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Abstract Pruning in neurons has been suggested to be
strongly involved in Schizophrenia’s (SKZ) etiopathogenesis
in recent biological, imaging, and genetic studies. We investi-
gated the impact of protein-coding genes known to be in-
volved in pruning, collected by a systematic literature re-
search, in shaping the risk for SKZ in a case–control sample
of 9,490 subjects (Psychiatric Genomics Consortium). More-
over, their modifications through evolution (humans, chim-
panzees, and rats) and subcellular localization (as indicative
of their biological function) were also investigated. We also
performed a biological pathways (Gene Ontology) analysis.
Genetics analyses found four genes (DLG1, NOS1, THBS4,
and FADS1) and 17 pathways strongly involved in pruning
and SKZ in previous literature findings to be significantly
associated with the sample under analysis. The analysis of
the subcellular localization found that secreted genes, and so
regulatory ones, are the least conserved through evolution and
also the most associated with SKZ. Their cell line and regional
brain expression analysis found that their areas of primary
expression are neuropil and the hippocampus, respectively.
At the best of our knowledge, for the first time, we were able
to describe the SKZ neurodevelopmental hypothesis starting

from a single biological process.We can also hypothesize how
alterations in pruning fine regulation and orchestration,
strongly related with the evolutionary newest (and so more
sensitive) secreted proteins, may be of particular relevance
in the hippocampus. This early alteration may lead to a mis-
structuration of neural connectivity, resulting in the different
brain alteration that characterizes SKZ patients.

Keywords Schizophrenia . Etiopathogenesis . Pruning .

Genetics .Molecular pathways . Comparative genomics .
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Introduction

Schizophrenia (SKZ) is a common disorder, with a lifetime
prevalence of approximately 1 % [1]. It typically begins in
adolescence or early adulthood and is characterized by unusu-
al beliefs and experiences (namely, delusions and hallucina-
tions), social withdrawal, flat affect, and cognitive impair-
ment, notably in executive functions [1]. The ability to ab-
stract thinking is a typical adolescence emerging ability which
allows advanced reasoning during social and interpersonal
interactions. These cognitive abilities are critically impaired
during SKZ. This observation led Feinberg to propose, for the
first time, a relationship between late adolescence onset and
changes that occur during adolescent brain development [2].
In fact, SKZ patients (also neuroleptic naive) have a promi-
nent reduction in the level of membrane phospholipid precur-
sors and white matter changes in the prefrontal cortex [3, 4]
and limbic region [5, 6]. These observations are consistent
with an exaggeration of the changes that occur during the
typical development of the central nervous system (CNS)
[7]. So, starting from Feinberg hypothesis, an increasing num-
ber of researchers speculated that SKZ may be a consequence
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of an exaggeration of the typical synaptic elimination that
takes place during adolescence (reviewed in Refs. [8, 9]): a
mechanism called Bpruning.^ Pruning is the process that
shapes synapses and neurons to create fully functional neuro-
nal nets, through a reduction in the CNS synapse density [10].
Even if its complete molecular orchestration is yet to be fully
described, several studies reported the potential relevance of
pruning to neurodevelopmental disorders, particularly SKZ
[8, 11, 12]. In this regard, a critical issue is that pruning is
primarily active during adolescence: the period of highest sus-
ceptibility for mental health disorders and especially SKZ [13,
14]. In fact, even though some psychiatric syndromes appear
later in life, it is often possible to detect the presence of
prodromic symptoms of SKZ during adolescence or late child-
hood [15, 16]. Moreover, the development of cognitive regu-
lation of affective behavior would be related to adolescent
changes in different brain regions, prefrontal cortex, and limbic
system particularly [17]. For what pathogenesis is concerned,
current knowledge on SKZ is based on dopamine and gluta-
mate abnormalities leading to a cortical hypofunction and lim-
bic hyperfunction that are responsible for negative and positive
symptoms, respectively [18]. These are also the bases on which
all current effective antipsychotic drugs have been developed
[19, 20]. Recent findings have highlighted that these different
neurotransmitter alterations probably arise from a general dys-
function of GABAergic interneurons responsible for a general
misfunctioning of neural connectivity and regulation [21–23],
leading to the current neurodevelopmental interpretation of
SKZ [24]. This interpretation disclosed how SKZ is more likely
to be related to a general misdevelopment of brain connectivity
rather than a cumulation of different single neurotransmitter
alterations [25, 26]. In this regard, a single mechanism respon-
sible for the regulation and development of brain connectivity,
such as pruning, may be the missing central step to understand
these alterations establishment.

Several imaging lines of evidence also supported this hy-
pothesis [27–29]. Particularly, new observations that structural
changes in SKZ patients are revealable not only during
prodromic phases [30] but also in their relatives at high genet-
ic risk for SKZ [31] create a pathological continuum from
adolescent relatives to most severe SKZ cases, supporting
the etiopathogenic abnormal pruning role in SKZ. Consistent-
ly with pruning errors, direct evidence of a decreased number
of synapses and other neural elements in SKZ comes from
post-mortem studies that indicated a decreased density of syn-
aptic spines [32] and a reduction in neuropil [33]. Neuropil is
the neuronal area, where synaptic connections are formed be-
tween branches of axons and dendrites [34], of primary im-
portance for neural connections. SKZ structural changes have
been revealed to be possibly due to a primary neuropil reduc-
tion in these areas [35, 36], so the subcellular localization and
cell line expression of the altered pruning proteins may be
relevant in this sense.

Starting from all these lines of evidence, we reviewed, ex-
tended, and completed the description of the proteins and their
genes involved in dendritic pruning and tested their relevance
in SKZ from different perspectives including rate of amino
acid conservation between species, subcellular localization,
and genetic association with SKZ. This process may also offer
new information to help pharmacological development in the
field [9, 37]. In this regard, the Genome Wide Association
Studies’ (GWAS) lacking biological informative power has
been recently stressed in literature [38, 39]. Single SNP’s as-
sociation in complex tract diseases (such as SKZ) fails in
clarifying the pathological mechanisms underlying the disor-
der [39, 40], resulting in no useful information for diagnosis,
prevention, or treatment progression. In order to go beyond
this ceiling effect at which single SNP’s association has come,
new approaches with much higher biological informative
power [e.g., gene set enrichment analysis (GSEA)] have been
applied at genetic association studies [41, 42]. So, we tried to
improve the present biological knowledge by investigating the
molecular basis of this event in three different species: testing
where evolution playedmore in adapting this neuronal remod-
eling mechanism at complexer brain architectures until human
one. Moreover, we analyzed the subcellular localization of the
proteins as predictor of their function [43–45], obtaining indi-
cations about the biological functions in which the pruning
mechanisms found differences through species evolution.
We finally tested if these differences are specific of the differ-
ent cellular compartments and whether or not they are related
to SKZ, testing each gene’s SNP association score in a SKZ
case–control sample of 9,490 (4,486 cases and 5,004 controls)
subjects and operating a modern biological pathway analysis.

To the best of our knowledge, for the first time, this work
attempts to identify the pruning involved genes role in SKZ,
based on modern altered prefrontal cortex and meso-limbic
region and neuropil reduction hypothesis (all consistent with
the neurodevelopmental hypothesis), investigating the biolog-
ical influence of these gene products in a large sample of 9,490
SKZ case–controls.

Methods and Materials

Identification of Pruning Involved Genes

Proteins associated with pruning were first identified by inter-
rogating Pubmed dataset on published articles that focused on
genetics experimental study on pruning molecular mechanism
in different species. In order to consider the whole literature
knowledge on the argument, we covered almost 20 years of
publications (1995–2013). Pubmed database was interrogated
using the following subject headings: {(dendritic pruning)
AND genetics} AND (B1995^ [Date — Publication]: B2013^
[Date — Publication]) and {(axon pruning) AND genetics}
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AND (B1995^ [Date — Publication]: B2013^ [Date — Publi-
cation]). We then manually selected only studies focused on
gene related with pruning mechanism. The 83 articles that
survived the selection for the present review are listed in
Table 1, supplementary materials. Then we extrapolated the
proteins and their genes (or the respective hortolog in humans)
reported in the articles and those that resulted from the interro-
gation of the international databases to complete a list of pro-
teins and their genes that may play a role during pruning. To
consider all the possible pruning-involved genes, the authors
utilized Cytoscape [46] and its GeneMania [47] plug in that
identifies the most related genes to a query gene set using a
guilt-by-association approach. GeneMania uses a large data-
base of functional interaction networks from multiple organ-
isms, and each related gene is traceable to the source network
used to make the prediction [47]. This plug in also identifies
the biological pathway in which these genes play a role based
on the Gene Ontology international pathway database [48]. So,
we studied the biological function related to pruning by ana-
lyzing the functions harbored by the identified genes involved
in pruning. Then we examined which of these function was
also significantly associated with SKZ in our 9,490 case–
control sample using the GSEA methodologies described
below. At the end of the process, we were able to identify
139 human genes in 261 biological pathways (Gene Ontol-
ogy [48]) playing a role in pruning events. Fig. 1 represents
the biological functions that play a central role in pruning
and are also significantly associated with SKZ, according to
our results.

Comparative Evolutionary Genomic

The aminoacidic sequences for the products of genes involved
in pruning were identified by the international database
UniprotKB [49] in all of the three species under analysis
(humans, Rattus norvegicus, and chimpanzees). We selected
these different evolutive step mammals because of their large
utilization and validity in comparative genomics studies [10,
50] and because other studies already compared evolutive
characteristics in these three species [51]. CLUSTAL W
served for calculating the rate of local and global aminoacidic

conservation rate [52]. We selected this software due to its
large utilization and proven validity [53–57]. The aminoacidic
conservation rate is the result of the sequence alignment of the
amino acids of two proteins that are more or less conserved
(changes in the amino acid sequence) in different species. The
more the sequences are similar, the higher the amino acid
conservation rate is. The global conservation rate is an index
that results from the confrontation of the complete sequences
of the proteins under analysis; it can result even negative when
the sequences are very differently aligned. The local conser-
vation rate is an index that results from the confrontation of
parts of the sequences of the proteins under analysis, corrected
for sequence lengths. Both indexes are reported in this paper
as results of the alignment function from the Biostrings [58]
library in R environment. Specifically, it is the B$score^ result
of the function. To maximize the analysis precision, extreme
values [±(group mean+group SD)] of aminoacidic conserva-
tion rate were excluded from the analysis. The rate of their
products’ conservation and the characteristics of each gene are
listed in Table 2, supplementary materials. To avoid possible
bias because more studied proteins may result in higher
knowledge of their sequence and so influence the conserva-
tion rate, we compared the number of studies (as Pubmed
number of results with the protein name as subject heading)
with conservation scores by linear regressions. A number of
studies for each protein are reported in Table 2, supplementary
materials, and statistics of the analyses are reported in Table 1.

Genetic Product’s Subcellular Function and Localization

We compared the UniprotKB reported subcellular localization
(as indicative of their biological function) of the 139 analyzed
proteins (mitochondrion, nuclear, cytoplasmic, cellular mem-
brane, and secreted) with their aminoacidic conservation rate
between the three species under analysis (global/local human
vs. rat and global/local human vs. chimpanzees). Analysis of
variance (ANOVA) test was served for the analysis. For the
statistics of the analysis, please refer to Fig. 2 and Table 2. To
find out the rate of association of pruning involved proteins
with SKZ by their subcellular localization, we also analyzed
the odds ratio (OR) for SKZ association (p<0.05) of SNPs
harbored by these genes and their products subcellular local-
ization [in the case–control sample under analysis (n tot=9,
490)]. Fisher’s exact test was the test of choice. Table 3 reports
the statistics of the analysis, and Fig. 3 shows the OR for each
group.

Case–Control Sample Under Investigation

The sample under investigation was retrieved from the Psy-
chiatric Genomics Consortium (PGC) (http://www.med.unc.
edu/pgc/). In this sample, we analyzed 5,221 males and 4,269
females divided into 4,486 cases and 5,004 controls (n tot=

Table 1 Conservation rate by number of studies for each protein under
analysis (linear model regression)

Estimate Std. error T value p Value

Global human vs. chimpanzees −0.05 0.06 −0.9 0.35

Local human vs. chimpanzees −0.07 0.05 −1.3 0.19

Global human vs. rats −0.06 0.04 −1.3 0.19

Local human vs. rats −0.08 0.04 −2.04 0.04
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9,490). The characteristics of the studies (number of case and
controls for each study, chip served for genotyping, etc.) are
reported in Table 3, supplementary materials.

Study of Population Stratification Factors

Tomaximize the power of the study and eliminate the effect of
possible linkage clustering of individuals, the genetic admix-
tures were investigated as covariate. PLINK [59] tools clus-
tered the 9,490 subjects in six groups (n tot=1,136, 1,132,
652, 5,334, 619, and 617, respectively). We also considered
the sex of our subjects as covariate (5,221 males and 4,269
females). For further information, please consult the PLINK
website (http://pngu.mgh.harvard.edu/~purcell/plink/strat.
shtml).

Power of the Study

We had sufficient power (0.80) to detect a small effect size
(0.02) between two allelic frequencies each one repre-
sented by at least 4,745 subjects [R-cran (R Foundation
for Statistical Computing 2012) pwr package [60] served for
the analysis].

Imputation

Imputation was run for the genes under analysis in order to
decrease the computational effort. The CEU HapMap 1000
genomes [61] served for the analysis. The imputation was
undertaken using Impute2 software [62]. In short, Impute2
uses a fine-scale recombination map and a densely genotyped
reference panel to Bfill in^ missing genotypes in a study
dataset, which might consist of cases and controls typed on a
commercial SNP chip. By estimating the genotypes of SNPs
that were not in the original study data, imputation allows a
much larger set of SNPs to be tested for association. This can
increase both the power to detect association signals and the
signal resolution near a causal or associated variant. For fur-
ther information, please refer to the website: https://mathgen.
stats.ox.ac.uk/impute/impute_v2.html. We obtained 14,198
SNPs harbored by analyzed genes that passed the imputation
quality control (info>0.9) and the pruning (r2>0.5). Pruning
was undertaken after imputation. Table 4, supplementary
materials, reports the characteristic of each SNP.

Statistical Methods

Covariated linear regression was the statistical model for the
single SNP’s association analysis. PLINK software was used

Fig. 1 The image represents the biological function harbored by the
genes involved in pruning that also showed a significant association
with SKZ in the sample under analysis. Node names are gene names’
abbreviation, full names and characteristics for each gene are reported in

Table 2, supplementary materials, as biological pathways, and the genes
involved in each one are reported in Table 5, supplementary materials.
Red nodes are the single genes significantly associated with SKZ in the
sample under analysis
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for the analysis (http://pngu.mgh.harvard.edu/%7Epurcell/
plink/). As previously discussed in other studies [63, 64], we
analyzed the genetics results organized as pathways and as
genes comparing the distribution of the p values<0.05 (of
association with the phenotype under analysis) between each

pathway/gene subset of SNPs and an equal number of SNP’s
association p values randomly chosen from the genome under
analysis. Fisher exact test was the statistical method for the
analysis. We then permuted these p values randomly
reassigning the SNPs in the two groups 100,000 times for each

Fig. 2 Means of conservation
rate by subcellular localization of
the genetic products for the
pruning involved genes
(n tot=139)

Table 2 Mean rate of amino-acidic conservation between species by subcellular localization of their genetic products (ANOVA)

Groups Mean SD n tot F value df p Value

Global human vs. chimpanzees Secreted 1,840.38 1,528.92 9 1.91 4 0.11

Cell membrane 2,869.83 1,444.01 39 – – –

Cytoplasm 2,095.97 1,054.89 24 – – –

Mitochondrion 2,333.52 2,259.71 2 – – –

Nucleus 2,192.30 1,304.95 11 – – –

Local human vs. chimpanzees Secreted 1,390.08 714.18 9 2.66 4 0.03

Cell membrane 2,782.51 1,381.44 42 – – –

Cytoplasm 2,219.84 996.25 25 – – –

Mitochondrion 2,415.63 2,143.58 2 – – –

Nucleus 2,108.36 1,538.81 11 – – –

Global human vs. rats Secreted 1,200.98 1,315.46 13 5.16 4 0.0007

Cell membrane 2,501.97 1,315.66 48 – – –

Cytoplasm 1,577.47 895.35 31 – – –

Mitochondrion 1,395.79 2,076.17 3 – – –

Nucleus 1,512.04 980.08 12 – – –

Local human vs. rats Secreted 1,440.15 1,275.44 14 5.01 4 0.0009

Cell membrane 2,538.03 1,273.74 51 – – –

Cytoplasm 1,635.86 826.05 33 – – –

Mitochondrion 2,230.78 2,106.61 2 – – –

Nucleus 1,601.52 895.63 13 – – –
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pathway/gene. The resulting permuted p for each pathway/
gene is an association p resulting from the frequency of this
random groups (with the same number of SNPs of the path-
way/gene), reaching a significance level (number of SNPs
associated with the phenotype) equal or stronger than the
pathway/gene under analysis. With this method, it is possible
to consider the effect of both the overall pathway association
(considering the overall rate of association of the SNPs within
the pathway) with the phenotype versus other identical numer-
ous SNPs groups in the same genetic database with the same
phenotype (not a priori established) and the numerosity of the
SNPs within the pathway (because Fisher’s exact test

generates a higher and lower p value for the group with small-
er and bigger number of observations, respectively, if the same
rate of observation satisfying the condition are observed). These
are important characteristics to define gene set’s association,
characteristics that the analysis based on the smaller single
SNP’s p value (the basis of the other method used in gene set
enrichment analysis) [65] within the pathway cannot reveal,
neglecting also the possible relationship within the genes in
the pathway [66]. In fact, methods based on Fisher’s exact test
resulted to be the one with highest power in such analysis [67].
Statistics and characteristics of the GSEA pathways are report-
ed in Tables 4 and 5 and Table 5, supplementary materials.

Table 3 Fisher’s exact test statistics for the SNP’s association with SKZ (p<0.05) in the sample under analysis (n tot=9,490) and their genetic products
subcellular localization

n tot n Percentage 95 % Confidence
interval lower

95 % Confidence
interval upper

Group
odds ratio

p Value
p<0.05

Secreted 2,014 164 8.2 % 1.13 1.62 1.36 0.0008

Cell membrane 7,541 494 6.5 % 0.91 1.20 1.05 0.45

Cytoplasm 3,495 188 5.3 % 0.66 0.93 0.78 0.004

Nucleus 784 48 6.1 % 0.68 1.28 0.95 0.82

Mitochondrion 364 15 4.1 % 0.34 1.04 0.62 0.08

Fig. 3 SKZ odds ratio for genetic
association (rate of single SNPs,
p<0.05) by subcellular
localization of their genetic
products
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Correction for Multitesting

The p value for a significant single SNPs result was set at 0.05/
14,198=0.000003 (Bonferroni correction). The p value for a
significant single gene result was set at 0.05/139=0.0003
(Bonferroni correction). The p value for a significant single path-
way result was set at 0.05/261=0.0001 (Bonferroni correction).

Cell Line and Brain Area Genetic Expression

The analysis of the cell line and brain region that primarily
expressed secreted pruning-involved proteins (as it resulted to
be the most associated group in all the operated analyses) was
aimed at obtaining indications about where in human brains
(microscopically and macroscopically) pruning errors may be
of particular relevance for future development of SKZ. With
this aim, Human Protein Atlas [68] database (http://www.
proteinatlas.org) was used to obtain information about the cell
line that mostly expressed the genes that resulted significantly
associated with SKZ (secreted, n=18). This database contains
the protein expression profiles based on immunohistochemistry
for a large number of human tissues, cancers and cell lines, and
their transcript expression [69]. The cell line of expression was
considered as the one that showed the highest rate in central

nervous tissues, as indicated in the BTissue atlas^ BAntibody
staining overview^ tool for each protein. In case two tissues had
the same highest rate, both were recorded as primary. Table 6
and Fig. 4 report the characteristics of the analysis. In order to
investigate their regional brain expression, we utilized the Brain
Architecture Project [70] (http://brainarchitecture.org) that
combines informatics and experimental approaches including
analysis of gene expression patterns and experimental efforts to
comprehensively determine the mesoscopic connectivity
patterns in the adult mouse brain (not enough information are
disposable for humans in public databases, so we choose this
animal) [70]. For further information about these databases and
their data, please consult the websites. Tables 6 and 7 and Fig. 5
report the statistics of the analysis and the characteristics of each
group.

Results

Comparative Genomics and SKZ Association
by Biological Function and Subcellular Localization

Our analyses showed how secreted pruning-involved proteins
are the lowest conserved ones through evolution. ANOVA

Table 4 Characteristics and statistics of the five most associated single genes with the phenotype under analysis (n tot=9,490)

Gene Gene full name Statistics (p<0.05); expected 5 % SNPs (n tot) Permuted p

True False

DLG1 Discs, large homolog 1 (Drosophila) 68 (51 %) 63 (49 %) 131 <0.00001

Gene function DLG1 is a gene found to have possible role in shaping SKZ susceptibility [115–117] This gene is found in neurons soma, postsynaptic
densities and other tissues and plays role in adherens junction assembly, signal transduction, cell proliferation and synaptogenesis
[118–121], functions clearly consistent with pruning activity. This gene’s product when expressed in astrocytes is able to influence the
glutamate response of astrocytes [122]. By this way the neurons’ environment is shaped by the activity of DLG1 through the
activation of astrocytes after the glutamatergic system.

NOS1 Nitric oxide synthase 1 38 (28 %) 94 (72 %) 132 <0.00001

Gene function NOS1 codes for the enzyme that produces nitric oxide (NO), which is a messenger molecule with various functions regulating
endothelial permeability and structure throughout the body, that in the brain displays many properties of a neurotransmitter
[123–126]. These functions are consistent with neuron environment modifications and pruning regulation [127]. In fact, this genewas
found to be associated with brain structural alterations and SKZ [128–131]. There is evidence that NOS1’s activity exerts a paracrine
effect in the nervous system [132].

THBS4 Thrombospondin 4 21 (42 %) 28 (57 %) 49 <0.00001

Gene function THBS4 gene codes for an adhesive glycoprotein pertaining to a family of protein (thrombospondins) that mediates cell-to-cell and cell-
to-matrix interactions and is involved in various processes including cellular proliferation, migration, adhesion and attachment,
inflammatory response to CNS injury, and regulation of vascular inflammation [133, 134]. This protein can bind to various extra-
cellular matrix components fibrinogen, fibronectin, laminin, and type V collagen [135, 136], whose importance in SKZ and pruning
have been strongly reported [137] and have also been involved in shaping SKZ susceptibility [138]. The gene’s product is involved in
neuronal development in animals, where it plays a role as an extracellular protein [102].

FADS1 Fatty acid desaturase 1 16 (72 %) 6 (27 %) 22 <0.00001

Gene function FADS1 product catalyzes biosynthesis of highly unsaturated fatty acids, playing a central role in fatty acid metabolism [139, 140],
necessary to maintain the correct membrane structure [141, 142]. Clearly, such function has been strongly related with pruning
process [143] and SKZ [144, 145]. It has also become an interesting possible SKZ treatment target [146–148]. There is evidence that
this protein has a role in extracellular events, whose disruption may lead to a degenerative disease that involves the retina [149].

True/false in statistics column are referred at the number (and percentage) of SNPs with an association p<0.05 in the considered subset. Expected number
(due to chance) is 5 % of total
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analysis found a significant association between the conserva-
tion rate and the subcellular localization of our protein in all
the analysis operated (local human vs. chimpanzee: F=2.66,
p=0.03; global human vs. rat: F=5.16, p=0.0007; and local
human vs. rat: F=5.01, p=0.0009) except the global human
vs. chimpanzee one, where a trend was found anyway (F=
1.91, p=0.11). As clearly shown in Fig. 2 and Table 2, the
secreted group is always the lowest conserved. The number of
studies showed no influence their conservation score
(Table 1), only a trend was found for local human vs. rats
comparison (p=0.04). As shown in Fig. 3, the Fisher’s exact
test for the distribution of associated single SNPs found the
maximum OR for the secreted groups (OR=1.36, p=0.0008).
It found a significant result for cytoplasm-located ones, but
their OR resulted protective (p=0.004, OR=0.78). Nucleus-,
cell membrane, and mitochondrion-located SNPs did not
show any significant association (p=0.82, p=0.45, and
p=0.08, respectively), and among them, only cell mem-
brane located OR would have been of increased risk

(OR=1.05). Statistics of each analysis are reported in
Table 3.

Single SNP’s Association Analysis

Investigating the 14,198 SNPs within our pruning-involved
genes that passed the selection process and operating the as-
sociation analysis on the sample of 9,490 SKZ case–controls,
we observed interesting results for ten of the analyzed SNPs
(p values between 0.00001 and 0.0001). No one survived the
high specific Bonferroni correction. The p values and charac-
teristics of these ten best associated SNPs are reported in
Table 8, and the characteristics and distribution of all analyzed
SNPs are reported in Table 4, supplementary materials.

Single Genes Association Analysis

The analysis of single genes revealed significant associations
(Bonferroni p<0.0003) for 4 of the 139 human analyzed

Table 5 Biological process pathways significantly associated with SKZ case–control sample under analysis (n tot=9,490)

Pathway Pathway name Statistics (p<0.05);
expected=5 %

SNPs
(n tot)

Permuted p Compartmental function

True False

GO:0001935 Endothelial cell proliferation 89 (28 %) 236 (72 %) 325 <0.00001 Endothelial and epithelial regulation

GO:0005796 Golgi lumen 25 (15 %) 151 (85 %) 176 <0.00001 Regulation of proteins rearrangement

GO:0007263 Nitric oxide mediated
signal transduction

38 (23 %) 129 (77 %) 167 <0.00001 Endothelial and epithelial regulation

GO:0008022 Protein C-terminus binding 109 (19 %) 470 (81 %) 579 <0.00001 Regulation of proteins rearrangement

GO:0010959 Regulation of metal ion transport 152 (15 %) 871 (85 %) 1,023 <0.00001 Regulation of cell membrane potential

GO:0016337 Cell-cell adhesion 121 (22 %) 447 (78 %) 568 <0.00001 Regulation of cell structure
and interactions

GO:0034329 Cell junction assembly 111 (16 %) 606 (84 %) 717 <0.00001 Regulation of cell structure
and interactions

GO:0034330 Cell junction organization 111 (15 %) 636 (85 %) 747 <0.00001 Regulation of cell structure
and interactions

GO:0042391 Regulation of membrane potential 98 (19 %) 420 (81 %) 518 <0.00001 Regulation of cell membrane potential

GO:0043266 Regulation of potassium ion transport 78 (32 %) 166 (68 %) 244 <0.00001 Regulation of cell membrane potential

GO:0050673 Epithelial cell proliferation 92 (21 %) 350 (79 %) 442 <0.00001 Endothelial and epithelial regulation

GO:0072657 Protein localization to membrane 68 (25 %) 213 (75 %) 281 <0.00001 Regulation of cell structure
and interactions

GO:0005911 Cell-cell junction 91 (16 %) 505 (84 %) 596 0.00009 Regulation of cell structure
and interactions

GO:0045216 Cell-cell junction organization 111 (15 %) 636 (85 %) 747 0.00002 Regulation of cell structure
and interactions

GO:0050770 Regulation of axonogenesis 100 (12 %) 803 (88 %) 903 0.00004 Regulation of cell structure
and interactions

GO:0050920 Regulation of chemotaxis 69 (14 %) 451 (86 %) 520 0.0001 Regulation of cell structure
and interactions

GO:0007163 Establishment or maintenance
of cell polarity

85 (13 %) 598 (87 %) 683 0.0001 Regulation of cell structure
and interactions

True/false in statistics column are referred at the number (and percentage) of SNPs with an association p<0.05 in the considered subset. Expected number
(due to chance) is 5 % of total
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genes:DISCS LARGE DROSOPHILA HOMOLOG 1 (DLG1,
p<0.00001), NITRIC OXIDE SYNTHASE 1 (NOS1,
p<0.00001), THROMBOSPONDIN 4 (THBS4, p<0.00001),
and FATTY ACID DESATURASE 1 (FADS1, p=0.0001).
Table 4 reports the statistics and the characteristics for each
of the significant associated gene.

Biological Pathway Association Analysis

The analysis of the Gene Ontology biological pathways relat-
ed to our pruning-involved genes subset revealed 17 pathways

playing a role in four biological compartmental functions that
survived the Bonferroni correction (p values between 0.00001
and 0.0001). The significant pathways and their statistics are
reported in Table 5.

Cell Line and Brain Regional Expression of the Secreted
Genes

Analyzing the cell line and regional expression of the secreted
proteins involved in pruning (as they resulted to be the most
associated in all the performed analysis), we found clear evi-
dence that the primary localization is in the neuropil (46.7 %,
n tot=15; please refer to Table 6 and Fig. 4). Analysis of brain
region expression found significant differences in the expres-
sion of these genes (ANOVA: F=4.04, p=0.00007). The one
with the highest expression mean resulted to be the hippocam-
pal area of the limbic system (mean=3.45). For the statistics of
the analysis, please refer to Table 7 and Fig. 5.

Discussion

SKZ etiopathogenesis could be related to abnormalities or
errors occurring during adolescence pruning process of neu-
ron branches. Alterations in this early brain remodeling mech-
anism may be the basis for the altered neural connectivity and
functioning that, later in life, results in SKZ diagnosis. In this
regard, the function of the proteins involved in this process,
their modification through evolution, and their rate of associ-
ation with our SKZ case–control sample may reveal about the

Fig. 4 Distribution of cell line
expression for the secreted
proteins

Table 7 ANOVA test on the different mean of expression in the brain
regions analyzed for secreted located proteins (n tot=18)

Group Mean SD F value df p value

Cortex 1.02 0.55 4.04 10 0.00007

Olfactory 1.21 0.45 – – –

Hippocampal 3.45 3.75 – – –

Retro-hippocampal 1.38 0.87 – – –

Striatum 0.50 0.41 – – –

Pallidum 0.46 0.39 – – –

Thalamus 0.69 0.90 – – –

Hypothalamus 0.55 0.52 – – –

Midbrain 1.06 2.49 – – –

Pons 0.46 0.53 – – –

Medulla 0.82 0.72 – – –

Cerebellum 1.01 1.48 – – –
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pruning role in neurodevelopmental hypothesis for SKZ and
future treatment perspectives.

Secreted Proteins-Based Pruning Regulation
as Evolutionary Flash Point

The analysis of the subcellular localization of our proteins was
aimed to figure out in which compartment and function rely
the biggest differences of pruning between more and less evo-
lute organisms. That could be of primary importance to un-
derstand the evolutionary adaptation of this mechanism at the
higher complexity of human brain, which may underlie its

h igher suscept ib i l i ty for such kind of complex
neurodevelopmental disorder [71–73]. Considering the final
subcellular localization as indicative about proteins function,
it is known that secreted proteins have generally signaling and
regulatory roles [74]. Cell membrane located ones act both as
receptor for these signals and play crucial roles in establish-
ment of cell polarity, of primary importance for cell migration
and interaction with the surrounding cells/environment and
dendritic stability or removal [75–77]. Cytoplasm-located pro-
teins play roles especially in signal transmission both in cen-
tripetal and centrifugal ways [78] or even in direct receptor
activity, as in the case of steroid hormones [79]. In cytoplasm,
we also found the transcription apparatus from RNA to
aminoacidic chains of the eucaryote cells, organized in ribo-
somes [80, 81] and the Golgi apparatus, of primary impor-
tance for the assembly and final remodeling of secreted pro-
teins [82]. Finally, we know the role of mitochondrions as
primary energy producers for the cell [83, 84] and nucleus in
regulating genetic expression and cell life cycle and reproduc-
tion [85, 86]. Our results clearly show how pruning-related
secreted proteins are the evolutionary newest (least conserved)
and also the best associated with SKZ. So, we can deduce how
regulation of this mechanism represents its evolutionary
newest part and also the most associated with SKZ. Consis-
tently, secreted signaling proteins are already known to be
generally less conserved through evolution, and this fact has
been involved in several diseases [87–89]. This subcellular
located group also represents the most capable to interact

Fig. 5 The secreted proteins
mean expression rate for each of
the brain regions under analysis

Table 8 Characteristics of the ten best associated SNPs

rsid Gene SNP region Association p value

rs4894814 TNIK Intron 0.00001

rs17269688 NGF Intron 0.00004

rs6537860 NGF Intron 0.00005

rs7535026 NGF Intron 0.00006

rs10938796 SLIT2 Intron 0.00007

rs10776798 NGF Intron 0.00007

rs561712 NOS1 Intron 0.00008

rs816293 NOS1 Intron 0.00009

rs7523654 NGF Intron 0.00009

rs7530686 NGF Intron 0.0001
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and alter all the neuron surrounding environment. This obser-
vation is coherent with the generalized alterations characteriz-
ing SKZ patients’ brain. In fact, CNS system abnormalities
have been revealed not only in neurons but also, and maybe
predominantly, in glial and connective tissues, in which these
secreted proteins interact [90–92]. This is also consistent with
the neurodevelopmental theory foundation that SKZ is a con-
sequence of global alterations in brain connectivity and trans-
mission regulation [93, 94]. Intriguingly, various secreted and
secretion-related proteins already showed significant role in
shaping SKZ risk [95–97]. As secreted proteins appear to be
the evolutionarily newest, we can suppose that evolution
through mammals, to adapt this biological process at the
higher complexity of brain, worked more on a fine orchestra-
tion and harmonization of its parts with the increasing number
of simultaneous nervous process carried out, rather than mod-
ifications in the dendritic cut realization itself. That makes the
regulation of this mechanism its evolutionary newest part, the
less tested, and therefore the most susceptible to errors. Con-
sequently, even a little malfunction, in a so crucial moment of
neural remodeling, may later result in a connectivity larger
deficit. Consistently, studies are also showing how regulation
of pruning is the part probably related to its major abnormal-
ities [98, 99]. In this sense, the role of secreted proteins in
regulation of neuron interactions and connectivity (among
them and with the environment) may be the base for these
connectivity alterations. Moreover, evidences that these alter-
ations characterize not only SKZ patients but all the subjects at
high genetic risk for the disease and their offspring have been
reported by hereditary and imaging studies [31, 100, 101].
Considering that pruning takes place in every individual dur-
ing adolescence, these lines of evidence create a pathological
continuum that may be related with different stages of
adolescent connectivity remodeling errors, due to pruning
mis-regulation.

Genetic Confirmation of Secreted Proteins Role

Genetic analyses of pruning-involved genes in 9,490 PGC
case–control sample revealed the importance of these genes
in central steps of brain development, and consistently, they
were already found to be associated with SKZ (please refer to
Table 4). In fact, we recognize how DLG1 and THBS4 basi-
cally define the neurons’ interactions and connectivity with
other cells and with the environment. In particular, there is
evidence that the THBS4’s product is involved in neuronal
events such as migration in early postnatal and adult brain in
animals [102]. Neuronal migration is a cellular event with
impact on pruning [103]. For example, a deficit in the
semaphorin system, which is strongly related to neuronal mi-
gration, also affects pruning [104]. NOS1 is also acting as
signaling molecule through its ability of regulating endothelial
permeability. In fact, it encodes for an enzyme-producing NO,

a messenger that is able to exit the cell and regulate the sig-
naling for endothelial cells, neuron signaling, etc. [105] with
its different isoforms. At the same manner, FADS1 is a central
step in a metabolic pathway involved in cellular membrane
stability and permeability regulation, a function which is
clearly essential to allow cells playing harmoniously with sig-
nals from the environment. We can therefore suppose that
alterations in these genes impair the cellular capacity of
interacting and relating with the environment. This impaired
ability may create problems, especially during pruning pro-
cess. Indeed, the misinterpretation of its fine and complex
human regulation, based on extracellular signals, could lead
to an over/under/wrong branch removal that appears to be
strongly associated with SKZ alterations. Pathway analysis
confirmed these perspectives. In fact, it revealed consistent
associations between altered neuron connectivity and interac-
tions biological function and SKZ. In this regard, we noticed
that the most associated biological function group appeared to
be the Bregulation of cell structure and interactions,^ the core
of pruning mechanism. At the samemanner, environment reg-
ulatory functions resulted significantly associated Bendothelial
and epithelial (nervous surrounding environment) regulation^
and Bregulation of cell membrane potential^ [10, 106, 107].
Moreover, consistently with the hypothesis that secreted pro-
teins are the cellular compartment most susceptible group for
SKZ, regulation of secreted proteins rearrangement resulted as
strongly associated. In particular, Golgi apparatus
(GO:0005796) is well known to be the cellular site where
proteins destined to be secreted are rearranged and selected,
and Protein C-terminus binding (GO:0008022) is clearly im-
portant in this protein’s rearranging function. These data sup-
port the previously cited evidence that altered pruning regula-
tion (both in terms of signaling that in terms of their interpre-
tation) may be the base to understand these connectivity alter-
ations developed by all SKZ patients and high genetic risk
subjects during adolescence, as seen in imaging studies and
previously cited.

Hippocampal and Neuropil Primary Role
in SKZ-Pruning Relationship

Investigating the cell line and regional brain expression of
secreted proteins we found that they are expressed primary
in neuropil, which has been postulated to be the microscopic
base of white matter reductions observed in SKZ [35, 36]. The
analysis also showed that the brain region with the highest
expression rate of these secreted genes is the hippocampal area
(Tables 6 and 7). Notably, the hippocampus is known to be the
brain area where, earliest in life, notable differences between a
normal subject, a high genetic risk one, and a patient that will
be later diagnosed as SKZ [108, 109] can be seen. Alterations
of this area development and its connectivity can also be one
of the bases of neurodevelopmental hypothesis for SKZ.
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These two results bring indications that pruning may be par-
ticularly relevant in this region, as other studies already report-
ed [110–112]. This developmental alterations in hippocampal
neuropil, due to particularly altered pruning regulation signal-
ing (based on secreted proteins), may be the driven mecha-
nism that lead to the final typical SKZ brain abnormalities.
These findings need further confirmation through a range of
experimental studies which could also lead to innovative
treatments.

Final Conclusion

All these lines of evidence are consistent with a possible ge-
netically driven mispruning that by removing branches that
should have not been removed or overremoving/
underremoving them brings to these connectivity alterations,
revealed both in biological and imaging studies characterizing
with different severity SKZ patients, subjects at high genetic
risk and their offspring. These regulations may be particularly
susceptible to errors due to its newest evolutionary appear-
ance. Alterations in the regulation of this mechanism would
also be consistent with the observation that SKZ neurotrans-
mitters’ abnormalities are different in different brain regions
(e.g., dopamine prefrontal hypo- and meso-limbic hyperfunc-
tioning), and so, this global alteration probably becomes from
an error in the development of the nervous connectivity and
transmission regulation rather than a cumulation of indepen-
dent single alterations identical in each patient [113, 114]. The
limbic system, and especially the hippocampus, may be the
most susceptible structure at these pruning regulation errors
resulting earlier in a particularly altered structure (as found by
previous studies [108, 109]) that, with time, ends in the gen-
eralized altered neural connectivity revealed in SKZ patients.
Pruning errors may, in fact, be the starting point to understand
the widespread alterations in interneuron functioning that has
been suggested as the basis for dopamine prefrontal hypo- and
meso-limbic hyperfunctioning. Thus, widening our knowl-
edge about this mechanism regulation and its altered role in
the disease may be the starting point to deal with SKZ typical
lack of knowledge in etiopathogenesis and pharmacological
treatment strategies.
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