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Abstract
Substance P (SP) is a well-established pain messemghe spinal cord, although its role in substan
gelatinosa (lamina Il) still remaindusive. We carried out patch-clamp recordingsamita Il neurons
from transverse mouse spinal cord slices (P8-12jnguthe selective NK receptor agonist

[Sarg,Met(Oz)ll]-SP (SM-SP, 3-5uM) in the presence of NBQX. Activation of NKreceptors was
confirmed after preincubation with selective NKantagonist L732,138 (dM) that consistently blocked
the effects of SM-SP (nine neurons). After SM-8Rillenge and spontaneous inhibitory post-synaptic
current (sIPSC) analysis, 50% of recorded neurbb®(t of 30) were found to display a transienteéase

in frequency; in five neurons this was also assediavith increase of peak amplitude. Five out ghei
neurons displayepure GABAA receptor-mediated sIPSCs, whereas the remaining simewed mixed
GABAergic/glycinergic events. After miniature IPS&halysis, a significant increase in frequency was
observed in three out of 14 SM-SP responsive naurhleast four different morphologicalpes were
apparent among Nkresponsive neurons after filling with Lucifer Yal/biocytin: fusiform with dorso-
ventral dendritic arbor§); round-to-oval with dendritic arborization méirdirected to lamina | (ii) or IlI
(iii), and round-to-oval with dendrites sparselgtdbutedall around the cell body (iv). Thus, there was no
correlation between morphology and electrophysichg properties of responsive neuron®ur
observations provide new insights on the processingensory neurotransmission in spinal cord, and
indicate that activation of NK receptors is involved in the maintenance of thebitdry tone of
substantia gelatinosa interneurons.
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1. Introduction

Several lines of evidence have implicated substdn¢8P) as a major neurotransmitter of pain (see
Afrah et al., 2001; Basbaum, 1999; Mantyh, 2002;&54d999; Urbarand Gebhart, 1999; Woolf et al.,
1998). SP is synthesized in nociceptors of thealwo®t ganglia which send their axons (C and Aérfs)

to dorsal horn projection neurons in laminae | dvdV and to nocispecific interneurons in laminae Il
Il (see Millan, 1999), and is released in viwpon activation of C and Ad fibers (Afrah et alQ02;
Duggan and Furmidge, 1994; Hua et al., 1986; Taall.£1996). Administration of morphine or opioid
peptidesspecifically blocks this release (Jessell and kersl977;Takano et al., 1993; Yaksh et al.,



1980), while inhyperalgesic conditions release of SP is increéSederre and Yashpal, 1994; Garry and
Hargreaves, 1992; Meller ar@debhart, 1994; Oku et al., 1987a,b). SP evokes seitatory post-
synaptic potentials (EPSPs) in second-oisory neurons in the dorsal horn (De Koninck ldedry,
1991; De Koninck et al., 1992; Otsuka and Yoshidlg93),and mediates central sensitization (Xu et al.,
1992), leading to hyperalgesia and allodynia (Mchabt al., 1993; Wooland Costigan, 1999; Yaksh et
al.,, 1999). These alterezbnditions of pain sensitivity are attenuated bgcking of the SP preferred
receptor NK (Honor et al., 1999; Mantyét al., 1997; Nichols et al., 1999).

Despite the wealth of data, mechanisms of SP actiorain elusive in the substantia gelatinosa (SG—
lamina 1l), which is traditionally considered to play a pivotable in modulating nociceptive
transmission (Ribeiro-Da-Silv&003; Willis and Coggeshall, 1991; Yoshimura, 19%jferent studies
have concluded that SP was responsibleter generation of slow EPSPs elicited by C and iérf
stimulation in the dorsal horn (De Koninck and Herr991; Otsuka and Yoshioka, 1993; Yoshimura
and Jessell, 1989, 1990; Yoshimura and Nishi, 13@3himura et al., 1993). However, administratién o
SP or synthetic agonistd the SP NK receptor evoked an excitatory response in a vengdd subset of
SG neurons in other studies (Bleazard et al., 158$himura et al., 1993), and it was thusposed that
the peptide does not play a role in laminaThis lack of effect has been considered resultiognfthe
low density of NKI receptor-immunoreactive neurons in the SG (RibBiasSilva et al., 2001) but this
explanation isveakened by the observation that SP activates thare a single intracellular pathway: it
displays maximal affinity forts preferred NK receptor (Ikeda et al., 2003), but also birdker NK
receptors (Severini et al.,, 2002), and modulatemdthyl-D-aspartate (NMDA) neurotransmission
(Budaiand Larson, 1996; Chizh et al., 1995; Cumberbatd.£1995; Rusin et al., 1993).

To further analyze the effects of SP in SG, we nadetrophysiological recordings from mouse spinal
cord slices. We found that an NKreceptor-specific agonisgtnhances inhibitory neurotransmission in
lamina Il neurons.

2. Methods
2.1. Animals

Studies were performed on 35 neonatal mice (8- o&d). All experimental procedures were
approved by the Committee of Bioethics and Animatlfate of the University of Torino. After deep
sodium penthobarbitanesthesia (30 mg/kg), animals were decapitatddmaectomy was performed
and the spinal cord quickly removed and placed nnice-cold artificial cerebrospinal fluid (ACSF)
containing (in mM): 125 NaCl, 2.5 KCB5 NaHC®, 1 NaHPQ@, 25 glucose, 1 MgQ@| and 2 Ca(,
saturated with 95% 25% COp. Transverse vibratomdices 350 mm thick were kept in ACSF at 35 8C

for 30 min.Slices were subsequently maintained at room tertymerantil used for the experiments.
2.2. Electrophysiological recordings

All experiments were performed at room temperabyr@lacing a slice in a recording chamber constantly
perfused at 2 ml/min with oxygenated ACSF. Neuravere visually identified using a fixed-stage
microscope (Axioskop 17Zeiss, Germany), equipped with infrared gradiemitiast optics (Luigs and
Neumann, Germany) and &3x insulatedwater immersion objective (Achroplan, Zeiss). Patlamp
whole cell recordings were obtained with an Axopha&00B amplifier (Axon Instruments, USA). Patch
pipettes wereoulled from borosilicate glass tubing (WPI, USA)damad a resistance of 4-7 MU when
filled with the intracellular solution. To study amaneous excitatory post-synaptiarrents (SEPSCs),
pipettes were filled with an intracellular soluticontaining (in mM): 145 Kgluconate, 5 EGTA, 2 MgCl

10 Hepes, 2 ATPNa, and 0.2 GTPNa, pH 7.2 (&itH).
To study spontaneous inhibitory post-synaptic eausésIPSCs), the intracellular solution contained (in



mM): 145KCl, 5 EGTA, 2 MgCp, 10 Hepes, 2 ATPNa, and 0.2 GTPNa, pH 7.2 (wittHiQ@nder
these conditions sIPSCs were detected as inwardritar In some cases, 0.3f6cytin (Sigma, USA)
and 0.1% Lucifer Yellow (LYSigma, USA) were added.

Lamina Il neurons were patched under visual contmotl only cells with membrane potential more
negative thaK55 mV were considered for the recordings. Currergiesampled at 10 kHz, filtered at
2 kHz, and analyzed witMinianalysis (Synaptosoft, USA) and pClamp 8 (Aximstruments,
USA) software. On an average, 30—80 IP8@se analyzed from each cell in order to obtainntean
kinetic and amplitude parameters. From the averdgtheseevents, we measured the rise time,
calculated from 10 t80% peak amplitude, and the values of decay timstemtyexpressed ag and

t2) by fitting the 10-90% region of théecay phase with a biexponential function. All &lec
physiological values were expressed as mean GSHEMwndicating the number of cells.

2.3.Drugs

All drugs were bath applied. [SgaMet(Oz)ll]-substanceP (SM-SP), an analog of SP that shows
greater selectivitfor NK1 receptors and greater potency and duratioactibn than SP in vivo (Regoli
et al., 1988; Sakurada et al., 1994; Tousignanil.et1989) was used to study the effeofs NK1
activation in slices. SM-SP was delivered contirsipwduring the recording in all experimenis.
Acetyl-L-tryptophan-3,5-bistrifluoromethyl benzylster (L732,138), a potent selective antagonist of
the NKj receptor (Cascieri et al.,, 1994) was also usedeitaimn experiments to block the effects of
SM-SP and thus assesshe specificity of NK receptor activation. 2,3-Dioxo-6-
nitrol,2,3,4tetrahydrobenzo[fl]quinoxaline-7-sulfanide disodium salt (NBQX), SM-SP and L732,138
were fromTocris (UK) and tetrodotoxin (TTX), bicuculline nmbdide, and strychnine methiodide
from Sigma (USA).

2.4. Histological procedures

After recording, slices were fixed in 0.1 M phosghbuffer (pH 7.4) containing 4% paraformaldehyde
and 2.5% glutaraldehyde overnight at 4 8C, andexyuently rinsedeveral times in phosphate-buffered
saline (PBS, pH 7.4%lices were then mounted in a fluorescence-freeunedr processed further for
the visualization of intracellulabiocytin by the ABC method (Vector, USA). Brieflglices were
incubated in PBS containing 10% methanol and B§drogen peroxide for 30 min to suppress
endogenougperoxidase activity, thoroughly rinsed in PBS, ahénincubated in ABC for 2.5 h at
room temperature. Aftextensive washing in PBS, the biocytin-bound petaséwas revealed using

nickel ammonium sulphate-intensifiaﬁ’diaminobenzidine (DAB) for 60 min at room temperatu
(0.025% DABC1% nickel ammonium sulfateCO.04%02 in PBS).

Labeled neurons were observed with a light micrpec@Axiophot 1, Zeiss) under bright field or
fluorescence illumination and photographed withighfresolutiondigital camera (Coolpix 995, Nikon,
Japan). Digital imagesere further processed using Adobe Photoshop 5 JUSA

The immunocytochemical visualization of NKreceptor distribution within the dorsal horn was
performed on freefloating neonatal mouse spinal cord sections inmddan PBS containing 10%
methanol and 3% hydrogen peroxide for 30 min topsegs endogenous peroxidase activity, Hreh
blocked in 0.02 M PBS containing 6% normal geatum (NGS) for 30 min at room temperature,
before treatment with an affinity-purified polyclnrabbit anti- NK receptor antibody (Sigma, USA;
Mantyh et al., 1995)diluted 1:30,000 in PBS containing 1% NGS. Aftersivagin PBS, sections were
incubated in 1:250 biotinylated anti-rabbit 1gG ¢@, USA) and then in 1:100 avidirpiotinylated-
peroxidase complex (Vector, USA). Tiperoxidase reaction was developed using 0.025%) @AB
(Sigma, USA) and 0.04% (v/v) hydrogen peroxide.tibas were then transferred onto glass slides and
mounted in PBS—glycerol.



3. Results
3.1. Electrophysiology

Seventy one neurons in lamina Il were voltage-cleangt a holding potential () of K63 mV and

challenged withSM-SP (3-5uM). Since both sEPSCs and sIPSCs wekdédent after SM-SP
superfusion in the absence of specific receptoagamists, we employed different intracellular solos
to better discriminate between the two typesuwfent.

Using the low Clintracellular solution, bath-application of SM-Sidiiced a transient increase in both
amplitude and frequency of SEPSCs (from 1.5 to binlzwo out of 18 cells recorded (Fig. 1).

sIPSCs were recorded using the high ftracellular solution in the presence of P NBQX to
block AMPA/kainate neurotransmission (illustrative traeee shown in Fig. 2A-C).

A

X

Fig. 1. Representative traces of SEPSCs recoraded & SG neuron undeffects of SM-SP. Whole cell recordings of SEPSCs
from a SG neuron in control (A), and under bathligd@BSM-SP (B). Upon SM-SP perfusion tloisll displayed an increase in both
frequency and amplitude of SEPSCs. The holdingmiate(Vh) was K63 mV.

In 15 out of 30 neurons record¢gig. 2F), activation of NK receptors elicited a strorigcrease in
SIPSC frequency (from 0.6+0.2 to 1.6+0.3 IR#).05). However, this was not observed over th@esn
SM-SP application: increase in the sIPSC frequdastedonly for about 60-120 s, as shown in Fig.
2A. Thistransitory effect was likely due to internalizatioh NK1. Studies in vivo (Mantyh et al., 1995)
have indeed shown that NKreceptors are internalized after noxious stimurgtiand that, as
internalization proceeds, there are parallel chamg@ain-related behaviors (Mantyh, 2002).

Rise and decay time constants of sIPSCs wereaffetted by application of SM-SP. The mean
rise time forthe control was 1#0.3 and 1.20.4 ms in the presence 8M-SP (n=15, P>0.05). The
mean decay values wet@=6.6t1.1ms, £=40+5ms for the control and =5.9+1.2ms, p=42+5ms

in the presence of SM-§R=15, P>0.05). Average events calculated from re@on recorded
under control conditions and in tpeesence of SM-SP are shown in D and E, respegtivel

In five neurons, the presence of SM-SP also ledriincrease in sIPSC peak amplitude. In these
cells, the mean amplitude values were 37.4+1.4pAantrols and2.8+1.7 pA in the presence of SM-
SP (P<0.05, Fig. 2G)This change was unlikely to arise via a post-syinaeffect, as SM-SP still
increased the frequency in the presenc&Tof, without affecting the amplitude (see below).

To document that sIPSCs were indeed generatecgpegific NK1 receptor signaling, slices were
superfused witl uM of the specific NK receptor antagonist L732,138 fair least 8 min before SM-SP
challenge (Kombian, 2003a,b; Yang et al., 2000)neNcells were successfully recordadd their
outputs statistically analyzed (Fig. 3). In thesdls, the frequency of sIPSCs passed from 0.2@+0.0

Hz upon L732,138 superfusion to 0.29+0.06 Hz followBig-SP (5uM; P>0.05), and amplitude from
41.08+6.77t0 41.31+5.48 pA (P>0.05). This lack of statisticagnificance demonstrates that the
effects of SM-SP omhibitory neurotransmission are specifically due NK1 receptor activation; it



also rules out concerns about
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Fig. 2. Effects of SM-SP on sIPSCs recorded fromng@ons. (A—C) Whole cell recordings of sIPSC9.IAthe presence of 10
UM NBQX, SM-SP (5uM) evoked a transient increase in frequency and amdgliof SIPSCs which returned to control values
after about 100 s still in the presence of the ajofihe arrowhead indicates the start of SM-SRiegton. VhZK63 mV. (B

and C) Effect of SM-SP on the frequency and amgéitof SIPSCs recorded froamother SG neuron (B, control; C, SM-SP).
(D and E) Averages of sIPSCs detected in contrglgid in presence of SM-SP (E); same neuron as &mdC.Note that
superfusion with SM-SP elicited an increase in bantplitude and frequency without affecting sIPS@ekics. (F) Pooled data
from 15 lamina lineurons reveal a significant increase in sIPSQuaqy upon SM-SP superfusion. The mean frequenssepa

from 0.6£0.2 Hz in control to 160.3 Hz in the presence of the agonist (n=15, PJ0.@) In five neurons, the increase in

sIPSC frequency was accompanied by a significasrease in amplitude (from 374.4 pA in control to 52:81.7 pA under
SM-SP) (n=Z5, P<0.05).

selectivity of the agonist at the relatively higbncentration employed here in comparison with most
electrophysiological studies (1+4) on rat brain/spinal cord slices molated neurons (King et al.,
1997; Kombian, 2003a, b; Li and Zhao, 1998). Noeletss it should be noted that .gp20uM, SM-SP
has been used to study substance P-mediated excitatd expression of the transcription factor FOS
in rat dorsal horn neurons in vitro without amgticeable loss of agonist specificity (Badie-MaVids al.,
2001). The possible existence of interspeciesréiffees in NK receptor agonist affinities shouldoate
consideredNsa Allogho et al., 1997).

In order to further study the sIPSCs, 1M bicuculline and/or JuM strychnine was added to the bath
solution at the end of each experiment performeceight SM-SResponsive neurons (Fig. 4). In five
of these cells, sIPSGsere completely blocked by bicuculline, revealihgtttheywere mediated by



GABAA receptor activation onlyFig. 4B). The remaining cells (3/8) displayed nix@ABAergic
and glycinergic events, although the latter wergy wiare (Fig. 4D). This was not surprising since:

(i) co-existence of GABA/glycine has been widelpaged in the superficial dorsal horn (Keller et al
2001; Maxwellet al., 1995; Todd et al., 1996); and (ii) funcabwy active
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Fig. 3. SM-SP effects on sIPSCs are blocked bystiective NK antagonist L732,138. (A) sIPSCs recorded from ardanh
neuron in the presence oful L732,138 (left) and #4M L732,138C5uM SM-SP(right). VhZK63 mV. When slices were pre-
treated with the selective NKreceptor antagonist, SM-SP no longer elicited anii@ant increase in sIPSC frequency and
amplitude. (B) Pooled data from nine laminankurons. The frequency of sIPSCs was fi264 Hz upon L732,138
superfusion and 0.29.06 Hz during SM-SP administration (P>0.08d mean amplitude passed from 4#6&7 to
41.315.48 pA(P>0.05).

GABA/glycine co-synapses exist in the dorsal hatrigast in certain stages of development (Jonas,et
1998; Kelleret al., 2001).
To better characterize the nature of NH&ctivation in lamina Il neurons, we recorded mimiat|IPSCs

(mIPSCs)in the presence of @M TTX. The mean mIPSC frequenayas 0.2+0.1 Hz (n=14), and a clear
effect of SM-SP wa®nly observed in three out of 14 neurons record&d4s). In these cells, a
significant increase (150+20%) in mIPS@quency was detected, compared to the contrd. (5).
Moreover one of these three neurons responded teSBlpplication by a slow inward current that
peaked at 30 pAnd was associated with an increase in amplituaden({8+7 to 34+12 pA).

3.2.Morphological characterization of record8@ neurons

Fourteen of the recorded neurons, were successhojgcted with LY or biocytin to reveal their
morphology. Alllabeled neurons were located in the SG (Fig. 6A-a@yexhibited different dendritic
arrangements and orientatior®n this basis, we observed several different mdogical types: (i)

fusiform neurons with two funnel-shaped dorso-vahtr oriented dendritic arbors; (i) rounded
neuronswith a funnel-shaped dendritic arbor originatingonfr a main dendritic trunk primarily
directed to lamina I;
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Fig. 4. sIPSCs of SM-SP-responsive neurons arelynaiediated byGABAA receptor. (A and B) Recordings from a lamina |l
neuron in the presence of 1M NBQX and SM-SP challenge. Block of GARAreceptors with 1QuM bicuculline (B)
totally suppressed activity,f£ -63 mV. (C—E) Recordings from another lamina Il mguin the presence of 1M NBQX
and SM-SP challenge. The block of GARAeceptors with 1M bicuculline (D) did not completely suppresgibitory
activity. Vh= - 63 mV. Note a single glycinergic event sohall amplitude (arrow) in about 30 s. The freqyeotglycinergic
events in this cell was 0.01 Hz. (E) Co-applicatmmbicuculline andtrychnine completely suppressed sIPSCs.

(i) rounded neurons with a funnel-shaped dendrirbor originating from a main dendritic trunk
primarily directed to lamina Ill; and (iv) oval-tmunded neurons with an overall spherical distidyutof
the dendritic arborization that originated fromeel independent dendrites. The fusifaneurons (three
in all) were located in laminadl(Fig. 6A). Only one of them was SM-SP-responsive. All had reglo
dorso-ventrally oriented axis with primary beadeddritesarising from the two opposite poles of the cell
body (Fig. 6Aand B). Dendritic branches were mainly restrictethiminall, and displayed sparse spines.
Of the seven rounded neurons, four were locatedmma lp, and three in |I(Fig. 6C). Three rounded

neurons



NBQX 10 uM + TTX 1 puM

T
r 3
o l—
> 1s
B
+ SMSP 5 uM
C

CTR

Cumulative
Fraction

/ sMsP

] 50 100 150
Amp. (pA)

Fig. 5. mIPSCs recorded from SG neurons. (A) mIP&Esrded from a lamina Il neuron in the presertcé pM TTX. (B)
Activation of NKj receptors induced an increase in mIPSC frequengy M63 mV. (C) Cumulative amplitude plot of mIPSCs

recorded from a lamina Il neuron in control (graae) and in the presence o1 SM-SP (black line). Not¢hat the mean peak
amplitude was not significantly affected by perfusofthe NKp agonist.

were SM-SP-responsive. Irrespective of their sulilamlocation these cells had two or more primary
beadeddendrites projecting to lamina | (Fig. 6D) or lamitl (not shown). The dendrites had no spines,
and had a rather thin constant diameter along tibiole length (Fig. 6D). The axon, when visible,
projected to lamina Il

Of the four oval-to-rounded neurons, three werated inlamina llp, and one in lamina jll Two oval-to-
roundedneurons were SM-SP-responsive. Their spherical rdenttee was confined within the SG, and
the axon, whenfilled bthe tracer, was seen to project ventrally for atstistance.

3.3. Distribution of NK1 receptor immunoreactivitin the dorsal horn

Labeling of mouse spinal cord sections with the-Bkt1 receptor antibody (Fig. 6E and F) resulted in
intense stainingvithin the superficial dorsal horn, particularly lmmina I,where a dense meshwork of
neuronal processes, maintyiented on a transversal plane, was detected &vals ofthe cord. The
superficial dorsal horn also containedimerous immunoreactive fusiform cell bodies witpokar
dendritic arborization.

Staining in lamina Il was far less prominent, rdirgpa looser network of processes, mainly oriented
on a longitudinal plane and more densely packelnmna llb. Some NK-immunoreactive cell bodies
were also detectenh this lamina; they were oval-to-fusiform, and ganse to positive dorso-ventrally

oriented dendrites.
In deeper laminae, immunostaining was limitedséattered processes and isolated neurons of larger

size. These cells usually displayed an irregulgsblygonal perykarion, with few long dendrites
travelingacross to more superficial or ventral laminae efibrsal horn.

4. Discussion

4.1, Effects of SM-SP administration



Whereas anatomical, functional, and recombinant Bitiidies have shown that SP is a fundamental
messenger ofertain types of pain conveyed to supraspinal cenlglamina | and IlI-V projection
neurons (Basbaum, 1999; Belipe et al., 1998;Honor et al., 1999;lkeda et 2003;Mantyh, 2002;
Mantyh et al., 1997; McLeod et al., 199dillan, 1999; Nichols et al., 1999; Todd, 2002; Toet al.,
2002; Woolf et al., 1998), the role of SP in lamihdasremained unclear. In this study, about 50%
of recordedneurons in mouse SG responded tojNKEceptor stimulation with a SP synthetic analog by
showing a transient increase inhibitory spontaneous activity. Such an effegas mainly due to
GABAA receptor activation. Nonetheless, in neurons dyapiamixed GABAergic/glycinergic activity,
activation of NK receptors was likely to enhance the release ofirgdyalso, but because of the very
low frequency of isolated glycinergic events we did potsuethis issue.

Although an inhibitory role of SP might be surpngiin light of its well-known role as a positiveipa
modulator,numerous reports in an array of different experit@legcontexts and species support our
present findings. When the release of amino acud&kesl by SP in neonatal rats wasamined in the
isolated spinal cord (Sakuma et al., 1991)nom hemisected spinal cord preparation (Maeharal.et
1995), it was demonstrated that 10 SP evoked a significant increase in the basalasd of GABA
and glycine. Moreover in cats, SP is released from primnociceptive afferent terminals, and
activates second-ord&ABAergic interneurons in the dorsal horn (Wei aftho, 1996). Similarly, SP
facilitated the strychnine-sensitive glycine resgmiin neurons acutely dissociated from the ratasacr
dorsal commissural nucleus, leading to concludé¢ 8 may suppress nociception in the spinal cord
(Wang et al., 1999). Finally, in CNS areas othemtlthe spinal cord, SRas also shown to stimulate
GABA-mediated inhibitorysynaptic transmission in vitro (Kombian, 2003a, Kmuznetsova and
Nistri, 1998; Maubach et al., 200@gier and Raggenbass, 2003; Stacey et al., 20@Kentogether,
these studies demonstrate that release of GABAIne by SP is relevant in vivo, and our obsdoret
showthat SG is a further CNS site in which such a s#da alsaelevant.
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Fig. 6. Morphology of SG neurons recorded, and imomytochemical distribution of the NKreceptor. (A-D) Biocytin-
injected neurons in lamina Il afansverse spinal cord slices. A SM-SP-responséwgan in lamina i (A) is shown at higher

magnification in (B). This neuron, fusiform in skeghad a longxis extended dorso-ventrally with primary dendrigeising from
the two poles of the cell body. Arrows point to téed dendrites. An SM-SP-responsive neuron in lariingB) is shown at

higher magnification in (C). This neuron, roundhape, had a dendritic arborization (arrows) maiirgcted to lamina IAn axon
process, emerging from the soma, projected to latir{arrowheads). (E and F) Distribution of NKeceptor immunoreactivity.

A dense meshworkf immunoreactive neuronal processes is spreadighiaut in lamina I. An NK-positive fusiform neuron in



lamina Il displays an immunoreactive denddieected to deeper laminae (E, arrow). A fusifoamina Il neuron, with a long
dendrite projecting to lamina Il, is intensely l&gkfor NK1 (F, arrowhead)Note that lamina | neurons (F, arrows) and processe

are also NK-immunoreactive. Scale bars: A, C=20®; B, D=50um; E, F=40um.
4.2.Morphological characterization of SM-SP responsigarons in SG

Numerous studies have examined the morphologypeafons in the SG of the spinal cord (Beal and
Bice, 1994;Beal et al., 1988; Bennett et al., 1980; Bickneltl 8Beal, 1984; Gobel, 1975, 1978; Gobel
et al., 1980; Todd andewis, 1986). Several different types and diffeesitavebeen reported among
species (see Ribeiro-Da-Silva, 200Bhe two most common neuronal types described byl Gap52),
i.e. the central cells, which are widely distriditeroughout the lamina, and the marginal cells, Wwhic
are concentrated at the border with lamina |, Heeen referredo, respectively, as islet and stalked cells
in cats (Gobel, 1975) and rats (Todd and Lewis,6198f the SM-SPresponsive neurons in this study,
three could be classified atalked cells, two as islet cells, and one didosbbng to anyf these categories.
This lack of structure-to-function correlation miag due to the fact that maturation of lamlhaeuron
dendrites occurs after birth, with extensrearrangement until the adult pattern is attainBitkfell
and Beal, 1984; Falls and Gobel, 1979). Howevektegpingwith our findings, numerous other studies have
failed to showa correlation between morphology and electrophggiohl properties of SG neurons (see
Ribeiro-Da-Silva, 2003).

4.3. Circuitry involved in the response of SG neurtmSM-SP

SP, neurokinin A (NKA) and neurokinin B (NKB) belpto a family of peptides, the tachykinins, all
implicated in nociception, and they, respectivelgt upon preferrececeptors, namely NK NK2 and

NK3, and cross-talbetween different tachykinins at different receptawknown to occur (Regoli et
al., 1987, 1994; Saria, 1998everinietal., 2002). Existence of Nkeceptor subtypes has been proposed:
two types of NK receptors were originally described with preferefice either septide or Sar9/-SP-
sulphone (Fox et al., 1996). More recently, a sigpsiensitiveand a ‘classical’ conformation of NK
receptor have beeproposed to explain different tachykinin affinitiaad signatransduction pathways
(Maggi and Schwartz, 1997). Sinc®M-SP selectively targets the NKreceptor in its classical
conformation, a proportion of SP-sensitive SG nesiraight have been missed in this study. Nonetheles
this does notnvalidate, but rather reinforces, the functionghgicance of our findings in vivo where it
seems possible that SP’s effect on inhibitory neansmission is greater than in oexperimental
conditions.

As to the circuitry involved in the response of ®@urons to SM-SP, one can hypothesize that: (i)
responsivecells receive a direct synaptic input from GABAer@nd/or glycinergic) neurons expressing
NK1 receptors at their membrane; and/or (ii) a polypticachain is activatedonsisting (in its simplest
configuration) of a first synapse between a preapyic excitatory NK-positive element an@ post-
synaptic GABAergic neuron, that, in turn acts aeaond synapse upon the SG-responsive cell.

One is also led to ask what is (are) the neurdoahain(s) in which pre-synaptic NKreceptors are
located.Our results show that they are mainly (but not esivkely)located at cell soma and/or dendrites,
since blockade dﬂa+-dependent action potentials with TTX was largeffective in blocking the effects

of SM-SP (11 out of 14 neurons). This observatisnin agreement witlocalization studies, which
failed to show NK receptorimmunoreactivity in axons (McLeod et al., 1998; Maét al., 1997;

Ribeiro-Da-Silva et al., 2001, and this studyhwever, the increase in the frequency of mIPSGCs fiew
neurons indicates that pre-synaptic f\#€ceptors could aldee expressed in the axonal domain.

Co-expression of NK and GABA has been reported brain areas other than the spinal cord
(Echevarria et al., 1997). However, in rat, mostnap neurons whichpossessed NK receptor-
immunoreactivity were not GABA- or glycine-immunaiive (Littlewood et al.1995). Nonetheless,



these authors described a few GAB#d glycine)-immunoreactive neurons in laminaahd, to a lesser
extent, lamina IV (see Fig. 4 in Littlewood et dl995). NKi/GABA-positive neurons of the deep dorsal
horn have dorsally oriented dendrites branching in lamin-II, where they receive an input from
tachykinin-releasingrimary afferent fibers (PAFs — Brown et al., 1998tlewood et al., 1995; Liu et
al., 1994; Naim et al., 1997). It is therefore a@imable that mouse laminae IlI-iveurons expressing NK
receptors at dendrites are capable of dendriteasel of GABA (and/or glycine) upon SM-8Rallenge.
Anatomically, dendritic spines filled witliGABA-immunoreactive vesicles have been observed to
contact other vesicle-containing dendrites (Carltand Hayes, 1991; Powell and Todd, 1992).
Functionally,dendritic release of GABA has not been describethénspinal cord, but is relevant in other
CNS areas such #se olfactory bulb (Halabisky and Strowbridge, 20B83acson and Vitten, 2003).
Putative dendro-dendritic synapses between Mkpressing GABAergic (and glycinergic) neurons
and SM-SP-responsive post-synaptic targets may bémgortant means to regulate the activity of
the SG neuronexpressing GABA (and glycin@) receptors. In additiongonsidering that PAFs
release a mixture of SP and NKa&nd that selectivity of the NK receptor subtypesotabsolute for
naive peptides, one cannot exclude that enhanceofienhibitory neurotransmission in SG coultso

be due in vivo to NKA release (Li and Zhuo, 200tafton et al., 2001). It is also possible that in
the intact spinal cord SP activates other NK remeptibtypedesides NK, considering that both NK
and NK3 receptorsare expressed in the dorsal horn, albeit at loereels tharNK 1 (Ding et al., 2002;
Fleetwoodwalker et al., 1990; Fex al., 1996; Ribeiro-Da-Silva et al., 2001).

4.4. Functional implications

Inhibitory interneurons in SG regulate the flownaiciceptive information to supraspinal centers.yThe
probably do this by directly targeting neurons loé widedynamic range and nocispecific projection
types, and/oprimary afferent terminals. The overall organizatiovolved allows for both pre- and
post-synaptic inhibitorymodulation (Basbaum, 1999; Millan, 1999). Inhibjtomterneurons are
themselves targeted by C and Ad fib@Bernardi et al., 1995; Todd and Spike, 1993; Tedldl.,
1994; Yoshimura and Nishi, 1995). This suggestsectiCand Ad counter-regulatory inhibitory feed-back
control uportheir parallel excitation of neurons of the widedgnic rangeand nocispecific projection types.
Our results indicate that SB involved in such a feed-back circuit: thus, paiicited upon direct
activation of projection neurons by C and fders may be limited by simultaneous recruitmeht o
inhibitory interneurons, at least when the stimulsisofshort duration and sub-maximal intensity.

A further element which adds to the complexity pinal modulation of pain processing by SP is the
notion that the peptide can also be released froorces other than PAFsuch as intersegmental
neurons and descending fib€Ribeiro-da-Silva and Hdokfelt, 2000). Independgritiom this, loss of
physiological inhibitory tone in the dorsal hdimllowing injuries and/or experimental manipulatgon
has serious effects, altering pain perception laading to conditions such as hyperalgesia and
allodynia (Basbaum, 1999).
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