete redesign
of the factory. Indeed, structuring the computation in elementary operators is
necessary to manage flexible hardware without cluttering the computation code
with concurrency concerns; the factory’s automatic generation of a plan is nec-
essary to be able to seamlessly use the tool with different configurations; and
the HPC layer is necessary for the management of the actual computation.

Hence, the main novelty of our approach is a new factory, whose architecture
is presented in Figure 4. This architecture is structured in 4 parts: one for the
graph generator and one for each of the factory’s input.

The Graph Generator. The core idea of our approach is to replace the spaghetti
code in the factory with a clear notion of dependencies between operators. That
way, the generation of the plan simply corresponds to a dependency resolution,
which results in a Directed Acyclic Graph of operators instead of a list. Inciden-
tally, this graph is actually exactly what is needed to avoid the problem elsA
has with numerical optimization: since the dependencies between operators are
explicit, we can identify the operators that are necessary for the computation of
a specific objective function, and only derivate them.

We implement the notion of dependency by requiring the developer to specify
the semantics of the inputs and outputs of each operators. Indeed, while the
actual inputs and outputs of the operators are usually arrays of double, the
semantics of the contained values, e.g., the fluid density or the gradient of the
temperature, is specific to each operator. This specification is similar to type
annotations, except that an operator can have several outputs. Moreover, some
operators require special care, like the gradient operator because it can compute
the gradient of any value. its specification corresponds to a type of the form α →
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grad(α). For simplicity and genericity, we thus use terms for our specifications,
and will give more details on our usage of terms and our implementation in
Section 5.

Managing the Options and the Operators. Selecting or not options changes the
implementation of related operators. Moreover, depending on which implemen-
tation is used, the inputs and outputs of the operator may vary.

To deal with this variability, we use Software Product Lines (SPLs) [56, 13, 3,
53], and more precisely Delta-Oriented Programming (DOP) [53, 14, 15] to make
the specification of the operators variable w.r.t. the options selected by the user.
We will detail this part in Section 6, but for now it is enough to know that
applying a specific set P of selected options on a variable operator specification
returns the specification of this operator’s implementation for P .

Managing the User Requested Data. Our approach uses the same terms for the
User Requested Data and for the operator specifications. That way, such a re-
quest can be considered like any other dependency by our graph generator.

Managing the Physical Configuration. The physical configuration is used by
our graph generator to identify the communications that need to be inserted
in the graph, and where. Indeed, during computation, stencil operators require
fetching specific values from the neighbours of the zone on which the stencil is
being executed. To illustrate how this requirement is managed in our approach,
let first state that similarly to elsA, we have one graph generator per PU, that
generates the graph to execute on that PU. Let now consider a specific PU, and
note G the graph generator for that PU, and if Z is a zone, then neigh(Z) is the
set of all neighbours of Z. Upon inserting a stencil operator working on a zone
Z in the graph, G also adds the corresponding receive operators with all the
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zones in neigh(Z) and sends a communication request to the graph generators
managing the zones in neigh(Z). Upon the reception of a communication request,
G adds a corresponding send operator in the graph: that operator depends on
the requested data, and so the dependency analysis will ensure that this data is
computed before being sent.

The two following Sections will go more in-depth into two aspects of this
new variability management: Section 5 discusses the usage and implementation
of terms in our approach; and Section 6 details the notions of SPLs and DOP,
and discusses the implementation of the variable operators.

5 Data Model

As described in Section 4, we use terms to specify the inputs and outputs of
our operators. Additionally, we use order-sorted Algebra [44, 16] to specify which
terms are valid inputs and outputs. This combination is particularly suited to our
needs: terms offer a very flexible structure to specify the data exchanged between
operators, and such flexibility is necessary when considering the maintainability
and future evolutions of the tool; on the other hand, order-sorted Algebra is used
to ensure that the user gives at least a sensible specification to his operators4.

Finally, terms support efficient pattern matching (a subcase of term unifica-
tion [17] where one term is ground), which is a functionality required by the
graph generator: solving a dependency corresponds to finding an operators that
has one output matching that dependency.

5.1 Implementation

While order-sorted algebra has been implemented in various formal specification
tools [21, 11], to the best of our knowledge no existing implementation can be
used in our approach. Indeed, our approach requires the order-sorted algebra
implementation to provide the following three elements:

– a simple syntax to specify the inputs and outputs of an operator;
– a pattern matching API that can be used by an external graph generator;
– a mean to integrate the syntax in external transformation function used to

generate operator specifications.

Consequently, we implemented our own library, and choose python for the
implementation language. Python is a popular language in which to embed Do-
main Specific Languages (DSLs) due to its very flexible syntax and its readiness
to support C and C++ libraries [59, 6, 27]. Moreover, embedding a DSL in an
existing language allows for its seamless integration with other functionalities

4 The flexibility of terms and ease to specify algebra was also a key element in the
development of our approach: many trials and errors went into the design of a term
structure that captures the necessary features of a CFD data.
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available in the language. That way, all three requirements we listed are satis-
fied: we have a DSL for the syntax requirement; and its integration in python
answers to last two requirements. In particular, it allows for the integration of
this library with our other library implementing Delta-Oriented Programming
and presented in Section 6.

First we designed the following DSL to specify a signature:

sig ::= declare_sig(srt , order = (od)) Signature Declaration
srt ::= id = (ct) Sort Declaration

ct ::= (id , id) Constructor Declaration
od ::= (id , id) Order Declaration

As usual, X denotes a possibly empty finite sequence of elements X and [X]
denotes that the element X is optional. This DSL does not follow standard
signature declaration like in Maude [11] because of the limitation of Python
syntax. A signature is declared using the declare_sig function, and is composed
by the declaration of a list of sort, plus some partial ordering between sorts.
A sort declaration srt first gives a name id to the sort, and introduces the set
of constructors of this sort. A constructor declaration ct is a tuple of names id
where the first one is the name of the constructor, and the others are the sorts
of the different parameters of the constructor. Finally, an order declaration od
simply gives a order relation between two sorts.

Example 1. A simple signature for natural numbers can be described as follow:

1 sig_nat = declare_sig(

2 nat = (

3 ("zero",),

4 ("succ", "nat")

5 ))

Here, the signature sig_nat contains one sort called nat and two constructors:
zero of sort nat, with no parameter; and succ of sort nat, with one parameter
of sort nat.

Once a signature has been defined, it is first possible to extend it by calling:
the method add_sort(id) which adds a new sort named id to the signature; or the
method add_constructor(id, id, id) where the first parameter is the name of
the constructor’s sort, the second parameter is the name of the constructor, and
the other parameters are the names of the sort of the constructor’s parameters.

It is also possible to create terms. The method fresh_variable(id) returns a
fresh variable of sort id . Structured term construction uses the Python lookup
API to make term constructors directly available as fields or methods of a sig-
nature. For instance in the context of Example 1, the expression sig_nat.succ(

sig_nat.zero) corresponds to 1.
Finally, pattern matching is available with the method match. This method

returns None if the pattern matching fails, or a substitution that can be applied
on a term.
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Example 2. To illustrate the term construction and pattern matching of our
library, let consider the following python code:

1 plus_one = sig_nat.succ(sig_nat.fresh_variable("nat"))

2 two = sig_nat.succ(sig_nat.succ(sig_nat.zero))

3 subst = sig_nat.match(plus_one , two)

4 if(subst is not None):

5 assert(subst(plus_one) == two)

Line 1 creates a nat term called plus_one containing a fresh variable. Line 2
creates a term called two corresponding to the number 2. Line 3 matches plus_one
against two and stores the result in subst. By construction, the pattern matching
succeeds, and the result is the substitution mapping the variable to sig_nat.succ

(sig_nat.zero) (which corresponds to the number 1). In line 5 we check that
the computed substitution is correct, by ensuring that applying it on plus_one

does return the term two.

5.2 Application to CFD

In a simple setting, CFD data can be specified with a triplet. The first component
corresponds to the a value stored in the data, like Density or grad(Momentum).
The second is a location, i.e., on which element of a mesh that value is placed;
possible locations on a 3D mesh are vertex, edge, face or cell. The third
component is the id of the zone (i.e., the mesh) where the data lives.

The following code excerpt presents a part of the signature we designed:

1 cfd_sig = declare_sig(

2 data = ( ("data", "value", "location", "zone_id"), ),

3 value = (

4 ("Density",), ("Energy",), ("Momentum",),

5 ("grad", "value"),

6 ),

7 location = ( ("cell" ,), ("face" ,), ("edge" ,), ("vertex" ,) ),

8 zone_id = ( ("zero",), ("succ", "zone_id") ),

9 )

We model an data with the data constructor (of sort data), declared in Line 2.
This data takes three parameters, respectively of sort value, location and zone_id

. A value can either be base values like Density Energy or Momentum, or structured
ones like the grad of another value. As previously discussed, we have four con-
structors for locations, and zone_id are modelled like natural numbers.

The following code excerpt illustrates our signature by specifying the input
and output data of the gradient operator.

1 vzone = cfd_sig.fresh_variable("zone_id")

2 vvalue = cfd_sig.fresh_variable("value")

3

4 gradient_input = cfd_sig.data(vvalue , cfd_sig.cell , vzone)

5 gradient_output = cfd_sig.data(

6 cfd_sig.grad(vvalue), cfd_sig.cell , vzone)
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We first declare two variables, one for the zone of the input data of the operator,
and one for its input value. Then line 4 states that any data whose location is
cell is a valid input to the gradient operator. Line 6 on the other hand states
that the output data of the gradient operator is also on cell, on the same zone
as the input data, and its value is the grad of the input value.

6 Variable Operators

As described in Section 4, we use SPL [56, 13, 3, 53] and DOP [53, 14, 15] to
manage both: the relationship between the approximation method options; and
how the operators’ implementation and specification are affected by the selection
of these options.

SPL corresponds to the concept of managing a collection of similar software
artefacts that are characterized by the set of features they implements. The
selection of a set of feature is called a product, and the artefact corresponding
to that product is called the product’s variant. One key aspect of an SPL is
the explicit specifications of its features’ dependencies and incompatibilities. For
instance, firefox can be compiled with the gtk or aqua graphics library, but not
both at the same time: these two features are incompatible. Feature Models [56,
13] are a standard way to declare the relationship between features.

DOP is a transformative approach to implement SPLs, i.e., a product’s vari-
ant can be obtained by applying the set of transformations (called delta) corre-
sponding to the product on a initial artefact. DOP structures an SPL in 4 parts:
a feature model gives the features of the SPL and their relationship; an initial
artefact gives the starting point for the generation of all variants of the SPL;
a global set of deltas lists all the transformations that can be applied during
the computation of a product’s variant; and configuration knowledge maps every
delta to the set of products that activate its execution, and also states in which
order delta must be applied. The activation set of a delta is usually specified
with a Boolean formula over the features of the SPL.

In our approach, we wrap every operator specification in a DOP product
line, where deltas can: add new inputs and outputs to the initial specification;
and change the link to the actual implementation of the operator. Moreover, all
these SPL share a common Feature Model that lists all the available options of
the CFD tool and their relationship. That way, we have a clear way to ensure
that the options selected by the user are correct or issue a message stating which
relationship is being broken before any computation happens.

While DOP has been implemented for several types of artefacts [37, 10, 54],
to the best of our knowledge, no existing implementation can be used in our
approach. Indeed, while the framework presented in [54] is generic enough to
express DOP product lines over operator specifications, it has two major draw-
backs: i) the amount of implementation to use this framework is disproportionate
compared to the simple structure of an operator specification; and ii) it only con-
siders product lines in isolation and thus cannot share a common feature model
between different SPLs.
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6.1 Implementation

Our implementation of DOP follows the same principles of our implementation
of terms and is structured in two DSLs: one for the Feature Model and one for
the definition of DOP product lines.

First, we designed the following Feature Model DSL, based on existing rep-
resentation [56, 13]:

fd ::= FD(id , fatt , fg , [ctc]) Feature Diagram

fg ::= fop(fd) Feature Group
fop ::= FDAnd | FDAny | FDOr | FDXor | . . . Feature Group Operations
fatt ::= Att(id ,domain) Feature Attribute

ctc ::= id | Pred(id) | And(ctc) | . . . Cross Tree Constraint

As usual, X denotes a possibly empty finite sequence of elements X and [X]
denotes that the element X is optional. This DSL fits Python syntax and de-
scribes a feature diagram with attributes and cross-tree constraints. A Feature
diagram fd declares a feature id with possible associated attributes fatt , can
have sub-trees identified by a set of feature diagram groups fg and may have a
cross-tree constraint ctc linking features and attributes declared in its sub-trees.
A Feature diagram group fg gives a constraints fop on a set of feature diagrams
fd : FDAnd means that all diagrams must be selected; FDAny means that all dia-
grams are optional; FDOr means that at least one diagram must be selected; and
FDXor means that exactly one diagram must be selected. Attributes fatt have a
name id and a domain, which is left unspecified in this grammar (in elsA, it is
expected that most of these attributes would be floats or arrays of floats). Fi-
nally, cross-tree constraints ctc are generic SAT constraints over feature names
id , extended with domain specific predicates (e.g., float comparison).

Second, we implemented a very simple API to declare product lines and add
deltas to it. The following line declares a new product line named spl, with
configuration space fm (e.g., a feature diagram as discussed previously) and core
product core:

1 spl = SPL(fm , core)

Declaring a delta to the product line spl is done as follows:

1 @spl.delta(ac)

2 def delta(variant , product):

3 code

The annotation @spl.delta(ac) registers the following function as a delta of spl,
with the activation condition ac that follows the cross-tree constraint syntax.
The function itself can have any name, but must have two parameters: the first
one variant is the variant that is transformed by the delta; and the second one
product is the product that may contain information necessary for the application
of the deltas (e.g., the value of specific attributes). The transformation code

performed by the delta is arbitrary python code. In particular, like in [54]
transformation functions or methods must be provided to be able to construct
a variant.
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6.2 Application to CFD

Using the expressiveness available in feature models and in our python imple-
mentation in particular, we designed an initial feature model corresponding to
a small part of the expected variability of a CFD tool. An except of that part
is given in Figure 5. In particular, the physical model option which represent
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...

kl

kl_smith

kw

kw_wilcox kw_menter kw_kok

transition_closure

transition_menter

physical_model

euler nslam nstur

eos

perfect_gas

...

real_gas

...

flux

upwind

roe hllc ausm

centered

jameson lele

viscous_flux

vf5p vf5p_cor

cfd_tool

model numeric

Fig. 5: Excerpt of our Feature Model

one aspect of the approximation method’s variability is already quite large, and
we didn’t develop the eos subtree which too has many variation on the model
of gas will be used in the fixpoint computation.

We illustrate our implementation of this feature model in Figure 6, with the
implementation of the feature turbulence closure. Note that like in Figure 5,

1 fm_turbulence_closure = FD("turbulence_closure",

2 FDXor(

3 FD("spalart", FDAnd (...)),

4 FD("kl", FDAnd(FD("kl_smith"))),

5 FD("kw",

6 FDXor(FD("kw_wilcox"), FD("kw_menter"), FD("kw_kok"))

7 )))

Fig. 6: Implementation of the Feature turbulence closure

the three dots corresponds to a set of large subtrees.

Concerning the implementation of our variable operator specifications (VOSs),
we implemented three core transformations on such specifications: the add_input

method adds an input to the specification; the add_output method adds an
output to it; and the set_implementation method states which implementation
(given by the name of the implementing file) of the operator must be used.

We illustrate these methods in Figure 7, which presents the VOS of the
FxcUpwindMeanFlow operator. Line 1 declares the VO. Lines 3–7 states that the
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1 FxcUpwindMeanFlow = spl(fm, Operator)

2

3 @FxcUpwindMeanFlow.delta("upwind")

4 def fxc_upwind_construct_op(op , product):

5 op.add_input(cfd_sig.conservatives(subsystem_term), cfd_sig.

cell , vzone)

6 op.add_input(cfd_sig.primitives(subsystem_term), cfd_sig.

cell , vzone)

7 op.add_output(cfd_sig.FxcUpwindMeanFlow , cfd_sig.cell , vzone

)

8

9

10 @FxcUpwindMeanFlow.delta(And("perfect_gas", "roe"))

11 def fxc_upwind_mean_flow_perfect_gas_roe_op(op , product):

12 op.implementation = "fxc/upwind/mean_flow/perfect_gas/roe"

13

14 @FxcUpwindMeanFlow.delta(And("perfect_gas", "hllc"))

15 def fxc_upwind_mean_flow_perfect_gas_hllc_op(op , product):

16 op.implementation = "fxc/upwind/mean_flow/perfect_gas/hllc"

17

18 @FxcUpwindMeanFlow.delta(And("perfect_gas", "ausm"))

19 def fxc_upwind_mean_flow_perfect_gas_ausm_op(op , product):

20 op.implementation = "fxc/upwind/mean_flow/perfect_gas/ausm"

Fig. 7: Implementation of the FxcUpwindMeanFlow variable operator
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corresponding operator has two inputs and one outputs when the option "upwind

" is selected. The fact that the operator has no input or outputs when "upwind"

is not selected encodes the fact that this operator is no used in these cases. The
actual implementation of the operator to use is state in the other deltas of the
FxcUpwindMeanFlow product line. For simplicity, we only give the deltas related
to the "perfect_gas" option, which all depend on which subfeature of "upwind"
is selected.

7 Initial Results

To test our approach, we integrated it into a core running prototype that could
run code on a single processing unit, either CPU, GPU or VE. We applied this
prototype to a simple common usecase: the 2D NACA 0012 [42, 43]. This usecase
is a simple 2D physical configuration modelling an airplane wing in a flow of air.
The physical configuration is given in Figure 8: on the left, we have a input air
flow modelling the plane going forward, in the middle, we have a wall modelling
the cross section of the wing, and on the right we have the output flow. The
zone where the air can flow is a disc, so not to introduce artifacts in the air flow
caused by artificial angles.

zone 1 Legend

: wall

: zone

: input flow

: output flow

Fig. 8: Topology of the 2D NACA 0012 Usecase

The results of our study are shown in Figures 9 and 10. Figure 9 gives three
convergence criteria of the fixpoint loop obtained by running three different
configuration of our prototype: once configuring it to execute on a CPU, one on
a GPU and the last one on a VE. It might not be obvious to see, but in this
picture there are actually three red lines, three blue lines and three cyan lines,
corresponding to the three criteria of the three runs of the prototype: three runs
of our prototype, even if running on different hardware, are indistinguishable
between each other.

Figure 10 shows the actual result of the equilibrium state computation done
by our prototype. In particular, the picture on the left shows the equilibrium air
density on a scale from blue (not dense) to red (dense); and the picture of the
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Fig. 9: Convergence of our prototype CPU/GPU/VE

right shows the equilibrium air speed, with arrows to show direction, and colour
to show speed (blue being slow and red being quick).

Fig. 10: Density on Vertex and Momentum on Vertex

8 Conclusion and Future Work

This work presents an study into the requirements of CFD tools, some limita-
tions of the current tools available, elsA in particular. It then provided with an
approach to solve some of these limitations. Similarly to several existing tools,
this approach structures a CFD tool in three parts that distinguishes between:
i) the operators that implement all the core mathematical function used in any
computation; ii) the orchestrator that assemble the operators into a complete
dataflow that computes the required data; and iii) the HPC layer which manages
the distribution and concurrency during the computation of the dataflow. The
novelty of our approach lies in the definition of the orchestrator part, which is
based on tools originating from formal methods: terms and order-sorted Algebra
are used to specify the inputs and outputs of the available operators, and pat-
tern matching (a subcase of unification) is then used to identify dependencies
between operators and generate the dataflow; Delta-Oriented Programming is
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used to model the variability of the available operators, i.e., depending on the
tool configuration, the inputs and outputs of the operators may change, which
means that the dependencies between operators and thus the generated dataflow
may change. Based on this approach, we implemented a prototype and tested it.

Going from a prototype to a useable tool still requires a lot of work. We need
to integrate hardware distribution, and in particular integrate the possibility
to manage heterogeneous hardware. A promising approach would be to use the
standard API of hwloc [7, 20] that gives the topology of the hardware, with the
characteristics of the different memory and processing nodes.

Another issue to tackle is memory allocation. Indeed, array of the right size
must be allocated to host the data computed by the operators in the dataflow
generated by our orchestrator. Because the dataflow can vary, so does the mem-
ory allocation. However, memory is allocated by hand in our prototype, and
known approaches for memory allocation are not satisfactory: in pyFR and De-
vito, the memory is managed by the user directly; on the other hand, elsA does
not have a general framework to model data and relies to enumerations to list
all the possible data it can handle.

Another interesting aspect of this work is the similarities of the problem of
generating the graph of operators and the problem of type inhabitance: as hinted
in Section 4, the term modelling the data to compute is similar to a type, and
from that point of view our generated graph is an expression that have that type.
We will investigate this relationship further and possibly see if interesting result
could be applied to our prototype. Moreover, this approach seems to integrate
well with product lines. Indeed classic approach for product line definition is
to add, remove or replace well identified code elements, but it is very difficult
to have an expression always computing the same data in all variants, using
however different methods to obtain it depending on the selected options.

References

1. Agosta, G., Fornaciari, W., Massari, G., Pupykina, A., Reghenzani, F., Zanella,
M.: Managing heterogeneous resources in hpc systems. In: Proceedings of the
9th Workshop and 7th Workshop on Parallel Programming and RunTime Man-
agement Techniques for Manycore Architectures and Design Tools and Ar-
chitectures for Multicore Embedded Computing Platforms. p. 7–12. PARMA-
DITAM ’18, Association for Computing Machinery, New York, NY, USA (2018).
https://doi.org/10.1145/3183767.3183769

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Ulbrich, M. (eds.): Deductive
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M., Libutti, S., Maitre, B., Mart́ınez, J.M., Massari, G., Meinds, K., Mlinarić, H.,
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