
21 January 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A Proposal for a Continuum-aware Programming Model: From Workflows to Services
Autonomously Interacting in the Compute Continuum

Publisher:

Published version:

DOI:10.1109/COMPSAC57700.2023.00287

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

IEEE

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1903692 since 2024-03-27T14:26:31Z



A Proposal for a Continuum-aware Programming
Model: From Workflows to Services Autonomously

Interacting in the Compute Continuum
Marco Aldinucci
University of Turin

Turin, Italy
marco.aldinucci@unito.it

Robert Birke
University of Turin

Turin, Italy
robert.birke@unito.it

Antonio Brogi
University of Pisa

Pisa, Italy
antonio.brogi@unipi.it

Emanuele Carlini
National Research Council

Pisa, Italy
emanuele.carlini@isti.cnr.it

Massimo Coppola
National Research Council

Pisa, Italy
massimo.coppola@isti.cnr.it

Marco Danelutto
University of Pisa

Pisa, Italy
marco.danelutto@unipi.it

Patrizio Dazzi
University of Pisa

Pisa, Italy
patrizio.dazzi@unipi.it

Luca Ferrucci
University of Pisa

Pisa, Italy
luca.ferrucci@unipi.it

Stefano Forti
University of Pisa

Pisa, Italy
stefano.forti@unipi.it

Hanna Kavalionak
National Research Council

Pisa, Italy
hanna.kavalionak@isti.cnr.it

Gabriele Mencagli
University of Pisa

Pisa, Italy
gabriele.mencagli@unipi.it

Matteo Mordacchini
National Research Council

Pisa, Italy
matteo.mordacchini@iit.cnr.it

Marcelo Pasin
Haute Ecole Arc

Neuchâtel, Switzerland
marcelo.pasin@hes-arc.ch

Federica Paganelli
University of Pisa

Pisa, Italy
federica.paganelli@unipi.it

Massimo Torquati
University of Pisa

Pisa, Italy
massimo.torquati@unipi.it

Abstract—This paper proposes a continuum-aware program-
ming model enabling the execution of application workflows
across the compute continuum: cloud, fog and edge resources.
It simplifies the management of heterogeneous nodes while
alleviating the burden of programmers and unleashing inno-
vation. This model optimizes the continuum through advanced
development experiences by transforming workflows into au-
tonomous service collaborations. It reduces complexity in po-
sitioning/interconnecting services across the continuum. A meta-
model introduces high-level workflow descriptions as service
networks with defined contracts and quality of service, thus
enabling the deployment/management of workflows as first-class
entities. It also provides automation based on policies, moni-
toring and heuristics. Tailored mechanisms orchestrate/manage
services across the continuum, optimizing performance, cost, data
protection and sustainability while managing risks. This model
facilitates incremental development with visibility of design im-
pacts and seamless evolution of applications and infrastructures.
In this work, we explore this new computing paradigm showing
how it can trigger the development of a new generation of tools
to support the compute continuum progress.

Index Terms—Workflows, Compute continuum, Programming
models

I. INTRODUCTION

The computing world is undergoing rapid and continuous
evolution as new technologies and approaches emerge to cater
to the increasing demand for sophisticated and intelligent

services that can improve user experience. One such approach
is the cognitive cloud [1], which enhances the capabilities of
cloud-based applications and services by incorporating cogni-
tive technologies such as machine learning and reasoning [2],
[3]. According to a survey by IBM Cognitive, companies
that embraced cognitive computing capabilities have already
noticed considerable investment returns [4]. Incorporating cog-
nitive technologies throughout the continuum enables more
intelligent distributed services and more efficient use of cloud
resources [2], [5]–[7]. Continuum-aware programming models
and design patterns for seamless ultra-scalable processing of
hyper-distributed applications in the continuum are a key
requirement to enable the development of more intelligent
and sophisticated services and applications addressing the
challenges of managing, scaling and making resilient complex,
distributed systems. This aligns with Gartner’s prediction that
«organisations will need to invest in tools and technologies
that support distributed infrastructure» to keep up with the
demands of modern applications [2]. Distributed applications
have become increasingly important in our daily lives, with
a growing number requiring flexible and dynamic use of
compute and network resources [5].

Cloud technologies played a crucial role in providing the
infrastructure for these dynamic applications [8]. However,
the only viable approach to achieving ultra-scalability to sup-

Marco Aldinucci
Authors’ copy of M. Aldinucci, R. Birke, A. Brogi, E. Carlini, M. Coppola, M. Danelutto, P. Dazzi, L. Ferrucci, F. Stefano, H. Kavalionak, G. Mencagli, M. Mordacchin, M. Pasin, F. Paganelli, and M. Torquati, “A Proposal for a Continuum-aware Programming Model: From Workflows to Services Autonomously Interacting in the Compute Continuum,” in 2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC), Turin, Italy, 2023. doi:10.1109/COMPSAC57700.2023.00287 



port modern applications is decentralising the infrastructure,
bringing resources near users and data [9]. The rise of fog
and edge infrastructures has been observed, with edges being
“walking-sized” Cloud data centres pervasively distributed in
the environment, while fog resources are placed along the
network paths [10]. Edge and fog resources tend to be mainly
exploited along the vertical path, starting from the cloud and
reaching the edge through fog devices. This limits the benefits
of their exploitation, especially for applications that need ultra-
scalable infrastructures [11].

A fully decentralised environment can scale more effec-
tively, improve reliability, enhance security, provide greater
flexibility, and reduce costs compared to a traditional cloud or
edge environment [12]. However, the complexity of managing
such a distributed heterogeneous environment prevents a full
point-to-point, horizontal interaction between edge data cen-
tres, posing some key challenges that require specific enabling
technologies to be provided [13]. Developing an intuitive
programming model is imperative to liberate developers and
catalyze impactful innovation in this domain. A model that
simplifies developing sophisticated hyper-distributed applica-
tions optimized to leverage all capabilities across this con-
tinuum landscape would unlock fundamentally transformative
possibilities.

This paper presents such a proposal: a Continuum-aware
programming model. Built on describing workflows and their
seamless metamorphosis into autonomous collaborations be-
tween services, this model breathes simplicity and potency
into developing continuum-spanning intelligent solutions. By
alleviating the burden of complexity, it equips developers
with the agility to expand the horizons of progress through
continuum-aware applications. This model stands to revo-
lutionize how continuum resources across cloud, fog and
edge are combined and optimized to achieve breakthroughs.
It transforms the development experience from fraught with
complexity to flowing with possibility. Developers could then
focus on crafting innovative services and solutions rather than
dealing with integration challenges. Overall, this proposal aims
to catalyze a paradigm shift enabling continuum-optimized
progress through an intuitive development experience. The
Continuum-aware programming model promises to future-
proof both developer productivity and the application potential
in this fast-evolving landscape.

The remainder of this paper is organised as follows. Sec-
tion II frames our proposed perspective in the proper context,
highlighting the need for a programming model like the
one we envision. Section III provides a glimpse of the key
aspects and objectives for the workflow-based continuum-
aware programming model. Section IV discusses the pillars
and structure of the envisioned programming model. Finally,
Section V foresees future work that can be developed from
this position paper.

II. BACKGROUND

The complexity that derives from the distributed and hetero-
geneous nature of the compute continuum calls for software

design approaches that can ease the task of implementing
applications efficiently running in the continuum, able to
use different distributed resources seamlessly. The challenge
is even tougher when applications have a hyper-distributed
nature.

A widely adopted model for implementing large-scale,
hyper-distributed data-intensive applications relies on work-
flows. This is due to their ability to provide structure and
organisation to the flow of execution of different tasks or op-
erations. Workflows also enable developers to separate the ap-
plication’s requirements from its implementation, resulting in
more straightforward code development. Additionally, work-
flows can coordinate data processing tasks for data-intensive
applications, ensuring that the right data is available at the
right time and place, regardless of where it is stored. However,
orchestrating distributed workflows in the compute continuum
is a complex task. Execution locations can be heterogeneous,
exposing different methods and protocols for authentication,
communication, resource allocation and job execution. Plus,
they can be independent of each other, meaning that direct
communications and data transfers among them may not be
allowed.

Hybrid workflows, which span multiple heterogeneous
and independent execution locations, have proved successful
in mixed Cloud+HPC environments [14]. The StreamFlow
framework [15] supports hybrid workflows on multi-container
environments and is fully compliant with the Common Work-
flow Language (CWL) open standard [16], a declarative and
vendor-agnostic language to model scientific workflows fol-
lowing a dataflow approach [17].

Each step of a CWL workflow can be mapped onto a
different execution environment, making StreamFlow suitable
for generating deployments driving the creation of application
instances on the resources of the cognitive continuum. Once
deployed, application instances need to be properly monitored
and managed.

Concerning this need for monitoring and management it
is worth mentioning the sidecar pattern [18]. It is a well-
established software design pattern in which a separate com-
ponent is deployed alongside a main application to augment or
enhance its functionality. The sidecar mediates communication
between the main application and other systems providing
monitoring, logging, or security services [19]. The sidecar
pattern enables a modular and scalable architecture, allowing
changes or updates to the sidecar component to be made inde-
pendently from the main application and for multiple sidecars
to provide different functionalities to the same application. A
key aspect of the sidecar pattern is its coupling with the service
enabling a decentralised approach to application monitoring
and support. Decentralised coordination and management is a
well-established solution in many domains [20]–[22]. It is a
particularly suitable approach [23] to provide a highly scalable,
adaptable, and efficient approach to the fully decentralised
management of applications in the computing continuum.



A. The need for a continuum-aware programming model

Our proposal is to extend hybrid workflows to target the
compute continuum, enabling the deployment of applications
across diverse data centres and heterogeneous edge resources
while maintaining high performance and scalability. The en-
visioned approach transforms workflows into a collection of
huggers.

A Hugger is an improved sidecar pattern, optimised for the
decentralised, efficient and seamless exploitation of hetero-
geneous resources. Each hugger instance acts as a manager
and enabler for the application, providing various features
such as context monitoring, migration, replication, adaptation
into different versions, and undeployment. To this end, the
hugger relies on performance and cost models. Automated
reasoning [24] drives informed decisions empowered with
deep learning technologies. These technologies optimise the
performance and behaviour of the application instance by
considering the workload, performances, resources, network
conditions, etc. In complex scenarios, huggers can coordinate
through swarm intelligence [25] to optimise the performance
of applications. By combining declarative reasoners, deep
learning, and swarm intelligence, the hugger pattern can con-
tribute to the efficient management of distributed applications
by responding to changing conditions in near-real-time.

A detailed presentation of the hugger pattern and all its
characterizing features is beyond the scope of this paper, which
we limit to describing only what is relevant to the approach
proposed in this paper.

III. A CONTINUUM-AWARE PROGRAMMING MODEL FOR
HYPER-DISTRIBUTED APPLICATIONS

The development of a programming model and the relative
runtime that enables the design and execution of hyper-
distributed applications on the compute continuum is a very
challenging task. Such a programming model should allow
for developing applications that efficiently exploit various and
heterogeneous computing resources, including IoT devices,
far-edge constrained devices, federated fog/edge computing
nodes, and cloud computing centres, while optimising resource
utilisation and enhancing the quality of service.

In the following, we briefly outline the main objectives of
the continuum-aware programming model we envision and its
key-feature enablers.

A. Objectives

In our vision, the new programming model and its runtime
system should:

• seamlessly handle the heterogeneity of computing re-
sources, architectures, and data accessibility;

• ease hyper-distributed applications to scale efficiently
and handle the increasing number of tasks with minimal
impact on performance while avoiding under and over-
provisioning of resources;

• provide a high level of fault tolerance and resiliency to
enable applications to continue functioning despite fail-

ures. Tasks will be automatically rescheduled or migrated
in case of failures or resource constraints;

• enable data processing close to its source or destination,
thus reducing data transfer latencies and network over-
head;

• optimise utilisation of computing resources by dynami-
cally provisioning and releasing resources according to
the actual workload

• offer highly scalable processing of messages and events
through the Hugger pattern.

B. Enablers

At the cornerstone of our envisioned continuum-aware
programming model we pose the actor model of compu-
tation [26], [27]. It provides the foundation for the hyper-
scalable and hyper-distributed ecosystem that characterises the
compute continuum and we aim to target with our proposed
programming model. With the adoption of the actor model,
we aim at following a unified, flexible, and well-defined
interaction schema and abstraction. The actor model proved
to be effective for the design of platform components and
active entities in distributed computing environments where
scalable communication and processing is needed [28]–[30].
This model provides foundations for driving the coordination
between distributed processes and dealing with unreliable
connectivity, distribution and decentralisation of intelligent
solutions.

The envisioned continuum-aware programming model will
expose to developers a workflow-based abstraction and will
allow to execute applications in multi-service environments,
support concurrent execution of multiple, actor-based, commu-
nicating active entities, and allow for hybrid workflow execu-
tions on top of continuum resources. Each entity will be an in-
stance of the Hugger pattern, representing a novel application
runtime management approach, taking the sidecar pattern as a
baseline technology and building over it to enable application
migration, replication, and management. Each Hugger will be
coupled with one or more application instances that it actively
manages. The active behaviour of Huggers is based on actors.
Huggers will interact and communicate efficiently to realise
decentralised application management whose directives will
be expressed using a high-level declarative approach.

Such technologies will provide actors with the necessary
features in terms of scalability and efficiency.

IV. THE CONTINUUM-AWARE PROGRAMMING MODEL:
PILLARS AND STRUCTURE

The Continuum-aware Programming Model must be
straightforward for the application developer and able to
manage the complexity of the continuum-based platform. On
the one side, the goal is to ease the development of novel
applications by allowing developers to define their applications
for the continuum while remaining agnostic about the structure
of the infrastructure. On the other side, the aim is for a well-
designed Programming Model that helps in optimising the
usage of the continuum by allowing orchestration operations



Compilation to an hugger-based 
microservice architecture 

The application is defined as a collection 
of services connected in a workflow

S1

S2

S3

S4

Continuum-aware Workflow

microservice

Hugger Intelligence

Communication library

Cooperative Mechanisms

Hugger Actor

Hugger

Microservice Architecture

S4

H3

S2

S3

H2

S1

H1

Fig. 1. From workflows to Huggers

to benefit the exploitation of the resources and the execution
of the applications.

Our envisioned continuum-aware programming model will
offer developers a streamlined workflow that enables them to
adapt and write applications and specify requirements for each
component without dealing with all the complexities associ-
ated with the continuum as heterogeneity, distribution, and
dynamicity. This programming model will allow developers to
focus on writing applications, leaving the management of the
underlying infrastructure to the runtime of the programming
model.

As is exemplified in Figure 1, a high-level workflow-
based representation is translated into a network of (possibly
composed) microservices supported by the hugger pattern. The
hugger pattern will associate each application component with
an intelligent and active entity, the design of which is based
on an actor that is responsible for managing that component.
The set of hugger patterns associated with application entities
will employ performance cost models, ML and AI techniques
for managing said entities based on information close to

the application semantics and leverage swarm techniques to
approach suitable collective targets.

The hugger pattern will be able to perform complex actions
that allow it to monitor, migrate, and replicate application
instances, making it an essential component of the runtime
of the continuum-aware programming model. As shown in
Figure 1, a workflow composed of four services is “compiled”
into instances of the hugger pattern. Each hugger provides
a number of mechanisms to support the management of the
micro-services it “hugs” and the interaction with the infrastruc-
ture easing the deployment operations. The fundamental set of
entities that realise a Hugger comprises: the hugger actor, the
communication library, the cooperative mechanisms and the
hugger intelligence.

A. Hugger Actor

The artefact that encapsulates and provides the behaviour of
the hugger pattern is represented by an active entity realised
accordingly with the actor model of computation. As by the
actor model, it consists of state, behaviour, mailbox, address,
and communication. The internal state of the Hugger includes
information about the application instances it manages, their
current state, and other relevant metadata. The behaviour is
defined by a set of actions that it can perform, such as
monitoring the state of the application instances, migrating
them to another node, or replicating them. The mailbox is
a message queue that stores incoming messages from other
actors. The address is a unique identifier that allows other
actors to send messages to the Hugger. The communication
mechanism allows the Hugger to send and receive messages
from other actors. The communication mechanism can be
implemented using various protocols and strategies.

B. Communication Library

The heterogeneity of resources, network protocols, and in-
frastructures hinders the realization of pervasive, seamless ac-
cess, and hyper-distributed applications. We plan to adopt soft-
ware infrastructures that dynamically integrate multiple pro-
tocols within the Hugger actor by leveraging multi-transport
communication libraries enabling Huggers to cooperate with
a single interface regardless of their position in the compute
continuum infrastructure. Communication needs to be working
also when huggers are deployed across different administrative
domains or networks with restricted connectivity. For example,
the MTCL library1, allows peers to transparently leverage the
best communication protocol based on the type, location, and
available network interfaces. The library offers a connection-
like interface and transparently maps communications to spe-
cific protocols that best leverage the resources of the surround-
ing environment, e.g., MPI/UCX if some peers are deployed
on HPC infrastructures or MQTT/TCP if deployed on edge
nodes.

1MTCL library home: https://github.com/ParaGroup/MTCL



C. Cooperative Mechanisms

Hugger instances are envisioned to cooperate with each
other in a fully decentralized scenario. The cooperation will
involve ad-hoc mechanisms that are designed to work seam-
lessly and efficiently, without introducing centralization that
could lead to bottlenecks and single points of failure. This
decentralized approach ensures that the continuum-aware pro-
gramming model can handle the heterogeneity, distribution,
and dynamicity of the computing continuum while maintaining
a high level of fault tolerance and scalability. By leveraging the
power of swarm techniques, the Hugger instances can work
together to achieve common goals, such as load balancing
or fault tolerance, without relying on a central control point.
Strategies for distributed consensus and conflict resolution will
be also provided. Overall, the cooperation between Hugger
instances is a key aspect of the continuum-aware programming
model that enables efficient and effective management of
hyper-distributed applications in the continuum.

D. Hugger Intelligence

The Hugger pattern is designed to create intelligent agents
that can optimize application management through interaction
with the environment and cooperation with their peers. The
intelligence of Huggers is based on both model-driven knowl-
edge and data-driven knowledge. The model-driven knowledge
includes cost models, performance models, and other models
that can be used to predict the behaviour of the application in-
stances and the infrastructure. The data-driven knowledge, on
the other hand, is obtained by leveraging machine learning and
artificial intelligence techniques on the data that is collected
from the application instances and the infrastructure. To obtain
data-driven knowledge, different approaches and solutions will
be leveraged. The adoption of continual reinforcement learning
is envisioned as an effective solution for scenarios involving
distributed application management. Continual reinforcement
learning is a type of reinforcement learning that allows agents
to learn continuously from their experiences over time. By
leveraging this approach, the Huggers can learn how to op-
timize the management of the application instances and the
infrastructure based on the feedback they receive from the
environment. Additionally, alternative approaches that are suit-
able for the complex environment of the computing continuum,
such as randomized recurrent neural networks and reservoir
computing, will also be explored. The Huggers are intended
to be cooperating with each other in a fully decentralized
scenario. The cooperation will involve ad-hoc mechanisms
that are designed to work seamlessly and efficiently, without
introducing centralization that could lead to bottlenecks and
single points of failure. This decentralized approach ensures
that the continuum-aware programming model can handle the
heterogeneity, distribution, and dynamicity of the computing
continuum while maintaining a high level of fault tolerance
and scalability. By leveraging the power of swarm techniques,
the Huggers can work together to achieve common goals,
such as load balancing or fault tolerance, without relying on
a central control point. The intelligence of the Huggers is a

crucial aspect of the continuum-aware programming model
that enables the efficient utilization of computing resources,
fault tolerance, and scalability while maintaining a high level
of quality of service.

In this perspective, The Hugger Pattern optimizes application
execution through intelligent, decentralized management of
components. Beyond mediating interactions, Huggers leverage
application semantics and infrastructure data to enable sophis-
ticated yet agile management strategies.

Rather than static policies, Huggers employ adaptive tech-
niques - distributed intelligence, custom performance models,
reinforcement learning - to maximize QoS given dynamic
conditions. By balancing application needs with available
resources, Huggers can fulfil key requirements like elastic
scalability, fault tolerance, and load balancing.

V. FUTURE WORK

This position paper presented a proposal for an approach
aimed at managing application instances in the computing
continuum. Applications are expressed as workflows and even-
tually translated into a group of smart collaborating entities
that can be placed across the large heterogeneous set of
resources that the continuum encompasses.

There are several areas for future research and development
that could enhance the effectiveness and efficiency of the ap-
proach. One potential area for future work is the alignment of
the proposed approach with the existing platforms supporting
the cross-domain deployment of applications in a cloud/edge
environment. This “integration” can enable to definition of
how to ease the deployment and management of applications
leveraging the cloud/edge providers’ infrastructure and ser-
vices to enable efficient utilization of computing resources and
provide fault tolerance and scalability.

Another area for future work is a clear definition of the
Hugger intelligence. This optimization can be achieved by
leveraging different machine learning and artificial intelligence
techniques, such as continual reinforcement learning, ran-
domized recurrent neural networks, and reservoir computing.
The different solutions can be eventually assessed to define
guidelines on what to use and under what conditions. The
effectiveness and efficiency of the approach can be further
evaluated in different scenarios and use cases, such as those
involving different levels of heterogeneity, distribution, and
dynamicity of the computing continuum, and different types
of applications, such as data-intensive applications, compute-
intensive applications, and real-time applications.

The approach has also to be integrated with security mech-
anisms to ensure the security and privacy of the application
instances and infrastructure. Different security mechanisms,
such as encryption, access control, and intrusion detection,
can be leveraged to provide a comprehensive security solution.
The communication mechanisms used by the Huggers and
the workflow definition and compilation is the element that
enables efficient and reliable communication between the Hug-
gers and the infrastructure. Different communication protocols



and transport mechanisms can be leveraged and tested to
define guidelines and insights on how to achieve efficient
communication in different scenarios.

Finally, the workflow definition and compilation can be en-
hanced by developing algorithms for automatically composing
workflows from high-level specifications. These algorithms
can leverage machine learning and artificial intelligence tech-
niques to generate optimal workflows that meet the application
requirements and the constraints of the computing continuum.

ACKNOWLEDGEMENT

This work has been partially supported by the Spoke 1 “Fu-
tureHPC & BigData” of ICSC – Centro Nazionale di Ricerca
in High-Performance Computing, Big Data and Quantum
Computing, funded by European Union – NextGenerationEU.

REFERENCES

[1] G. Fowler, “Understanding cognitive cloud computing and its
potential impact on business,” https://www.forbes.com/sites/
forbesbusinessdevelopmentcouncil/2021/02/24/understanding-
cognitive-cloud-computing-and-its-potential-impact-on-business/
?sh=5ea170f9265c, 2021.

[2] K. Panetta, “Gartner top strategic technology trends for 2021,”
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-
technology-trends-for-2021, 2021.

[3] IBM, “From knowledge graphs to cognitive computing,”
https://www.ibm.com/blogs/research/2016/01/from-knowledge-graphs-
to-cognitive-computing/, 2016.

[4] ——, “The cognitive advantage global market report,” https://www.ibm.
com/watson/advantage-reports/market-report.html, 2021.

[5] L. Perri, “Gartner hype cycle for emerging technologies,”
https://www.gartner.com/en/articles/what-s-new-in-the-2022-gartner-
hype-cycle-for-emerging-technologies, 2022.

[6] M. Satyanarayanan, “The emergence of edge computing,” IEEE Com-
puter, vol. 50, no. 1, 2017.

[7] W. Z. K. et al, “Edge computing: A survey,” Future Generation
Computer Systems, vol. 97, 2019.

[8] M. C. et al, “A dynamic service migration mechanism in edge cognitive
computing,” ACM Transactions on Internet Technology, vol. 19, no. 2,
2019.

[9] M. M. et al, “Fog computing and the internet of things (IoT): A review,”
in 8th IEEE International Conference on Cyber Security and Cloud
Computing (CSCloud), 2021.

[10] K. Linghe, T. Jinlin, and J. H. et al., “Edge-computing-driven internet
of things: A survey,” ACM Computing Surveys, vol. 55, no. 8, 2022.

[11] M. C. et al., “Fog and IoT: An overview of research opportunities,”
IEEE Internet of Things Journal, vol. 3, no. 6, 2016.

[12] S. P. S. et al., “Fog computing: From architecture to edge computing
and big data processing,” The Journal of Supercomputing, vol. 75, no. 4,
2019.

[13] M. et al., “A survey on mobile edge computing: The communication
perspective,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4,
2017.

[14] I. Colonnelli, B. Cantalupo, R. Esposito, M. Pennisi, C. Spampinato, and
M. Aldinucci, “HPC application cloudification: The streamflow toolkit,”
in PARMA-DITAM@HiPEAC, 2021.

[15] I. Colonnelli, B. Cantalupo, I. Merelli, and M. Aldinucci, “Streamflow:
cross-breeding cloud with HPC,” IEEE Transactions on Emerging Topics
in Computing, 2021.

[16] M. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Tijanić,
H. Ménager, S. Soiland-Reyes, B. Gavrilović, C. Goble, and T. C.
Community, “Methods included: Standardizing computational reuse,”
Communications of the ACM, vol. 65, no. 6, 2022.

[17] E. Lee and T. Parks, “Dataflow process networks,” Proceedings of the
IEEE, vol. 83, no. 5, 1995.

[18] B. Burns and D. Oppenheimer, “Design patterns for container-based
distributed systems,” in 8th {USENIX} workshop on hot topics in cloud
computing (HotCloud 16), 2016.

[19] S. Busanelli, S. Cirani, L. Melegari, M. Picone, M. Rosa, and L. Veltri,
“A sidecar object for the optimized communication between edge and
cloud in internet of things applications,” Future Internet, vol. 11, no. 7,
p. 145, 2019.

[20] P. Ge, F. Teng, C. Konstantinou, and S. Hu, “A resilience-oriented
centralised-to-decentralised framework for networked microgrids man-
agement,” Applied Energy, vol. 308, p. 118234, 2022.

[21] R. Casadei, D. Pianini, M. Viroli, and A. Natali, “Self-organising
coordination regions: A pattern for edge computing,” in Coordination
Models and Languages: 21st IFIP WG 6.1 International Conference,
COORDINATION 2019, Held as Part of the 14th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2019, Kon-
gens Lyngby, Denmark, June 17–21, 2019, Proceedings 21. Springer,
2019, pp. 182–199.

[22] R. Baraglia, P. Dazzi, M. Mordacchini, L. Ricci, and L. Alessi, “Group:
A gossip based building community protocol,” in Smart Spaces and Next
Generation Wired/Wireless Networking, S. Balandin, Y. Koucheryavy,
and H. Hu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 496–507.

[23] S. F. et al, “Osmotic management of distributed complex systems: A
declarative decentralised approach,” Journal of Software: Evolution and
Process, 2022.

[24] I. Bratko, Prolog Programming for Artificial Intelligence. Addison-
Wesley, 2012.

[25] S. J. V. Bhatnagar and Y. Singh, “Swarm intelligence for multi-objective
optimisation in cloud computing: A survey,” Computers & Electrical
Engineering, 2018.

[26] C. Hewitt, “Actor model of computation: Scalable robust information
systems,” 2015.

[27] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor
formalism for artificial intelligence,” IJCAI’73 proceedings of the 3rd
international joint conference on artificial intelligence, 20-23 August,
1973.

[28] P. Bernstein, S. Bykov, A. Geller, G. Kliot, and J. Thelin, “Orleans: Dis-
tributed virtual actors for programmability and scalability,” MSRTR2014,
vol. 41, 2014.

[29] S. N. Srirama, F. M. S. Dick, and M. Adhikari, “Akka framework based
on the actor model for executing distributed fog computing applications,”
Future Generation Computer Systems, vol. 117, pp. 439–452, 2021.

[30] P. Kraft, F. Kazhamiaka, P. Bailis, and M. Zaharia, “{Data-Parallel} ac-
tors: A programming model for scalable query serving systems,” in 19th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), 2022, pp. 1059–1074.


