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Abstract

To protect financial institutions from unexpected credit losses, during the monitoring phase

of granted loans it is of primary importance to foresee any evidence of a contagion of liquidity

distress across a network of firms. This term indicates a situation of lack of solvency of a firm

(e.g., a customer) that propagates to other firms (e.g, its suppliers), which could consequently

face challenges in repaying their own granted loans. In this paper, we look for the evidence of

contagion of liquidity distress on an Intesa Sanpaolo proprietary dataset by means of Bayesian

spatial and spatio-temporal models. Our results indicate that such models can detect cases of

distress not yet apparent from covariate information collected on the firms by instead borrowing

information from the network, leading to improved forecasting performance on the prediction

of short-term default with respect to state-of-the-art methods.

Keywords: Credit risk; Bayesian spatio-temporal models; conditional autoregressive mod-

els; complex networks; contagion effect.
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1 Introduction

A reliable assessment of a borrower’s credit risk has always been a topic of primary importance for

financial institutions, to ensure that loans are granted to individuals and/or firms that will be able

to repay their debts timely. However, the global financial crisis of 2008 shed a renewed light on the

urgency of monitoring credit risk levels and, additionally, to take adequate measures to face critical

situations. As a consequence, Basel Accords1, national and international banking authorities and

regulators now require banks to adapt their organisation, processes and IT infrastructure in order

to give an integrated answer to the non-performing loans issue. In this regard, banks have designed

complex roadmaps of improvements with the aim of consistently reducing the level of probable

defaults among the banks’ customers and optimising the risk-return profile.

Banks can mitigate credit risk in several steps of the loan life cycle. One of the most developed

tools consists in assigning a credit rating (or credit scoring) to customers before the loan is granted.

Indeed, assigning a credit rating is explicitly required by the international agreements. There are

different techniques to compute this scoring in the econometric literature. See, for example, Thomas

(2000); Duan et al. (2012); Orth (2012). A different tool consists in foreseeing liquidity problems

for those customers (individuals or firms) who already have a debt to the Bank. A timely detection

(also called early warning) of the transition to financial distress of such customers is pivotal for the

banks to take action and prevent the default event in a short-term horizon, or to limit their losses.

In this work, we will address the early warning task that involves loans granted by a leading Italian

commercial Bank, Intesa Sanpaolo, to both small corporates and small and medium enterprise

(SMEs). In particular, we will forecast the probability of default in the next three months using

payments bank data, which represents a novelty in this context of application.

When approaching the task of forecasting short-term default events from a data-driven point of

view, the first step consists in exploring the different sources of information and checking whether

informative covariates are available. Informative variables are based on the credit status of the

customer, expressing whether they already have some delays in repaying their debts or if they

have overdrafts towards the Bank or other creditors. These covariates are expected to be strongly

informative of liquidity distress (from Intesa Sanpaolo internal studies, for example). Further, there

may be less obvious exogenous factors that could lead rapidly to liquidity distress. Ideally, this

1https://www.bis.org/bcbs/history.htm
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information could be translated into covariates to be included (together with the credit status) into

a statistical model to predict the probability of default. A reasonable indicator is the economic

context or the market sector in which the customer is working (delivering services or producing

goods). Indeed, if the market sector of a customer firm is flourishing, we can expect the firm to keep

the amount of its cashflow at least on the levels of the previous years, whilst, in the opposite case,

the Bank might be alerted about the firm’s cashflow. More specifically, the information that one

would like to summarise with these “mean” predictors on the trend of market sectors is whether

the firm’s customers will keep their demand high and will pay for their purchases on time, and

whether its suppliers will continue delivering high-quality products on time. In other words, we

would like to extract information on the interconnection of firms’ cashflows in their own specific

supply chain, rather than the average indicators of the wealth of the whole market sector. To this

end, we will use payments data available to Intesa Sanpaolo for reconstructing the supply chains

of firms.

Recently, a number of contributions explored firms’ interdependence based on the use of trade

credit in European markets. See, for example, Bussoli and Marino (2018) and McGuinness et al.

(2018). Here, the main idea is that liquidity distress can flow along these connections and a firm

experiencing a period of liquidity distress can delay payments towards its suppliers, that can also

consequently experience liquidity distress. Further, these studies introduce the concept of trade

credit as a “buffer” for small and medium enterprises, that is, the ability that solid suppliers have to

absorb the liquidity distress of their customers, thus mitigating the default risk of their counterparts.

These studies are based on balance sheet data where the amount of unpaid commercial debts

(account payables) and the amount of unreceived commercial credits (account receivables) have to

be declared each year. Thus, the interdependence of each firm to its suppliers/customers is studied

at an aggregated level, and cannot be decomposed into single contributions of a supplier/customer

nor with a short-term (e.g., three-months) frequency. A different approach is proposed in Battiston

et al. (2007) and Dolfin et al. (2019). The authors reproduce the structure of a financial network

via simulations, and study the systemic response to the propagation of bankruptcy under a variety

of different network structures. Here firm-to-firm interconnections are explicitly modelled, but this

is done on simulated data and summarised in a systemic risk computation. In Lamieri and Sangalli

(2019), the commercial relationships are derived from payments and invoices data, and are studied
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both as a complex network (e.g., Newman, 2010) and as an adjacency matrix, namely, a matrix

recording the existence of a common border between regions (here, firms). This matrix is typically

used in spatial models to parameterise the covariance of individual-specific random effects (Gelfand

et al., 2010). In Lamieri and Sangalli (2019), the authors use the commercial relationships to model

the propagation of financial and liquidity imbalances of firms summarised over the time interval

2008-2013, and understand the importance of network effects in the transmission of liquidity distress

during the financial crisis. Further, the authors explain how much the contagion effect can impact

on firms’ default with respect to balance sheet ratios, but they do not propose a forecasting method.

Our context of application is similar to Lamieri and Sangalli (2019), but we will use a more recent

dataset and we will produce a firm-level forecast in a short-term horizon leveraging on the evidence

of existing network effects.

The goal of this paper is to build a predictive model to forecast short-term defaults on a set of

clients of Intesa Sanpaolo. Our model(s) are embedded into a Bayesian spatial statistics framework.

In particular, we reconstruct the commercial relationship network among firms by using a novel,

proprietary payments dataset, and use such network to build an adjacency matrix. In this way, we

can define two firms to be spatial neighbours if they are connected, equivalently, if the relevant entry

of the adjacency matrix is non-zero. Several different definition have been used in spatial models,

such as geographical proximity (e.g., Beck et al., 2006), correlation of financial indicators (e.g.,

Fernandez, 2011; Catania and Billé, 2017) or cross-border relationships (e.g., Blasques et al., 2016).

Borrowing ideas from Bayesian spatial statistics (Banerjee et al., 2003), we consider a conditional

autoregressive (CAR) spatial model and two spatio-temporal variations of the CAR model. We

treat our data as areal data, that is, each firm is interpreted as an area on a map that may share

a common border with other areas (firms) on the map. Such models will combine firm-specific

linear covariates with the modelling of random effects. The random effect is interpreted as a local

(that is, firm-level) evidence of the global spatial or spatio-temporal effects, and models the impact

of the contagion of liquidity distress on the firm coming from the network. Random effects are

modelled as a multivariate normal distribution parametrised by means of the adjacency matrix.

We acknowledge that these techniques are not novel, and have been widely used in medicine,

mostly in functional magnetic resonance imaging (e.g., Woolrich et al., 2004; Bowman et al., 2008;

Ge et al., 2014), or disease mapping (e.g., Adegboye and Kotze, 2012; Alegana et al., 2013; Watson
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et al., 2017), among other fields. However, to the best of our knowledge, they have not been fully

exploited yet with a forecasting perspective in econometrics when dealing with thousands of data

points interacting in a complex network. We will show how these methodologies can be useful in

our context of application, to adjust the forecast of the short-term default produced by strongly

informative predictors (such as the credit status known at the time of prediction) by leveraging

on the network information. Here the adjacency matrix is not used to describe the geographical

proximity among firms, but rather to indicate the presence/absence of transactions among them,

thus to represent the commercial network.

The rest of the paper is organised as follows. In Section 2, we present the dataset and the

peculiarities of the forecasting task. In Section 3, the models used to predict short-term default

are described. In Sections 4 and 5, we present an extensive simulation study and the results on the

case study, respectively. Conclusions are presented in Section 6.

2 Default Data

Our data consists in firm-level structured information collected by Intesa Sanpaolo Bank as monthly

data between February 2018 and August 2019 on 2592 Italian firms from small to corporate size.

Let us first focus on the response variable.Each month, our goal is to forecast the transition from

a regular-payment status to a high-level distress status in the next three months for each firm.

This condition is defined to be true if one of the following is true: (i) the firm is in regulatory

default, which is defined by Basel Accords as a delay in payments by 90 days or more (with some

due simplifications); or (ii) it has been assigned a rating score corresponding to either of the two

worst rating classes. For simplicity, the transition to high-level distress status will be referred to as

a transition to “default” in what follows, regardless of the cause. Formally, we set the dependent

variable Ytk to be:

Ytk =


1if firm k switched to default between months t− 2 and t,

0 otherwise,

(1)

for each month t and firm k. We underline that the three-months gap in defining the response Ytk

is driven by the definition of regulatory default in Basel Accords. Thus, the response is available on

each firm at 16 timestamps from May 2018 to August 2019. The proportion of firms that switches
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Table 1: The number of new defaults each month with respect to the previous month between June

2018 to August 2019.

New defaults

Month 2018/06 2018/07 2018/08 2018/09 2018/10

New defaults 87 103 154 78 118

Month 2018/11 2018/12 2019/01 2019/02 2019/03

New defaults 134 170 127 106 109

Month 2019/04 2019/05 2019/06 2019/07 2019/08

New defaults 126 146 132 98 114

to default at least once over the considered time span is 55%. Moreover, we have 120 new firms in

default each month on average (standard deviation = 25). Given that the data is collected monthly,

it is possible to recover whether firm k switches to default at a particular month t. Table 1 shows the

number of new defaults each month over the considered time span. We clarify, however, that this

information is provided to the reader for illustrative purposes only. From a modelling perspective,

we will retain the three-months gap in the definition of default as indicated by Basel Accords and

requested by Intesa Sanpaolo Bank. The average default rate (average of Ytk’s) across months and

firms is 4.9% and it displays a moderate increase along the time interval, as shown in Figure 1.

We recall that each decimal point of increase in the default rate may correspond to hundred of

thousands Euros (or more) of losses for the Bank.

Further, firm-specific information is available. Credit and financial information is recorded in

the Bank databases via a variety of indicators, but in this study we will consider two covariates for

each firm k at time t. In particular, we will focus on (a) the maximum number of days of payment

delay recorded in the past three months, x1kt; and (b) the used amount over the granted amount

among all Italian financial institutions, x2kt. Covariate x1kt derives from information monitored by

the Bank daily, whereas x2kt is a summary of the credit status of the firm over all Italian financial

institutions. In particular, all Italian financial institutions are required to share the credit status of

their customers with the Central Bank of Italy (Banca d’Italia), that gathers the information in the

Central Credit Register (CR) and returns the statuses of a Bank’s borrowers enriched with their
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Figure 1: Average (across firms) default rate between May 2018 and August 2019. In grey, the

linear regression fit on the default rate.

status towards the other financial institutions. This gathering service provides data with a month

of delay, that is, each month the Bank receives the CR summary of the previous month. This

means that the two covariates are not temporally aligned at the time of prediction. Moreover, both

variables are transformed through the weight of evidence (WOE) process. This process is frequently

used in credit scoring (see, for instance, Soloshenko (2015); Chen et al. (2020); Raymaekers et al.

(2021)), and for continuous variables it consists of two steps: (i) binning, namely, dividing the values

into non-overlapping intervals (classes); and (ii) log proportion, namely, comparing the proportion

of “good” subjects (Y = 0) to “bad” subjects (Y = 1) in each class. Omitting the temporal index

for simplicity, the second step is defined mathematically as the logarithm of the ratio of the odds

of Bad-to-Good in each class to the odds of Bad-to-Good in the entire sample:

log

(
bi/(b1 + b2 + ...+ bL)

gi/(g1 + g2 + ...+ gL)

)
, (2)

where bi and gi, i ∈ {1, ..., L} are, respectively, the number of defaulted and non-defaulted corpo-

rates in class i and L is the total number of classes. Equivalently, we can write:

log (bi/gi)− log (B/G) , (3)

where B and G are the total number of defaulted and non-defaulted firms in the sample. Eq. (3)

represents the value of the transformed covariate. We do not provide further details on the algo-

rithms to select the optimal binning thresholds (e.g., Zeng, 2014) since we ultimately inherit the

Bank’s standard WOE process here. The resulting values for our dataset are shown in Table 2.
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Table 2: The resulting WOE classes for covariates x1 (6 bins in total) and x2 (3 bins in total). We

remind that larger values are associated to riskier classes.

Weights of evidence

x1 -0.86 -0.60 0.16 0.45 0.99 1.44

x2 -0.99 -0.01 0.63

For instance, the first value in the Table (−0.86) represents the less risky class for covariate x1.

The sign indicates that the difference between the logarithm of the proportion of defaulted and

non-defaulted firms in the first class and the logarithm of the same proportion in the full dataset

is negative (−0.86). Therefore, the first class has got relatively fewer defaulted firms than the full

dataset. This number grows up to 1.44 for the riskiest class. We remind that larger values cor-

respond to riskier classes, so in any generalised linear model we would expect positive coefficients

linking these covariates to a default status.

Finally, information about the trade network is available. Retrieving this information is usu-

ally not trivial. Therefore, the analysis of the commercial network and inter-firm dependences is

typically made either on simulated networks or on the flattened information of trade credits and

debts recorded in firms’ balance sheets. Lamieri and Sangalli (2019) provides an exception, and

their trade network is also based on a proprietary dataset. Here, we approximate commercial rela-

tionships by means of the cashflows recorded by the Bank through payments and invoice discounts.

The accuracy of the observed sample increases with the number of payments and invoices the

Bank is able to track. In this regard, Intesa Sanpaolo Bank owns the most representative sample

in Italy, with market shares no lower than 12% in most Italian regions2. The set of commercial

interconnections can be represented as a link matrix W ∈ Rn × Rn, with elements:

W [k, j] =


wkj if there is a cashflow from k to j or vice versa, with k 6= j

0 otherwise,
(4)

where n is the number of firms. wkj is the weight of the link between firm k and another firm

j, k, j = 1, . . . , n and k 6= j. In this work, they are indicator functions with value equal to 1 if

there is a connection between firms k and j in the past 12 months (we defer to Web Appendix

2See https://group.intesasanpaolo.com/en/about-us
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F for a discussion (and assessment) on the use of a non-binary link matrix W ). The temporal

aggregation is chosen to be aligned with the yearly frequency of balance sheets publication. The

assumption of undirected connections induces a symmetric adjacency matrix enabling the model

to estimate the dependence of suppliers on customers and vice versa. Furthermore, we assume that

interconnections are static, that is, weights wkj ’s do not depend on time t as the interconnections

between firms do not appear and disappear during the period of observation. This assumption

is reasonable in our application because our 16-months time span almost equals the 12-months

temporal aggregation to define a connection.

We show our network in Figure 2a, omitting only a few firms disconnected from the biggest

connected component. This is a typical complex network with a scale-free structure and degree

distribution following a power-law f(k) ∝ k−α (see, e.g. Easley and Kleinberg, 2010), with coeffi-

cient α = 2.92 as shown in Figure 2b (p-value of the Kolmogorov-Smirnov test is p = 0.95, thus

failing to reject the null that the data arise from the fitted power-law distribution). The coefficient

is computed as the opposite of the slope of a linear fit of a log-log transformation of degrees of

nodes (number of neighbours) and their empirical frequency, and it is supposed to be estimated

between 2 and 3 (see, e.g., Easley and Kleinberg, 2010)).

In this paper, we will adopt the link matrix as a building block of a spatial model for areal data

(Banerjee et al., 2003). In this framework, areal models can describe the supply chain relationships

with the following abstraction: each firm i can be interpreted as a region having a finite set of

neighbours j = 1, . . . , n (commercial partners). Moreover, we know that our firms are embedded

into a complex network, which is rich of interconnections and influences. In terms of spatial

analysis, we say that areal data exhibit spatial autocorrelation, with observations from areal units

close together tending to have similar values. A portion of this spatial autocorrelation may be

modelled by including known covariate risk factors in a regression or classification model, but it

is common for some spatial structure to show in the residuals after accounting for these covariate

effects. A remedy for this residual autocorrelation is to augment the model with spatially correlated

random effects as part of a Bayesian hierarchical model (Hoff, 2009). Thus, a spatial approach helps

us in modelling these observations without the assumption of independence between one another,

which is a too strong assumption in (Bayesian and not) linear models (as observed in Lee (2013)).
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Figure 2: Two representations of the trade network. (a)The biggest connected component of the

trade network. A few firms disconnected from this biggest component are omitted for simplicity.

(b) Degree distribution of the network. The red line shows a linear regression smoother between

the first and third quartiles of the data.

3 Methodology

In this Section, we introduce the proposed Bayesian hierarchical spatio-temporal models, and briefly

discuss their implementation.

Let us first consider a simple logistic regression model (GLM hereafter) to predict the probability

of default of a firm given its financial condition up to time t− 3:

Ytk ∼ Bernoulli(θtk)

logit(θtk) = βxt−3,k

(5)

where t and k are the discrete temporal and firm’s indexes, respectively, θtk is the probability that

Ytk = 1, and Ytk is the binary target variable indicating whether firm k switched to default between

t− 2 and t, with t = 4, ..., T and k = 1, ..., n.

While the GLM above is a popular model for credit risk evaluation (Hand and Henley, 1997),
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it is natural to expect the probability of default of firm k at time t, θtk, to increase if one or more

firms trading goods or services with k are in default. To this end, we augment the GLM in Eq. (5)

with a firm-specific “spatial” random effect φk, which incorporates the information contained in

the network of relationships W (Box et al., 2015). We model the process {φk} conditionally to W

as a Markov random field, namely, the value of φk, conditionally to all other firms, only depends

on the values of its neighbours (see, e.g., Kinderman and Snell, 1980). We decide to first evaluate

each timestamp independently. Thus, we remove the temporal index t and specify the model as

follows:

logit(θk) = βxt−3,k + φk

φk|φ−k, α, τ,W ∼ N
(
α

∑n
i=1wkiφi∑n
i=1wki

, τ−1
)
,

(6)

where W denotes the adjacency matrix based on the existence of commercial transactions among

firms. The n-dimensional vector φ = (φ1, . . . , φn)> is given a conditional autoregressive (CAR)

prior (Banerjee et al., 2003), and parameters α and τ represent the strength and the precision of

the autocorrelation, respectively. The CAR model has proven very successful in disease mapping,

see Sun et al. (1999) and references therein. The contagion of default across firms bears some

similarities with disease mapping, where default represents the condition of being infected with

a disease. Thus, the CAR model may capture a contagion of liquidity distress across firms not

explained by the linear covariates (Pace and LeSage, 2010).

The CAR model in Eq. (6) still lacks of time dependence, and each timestamp is analysed

separately. However, the probability of default at time t cannot realistically be assumed to be

independent of that at time t− 1. Following Gelfand (2003), we thus extend Eq. (6) to account for

temporal autocorrelation explicitly as follows:

logit(θtk) = βxt−3,k + ψtk

ψtk = φk + χt

φk|φ−k, α, τ,W ∼ N
(
α

∑n
i=1wkiφi∑n
i=1wki

, τ−1
)

χt ∼ AR(1, ρ, σ).

(7)

The random effects ψtk are specified as the sum of two separate autoregressive processes: φk,

modelling the spatial dependence among adjacent firms (constant over time) and χt, describing
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the temporal autocorrelation. The χt’s constitute temporal random effects, and are modelled as a

stationary autoregressive process AR(1, ρ, σ) with 0-mean. Parameters ρ and σ are to be estimated,

and represent the temporal autocorrelation and the noise scale, respectively.

Finally, we consider a different specification for the logit of θtk:

logit(θtk) = βxt−3,k + β3t+ ψtk, (8)

where the linear component of the logit has been enriched with a temporal deterministic trend,

β3t, to account for (the possible) non-stationarity in the temporal process, and ψtk is modelled as

in Eq. (7). The deterministic trend component has been chosen among other more sophisticated

hypotheses (e.g., a stochastic trend, see Box et al., 2015)) because we only have 16 timestamps in

our dataset, and a more complicated model could result in being over-parametrised.

3.1 Prior elicitation and posterior inference

We complete the Bayesian specification of the spatio (-temporal) models via prior elicitation for the

remaining model parameters. We rely on non-informative priors as in Jin et al. (2005), and specify:

βi ∼ Normal(0, 100), i = 0, ..., 3, for the linear regression coefficients; α ∼ Uniform(0, 1) and τ ∼

Gamma(1, 0.1) for the spatial random effects (for all t’s for the CAR model in Eq. (6)), where

the Gamma distribution is parametrised in terms of the shape and rate parameters, respectively;

χ1 ∼ Normal(0, σ2/(1+ρ2)), ρ ∼ Uniform(−1, 1), and σ2 ∼ Inverse-gamma(1, 0.1) for the temporal

autoregressive process. Refer to Banerjee et al. (2003) for a discussion on the choice of non-

informative priors for the spatio-temporal models considered here. As suggested by one reviewer, we

also assessed sensitivity of results to the choice of priors by specifying informative prior distributions

on the parameters for which prior information was available, whilst shrinking the spatio-temporal

component towards the GLM a priori. To this end, guided by the linear fit to the average default

rate in Figure 1, we placed an informative prior on β3 and chose priors for α and ρ inducing

shrinkage towards the GLM (i.e., priors centred on zero and with narrow variance). Out-of-sample

forecasting performance, reported in Section 5 for the non-informative case, was unaffected by

different prior specifications, and therefore results for the informative case were not included in this

manuscript.

Posterior samples of the model parameters are obtained via Markov Chain Monte Carlo (MCMC).

However, the full conditional posterior distributions are not available in closed form for (most of)
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the parameters of the models above. To ensure faster convergence to the high-dimensional pos-

terior distribution than simpler methods (e.g., Metropolis within Gibbs), we rely on Hamiltonian

Monte Carlo (Neal, 2011) for posterior sampling, and on STAN (Stan Development Team, 2018)

for its implementation. We defer a discussion on STAN and HMC to Web Appendix A, which also

includes code to sample from the CAR model (Eq. (6)) in STAN.

To evaluate the forecasting performance (Section 3.3), we fit the models to a dataset comprising

timestamps 1 to 8 (training set) and predicted the default response on the 12th timestamp (April

2019 data, hereafter). The four-months gap in prediction is due to the three-months delay to

reconstruct the response, plus an additional one-month delay to collect all the data. We then

repeat the forecasting exercise by considering a bigger training set of default data collected from

timestamp 1 to 12, and a test set at the 16th timestamp (August 2019 data, hereafter). In Web

Appendix E, we repeat the analysis considering longer time horizons for prediction on the case

study.

3.2 Competing models

We compare the forecasting performance of the models in Eq. (6), (7) and (8) to that of two

competitors. The first competing model is the standard GLM given by Eq. (5). The GLM acts

as a baseline model, as it can be seen as the degenerate form of the spatio-temporal models if the

spatial and temporal components were estimated to be null (i.e, with α = 0 and ρ = 0). For fitting

the GLM, a non-informative prior is placed on β as outlined in Section 3.1.

The second comparative method is taken from the theory of information cascades in complex

networks studies (Roukny et al., 2013). In this context, some network nodes are observed to fail

at the beginning of the process, and their failures increase the distress of the neighbouring nodes.

When this load exceeds the individual robustness, the node fails and this process can replicate

iteratively across the network in time. The failure (also called activation) probability of a node

is often represented by a parameter p. This type of propagation dynamics has been studied and

modelled with several variants in both social and economic contexts (Kempe et al., 2003; Hurd,

2016), and here we apply it with an activation probability parameter p = 1. The method can be

thus regarded as a näıve or random walk method (Hyndman and Athanasopoulos, 2019), which

prescribes to forecast a process state through its own lagged value. Here the lag is not computed
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in time but rather in space, and out-of-sample prediction will be made as follows:

Ytk =


1 if WkYt−h > 0

0 otherwise,

(9)

where Wk is the k-th row of the adjacency matrix W , and Yt−h are the last known default states

of the firms at the time of prediction (h = 4 for our case study). Model in Eq. (9) will be called

NetNäıve (as Network Näıve) hereafter.

3.3 Performance measures

We compare both the in-sample and forecasting performance of the methods above via the Receiver

Operating Characteristic (ROC) curve (and related Area Under the ROC Curve (AUC)) and the

recall index (REC). The REC is defined as the number of correctly predicted defaults over the

number of actual defaults. However, a clarification is necessary here. While the spatio (-temporal)

models in Section 3 and the GLM are probabilistic methods, thereby providing an estimate of

the probability of default to be used for constructing the ROC and computing AUC and recall,

NetNäıve is a hard classifier, namely, it only provides a binary prediction of default. To ensure a

fair comparison of the models, we adopt the business perspective of the Bank, which organises the

workload generated by the analysis of all possible predicted default alerts. Therefore, once we are

able to analyse a fixed percentage of files, such as the worst (or riskiest) 3, 5, 10 or 50% of the

population, we are also able to compute the proportion of truly defaulted firms in these subsets

of files. We name these proportions quantile RECs, and will be denoted as QREC0.03, QREC0.05,

QREC0.1 and QREC0.5 hereafter. For probabilistic models, the ranking of firms is done by sorting

the estimated posterior probability of default from largest to smallest, whereas we rank firms based

on the number of nearest neighbours in default (from a maximum of 4 to a minimum of 0) for the

NetNäıve method.

A quantile REC has a natural upper bound, which is given by the minimum between 100% and

the ratio between the selected population proportion (e.g., the riskiest 50%) and the actual default

rate. In all the following tables, these upper bounds will be expressed explicitly in parenthesis.

For example, QREC0.03(0 − 5) indicates that we are analysing the riskiest 3% of the population,

and QREC0.03 can range from a minimum of 0 to a maximum of 5 (the larger the value, the

better). Quantile RECs can be computed whenever we predict default (possibly monthly). For
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out-of-sample forecasting performance, we predict default at a particular month (e.g., May 2019),

and the quantiles RECs will refer to that month. If we are evaluating performance over multiple

months (e.g., in-sample forecasting performance), the average QREC will be reported.

Finally, we clarify that while it is possibile to compare models according to other performance

criteria (e.g., precision), monitoring the recall is mostly important in our application. Therefore,

motivated by our business perspective and for simplicity, we only report (quantile) recall results

hereafter.

4 Simulation study

In this Section, we investigate the performance of the models above in three different simulation

scenarios. Before describing the scenarios, we define common elements across settings. We generate

data on 2500 firms and for a total of T = 18 timestamps. These 2500 firms are supposed to be

collected on a 50-times-50 grid, and the adjacency matrixW is a squared 2500-times-2500 symmetric

matrix whose elements wkj are equal to 1 if firms k and j have a connection (common border) in

the grid. Further, two covariates are generated for every firm k and timestamp t by sampling from

a uniform distribution, xjtk ∼ Uniform(0, 1), for j = 1, 2. We set priors as in Section 3.1, but

choose here informative prior distributions on τ and σ2. Posterior sampling proceeds as described

in Section 3.1 and Web Appendix A and, in particular, we run four chains for each model with

2500 iterations, a thinning parameter of 2, and 1000 warmup steps.3 We train the models on all the

data up to the 10th (14th) timestamp and forecast the 14th (the 18th). The in-sample-performance

reported below refers to the 10th timestamp, whereas the out-of-sample performance is the average

performance on the two forecasts.

4.1 Three simulated settings

Three data generating processes are set in line with the three proposed models in Eq. (6), (7) and

(8). Specifically, the three scenarios are the following:

1. Data with spatial autocorrelation but without a temporal autocorrelation according to Eq.

3The execution time is less then 2 hours for each of the models on a personal computer with the following

characteristics: Intel(R) Core(TM) i5-7300U CPU @ 2.60GHz 2.71 GHz (4 cores, 8 GB RAM).
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(6), with β = (1, 4,−6)>. The spatial parameters are set to α = 0.8 and τ = 0.1. The drawn

samples of θtk at timestamp t = 1 are displayed in Figure 1 in Web Appendix B.

2. Data with both spatial and temporal autocorrelation in line with Eq. (7), with all parameters

set as in the previous scenario, and with ρ = 0.7 and σ = 1. Realisations of χt and θtk are

displayed in Figure 2 in Web Appendix B.

3. Data with both spatial and temporal autocorrelation and with a linear increasing trend in

time as per Eq. (8), with all parameters set as in the previous scenario and the new parameter

β3 = 0.1, representing an increasing trend. Realisations of χt + β3t and θtk are displayed in

Figure 3 in Web Appendix B.

Further, we performed an additional simulation under setting 1 but considering as true W a

portion of the real commercial network described in Section 2. We discuss this simulation in Web

Appendix C.

4.2 Model performance comparison

Tables 3, 4 and 5 report the posterior mean estimates of the model parameters along with 95%

credible intervals. Here, we clearly see that the three proposed models estimate coefficients β0,

β1, β2 better than the GLM. As discussed in Pace and LeSage (2010), we confirm that the spa-

tial random effects are able to capture some exogenous conditions that are uncorrelated with the

explanatory variables in the linear component. If such exogenous conditions are not modelled ex-

plicitly (as in the GLM), there is lack of accuracy in the estimate of the coefficients of the linear

covariates.Furthermore, the models including the temporal components (named “AST” and “AST-

trend” in the Tables) are able to estimate the spatial effects more accurately than the mere spatial

model (“CAR”) in the second and third scenarios. Indeed, the credible intervals for α are narrower

about the true value for both spatio-temporal models. This may be due to the fact that the spatio-

temporal models do not try to attribute all the residual variation to the spatial random effects, but

explain the variability in the data also via the temporal components. Further, the lower precision

of the CAR model may be also due to the fact that it is evaluated on a single timestamp rather

than on the 10 timestamps used by the other models. Concerning the temporal autocorrelation

ρ of models AST (Eq. (7)) and ASTtrend (Eq. (8)), we notice wide credible intervals. However,
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Table 3: Mean and 95% credible intervals of the posterior distributions of the model parameters

for the spatio (-temporal) models in Section 3 and the GLM (Eq. (5)) along with their true values

in the first simulation scenario of spatially autocorrelated data.

CAR AST ASTtrend GLM

Param (real) mean (2.5%, 97.5%) mean (2.5%, 97.5%) mean (2.5%, 97.5%) mean (2.5%, 97.5%)

β0 (1.0) 1.03 (0.63, 1.59) 1.04 (0.39, 1.67) 1.01 (-0.05, 2.08) 0.73 (0.66, 0.81)

β1 (4.0) 3.59 (2.86, 5.19) 3.88 (3.73, 4.04) 3.88 (3.73, 4.02) 2.62 (2.52, 2.73)

β2 (-6.0) -5.57 (-7.95, -4.60) -5.93 (-6.11, -5.75) -5.93 (-6.10, -5.76) -4.05 (-4.17, -3.93)

β3 (0.0) - - 0.01 (-0.23, 0.26) -

α (0.8) 0.81 (0.54, 0.95) 0.74 (0.66, 0.81) 0.74 (0.66, 0.81) -

ρ (0.0) - 0.27 (-0.90, 0.97) 0.47 (-0.81, 0.99) -

Table 4: Mean and 95% credible intervals of the posterior distributions of the model parameters

for the spatio (-temporal) models in Section 3 and the GLM (Eq. (5)) along with their true values

in the second simulation scenario of spatially and temporally autocorrelated data.

CAR AST ASTtrend GLM

Param (real) mean (2.5%, 97.5%) mean (2.5%, 97.5%) mean (2.5%, 97.5%) mean (2.5 %, 97.5 %)

β0 (1.0) 0.47 (0.15, 0.90) 0.95 (-0.16, 2.67) 1.78 (0.17, 3.54) 0.35 (0.28, 0.42)

β1 (4.0) 3.52 (2.76, 5.37) 3.87 (3.71, 4.02) 3.87 (3.71, 4.03) 2.46 (2.35, 2.57)

β2 (-6.0) -5.52 (-8.50, -4.49) -5.95 (-6.14, -5.77) -5.96 (-6.14, -5.78) -3.85 (-3.97, -3.74)

β3 (0.0) - - -0.20 (-0.53, 0.11) -

α (0.8) 0.86 (0.63, 0.97) 0.79 (0.72, 0.85) 0.79 (0.72, 0.85) -

ρ (0.7) - 0.43 (-0.32, 0.97) 0.28 (-0.71, 0.97) -

this uncertainty seem to be justified by looking at possible realisations of the data generating pro-

cesses (see Figure 2 in Web Appendix B with an apparent decreasing trend, and Figure 3 in Web

Appendix B). Thus, we do not explain this uncertainty as a limitation of the models, but rather

as a possible interpretation of the data. To investigate this aspect, we produced further extensive

simulations (not reported here) with a longer dataset of 100 timestamps, and noticed the ambiguity

in estimating ρ vanished.

Table 6 reports the models’ in-sample performance averaged across the timestamps in the train-

ing set. The spatio (-temporal) models achieve a good improvement in terms of AUC in all scenar-

ios over the GLM and the NetNäıve model (which performs poorly, but always above the random

choice). In terms of QRECs, there is a smaller improvement but this is in line with a smaller margin

for improvement according to the maximum value attainable by these proportions.

Table 7 reports the models’ out-of-sample predictive performance. Here we see that the AUC
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Table 5: Mean and 95% credible intervals of the posterior distributions of the model parameters

for the spatio (-temporal) models in Section 3 and the GLM (Eq. (5)) along with their true values

in the third simulation scenario of spatially and temporally autocorrelated data with a trend.

CAR AST ASTtrend GLM

Param (real) mean (2.5%, 97.5%) mean (2.5%, 97.5%) mean (2.5%, 97.5%) mean (2.5 %, 97.5 %)

β0 (1.0) 4.37 (3.52, 5.96) 1.39 (0.11, 2.83) 0.34 (-1.82, 2.54) 0.80 (0.73, 0.88)

β1 (4.0) 3.29 (2.48, 4.58) 3.85 (3.70, 4.00) 3.85 (3.69, 4.01) 2.38 (2.28, 2.48)

β2 (-6.0) -5.69 (-7.68, -4.59) -5.86 (-6.04, -5.67) -5.86 (-6.05, -5.68) -3.63 (-3.76, -3.54)

β3 (0.1) - - 0.23 (-0.22, 0.69) -

α (0.8) 0.69 (0.19, 0.96) 0.73 (0.65, 0.81) 0.73 (0.65, 0.81) -

ρ (0.7) - 0.31 (-0.69, 0.95) 0.33 (-0.62, 0.97) -

increases by 2 (CAR) to 9 points (spatio-temporal models) over the GLM, and the QRECs almost

reach their upper bounds (e.g., see the REC0.03 and REC0.05 of the spatio-temporal models in the

first and second scenarios). Although there is an (expected) drop in performance out-of-sample, the

spatio (-temporal) models do not loose their advantage over GLM and NetNäıve. This phenomenon

is to be expected for methods that try to model unexplained effects including them as parameters,

thus adding degrees of freedom and stretching the balance in the bias-variance trade-off.

5 Case study

In this Section, we present estimation and forecasting performances of the spatio (-temporal) models

on real data from the proprietary data set described in Section 2. Parameter estimation is done

as described in Section 3.1. We defer to Web Appendix D for diagnostics and checks ensuring

convergence of the MCMC algorithm.

5.1 Model estimation

Estimated parameters are shown in Table 8. We see that the posterior means of β0, β1, β2 of model

AST (Eq. (7)) are the closest to the GLM ones. The posterior of β0 under the AST model is more

skewed negatively than that of ASTtrend (Eq. (8)). In contrast, the posterior means and credible

intervals of β1 and β2 under the two models are almost identical. For the CAR model, instead,

we highlight that the credible interval of β2 does not overlap with the ones of the other models,

and does not contain the value estimated by the GLM for this parameter. We recall that β2 is the
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Table 6: In-sample predictive performance measured via AUC and QREC (Section 3.3) of CAR

(Eq. (6)), AST (Eq. (7)), ASTtrend (Eq. (8)), GLM (Eq. (5)) and NetNäıve (Eq. (9)) in the three

simulated scenarios described in Section 4. Ranges into parentheses indicate the values attainable

by QREC considering the worst (riskiest) 3, 5, 10 and 50% of the population of synthetic firms,

respectively.

Scenario Measure CAR AST ASTtrend GLM NetNäıve

Space

AUC 95.96 92.84 92.84 80.71 54.22

QREC0.03(0 − 5.94) 5.91 5.92 5.92 5.66 3.55

QREC0.05(0 − 9.9) 9.86 9.88 9.88 9.38 5.90

QREC0.1(0 − 19.8) 19.72 19.68 19.68 18.27 11.59

QREC0.5(0 − 99.02) 87.78 84.50 84.56 72.72 52.84

SpaceTime

AUC 95.25 93.03 93.03 80.93 54.34

QREC0.03(0 − 7.22) 6.94 7.17 7.17 6.50 3.55

QREC0.05(0 − 12.04) 11.57 11.91 11.91 10.79 5.90

QREC0.1(0 − 24.07) 23.15 23.50 23.53 20.67 11.53

QREC0.5(0 − 100) 91.30 88.01 88.06 76.01 54.11

Trend

AUC 96.69 92.96 92.96 81.09 54.10

QREC0.03(0 − 6.18) 3.51 6.00 6.00 5.66 3.54

QREC0.05(0 − 10.3) 5.85 9.98 9.98 9.33 5.69

QREC0.1(0 − 20.6) 11.69 19.85 19.85 18.15 11.06

QREC0.5(0 − 100) 58.33 81.94 81.88 71.67 53.12

coefficient for the covariate built on the proportion of used and granted credit across all Italian

financial institutions. The significant difference in its posterior distribution can be read as if the

CAR model gives lower importance to the possible default of the firm towards other banks than

the GLM and the other models. Furthermore, this difference may be due to the fact that the CAR

model is estimated on a single timestamp while the other models leverage the full dataset for the

estimation. The posterior distribution of the spatial autocorrelation parameter α is instead coherent

across all three spatio (-temporal) models (Figure 6 in Web Appendix D). Concerning the temporal

autocorrelation for models AST and ASTtrend, Table 8 shows wide credible intervals around mean

values 0.29 and 0.11, respectively. However, by looking at the proportion of positive posterior

samples over the full posterior distribution for ρ, we can assess that the temporal autocorrelation
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Table 7: Out-of-sample performance measured via AUC and QREC (Section 3.3) of CAR (Eq.

(6)), AST (Eq. (7)), ASTtrend (Eq. (8)), GLM (Eq. (5)) and NetNäıve (Eq. (9)) in the three

simulated scenarios described in Section 4. Ranges into parentheses indicate the values attainable

by QREC considering the worst (riskiest) 3, 5, 10 and 50% of the population of synthetic firms,

respectively.

Scenario Measure CAR AST ASTtrend GLM NetNäıve

Space

AUC 85.17 89.75 89.75 82.35 53.44

QREC0.03(0 − 5.84) 5.65 5.84 5.84 5.73 3.43

QREC0.05(0 − 9.74) 9.47 9.62 9.62 9.35 5.74

QREC0.1(0 − 19.48) 18.67 19.21 19.25 18.07 11.42

QREC0.5(0 − 97.39) 75.98 80.75 80.67 73.57 52.04

SpaceTime

AUC 84.78 90.18 90.17 81.76 55.40

QREC0.03(0 − 7.53) 7.25 7.47 7.47 7.21 3.61

QREC0.05(0 − 12.55) 12.03 12.37 12.37 11.44 6.24

QREC0.1(0 − 25.09) 23.13 24.22 24.22 21.23 12.19

QREC0.5(0 − 100) 80.45 86.68 86.68 77.19 54.66

Trend

AUC 83.98 89.33 89.32 81.79 52.51

QREC0.03(0 − 4.69) 4.69 4.69 4.69 4.69 3.02

QREC0.05(0 − 7.82) 7.75 7.81 7.81 7.75 5.24

QREC0.1(0 − 15.62) 15.47 15.59 15.59 15.19 10.61

QREC0.5(0 − 78.11) 68.01 71.45 71.52 66.83 51.63

parameter is estimated to be positive with probability above 0.58 for both models.

Figure 3 shows two randomly selected, truly defaulted firms at the 8th timestamp (triangular

nodes). The (true) network built around the triangular nodes shows that there are no defaulted

firms in their respective first-order neighbours (circular nodes indicate no default). For these truly

defaulted firms (triangles), the GLM estimates low probability of default (below 0.1). The CAR

model, instead, estimates a positive mean spatial random effect φk, thereby inflating the estimated

posterior probability of default for these firms. Therefore, the CAR successfully pins the truly

defaulted firms despite the absence of defaulted first-order neighbours. A similar result is obtained

via the spatio-temporal models.

Finally, we look at the in-sample performance presented in Table 9. We see that the proposed
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Table 8: Posterior mean and 95% credible intervals of the model parameters for CAR (Eq. (6)),

AST (Eq. (7)), ASTtrend (Eq. (8)) and GLM (Eq. (5)) fitted to the real data with non-informative

priors.

CAR AST ASTtrend GLM

Param mean (2.5%, 97.5%) mean (2.5%, 97.5%) mean (2.5%, 97.5%) mean(2.5%, 97.5%)

β0 1.48 (0.88, 2.05) 1.72 (1.30, 2.14) 1.44 (0.88, 2.04) 1.72 (1.49, 1.95)

β1 0.89 (0.73, 1.04) 0.90 (0.84, 0.96) 0.90 (0.84, 0.96) 0.88 (0.82, 0.94)

β2 2.49 (1.65, 3.30) 4.52 (4.20, 4.85) 4.53 (4.21, 4.86) 4.54 (4.21, 4.86)

β3 - - 0.07 (-0.05, 0.19) -

α 0.48 (0.02, 0.95) 0.48 (0.03, 0.95) 0.46 (0.02, 0.94) -

ρ - 0.29 (-0.81, 0.97) 0.11 (-0.90, 0.96) -
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Figure 3: Two ego-networks of order 1 around two truly defaulted nodes (triangles) at the 8th

timestamp with the following characteristics: strictly positive mean spatial random effect φk from

the CAR model and GLM in-sample predicted probability of default below 0.1. Circular nodes

indicate non-defaulted firms. Bigger nodes represent larger (positive) posterior mean of the spatial

random effect φk.

models have higher AUC and QRECs than the GLM (and NetNäıve), with the exception of the

CAR model.

5.2 Out-of-sample forecasting performance

In this Section, we investigate the forecasting performance on two out-of-sample sets: April 2019

is forecasted based on model estimation over February 2018 - January 2019, and August 2019 is

forecasted based on model estimation over February 2018 - April 2019. The temporal gaps between
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Table 9: In-sample predictive performance measured via AUC and QREC (Section 3.3) of CAR

(Eq. (6)), AST (Eq. (7)), ASTtrend (Eq. (8)), GLM (Eq. (5)) and NetNäıve (Eq. (9)) on

real data. Ranges into parentheses indicate the values attainable by QREC considering the worst

(riskiest) 3, 5, 10 and 50% of the population of firms, respectively, as described in Section 3.3.

Measure CAR AST ASTtrend GLM NetNäıve

AUC 79.95 83.86 83.83 80.81 51.27

QREC0.03(0 − 65.2) 27.12 41.45 41.71 36.22 2.31

QREC0.05(0 − 100) 27.12 52.92 52.68 42.15 4.56

QREC0.1(0 − 100) 44.07 59.50 59.38 56.46 12.10

QREC0.5(0 − 100) 85.31 88.87 88.72 85.89 50.10

the training and test sets are defined according to the delay in the availability of data, and are

required to compute both the target variable and the linear covariates. In Web Appendix E, we

repeat the analysis presented here considering different time horizons for prediction. Specifically,

we target the prediction of default six, nine, and twelve months ahead holding-out August 2019

data to investigate how the predictive ability of the models behaves as a function of the temporal

gap in prediction. We defer to Web Appendix E for these results.

Models’ performance on the two three-months ahead out-of-sample tests is presented in Table

10. We see that the predictive performance of the CAR model is now higher than the GLM’s in

both out-of-sample tests, and its performance is in line (April 2019) or better (August 2019) than

the two spatio-temporal models. The improvement is mainly in terms of AUC, but we also see that

the CAR model is able to distinguish among firms whose linear covariates do not explicitly show a

critical situation (QREC0.5). From an economical point of view, this means that the spatial model

can predict defaults in the absence of overdrafts or delays in payments towards the Bank or other

financial institutions. This is a powerful feature in the context of application as it enables the Bank

to take actions proactively before the distress happens instead of reacting to a critical event. The

same conclusion can be drawn by looking at the ROC in Figure 4, where we see that the ROC of

the CAR outperforms the GLM in the central and right range of the graphs, that is, where the

GLM is predicting a low probability of default.

Looking at the spatio-temporal models, we see that the forecasting performance is good in the
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first out-of-sample test predicting April 2019 data (Table 10), where the AUC is slightly higher

than that of both CAR and GLM. In the second case (August 2019 data), instead, we see a drop

in their predictive performance as the AUC is smaller than the GLM’s. This may be due to the

fact that the marginal distribution of the probability of default per month does not increase or

decrease consistently over time for all the network, as it is required from the separable form of our

models. Indeed, in Eq. (7) and (8) the spatial and temporal random effects are combined additively,

φk +χt. If we visualise the spatial effects as a surface over the network, over time we should see the

surface moving up and down without the ability of increasing in certain regions while decreasing in

different regions of the network. Thus, the difference between the probability of default of two firms

at two different timestamps can only change in presence of a change in their covariates and not to

a change in the local risk of the network (since the φk’s are constant over time and the χt’s are not

firm-dependent). Rather, performance results suggest that, for real data, the surface of the general

probability of default may increase or decrease over time in a different fashion in different parts of

the network. To this end, we have further considered two modelling extensions: 1) an interaction

between the spatial effects, φk, and temporal effects, χt; and 2) non-separable spatio-temporal

effects φkt modelled via a multivariate AR(1) process with iid CAR updates. Preliminary results

are presented in Web Appendix G.

6 Conclusions

In this work, we have approached the task of short-term forecasting of a firm’s default leveraging the

information of firms’ interconnections to detect potential contagion effects. The most interesting

component in the dataset of our case study is the network of commercial relationships among firms,

which is not often available in credit risk studies. We modelled the data by means of Bayesian spatial

and spatio-temporal techniques, adapting them to our loan management scenario. In particular,

we proposed a CAR model on the adjacency matrix built on the links of the commercial network,

and further considered two extensions including additive temporal effects. After a simulation study

on several scenarios, we fit the models to the real data and observed an improvement in forecasting

performance brought by these approaches in characterising non-trivial distress situations. Indeed,

from the ROC curves we saw that the general improvement in AUC is concentrated on those firms

for which the most explicit linear covariates (i.e. payment delays, access to huge amounts of credit)
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Table 10: Out-of-sample forecasting performance measured via AUC and QREC (Section 3.3) of

CAR (Eq. (6)), AST (Eq. (7)), ASTtrend (Eq. (8)), GLM (Eq. (5)) and NetNäıve (Eq. (9))

on the held-out real data of January 2019 and May 2019, respectively. Ranges into parentheses

indicate the values attainable by QREC considering the worst (riskiest) 3, 5, 10 and 50% of the

population of firms, respectively, as described in Section 3.3.

January 2019

Measure CAR AST ASTtrend GLM NetNäıve

AUC 68.58 68.58 68.61 67.92 49.04

QREC0.03(0 − 60.47) 28.68 35.66 37.21 37.98 3.88

QREC0.05(0 − 100) 39.53 41.86 41.86 41.86 4.65

QREC0.1(0 − 100) 47.29 48.06 48.06 48.06 9.30

QREC0.5(0 − 100) 59.69 58.91 58.91 58.91 49.61

May 2019

AUC 74.26 69.91 69.95 70.74 50.88

QREC0.03(0 − 67.24) 7.76 8.62 8.62 7.76 2.59

QREC0.05(0 − 100) 12.93 21.55 21.55 22.41 6.90

QREC0.1(0 − 100) 44.83 43.10 42.24 44.83 10.34

QREC0.5(0 − 100) 79.31 70.69 70.69 70.69 50.86

do not give any information and, thus, the baseline GLM is unable to highlight any difficulty

or to distinguish sound firms from distressed ones. Such feature is interesting from a credit risk

perspective because it enables coordinated credit strategies on the firms of a segment of the supply

chain detected through the spatial (inter-firm) effects before the distress propagates, and before it

is converted into traditional explicit distress information.

The choice of a hierarchical setting with a CAR prior for the spatial effects is one of the

possibile choices to consider for network-linked data (see, e.g., a different precision matrix as in

Datta et al., 2019 or penalisation, as introduced in Li et al., 2019). These model definitions may

be considered as competing specifications to the proposed models in future work. Moreover, by

testing the algorithms out-of-sample over an eight-month period, we found that the dynamics of

the complex network of commercial interactions among firms are not completely described by the

temporal and spatial effects expressed in a separable additive form. This latter finding encourages
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Figure 4: The ROC curves of the CAR model (thick) and the GLM (thin) on the two out-of-

sample sets, respectively, April and August 2019. The 45 degree line (dashed) corresponds to

random choice.

the exploration of non-separable spatio-temporal effects. At present, the topic of non-separable

spatio-temporal modelling constitutes an unexplored field for complex network of thousands of

nodes due to computational issues, and will be explored further in future research.

Finally, we acknowledge that the dataset may contain firms of any market sector that may have

different commercial dynamics, with different speeds in acquiring and loosing customers. Thus,

removing the assumption of a static adjacency matrix may also be a direction for future research.

From a methodological point of view, this is an open field of research (Billé et al., 2019).

Availability of data and materials

The data for the case study are part of a propriety dataset owned by Intesa Sanpaolo, and cannot be

made publicly available. Simulated data and the code implementing the methodologies presented in

this paper are available at https://github.com/claudiaber/BayesianSpatialSpatiotemporal.
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Appendix

Supplementary materials related to this article can be found online at https://doi.org/10.1016/

j.ijforecast.2022.05.003.
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Billé, A. G., Blasques, F., and Catania, L. (2019). Dynamic spatial autoregressive models with

time-varying spatial weighting matrices. Available at SSRN 3241470.

Blasques, F., Koopman, S. J., Lucas, A., and Schaumburg, J. (2016). Spillover dynamics for

systemic risk measurement using spatial financial time series models. Journal of Econometrics,

195(2):211–223.

Bowman, F. D., Caffo, B., Bassett, S. S., and Kilts, C. (2008). A Bayesian hierarchical framework

for spatial modeling of fMRI data. NeuroImage, 39(1):146–156.

26

https://doi.org/10.1016/j.ijforecast.2022.05.003
https://doi.org/10.1016/j.ijforecast.2022.05.003


Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time Series Analysis:

Forecasting and Control. Wiley, 5th edition.

Bussoli, C. and Marino, F. (2018). Trade credit in times of crisis: evidence from european SMEs.

Journal of Small Business and Enterprise Development, 25(2):277–293.
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