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Abstract: In this work we develop an Almgren type monotonicity formula for a class of elliptic
equations in a domain with a crack, in the presence of potentials satisfying either a negligibility
condition with respect to the inverse-square weight or some suitable integrability properties. The study
of the Almgren frequency function around a point on the edge of the crack, where the domain is highly
non-smooth, requires the use of an approximation argument, based on the construction of a sequence
of regular sets which approximate the cracked domain. Once a finite limit of the Almgren frequency is
shown to exist, a blow-up analysis for scaled solutions allows us to prove asymptotic expansions and
strong unique continuation from the edge of the crack.
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1. Introduction and statement of the main results

This paper presents a monotonicity approach to the study of the asymptotic behavior and unique
continuation from the edge of a crack for solutions to the following class of elliptic equations−∆u(x) = f (x)u(x) in Ω \ Γ,

u = 0 on Γ,
(1.1)

where Ω ⊂ RN+1 is a bounded open domain, Γ ⊂ RN is a closed set, N ≥ 2, and the potential f
satisfies either a negligibility condition with respect to the inverse-square weight, see assumptions
(H1-1)–(H1-3), or some suitable integrability properties, see assumptions (H2-1)–(H2-5) below.
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We recall that the strong unique continuation property is said to hold for a certain class of
equations if no solution, besides possibly the zero function, has a zero of infinite order. Unique
continuation principles for solutions to second order elliptic equations have been largely studied in the
literature since the pioneering contribution by Carleman [6], who derived unique continuation from
some weighted a priori inequalities. Garofalo and Lin in [20] studied unique continuation for elliptic
equations with variable coefficients introducing an approach based on the validity of doubling
conditions, which in turn depend on the monotonicity property of the Almgren type frequency
function, defined as the ratio of scaled local energy over mass of the solution near a fixed point,
see [4].

Once a strong unique continuation property is established and infinite vanishing order for
non-trivial solutions is excluded, the problem of estimating and possibly classifying all admissible
vanishing rates naturally arises. For quantitative uniqueness and bounds for the maximal order of
vanishing obtained by monotonicity methods we cite e.g., [23]; furthermore, a precise description of
the asymptotic behavior together with a classification of possible vanishing orders of solutions was
obtained for several classes of problems in [15–19], by combining monotonicity methods with
blow-up analysis for scaled solutions.

The problem of unique continuation from boundary points presents peculiar additional difficulties,
as the derivation of monotonicity formulas is made more delicate by the interference with the geometry
of the domain. Moreover the possible vanishing orders of solutions are affected by the regularity of
the boundary; e.g., in [15] the asymptotic behavior at conical singularities of the boundary has been
shown to depend of the opening of the vertex. We cite [2, 3, 15, 24, 29] for unique continuation from
the boundary for elliptic equations under homogeneous Dirichlet conditions. We also refer to [28]
for unique continuation and doubling properties at the boundary under zero Neumann conditions and
to [11] for a strong unique continuation result from the vertex of a cone under non-homogeneous
Neumann conditions.

The aforementioned papers concerning unique continuation from the boundary require the domain
to be at least of Dini type. With the aim of relaxing this kind of regularity assumptions, the present
paper investigates unique continuation and classification of the possible vanishing orders of solutions
at edge points of cracks breaking the domain, which are then highly irregular points of the boundary.

Elliptic problems in domains with cracks arise in elasticity theory, see e.g., [9, 22, 25]. The high
non-smoothness of domains with slits produces strong singularities of solutions to elliptic problems
at edges of cracks; the structure of such singularities has been widely studied in the literature, see
e.g., [7, 8, 12] and references therein. In particular, asymptotic expansions of solutions at edges play
a crucial role in crack problems, since the coefficients of such expansions are related to the so called
stress intensity factor, see e.g., [9].

A further reason of interest in the study of problem (1.1) can be found in its relation with mixed
Dirichlet/Neumann boundary value problems. Indeed, if we consider an elliptic equation associated to
mixed boundary conditions on a flat portion of the boundary Λ = Λ1 ∪ Λ2, more precisely a
homogeneous Dirichlet boundary condition on Λ1 and a homogeneous Neumann condition on Λ2, an
even reflection through the flat boundary Λ leads to an elliptic equation satisfied in the complement of
the Dirichlet region, which then plays the role of a crack, see Figure 1; the edge of the crack
corresponds to the Dirichlet-Neumann junction of the original problem. In [14] unique continuation
and asymptotic expansions of solutions for planar mixed boundary value problems at
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Dirichlet-Neumann junctions were obtained via monotonicity methods; the present paper is in part
motivated by the aim of extending to higher dimensions the monotonicity formula obtained in [14] in
the 2-dimensional case, together with its applications to unique continuation. For some regularity
results for second-order elliptic problems with mixed Dirichlet-Neumann type boundary conditions
we refer to [21, 27] and references therein.

Neumann
Λ2

Dirichlet
Λ1

(a) Mixed Dirichlet/Neumann
boundary conditions on a flat portion
of the boundary.

Crack

(b) After an even reflection the
Dirichlet region becomes a crack.

Figure 1. A motivation from mixed Dirichlet/Neumann boundary value problems.

In the generalization of the Almgren type monotonicity formula of [14] to dimensions greater
than 2, some new additional difficulties arise, besides the highly non-smoothness of the domain: the
positive dimension of the edge, a stronger interference with the geometry of the domain, and some
further technical issues, related e.g., to the lack of conformal transformations straightening the edge.
In particular, the proof of the monotonicity formula is based on the differentiation of the Almgren
quotient defined in (4.9), which in turn requires a Pohozaev type identity formally obtained by testing
the equation with the function ∇u · x; however our domain with crack doesn’t verify the exterior ball
condition (which ensures L2-integrability of second order derivatives, see [1]) and ∇u · x could be not
sufficiently regular to be an admissible test function.

In this article a new technique, based on an approximation argument, is developed to overcome the
aforementioned difficulty: we construct first a sequence of domains which approximate Ω\Γ, satisfying
the exterior ball condition and being star-shaped with respect to the origin, and then a sequence of
solutions of an approximating problem on such domains, converging to the solution of the original
problem with crack. For the approximating problems enough regularity is available to establish a
Pohozaev type identity, with some remainder terms due to interference with the boundary, whose
sign can nevertheless be recognized thanks to star-shapeness conditions. Then, passing to the limit
in Pohozaev identities for the approximating problems, we obtain inequality (3.11), which is enough
to estimate from below the derivative of the Almgren quotient and to prove that such quotient has
a finite limit at 0 (Lemma 4.7). Once a finite limit of the Almgren frequency is shown to exist, a
blow-up analysis for scaled solutions allows us to prove strong unique continuation and asymptotics of
solutions.

In order to state the main results of the present paper, we start by introducing our assumptions on
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the domain. For N ≥ 2, we consider the set

Γ = {(x′, xN) = (x1, . . . , xN−1, xN) ∈ RN : xN ≥ g(x′)},

where g : RN−1 → R is a function such that

g(0) = 0, ∇g(0) = 0, (1.2)

g ∈ C2(RN−1). (1.3)

Let us observe that assumption (1.2) is not a restriction but just a selection of our coordinate system
and, from (1.2) and (1.3), it follows that

|g(x′)| = O(|x′|2) as |x′| → 0+. (1.4)

Moreover we assume that
g(x′) − x′ · ∇g(x′) ≥ 0 (1.5)

for any x′ ∈ B′
R̂

:= {x′ ∈ RN−1 : |x′| < R̂}, for some R̂ > 0. This condition says that RN \ Γ is star-shaped
with respect to the origin in a neighbourood of 0. It is satisfied for instance if the function g is concave
in a neighborhood of the origin.

We are interested in studying the following boundary value problem−∆u = f u in BR̂ \ Γ,

u = 0 on Γ,
(1.6)

where BR̂ = {x ∈ RN+1 : |x| < R̂}, for some function f : BR̂ → R such that f is measurable and bounded
in BR̂ \ Bδ for every δ ∈ (0, R̂). We consider two alternative sets of assumptions: we assume either that

lim
r→0+

ξ f (r) = 0, (H1-1)

ξ f (r)
r
∈ L1(0, R̂),

1
r

∫ r

0

ξ f (s)
s

ds ∈ L1(0, R̂), (H1-2)

where the function ξ f is defined as

ξ f (r) := sup
x∈Br

|x|2| f (x)| for any r ∈ (0, R̂), (H1-3)

or that
lim
r→0+

η(r, f ) = 0, (H2-1)

η(r, f )
r
∈ L1(0, R̂),

1
r

∫ r

0

η(s, f )
s

ds ∈ L1(0, R̂), (H2-2)

and
∇ f ∈ L∞loc(BR̂ \ {0}), (H2-3)

η(r,∇ f · x)
r

∈ L1(0, R̂),
1
r

∫ r

0

η(s,∇ f · x)
s

ds ∈ L1(0, R̂), (H2-4)
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where

η(r, h) = sup
u∈H1(Br)\{0}

∫
Br
|h|u2 dx∫

Br
|∇u|2 dx + N−1

2r

∫
∂Br
|u|2 dS

, (H2-5)

for every r ∈ (0, R̂), h ∈ L∞loc(BR̂ \ {0}).
Conditions (H1-1)–(H1-3) are satisfied e.g., if | f (x)| = O(|x|−2+δ) as |x| → 0 for some δ > 0, whereas

assumptions (H2-1)–(H2-5) hold e.g., if f ∈ W1,∞
loc (BR̂ \ {0}) and f ,∇ f ∈ Lp(BR̂) for some p > N+1

2 . We
also observe that condition (H2-1) is satisfied if f belongs to the Kato class Kn+1, see [13].

In order to give a weak formulation of problem (1.6), we introduce the space H1
Γ
(BR) for every

R > 0, defined as the closure in H1(BR) of the subspace

C∞0,Γ(BR) := {u ∈ C∞(BR) : u = 0 in a neighborhood of Γ}.

We observe that actually
H1

Γ(BR) = {u ∈ H1(BR) : τΓ(u) = 0},

where τΓ denotes the trace operator on Γ, as one can easily deduce from [5], taking into account that
the capacity of ∂Γ in RN+1 is zero, since ∂Γ is contained in a 2-codimensional manifold.

Hence we say that u ∈ H1(BR̂) is a weak solution to (1.6) if
u ∈ H1

Γ(BR̂),∫
BR̂

∇u(x) · ∇v(x) dx −
∫

BR̂

f (x)u(x)v(x) dx = 0 for any v ∈ C∞c (BR̂ \ Γ).

In the classification of the possible vanishing orders and blow-up profiles of solutions, the following
eigenvalue problem on the unit N-dimensional sphere with a half-equator cut plays a crucial role.
Letting SN = {(x′, xN , xN+1) : |x′|2 + x2

N + x2
N+1 = 1} be the unit N-dimensional sphere and

Σ = {(x′, xN , xN+1) ∈ SN : xN+1 = 0 and xN ≥ 0},

we consider the eigenvalue problem −∆SNψ = µψ on SN \ Σ,

ψ = 0 on Σ.
(1.7)

We say that µ ∈ R is an eigenvalue of (1.7) if there exists an eigenfunction ψ ∈ H1
0(SN \Σ), ψ . 0, such

that ∫
SN
∇SNψ · ∇SNφ dS = µ

∫
SN
ψφ dS

for all φ ∈ H1
0(SN\Σ). By classical spectral theory, (1.7) admits a diverging sequence of real eigenvalues

with finite multiplicity {µk}k≥1; moreover these eigenvalues are explicitly given by the formula

µk =
k(k + 2N − 2)

4
, k ∈ N \ {0}, (1.8)

see Appendix A. For all k ∈ N \ {0}, let Mk ∈ N \ {0} be the multiplicity of the eigenvalue µk and

{Yk,m}m=1,2,...,Mk be a L2(SN)-orthonormal basis of the eigenspace of (1.7) associated to µk. (1.9)
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In particular {Yk,m : k ∈ N \ {0},m = 1, 2, . . . ,Mk} is an orthonormal basis of L2(SN).
The main result of this paper provides an evaluation of the behavior at 0 of weak solutions

u ∈ H1(BR̂) to the boundary value problem (1.6).

Theorem 1.1. Let N ≥ 2 and u ∈ H1(BR̂) \ {0} be a non-trivial weak solution to (1.6), with f
satisfying either assumptions (H1-1)–(H1-3) or (H2-1)–(H2-5). Then, there exist k0 ∈ N, k0 ≥ 1, and
an eigenfunction of problem (1.7) associated with the eigenvalue µk0 such that

λ−k0/2u(λx)→ |x|k0/2ψ(x/|x|) as λ→ 0+ (1.10)

in H1(B1).

We mention that a stronger version of Theorem 1.1 will be given in Theorem 6.7.
As a direct consequence of Theorem 1.1 and the boundedness of eigenfunctions of (1.7) (see

Appendix A), the following point-wise upper bound holds.

Corollary 1.2. Under the same assumptions as in Theorem 1.1, let u ∈ H1(BR̂) be a non-trivial weak
solution to (1.6). Then, there exists k0 ∈ N, k0 ≥ 1, such that

u(x) = O(|x|k0/2) as |x| → 0+.

We observe that, due to the vanishing on the half-equator Σ of the angular profile ψ appearing in
(1.10), we cannot expect the reverse estimate |u(x)| ≥ c|x|k0/2 to hold for x close to the origin.

A further relevant consequence of our asymptotic analysis is the following unique continuation
principle, whose proof follows straightforwardly from Theorem 1.1.

Corollary 1.3. Under the same assumptions as in Theorem 1.1, let u ∈ H1(BR̂) be a weak solution to
(1.6) such that u(x) = O(|x|k) as |x| → 0, for any k ∈ N. Then u ≡ 0 in BR̂.

Theorem 6.7 will actually give a more precise description on the limit angular profile ψ: if Mk0 ≥ 1
is the multiplicity of the eigenvalue µk0 and {Yk0,i : 1 ≤ i ≤ Mk0} is as in (1.9), then the eigenfunction ψ
in (1.10) can be written as

ψ(θ) =

mk0∑
i=1

βiYk0,i, (1.11)

where the coefficients βi are given by the integral Cauchy-type formula (6.40).
The paper is organized as follows. In Section 2 we construct a sequence of problems on smooth

sets approximating the cracked domain, with corresponding solutions converging to the solution of
problem (1.6). In Section 3 we derive a Pohozaev type identity for the approximating problems and
consequently inequality (3.11), which is then used in Section 4 to prove the existence of the limit for
the Almgren type quotient associated to problem (1.6). In Section 5 we perform a blow-up analysis
and prove that scaled solutions converge in some suitable sense to a homogeneous limit profile, whose
homogeneity order is related to the eigenvalues of problem (1.7) and whose angular component is
shown to be as in (1.11) in Section 6, where an auxiliary equivalent problem with a straightened crack
is constructed. Finally, in the appendix we derive the explicit formula (1.8) for the eigenvalues of
problem (1.7).
Notation. We list below some notation used throughout the paper.
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- For all r > 0, Br denotes the open ball {x = (x′, xN , xN+1) ∈ RN+1 : |x| < r} in RN+1 with radius r
and center at 0.

- For all r > 0, Br = {x = (x′, xN , xN+1) ∈ RN+1 : |x| ≤ r} denotes the closure of Br.
- For all r > 0, B′r denotes the open ball {x = (x′, xN) ∈ RN : |x| < r} in RN with radius r and center

at 0.
- dS denotes the volume element on the spheres ∂Br, r > 0.

2. Approximation problem

We first prove a coercivity type result for the quadratic form associated to problem (1.6) in small
neighbourhoods of 0.

Lemma 2.1. Let f satisfy either (H1-1) or (H2-1). Then there exists r0 ∈ (0, R̂) such that, for any
r ∈ (0, r0] and u ∈ H1(Br),∫

Br

(|∇u|2 − | f |u2) dx ≥
1
2

∫
Br

|∇u|2 dx − ω(r)
∫
∂Br

u2 dS (2.1)

and

rω(r) <
N − 1

4
, (2.2)

where

ω(r) =


2

N − 1
ξ f (r)

r
, under assumption (H1-1),

N − 1
2

η(r, f )
r

, under assumption (H2-1).
(2.3)

Remark 2.2. For future reference, it is useful to rewrite (2.1) as∫
Br

| f |u2 dx ≤
1
2

∫
Br

|∇u|2 dx + ω(r)
∫
∂Br

u2 ds (2.4)

for all u ∈ H1(Br) and r ∈ (0, r0].

The proof of Lemma 2.1 under assumption (H1-1) is based on the following Hardy type inequality
with boundary terms, due to Wang and Zhu [30].

Lemma 2.3 ( [30], Theorem 1.1). For every r > 0 and u ∈ H1(Br),∫
Br

|∇u(x)|2 dx +
N − 1

2r

∫
∂Br

|u(x)|2 dS ≥
(N − 1

2

)2 ∫
Br

|u(x)|2

|x|2
dx. (2.5)

Proof of Lemma 2.1. Let us first prove the lemma under assumption (H1-1). To this purpose, let
r0 ∈ (0, R̂) be such that

4ξ f (r)
(N − 1)2 <

1
2

for all r ∈ (0, r0]. (2.6)
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Using the definition of ξ f (r) (H1-3) and (2.5), we have that for any r ∈ (0, R̂) and u ∈ H1(Br)∫
Br

| f |u2 dx ≤ ξ f (r)
∫

Br

|u(x)|2

|x|2
dx ≤

4ξ f (r)
(N − 1)2

[∫
Br

|∇u|2 dx +
N − 1

2r

∫
∂Br

u2 dS
]
. (2.7)

Thus, for every 0 < r ≤ r0, from (2.6) and (2.7), we obtain that∫
Br

(
|∇u|2 − | f |u2) dx ≥

(
1 −

4ξ f (r)
(N − 1)2

) ∫
Br

|∇u|2 dx −
2

N − 1
ξ f (r)

r

∫
∂Br

u2 ds

≥
1
2

∫
Br

|∇u|2 dx −
2

N − 1
ξ f (r)

r

∫
∂Br

u2 ds

and this completes the proof of (2.1) under assumption (H1-1).
Now let us prove the lemma under assumption (H2-1). Let r0 ∈ (0, R̂) be such that

η(r, f ) <
1
2

for all r ∈ (0, r0]. (2.8)

From the definition of η(r, f ) (H2-5) it follows that for any r ∈ (0, R̂) and u ∈ H1(Br)∫
Br

| f |u2 dx ≤ η(r, f )
[∫

Br

|∇u|2 dx +
N − 1

2r

∫
∂Br

u2 dS
]
. (2.9)

Thus, for every 0 < r ≤ r0, from (2.8) and (2.9) we deduce that∫
Br

(
|∇u|2 − | f |u2) dx ≥ (1 − η(r, f ))

∫
Br

|∇u|2 dx −
N − 1

2
η(r, f )

r

∫
∂Br

u2 dS

≥
1
2

∫
Br

|∇u|2 dx −
N − 1

2
η(r, f )

r

∫
∂Br

u2 ds,

hence concluding the proof of (2.1) under assumption (H2-1).
We observe that estimate (2.2) follows from the definition of ω in (2.3), (2.6), and (2.8). �

Now we are going to construct suitable regular sets which are star-shaped with respect to the origin
and which approximate our cracked domain. In order to do this, for any n ∈ N \ {0} let fn : R → R be
defined as

fn(t) =

n|t| + 1
ne

2n2 |t|
n2 |t|−2 , if |t| < 2/n2,

n|t|, if |t| ≥ 2/n2,

so that fn ∈ C2(R), fn(t) ≥ n|t| and fn increases for all t > 0 and decreases for all t < 0; furthermore

fn(t) − t f ′n(t) ≥ 0 for every t ∈ R. (2.10)

For all r > 0 we define

B̃r,n = {(x′, xN , xN+1) ∈ Br : xN < g(x′) + fn(xN+1)}, (2.11)

see Figure 2.
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(a) The set B̃r,n. (b) Section of B̃r,n.

Figure 2. Approximating domains.

Let γ̃r,n ⊂ ∂B̃r,n be the subset of Br defined as

γ̃r,n = {(x′, xN , xN+1) ∈ Br : xN = g(x′) + fn(xN+1)}

and S̃ r,n denote the set given by ∂B̃r,n \ γ̃r,n. We note that, for any fixed r > 0, the set γ̃r,n is not empty
and B̃r,n , Br provided n is sufficiently large.

Lemma 2.4. Let 0 < r ≤ R̂. Then, for all n ∈ N \ {0}, the set B̃r,n is star-shaped with respect to the
origin, i.e., x · ν ≥ 0 for a.e. x ∈ ∂B̃r,n, where ν is the outward unit normal vector.

Proof. If γ̃r,n is empty, then B̃r,n = Br and the conclusion is obvious. Let γ̃r,n be not empty.
The thesis is trivial if one considers a point x ∈ S̃ r,n.
If x ∈ γ̃r,n, then x = (x′, g(x′) + fn(xN+1), xN+1) and the outward unit normal vector at this point is

given by

ν(x) =
(−∇g(x′), 1,− f ′n(xN+1))√
1 + | f ′n(xN+1)|2 + |∇g(x′)|2

,

hence we have that

x · ν(x) =
g(x′) − ∇g(x′) · x′ + fn(xN+1) − xN+1 f ′n(xN+1)√

1 + | f ′n(xN+1|
2 + |∇g(x′)|2

≥ 0

since g(x′) − ∇g(x′) · x′ ≥ 0 by assumption (1.5) and fn(xN+1) − xN+1 f ′n(xN+1) ≥ 0 by (2.10). �

From now on, we fix u ∈ H1(BR̂) \ {0}, a non-trivial weak solution to problem (1.6), with f
satisfying either (H1-1)–(H1-3) or (H2-1)–(H2-5). Since u ∈ H1

Γ
(BR̂), there exists a sequence of

functions gn ∈ C∞0,Γ(BR̂) such that gn → u in H1(BR̂). We can choose the functions gn in such a way
that

gn(x1, . . . , xN , xN+1) = 0 if (x1, · · · , xN) ∈ Γ and |xN+1| ≤
C̃
n
, (2.12)

with
C̃ >

√
2(r2

0 + M2), where M = max{|g(x′)| : |x′| ≤ r0}. (2.13)

Remark 2.5. We observe that gn ≡ 0 in Br0 \ B̃r0,n. Indeed, if x = (x′, xN , xN+1) ∈ Br0 \ B̃r0,n, then

xN ≥ g(x′) + fn(xN+1) > g(x′),

so that (x′, xN) ∈ Γ. Moreover

xN ≥ fn(xN+1) + g(x′) ≥ n|xN+1| − M,

with M as in (2.13). Hence either |xN+1| ≤
M
n or r2

0 ≥ x2
N ≥ (n|xN+1| − M)2 ≥ n2

2 |xN+1|
2 − M2. Thus

|xN+1| ≤

√
2(r2

0+M2)
n < C̃

n , if we choose C̃ as in (2.13). Then gn(x) = 0 in view of (2.12).
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Now we construct a sequence of approximated solutions {un}n∈N on the sets B̃r0,n. For each fixed
n ∈ N, we claim that there exists a unique weak solution un to the boundary value problem−∆un = f un in B̃r0,n,

un = gn on ∂B̃r0,n.
(2.14)

Letting
vn := un − gn,

we have that un weakly solves (2.14) if and only if vn ∈ H1(B̃r0,n) is a weak solution to the homogeneous
boundary value problem −∆vn − f vn = f gn + ∆gn in B̃r0,n,

vn = 0 on ∂B̃r0,n,
(2.15)

i.e., 
vn ∈ H1

0(B̃r0,n),∫
B̃r0 ,n

(∇vn · ∇φ − f vnφ) dx =

∫
B̃r0 ,n

( f gn + ∆gn)φ dx for any φ ∈ H1
0(B̃r0,n).

Lemma 2.6. Let r0 be as in Lemma 2.1. Then, for all n ∈ N, problem (2.15) has one and only one
weak solution vn ∈ H1

0(B̃r0,n), where B̃r0,n is defined in (2.11).

Proof. Let us consider the bilinear form

a(v,w) =

∫
B̃r0 ,n

(∇v · ∇w − f vw) dx,

for every v,w ∈ H1
0(B̃r0,n). Lemma 2.1 implies that a is coercive on H1

0(B̃r0,n). Furthermore, from
estimate (2.4) we easily deduce that a is continuous. The thesis then follows from the Lax-Milgram
Theorem. �

Proposition 2.7. Under the same assumptions of Lemma 2.6, there exists a positive constant C > 0
such that ‖vn‖H1

0 (Br0 ) ≤ C for every n ∈ N, where vn is extended trivially to zero in Br0 \ B̃r0,n.

Proof. Let us observe that f gn and −∆gn are bounded in H−1(Br0) as a consequence of the boundedness
of gn in H1(Br0): indeed, using (2.4), one has that, for any φ ∈ H1

0(Br0),∣∣∣∣∣∫
Br0

f gnφ dx
∣∣∣∣∣ ≤ (∫

Br0

| f |g2
n dx

) 1
2
(∫

Br0

| f |φ2 dx
) 1

2

≤
1
2

(1
2

∫
Br0

|∇gn|
2 dx + ω(r0)

∫
∂Br0

g2
n ds

) 1
2
(∫

Br0

|∇φ|2 dx
) 1

2

≤ c1‖gn‖H1(Br0 )‖φ‖H1
0 (Br0 ),

(2.16)

for some c1 > 0 independent on n and φ, and∣∣∣∣∣−∫
Br0

∆gnφ dx
∣∣∣∣∣ =

∣∣∣∣∣∫
Br0

∇gn · ∇φ dx
∣∣∣∣∣ ≤ c2‖gn‖H1(Br0 )‖φ‖H1

0 (Br0 ), (2.17)
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for some c2 > 0 independent on n and φ. Thus from (2.15)–(2.17) and Lemma 2.1, it follows that

‖vn‖
2
H1

0 (Br0 ) =

∫
Br0

|∇vn|
2 dx ≤ 2

∫
Br0

(|∇vn|
2 − f v2

n) dx = 2
∫

Br0

( f gn + ∆gn)vn dx

≤ 2(c1 + c2)‖gn‖H1(Br0 )‖vn‖H1
0 (Br0 ) ≤ c3‖vn‖H1

0 (Br0 ),

for some c3 > 0 independent on n. This completes the proof. �

Proposition 2.8. Under the same assumptions of Lemma 2.6, we have that un ⇀ u weakly in H1(Br0),
where un is extended trivially to zero in Br0 \ B̃r0,n.

Proof. We observe that the trivial extension to zero of un in Br0 \ B̃r0,n belongs to H1(Br0) since the trace
of un on γ̃r0,n is null in view of Remark 2.5.

From Proposition 2.7 it follows that there exist ṽ ∈ H1
0(Br0) and a subsequence {vnk} of {vn} such

that vnk ⇀ ṽ weakly in H1
0(Br0). Then unk = vnk + gnk ⇀ ũ weakly in H1(Br0), where ũ := ṽ + u. Let

φ ∈ C∞c (Br0 \ Γ). Arguing as in Remark 2.5, we can prove that φ ∈ H1
0(B̃r0,nk) for all sufficiently large k.

Hence, from (2.14) it follows that, for all sufficiently large k,∫
Br0

∇unk · ∇φ dx =

∫
Br0

f unkφ dx, (2.18)

where unk is extended trivially to zero in Br0 \ B̃r0,nk . Passing to the limit in (2.18), we obtain that∫
Br0

∇ũ · ∇φ dx =

∫
Br0

f ũφ dx

for every φ ∈ C∞c (Br0 \ Γ). Furthermore ũ = u on ∂Br0 in the trace sense: indeed, due to compactness
of the trace map γ : H1(Br0) → L2(∂Br0), we have that γ(unk) → γ(ũ) in L2(∂Br0) and
γ(unk) = γ(gnk)→ γ(u) in L2(∂Br0), since gn → u in H1(Br0).

Finally, we prove that ũ ∈ H1
Γ
(Br0). To this aim, let Γδ = {(x′, xN) ∈ RN : xN ≥ g(x′) + δ} for every

δ > 0. For every δ > 0 we have that Γδ ∩ Br0 ⊂ Br0 \ B̃r0,n provided n is sufficiently large. Hence, since
un is extended trivially to zero in Br0 \ B̃r0,n, we have that, for every δ > 0, un ∈ H1

Γδ
(Br0) provided n

is sufficiently large. Since H1
Γδ

(Br0) is weakly closed in H1(Br0), it follows that ũ ∈ H1
Γδ

(Br0) for every
δ > 0, and hence ũ ∈ H1

Γ
(Br0).

Thus ũ weakly solves 
−∆ũ = f ũ in Br0 \ Γ,

ũ = u on ∂Br0 ,

ũ = 0 on Γ.

Now we consider the function U := ũ − u: it weakly solves the following problem
−∆U = f U in Br0 \ Γ,

U = 0 on ∂Br0 ,

U = 0 on Γ.

(2.19)

Testing Eq (2.19) with U itself and using Lemma 2.1, we obtain that

1
2

∫
Br0

|∇U |2 dx ≤
∫

Br0

(|∇U |2 − f U2) dx = 0,
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so that U = 0, hence u = ũ. By Urysohn’s subsequence principle, we can conclude that un ⇀ u weakly
in H1(Br0). �

Our next aim is to prove strong convergence of the sequence {un}n∈N to u in H1(Br0).

Proposition 2.9. Under the same assumptions of Lemma 2.6, we have that un → u in H1(Br0).

Proof. From Proposition 2.8 we deduce that vn ⇀ 0 in H1(Br0), hence testing (2.15) with vn itself, we
have that ∫

Br0

(|∇vn|
2 − f v2

n) dx =

∫
B̃r0 ,n

(|∇vn|
2 − f v2

n) dx

=

∫
B̃r0 ,n

( f gnvn − ∇gn∇vn) dx =

∫
Br0

( f gnvn − ∇gn∇vn) dx→ 0

as n→ ∞. Thus, from Lemma 2.1, we deduce that ‖vn‖H1
0 (Br0 ) → 0 as n→ ∞, hence vn → 0 in H1(Br0).

This yields that un = gn + vn → u in H1(Br0). �

3. Pohozaev identity

In this section we derive a Pohozaev type identity for un in which we will pass to the limit using
Proposition 2.9. For every r ∈ (0, r0) and v ∈ H1(Br), we define

R(r, v) =


∫

Br

f v(x · ∇v) dx, if f satisfies (H1-1)–(H1-3),

r
2

∫
∂Br

f v2 dS −
1
2

∫
Br

(
∇ f · x + (N + 1) f

)
v2 dx, if f satisfies (H2-1)–(H2-5).

Lemma 3.1. Let 0 < r < r0. There exists n0 = n0(r) ∈ N \ {0} such that, for all n ≥ n0,

−
N − 1

2

∫
B̃r,n

|∇un|
2 dx +

r
2

∫
S̃ r,n

|∇un|
2 dS

−
1
2

∫
γ̃r,n

∣∣∣∣∣∂un

∂ν

∣∣∣∣∣2x · ν dS − r
∫

S̃ r,n

∣∣∣∣∣∂un

∂ν

∣∣∣∣∣2 dS − R(r, un) = 0. (3.1)

Proof. Since un solves (2.14) in the domain B̃r0,n, which satisfies the exterior ball condition, and
f un ∈ L2

loc(B̃r0,n \ {0}), by elliptic regularity theory (see [1]) we have that un ∈ H2(B̃r,n \ Bδ) for all
r ∈ (0, r0), n sufficiently large and all δ < rn, where rn is such that Brn ⊂ B̃r,n. Since∫ rn

0

[∫
∂Br

(
|∇un|

2 + | f |u2
n
)

dS
]

dr =

∫
Brn

(
|∇un|

2 + | f |u2
n
)

dx < +∞,

there exists a sequence {δk}k∈N ⊂ (0, rn) such that limk→∞ δk = 0 and

δk

∫
∂Bδk

|∇un|
2 dS → 0, δk

∫
∂Bδk

| f |u2
n dS → 0 as k → ∞. (3.2)
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Testing (2.14) with x · ∇un and integrating over B̃r,n \ Bδk , we obtain that

−

∫
B̃r,n\Bδk

∆un(x · ∇un) dx =

∫
B̃r,n\Bδk

f un(x · ∇un) dx. (3.3)

Integration by parts allows us to rewrite the first term in (3.3) as

−

∫
B̃r,n\Bδk

∆un(x · ∇un) dx =

∫
B̃r,n\Bδ

∇un · ∇(x · ∇un) dx − r
∫

S̃ r,n

∣∣∣∣∣∂un

∂ν

∣∣∣∣∣2 dS

−

∫
γ̃r,n

∣∣∣∣∣∂un

∂ν

∣∣∣∣∣2x · ν dS + δk

∫
∂Bδk

∣∣∣∣∣∂un

∂ν

∣∣∣∣∣2 dS ,
(3.4)

where we used that x = rν on S̃ r,n and that the tangential component of ∇un on γ̃r,n equals zero, thus
∇un = ∂un

∂ν
ν on γ̃r,n. Furthermore, by direct calculations, the first term in (3.4) can be rewritten as∫

B̃r,n\Bδk

∇un · ∇(x · ∇un) dx = −
N − 1

2

∫
B̃r,n\Bδk

|∇un|
2 dx +

r
2

∫
S̃ r,n

|∇un|
2 dS

+
1
2

∫
γ̃r,n

∣∣∣∣∣∂un

∂ν

∣∣∣∣∣2x · ν dS −
δk

2

∫
∂Bδk

|∇un|
2 dS .

(3.5)

Taking into account (3.3)–(3.5), we obtain that

−
N − 1

2

∫
B̃r,n\Bδk

|∇un|
2 dx +

r
2

∫
S̃ r,n

|∇un|
2 dS −

1
2

∫
γ̃r,n

∣∣∣∣∣∂un

∂ν

∣∣∣∣∣2x · ν dS − r
∫

S̃ r,n

∣∣∣∣∣∂un

∂ν

∣∣∣∣∣2 dS

−
δk

2

∫
∂Bδk

|∇un|
2 dS + δk

∫
∂Bδk

∣∣∣∣∣∂un

∂ν

∣∣∣∣∣2 dS −
∫

B̃r,n\Bδk

f un(x · ∇un) dx = 0. (3.6)

Under assumptions (H1-1)–(H1-3), the Hardy inequality (2.5) implies that f un(x · ∇un) ∈ L1(Br) and
hence

lim
k→∞

∫
B̃r,n\Bδk

f un(x · ∇un) dx = lim
k→∞

∫
Br\Bδk

f un(x · ∇un) dx =

∫
Br

f un(x · ∇un) dx. (3.7)

On the other hand, if (H2-1)–(H2-5) hold, we can use the Divergence Theorem to obtain that∫
B̃r,n\Bδk

f un(x · ∇un) dx

=
r
2

∫
S̃ r,n

f u2
n dS −

1
2

∫
B̃r,n\Bδk

(
∇ f · x + (N + 1) f

)
u2

n dx −
δk

2

∫
∂Bδk

f u2
n dS

=
r
2

∫
∂Br

f u2
n dS −

1
2

∫
Br\Bδk

(
∇ f · x + (N + 1) f

)
u2

n dx −
δk

2

∫
∂Bδk

f u2
n dS . (3.8)

Since, under assumptions (H2-1)–(H2-5),
(
∇ f · x + (N + 1) f

)
u2

n ∈ L1(Br), we can pass to the limit as
k → ∞ in (3.8) taking into account also (3.2), thus obtaining that

lim
k→∞

∫
B̃r,n\Bδk

f un(x · ∇un) dx =
r
2

∫
∂Br

f u2
n dS −

1
2

∫
Br

(
∇ f · x + (N + 1) f

)
u2

n dx. (3.9)

Letting k → +∞ in (3.6), by (3.2), (3.7), and (3.9), we obtain (3.1). �

Mathematics in Engineering Volume 3, Issue 3, 1–40.



14

Combining Lemma 3.1 with the fact that the domains B̃r,n (defined as in (2.11)) are star-shaped with
respect to the origin, we deduce the following inequality.

Corollary 3.2. Let 0 < r < r0. There exists n0 = n0(r) ∈ N \ {0} such that, for all n ≥ n0,

−
N − 1

2

∫
B̃r,n

|∇un|
2 dx +

r
2

∫
S̃ r,n

|∇un|
2 dS − r

∫
S̃ r,n

∣∣∣∣∣∂un

∂ν

∣∣∣∣∣2 dS − R(r, un) ≥ 0. (3.10)

Proof. In view of (3.1), the left-hand side of (3.10) is equal to 1
2

∫
γ̃r,n

∣∣∣∂un
∂ν

∣∣∣2x · ν dS , which is in fact
non-negative, since x · ν ≥ 0 on γ̃r,n by Lemma 2.4. �

Passing to the limit in (3.10) as n→ ∞, a similar inequality can be derived for u.

Proposition 3.3. Let u solve (1.6), with f satisfying either (H1-1)–(H1-3) or (H2-1)–(H2-5). Then, for
a.e. r ∈ (0, r0), we have that

−
N − 1

2

∫
Br

|∇u|2 dx +
r
2

∫
∂Br

|∇u|2 dS − r
∫
∂Br

∣∣∣∣∣∂u
∂ν

∣∣∣∣∣2 dS − R(r, u) ≥ 0 (3.11)

and ∫
Br

|∇u|2 dx =

∫
Br

f u2 dx +

∫
∂Br

u
∂u
∂ν

dS . (3.12)

Proof. In order to prove (3.11), we pass to the limit inside inequality (3.10). As regards the first term,
it is sufficient to observe that∫

B̃r,n

|∇un|
2dx =

∫
Br

|∇un|
2dx→

∫
Br

|∇u|2dx as n→ ∞,

for each fixed r ∈ (0, r0), as a consequence of Proposition 2.9. In order to deal with the second term,
we observe that, by strong H1-convergence of un to u,

lim
n→+∞

∫ r0

0

(∫
∂Br

|∇(un − u)|2 dS
)

dr = 0. (3.13)

Letting

Fn(r) =

∫
∂Br

|∇(un − u)|2 dS ,

(3.13) implies that Fn → 0 in L1(0, r0). Then there exists a subsequence Fnk such that Fnk(r) → 0 for
a.e. r ∈ (0, r0), hence∫

S̃ r,nk

|∇unk |
2 dS =

∫
∂Br

|∇unk |
2 dS →

∫
∂Br

|∇u|2 dS as k → ∞

for a.e. r ∈ (0, r0). In a similar way, we obtain that∫
S̃ r,nk

∣∣∣∣∣∂unk

∂ν

∣∣∣∣∣2dS →
∫
∂Br

∣∣∣∣∣∂u
∂ν

∣∣∣∣∣2dS as k → ∞.
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It remains to prove the convergence of R(r, un). Under the set of assumptions (H1-1)–(H1-3), we first
write ∫

Br

| f un(x · ∇un) − f u(x · ∇u)|dx =

∫
Br

| f (un − u)(x · ∇un) − f ux · ∇(u − un)|dx

≤

∫
Br

| f (un − u)(x · ∇un)|dx +

∫
Br

| f ux · ∇(u − un)|dx.
(3.14)

The Hölder inequality, (2.5), and Proposition 2.9 imply that∫
Br

| f (un − u)(x · ∇un)|dx ≤ ξ f (r)
(∫

Br

|un − u|2

|x|2
dx

)1/2(∫
Br

|∇un|
2dx

)1/2

≤
2

N − 1
ξ f (r)

(∫
Br

|∇(un − u)|2dx +
N − 1

2r

∫
∂Br

|un − u|2dS
)1/2(∫

Br

|∇un|
2dx

)1/2

→ 0

and∫
Br

| f ux · ∇(un − u)|dx ≤ ξ f (r)
(∫

Br

|u(x)|2

|x|2
dx

)1/2(∫
Br

|∇(un − u)|2dx
)1/2

≤
2

N − 1
ξ f (r)

(∫
Br

|∇u|2dx +
N − 1

2r

∫
∂Br

|u|2dS
)1/2(∫

Br

|∇(un − u)|2dx
)1/2

→ 0

as n → ∞, for a.e. r ∈ (0, r0), since ξ f (r) is finite a.e. as a consequence of assumption (H1-2). Hence,
from (3.14) we deduce that

lim
n→∞
R(r, un) = R(r, u) (3.15)

under assumptions (H1-1)–(H1-3). To prove (3.15) under assumptions (H2-1)–(H2-5), we first use
Proposition 2.9 and the Hölder inequality to observe that∣∣∣∣∣ ∫

Br

[∇ f · x + (N + 1) f ](u2
n − u2) dx

∣∣∣∣∣
≤

(∫
Br

(|∇ f · x| + (N + 1)| f |)|un − u|2 dx
) 1

2
(∫

Br

(|∇ f · x| + (N + 1)| f |)|un + u|2 dx
) 1

2

≤ (η(r,∇ f · x) + (N + 1)η(r, f ))
(∫

Br

|∇(un − u)|2 dx + N−1
2r

∫
∂Br

|un − u|2 dS
) 1

2

·

(∫
Br

|∇(un + u)|2 dx + N−1
2r

∫
∂Br

|un + u|2 dS
) 1

2

→ 0,

as n→ ∞, for a.e. r ∈ (0, r0), since η(r,∇ f ·x) and η(r, f ) are finite a.e. as a consequence of assumptions
(H2-4) and (H2-2) and {un + u}n is bounded in H1(Br) for every r ∈ (0, r0). Furthermore, by the fact
that f is bounded far from the origin and the compactness of the trace map from H1(Br) to L2(∂Br), it
follows that ∫

∂Br

f u2
n dS →

∫
∂Br

f u2 dS ,

for a.e. r ∈ (0, r0). Hence, passing to the limit in R(r, un) we conclude the first part of the proof.
Finally (3.12) follows by testing (2.14) with un itself and passing to the limit arguing as above. �
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4. The Almgren type frequency function

Let u ∈ H1
Γ
(BR̂) be a non trivial solution to (1.6). For every r ∈ (0, R̂) we define

D(r) = r1−N
∫

Br

(
|∇u|2 − f u2) dx (4.1)

and
H(r) = r−N

∫
∂Br

u2 dS . (4.2)

In the following lemma we compute the derivative of the functionH .

Lemma 4.1. We have thatH ∈ W1,1
loc (0, R̂) and

H ′(r) = 2r−N
∫
∂Br

u
∂u
∂ν

dS (4.3)

in a distributional sense and for a.e. r ∈ (0, R̂). Furthermore

H ′(r) =
2
r
D(r) for a.e. r ∈ (0, R̂). (4.4)

Proof. First we observe that

H(r) =

∫
SN
|u(rθ)|2 dS . (4.5)

Let φ ∈ C∞c (0, R̂). Since u,∇u ∈ L2(BR̂), we obtain that

−

∫ R̂

0
H(r)φ′(r) dr = −

∫ R̂

0

(∫
∂B1

u2(rθ) dS
)
φ′(r) dr

= −

∫
BR̂

|x|−N−1u2(x)∇v(x) · x dx = 2
∫

BR̂

v(x)|x|−N−1u∇u · x dx

= 2
∫ R̂

0
φ(r)

(∫
∂B1

u(rθ)∇u(rθ) · θ dS
)

dr,

where we set v(x) = φ(|x|). Thus we proved (4.3). Identity (4.4) follows from (4.3) and (3.12). �

We now observe that the functionH is strictly positive in a neighbourhood of 0.

Lemma 4.2. For any r ∈ (0, r0], we have thatH(r) > 0.

Proof. Assume by contradiction that there exists r1 ∈ (0, r0] such thatH(r1) = 0, so that the trace of u
on ∂Br1 is null and hence u ∈ H1

0(Br1 \ Γ). Then, testing (1.6) with u, we obtain that∫
Br1

|∇u|2 dx −
∫

Br1

f u2 dx = 0. (4.6)

Thus, from Lemma 2.1 and (4.6) it follows that

0 =

∫
Br1

[|∇u|2 − f u2] dx ≥
1
2

∫
Br1

|∇u|2 dx,
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which, together with Lemma 2.3, implies that u ≡ 0 in Br1 . From classical unique continuation
principles for second order elliptic equations with locally bounded coefficients (see e.g., [31]), we can
conclude that u = 0 a.e. in BR̂, a contradiction. �

Let us now differentiate the functionD and estimate from below its derivative.

Lemma 4.3. The functionD defined in (4.1) belongs to W1,1
loc (0, R̂) and

D′(r) ≥ 2r1−N
∫
∂Br

∣∣∣∣∣∂u
∂ν

∣∣∣∣∣2 dS + (N − 1)r−N
∫

Br

f u2 dx + 2r−NR(r, u) − r1−N
∫
∂Br

f u2 dS (4.7)

for a.e. r ∈ (0, r0).

Proof. We have that

D′(r) = (1 − N)r−N
∫

Br

(
|∇u|2 − f u2) dx + r1−N

∫
∂Br

(
|∇u|2 − f u2) dS (4.8)

for a.e. r ∈ (0, r0) and in the distributional sense. Combining (3.11) and (4.8), we obtain (4.7). �

Thanks to Lemma 4.2, the frequency function

N : (0, r0]→ R, N(r) =
D(r)
H(r)

(4.9)

is well defined. Using Lemmas 4.1, 4.3, and 2.1 we can estimate from below N and its derivative.

Lemma 4.4. The function N defined in (4.9) belongs to W1,1
loc ((0, r0]) and

N ′(r) ≥ ν1(r) + ν2(r), (4.10)

for a.e. r ∈ (0, r0), where

ν1(r) =
2r

[(∫
∂Br

∣∣∣∂u
∂ν

∣∣∣2 dS
)(∫

∂Br
|u|2 dS

)
−

(∫
∂Br

u∂u
∂ν

dS
)2](∫

∂Br
|u|2 dS

)2

and

ν2(r) =
2
[N−1

2

∫
Br

f u2 dx + R(r, u) − r
2

∫
∂Br

f u2 dS
]∫

∂Br
|u|2 dS

. (4.11)

Furthermore,

N(r) > −
N − 1

4
for every r ∈ (0, r0) (4.12)

and, for every ε > 0, there exists rε > 0 such that

N(r) > −ε for every r ∈ (0, rε), (4.13)

i.e., lim infr→0+ N(r) ≥ 0.
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Proof. From Lemmas 4.1, 4.2, and 4.3, it follows that N ∈ W1,1
loc ((0, r0]). From (4.4) we deduce that

N ′(r) =
D′(r)H(r) −D(r)H ′(r)

(H(r))2 =
D′(r)H(r) − 1

2r(H ′(r))2

(H(r))2

and the proof of (4.10) easily follows from (4.3) and (4.7). To prove (4.12) and (4.13), we observe that
(4.1) and (4.2), together with Lemma 2.1, imply that

N(r) =
D(r)
H(r)

≥
r
[ 1

2

∫
Br
|∇u|2dx − ω(r)

∫
∂Br
|u|2 dS

]∫
∂Br
|u|2 dS

≥ −rω(r) (4.14)

for every r ∈ (0, r0), where ω is defined in (2.3). Then (4.12) follows directly from (2.2). From either
assumption (H1-1) or (H2-1) it follows that limr→0+ rω(r) = 0; hence (4.14) implies (4.13). �

Lemma 4.5. Let ν2 be as in (4.11). There exists a positive constant C1 > 0 such that

|ν2(r)| ≤ C1α(r)
[
N(r) +

N − 1
2

]
(4.15)

for all r ∈ (0, r0), where

α(r) =

r−1ξ f (r), under assumptions (H1-1)–(H1-3),
r−1

(
η(r, f ) + η(r,∇ f · x)

)
, under assumptions (H2-1)–(H2-5).

(4.16)

Proof. From Lemma 2.1 we deduce that, for all r ∈ (0, r0),∫
Br

|∇u|2 dx ≤ 2
(
rN−1D(r) + ω(r)rNH(r)

)
, (4.17)

where ω(r) is defined in (2.3).
Let us first suppose to be under assumptions (H1-1)–(H1-3). Estimating the first term in the

numerator of ν2(r) we obtain that∣∣∣∣∣∫
Br

f u2 dx
∣∣∣∣∣ ≤ ξ f (r)

∫
Br

|u(x)|2

|x|2
dx ≤ ξ f (r)

4
(N − 1)2

[∫
Br

|∇u|2 dx +
N − 1

2r

∫
∂Br

u2 dS
]

≤
8

(N − 1)2 rN−1ξ f (r)D(r) +
16

(N − 1)3 rN−1(ξ f (r))2H(r) +
2

N − 1
rN−1ξ f (r)H(r)

≤
8

(N − 1)2 rN−1ξ f (r)D(r) +
4

N − 1
rN−1ξ f (r)H(r)

=
8

(N − 1)2 rN−1ξ f (r)
(
D(r) +

N − 1
2
H(r)

)
,

(4.18)

where we used (H1-3), Lemma 2.3, (4.17) and (2.6). Using Hölder inequality, (4.18), (2.6), and (4.17),
the second term can be estimated as follows∣∣∣∣∣∫

Br

f ux · ∇u dx
∣∣∣∣∣ ≤ ξ f (r)

(∫
Br

|u(x)|2

|x|2
dx

) 1
2
(∫

Br

|∇u|2 dx
) 1

2

≤ ξ f (r)
4

N − 1
rN−1

(
D(r) +

N − 1
2
H(r)

) 1
2
(
D(r) +

2
N − 1

ξ f (r)H(r)
) 1

2

≤ ξ f (r)
4

N − 1
rN−1

(
D(r) +

N − 1
2
H(r)

)
.

(4.19)
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For the last term we have that

r
∣∣∣∣∣∫

∂Br

f u2 ds
∣∣∣∣∣ ≤ ξ f (r)

r

∫
∂Br

u2 ds = ξ f (r)rN−1H(r). (4.20)

Combining (4.18)–(4.20), we obtain that, for all r ∈ (0, r0),

|ν2(r)| ≤ C1 ξ f (r)r−1
[
N(r) +

N − 1
2

]
for some positive constant C1 > 0 which does not depend on r.

Now let us suppose to be under assumptions (H2-1)–(H2-5). In this case, the definition of R(r, u)
allows us to rewrite ν2 as

ν2(r) = −

∫
Br

(2 f + ∇ f · x)u2 dx∫
∂Br

u2 ds
.

From (H2-5), (4.17) and (2.8) it follows that∣∣∣∣∣∫
Br

(2 f + ∇ f · x)u2 dx
∣∣∣∣∣ ≤ (2η(r, f ) + η(r,∇ f · x))

(∫
Br

|∇u|2 dx +
N − 1

2r

∫
∂Br

|u|2 ds
)

≤ 2(2η(r, f ) + η(r,∇ f · x))rN−1
(
D(r) +

N − 1
2

η(r, f )H(r) +
N − 1

4
H(r)

)
≤ 2(2η(r, f ) + η(r,∇ f · x))rN−1

(
D(r) +

N − 1
2
H(r)

)
.

Therefore, we have that

|ν2(r)| ≤
2(2η(r, f ) + η(r,∇ f · x))

r

(
N(r) +

N − 1
2

)
and estimate (4.15) is proved also under assumptions (H2-1)–(H2-5), with C1 = 4. �

Lemma 4.6. Letting r0 be as in Lemma 2.1 and N as in (4.9), there exists a positive constant C2 > 0
such that

N(r) ≤ C2 (4.21)

for all r ∈ (0, r0).

Proof. By Lemma 4.4, Schwarz’s inequality, and Lemma 4.5, we obtain(
N +

N − 1
2

)′
(r) ≥ ν2(r) ≥ −C1α(r)

[
N(r) +

N − 1
2

]
(4.22)

for a.e. r ∈ (0, r0), where α is defined in (4.16). Taking into account that N(r) + N−1
2 > 0 for all

r ∈ (0, r0) in view of (4.12) and α ∈ L1(0, r0) thanks to assumptions (H1-2), (H2-2) and (H2-4), after
integration over (r, r0) it follows that

N(r) ≤ −
N − 1

2
+

(
N(r0) +

N − 1
2

)
exp

(
C1

∫ r0

0
α(s)ds

)
for any r ∈ (0, r0), thus proving estimate (4.21). �
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Lemma 4.7. The limit
γ := lim

r→0+
N(r)

exists and is finite. Moreover γ ≥ 0.

Proof. SinceN ′(r) ≥ −C1α(r)
[
N(r) + N−1

2

]
in view of (4.22) and α ∈ L1(0, r0) by assumptions (H1-2),

(H2-2) and (H2-4), we have that

d
dr

[
eC1

∫ r
0 α(s) ds

(
N(r) +

N − 1
2

)]
≥ 0,

therefore the limit of r 7→ eC1
∫ r

0 α(s) ds(N(r) + N−1
2

)
as r → 0+ exists; hence the functionN has a limit as

r → 0+.
From (4.21) and (4.13) it follows that C2 ≥ γ := limr→0+ N(r) = lim infr→0+ N(r) ≥ 0; in particular

γ is finite. �

A first consequence of the above analysis on the Almgren’s frequency function is the following
estimate ofH(r).

Lemma 4.8. Let γ be as in Lemma 4.7 and r0 be as in Lemma 2.1. Then there exists a constant K1 > 0
such that

H(r) ≤ K1r2γ for all r ∈ (0, r0). (4.23)

On the other hand, for any σ > 0 there exists a constant K2(σ) > 0 depending on σ such that

H(r) ≥ K2(σ)r2γ+σ for all r ∈ (0, r0). (4.24)

Proof. By (4.22) and (4.21) we have that

N ′(r) ≥ −C1

(
C2 +

N − 1
2

)
α(r) a.e. in (0, r0). (4.25)

Hence, from the fact that α ∈ L1(0, r0) and Lemma 4.7, it follows that N ′ ∈ L1(0, r0). Therefore from
(4.25) it follows that

N(r) − γ =

∫ r

0
N ′(s) ds ≥ −C1

(
C2 +

N − 1
2

) ∫ r

0
α(s) ds = −C3rF(r), (4.26)

where C3 = C1
(
C2 + N−1

2

)
and

F(r) :=
1
r

∫ r

0
α(s) ds.

We observe that, thanks to assumptions (H1-2), (H2-2) and (H2-4),

F ∈ L1(0, r0). (4.27)

From (4.4) and (4.26) we deduce that, for a.e. r ∈ (0, r0),

H ′(r)
H(r)

=
2N(r)

r
≥

2γ
r
− 2C3F(r),
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which, thanks to (4.27), after integration over the interval (r, r0), yields (4.23).
Let us prove (4.24). Since γ := limr→0+ N(r), for any σ > 0 there exists rσ > 0 such that

N(r) < γ + σ/2 for any r ∈ (0, rσ) and hence

H ′(r)
H(r)

=
2N(r)

r
<

2γ + σ

r
for all r ∈ (0, rσ).

Integrating over the interval (r, rσ) and by continuity ofH outside 0, we obtain (4.24) for some constant
K2(σ) depending on σ. �

5. The blow-up argument

In this section we develop a blow-up analysis for scaled solutions, with the aim of classifying
their possible vanishing orders. The presence of the crack produces several additional difficulties with
respect to the classical case, mainly relying in the persistence of the singularity even far from the
origin, all along the edge. These difficulties are here overcome by means of estimates of boundary
gradient integrals (Lemma 5.5) derived by some fine doubling properties, in the spirit of [19], where an
analogous lack of regularity far from the origin was instead produced by many-particle and cylindrical
potentials.

Throughout this section we let u be a non trivial weak H1(BR̂)-solution to equation (1.6) with f
satisfying either (H1-1)–(H1-3) or (H2-1)–(H2-5). Let D and H be the functions defined in (4.1) and
(4.2) and r0 be as in Lemma 2.1. For λ ∈ (0, r0), we define the scaled function

wλ(x) =
u(λx)√
H(λ)

. (5.1)

We observe that wλ ∈ H1
Γλ

(Bλ−1R̂), where

Γλ := λ−1Γ = {x ∈ RN : λx ∈ Γ} =

{
x = (x′, xN) ∈ RN : xN ≥

g(λx′)
λ

}
,

and ∫
Bλ−1R̂

∇wλ(x) · ∇v(x) dx − λ2
∫

Bλ−1R̂

f (λx)wλ(x)v(x) dx = 0 for all v ∈ C∞c (Bλ−1R̂ \ Γλ),

i.e., wλ weakly solves −∆wλ(x) = λ2 f (λx) wλ(x) in Bλ−1R̂ \ Γλ,

wλ = 0 on Γλ.
(5.2)

Remark 5.1. From assumptions (1.2) and (1.3) we easily deduce that RN+1 \ Γλ converges in the sense
of Mosco (see [10, 26]) to the set RN+1 \ Γ̃, where

Γ̃ = {(x′, xN) ∈ RN : xN ≥ 0}. (5.3)

In particular, for every R > 0, the weak limit points in H1(BR) as λ → 0+ of the family of functions
{wλ}λ belong to H1

Γ̃
(BR).
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Lemma 5.2. For λ ∈ (0, r0), let wλ be defined in (5.1). Then {wλ}λ∈(0,r0) is bounded in H1(B1).

Proof. From (4.5) it follows that ∫
∂B1

|wλ|2dS = 1. (5.4)

By scaling and (2.1) we have that

N(λ) ≥
λ1−N

H(λ)

(
1
2

∫
Bλ
|∇u|2 dx − ω(λ)

∫
∂Bλ

u2 dS
)

=
1
2

∫
B1

|∇wλ(x)|2dx − λω(λ). (5.5)

From (5.5), (4.21), and (2.2) it follows that

1
2

∫
B1

|∇wλ(x)|2dx ≤ C2 +
N − 1

4
(5.6)

for every λ ∈ (0, r0). The conclusion follows from (5.6) and (5.4), taking into account (2.5). �

In the next lemma we prove a doubling type result.

Lemma 5.3. There exists C4 > 0 such that

1
C4
H(λ) ≤ H(Rλ) ≤ C4H(λ) for any λ ∈ (0, r0/2) and R ∈ [1, 2], (5.7)∫

BR

|∇wλ(x)|2 dx ≤ 2N−1C4

∫
B1

|∇wRλ(x)|2 dx for any λ ∈ (0, r0/2) and R ∈ [1, 2], (5.8)

and ∫
BR

|wλ(x)|2 dx ≤ 2N+1C4

∫
B1

|wRλ(x)|2 dx for any λ ∈ (0, r0/2) and R ∈ [1, 2], (5.9)

where wλ is defined in (5.1).

Proof. By (4.12), (4.21), and (4.4), it follows that

−
N − 1

2r
≤
H ′(r)
H(r)

=
2N(r)

r
≤

2C2

r
for any r ∈ (0, r0).

Let R ∈ (1, 2]. For any λ < r0/R, integrating over (λ,Rλ) the above inequality and recalling that R ≤ 2,
we obtain

2(1−N)/2H(λ) ≤ H(Rλ) ≤ 4C2H(λ) for any λ ∈ (0, r0/R).

The above estimates trivially hold also for R = 1, hence (5.7) with C4 = max{4C2 , 2(N−1)/2} is
established.

For every λ ∈ (0, r0/2) and R ∈ [1, 2], (5.7) yields∫
BR

|∇wλ(x)|2 dx =
λ1−N

H(λ)

∫
BRλ

|∇u(x)|2 dx

= RN−1H(Rλ)
H(λ)

∫
B1

|∇wRλ(x)|2 dx ≤ RN−1C4

∫
B1

|∇wRλ(x)|2 dx,

thus proving (5.8). A similar argument allows deducing (5.9) from (5.7). �
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Lemma 5.4. For every λ ∈ (0, r0), let wλ be as in (5.1). Then there exist M > 0 and λ0 > 0 such that,
for any λ ∈ (0, λ0), there exists Rλ ∈ [1, 2] such that∫

∂BRλ

|∇wλ|2 dS ≤ M
∫

BRλ

|∇wλ(x)|2 dx.

Proof. From Lemma 5.2 we know that the family {wλ}λ∈(0,r0) is bounded in H1(B1). Moreover Lemma
5.3 implies that the set {wλ}λ∈(0,r0/2) is bounded in H1(B2) and hence

lim sup
λ→0+

∫
B2

|∇wλ(x)|2dx < +∞. (5.10)

For every λ ∈ (0, r0/2), the function fλ(r) =
∫

Br
|∇wλ(x)|2dx is absolutely continuous in [0, 2] and its

distributional derivative is given by

f ′λ(r) =

∫
∂Br

|∇wλ|2dS for a.e. r ∈ (0, 2).

We argue by contradiction and assume that for any M > 0 there exists a sequence λn → 0+ such that∫
∂Br

|∇wλn |2dS > M
∫

Br

|∇wλn(x)|2dx for all r ∈ [1, 2] and n ∈ N,

i.e.,
f ′λn

(r) > M fλn(r) for a.e. r ∈ [1, 2] and for every n ∈ N. (5.11)

Integration of (5.11) over [1, 2] yields fλn(2) > eM fλn(1) for every n ∈ N and consequently

lim sup
n→+∞

fλn(1) ≤ e−M · lim sup
n→+∞

fλn(2).

It follows that
lim inf
λ→0+

fλ(1) ≤ e−M · lim sup
λ→0+

fλ(2) for all M > 0.

Therefore, letting M → +∞ and taking into account (5.10), we obtain that lim infλ→0+ fλ(1) = 0 i.e.,

lim inf
λ→0+

∫
B1

|∇wλ(x)|2dx = 0. (5.12)

From (5.12) and boundedness of {wλ}λ∈(0,r0) in H1(B1) there exist a sequence λ̃n → 0 and some
w ∈ H1(B1) such that wλ̃n ⇀ w in H1(B1) and

lim
n→+∞

∫
B1

|∇wλ̃n(x)|2dx = 0. (5.13)

The compactness of the trace map from H1(B1) to L2(∂B1) and (5.4) imply that∫
∂B1

|w|2dS = 1. (5.14)

Moreover, by weak lower semicontinuity and (5.13),∫
B1

|∇w(x)|2dx ≤ lim
n→+∞

∫
B1

|∇wλ̃n(x)|2dx = 0.

Hence w ≡ const in B1. On the other hand, in view of Remark 5.1, w ∈ H1
Γ̃
(B1) so that w ≡ 0 in B1,

thus contradicting (5.14). �
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Lemma 5.5. Let wλ be as in (5.1) and Rλ be as in Lemma 5.4. Then there exists M such that∫
∂B1

|∇wλRλ |2 dS ≤ M for any 0 < λ < min
{
λ0,

r0

2

}
.

Proof. Since∫
∂B1

|∇wλRλ |2 dS =
λ2R2−N

λ

H(λRλ)

∫
∂BRλ

|∇u(λx)|2 dS =
R2−N
λ H(λ)
H(λRλ)

∫
∂BRλ

|∇wλ|2 dS ,

from (5.7), (5.8), Lemma 5.4, Lemma 5.2, and the fact that 1 ≤ Rλ ≤ 2, we deduce that, for every
0 < λ < min{λ0,

r0
2 },∫

∂B1

|∇wλRλ |2 dS ≤ C4M
∫

BRλ

|∇wλ(x)|2 dx ≤ 2N−1C2
4 M

∫
B1

|∇wλRλ(x)|2 dx ≤ M < +∞,

thus completing the proof. �

Lemma 5.6. Let u ∈ H1(BR̂) \ {0} be a non-trivial weak solution to (1.6) with f satisfying either
(H1-1)–(H1-3) or (H2-1)–(H2-5). Let γ be as in Lemma 4.7. Then

(i) there exists k0 ∈ N \ {0} such that γ = k0
2 ;

(ii) for every sequence λn → 0+, there exist a subsequence {λnk}k∈N and an eigenfunction ψ of problem
(1.7) associated with the eigenvalue µk0 such that ‖ψ‖L2(SN ) = 1 and

u(λnk x)√
H(λnk)

→ |x|γψ
( x
|x|

)
strongly in H1(B1). (5.15)

Proof. For λ ∈ (0,min{r0, λ0}), let wλ be as in (5.1) and Rλ be as in Lemma 5.4. Let λn → 0+. By
Lemma 5.2, we have that the set {wλRλ : λ ∈ (0,min{r0/2, λ0})} is bounded in H1(B1). Then there exists
a subsequence {λnk}k such that wλnk Rλnk ⇀ w weakly in H1(B1) for some function w ∈ H1(B1). The
compactness of the trace map from H1(B1) into L2(∂B1) and (5.4) ensure that∫

∂B1

|w|2dS = 1 (5.16)

and, consequently, w . 0. Furthermore, in view of Remark 5.1 we have that w ∈ H1
Γ̃
(B1), where Γ̃ is

the set defined in (5.3).
Let φ ∈ C∞c (B1 \ Γ̃). It is easy to verify that φ ∈ C∞c (B1 \ Γλ) provided λ is sufficiently small.

Therefore, since wλnk Rλnk weakly satisfies Eq (5.2) with λ = λnkRλnk
and, for sufficiently large k,

B1 ⊂ B(λnk Rλnk
)−1R̂, we have that∫

B1

∇wλnk Rλnk · ∇φ dx − (λnkRλnk
)2

∫
B1

f (λnkRλnk
x)wλnk Rλnk φ dx = 0 (5.17)

for k sufficiently large.
Under the set of assumptions (H1-1)–(H1-3), from (2.5) it follows that
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λ2
∣∣∣∣∣∫

B1

f (λx)wλ(x)φ(x) dx
∣∣∣∣∣ ≤ ξ f (λ)

(∫
B1

|wλ(x)|2

|x|2
dx

)1/2(∫
B1

|φ(x)|2

|x|2
dx

)1/2
≤

4ξ f (λ)
(N − 1)2

(∫
B1

|∇wλ|2dx +
N − 1

2

)1/2(∫
B1

|∇φ|2dx
)1/2

= o(1) (5.18)

as λ→ 0+. Similarly, under assumptions (H2-1)–(H2-5), by scaling, we obtain that, as λ→ 0+,

λ2
∣∣∣∣∣∫

B1

f (λx)wλ(x)φ(x) dx
∣∣∣∣∣ ≤ η(λ, f )

(∫
B1

|∇wλ|2dx +
N − 1

2

)1/2(∫
B1

|∇φ|2dx
)1/2

= o(1). (5.19)

The weak convergence of wλnk Rλnk to w in H1(B1) and (5.18)–(5.19) allow passing to the limit in (5.17)
thus yielding that w ∈ H1

Γ̃
(B1) satisfies∫

B1

∇w(x) · ∇φ(x) dx = 0 for all φ ∈ C∞c (B1 \ Γ̃),

i.e., w weakly solves −∆w(x) = 0 in B1 \ Γ̃,

w = 0 on Γ̃.
(5.20)

We observe that, by classical regularity theory, w is smooth in B1 \ Γ̃.
From Lemma 5.5 and the density of C∞(B1 \ Γ̃) in H1

Γ̃
(B1), it follows that∫

B1

∇wλnk Rλnk ·∇φ dx = λ2
nk

R2
λnk

∫
B1

f (λnkRλnk
x)wλnk Rλnk φ dx +

∫
∂B1

∂wλnk Rλnk

∂ν
φ dS (5.21)

for every φ ∈ H1
Γ̃
(B1) as well as for every φ ∈ H1

Γλnk Rλnk

(B1). From Lemma 5.5 it follows that, up to a

subsequence still denoted as {λnk}, there exists g ∈ L2(∂B1) such that

∂wλnk Rλnk

∂ν
⇀ g weakly in L2(∂B1). (5.22)

Passing to the limit in (5.21) and taking into account (5.18)–(5.19), we then obtain that∫
B1

∇w · ∇φ dx =

∫
∂B1

g φ dS for every φ ∈ H1
Γ̃
(B1).

In particular, taking φ = w above, we have that∫
B1

|∇w|2 dx =

∫
∂B1

g w dS . (5.23)

On the other hand, from (5.21) with φ = wλnk Rλnk , (5.18), (5.19) and (5.22), the weak convergence of
wλnk Rλnk to w in H1(B1) (which implies the strong convergence of the traces in L2(∂B1) by compactness
of the trace map from H1(B1) into L2(∂B1)), and (5.23) it follows that

lim
k→+∞

∫
B1

|∇wλnk Rλnk |2 dx = lim
k→+∞

(
λ2

nk
R2
λnk

∫
B1

f (λnkRλnk
x)|wλnk Rλnk |2 dx +

∫
∂B1

∂wλnk Rλnk

∂ν
wλnk Rλnk dS

)
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=

∫
∂B1

gw dS =

∫
B1

|∇w|2 dx

which implies that
wλnk Rλnk → w strongly in H1(B1). (5.24)

For every k ∈ N and r ∈ (0, 1], let

Dk(r) = r1−N
∫

Br

(
|∇wλnk Rλnk (x)|2 − λ2

nk
R2
λnk

f (λnkRλnk
x)|wλnk Rλnk (x)|2

)
dx

and
Hk(r) = r−N

∫
∂Br

|wλnk Rλnk |2 dS .

We also define, for all r ∈ (0, 1],

Dw(r) = r1−N
∫

Br

|∇w|2 dx and Hw(r) = r−N
∫
∂Br

|w|2 dS .

A change of variables directly gives

Nk(r) :=
Dk(r)
Hk(r)

=
D(λnkRλnk

r)

H(λnkRλnk
r)

= N(λnkRλnk
r) for all r ∈ (0, 1]. (5.25)

From (5.24), (5.18), (5.19) and compactness of the trace map from H1(Br) into L2(∂Br), it follows that,
for every fixed r ∈ (0, 1],

Dk(r)→ Dw(r) and Hk(r)→ Hw(r). (5.26)

We observe that Hw(r) > 0 for all r ∈ (0, 1]; indeed if, for some r ∈ (0, 1], Hw(r) = 0, then w = 0
on ∂Br and, testing (5.20) with w ∈ H1

0(Br \ Γ̃), we would obtain
∫

Br
|∇w|2 dx = 0 and hence w ≡ 0 in

Br, thus contradicting classical unique continuation principles for second order elliptic equations (see
e.g., [31]). Therefore the function

Nw : (0, 1]→ R, Nw(r) :=
Dw(r)
Hw(r)

is well defined. Moreover (5.25), (5.26), and Lemma 4.7, imply that, for all r ∈ (0, 1],

Nw(r) = lim
k→∞
N(λnkRλnk

r) = γ. (5.27)

Therefore Nw is constant in (0, 1] and hence N ′w(r) = 0 for any r ∈ (0, 1). Hence, from (5.20) and
Lemma 4.4 with f ≡ 0, we deduce that, for a.e. r ∈ (0, 1),

0 = N ′w(r) ≥ ν1(r) =
2r

[(∫
∂Br

∣∣∣∂w
∂ν

∣∣∣2 dS
)(∫

∂Br
|w|2 dS

)
−

(∫
∂Br

w∂w
∂ν

dS
)2](∫

∂Br
|w|2 dS

)2 ≥ 0

so that
(∫
∂Br

∣∣∣∂w
∂ν

∣∣∣2 dS
)(∫

∂Br
|w|2 dS

)
−

(∫
∂Br

w∂w
∂ν

dS
)2

= 0. This implies that w and ∂w
∂ν

have the same
direction as vectors in L2(∂Br) for a.e. r ∈ (0, 1). Then there exists a function ζ = ζ(r), defined a.e. in

Mathematics in Engineering Volume 3, Issue 3, 1–40.



27

(0, 1), such that ∂w
∂ν

(rθ) = ζ(r)w(rθ) for a.e. r ∈ (0, 1) and for all θ ∈ SN \ Σ. Multiplying by w(rθ) and
integrating over SN we obtain that∫

SN

∂w
∂ν

(rθ) w(rθ) dS = ζ(r)
∫
SN

w2(rθ) dS

and hence, in view of (4.3) and (4.5), ζ(r) =
H ′w(r)

2Hw(r) for a.e r ∈ (0, 1). This in particular implies that
ζ ∈ L1

loc(0, 1]. Moreover, after integration, we obtain

w(rθ) = e
∫ r

1 ζ(s)dsw(1θ) = ϕ(r)ψ(θ) for all r ∈ (0, 1), θ ∈ SN \ Σ,

where ϕ(r) = e
∫ r

1 ζ(s)ds and ψ = w
∣∣∣
SN . The fact that w ∈ H1

Γ̃
(B1) implies that ψ ∈ H1

0(SN \ Σ); moreover
(5.16) yields that ∫

SN
ψ2(θ) dS = 1. (5.28)

Equation (5.20) rewritten in polar coordinates r, θ becomes(
−ϕ′′(r) −

N
r
ϕ′(r)

)
ψ(θ) −

ϕ(r)
r2 ∆SNψ(θ) = 0 on SN \ Σ.

The above equation for a fixed r implies that ψ is an eigenfunction of problem (1.7). Letting
µk0 =

k0(k0+2N−2)
4 be the corresponding eigenvalue, ϕ solves

−ϕ′′(r) −
N
r
ϕ′(r) +

µk0

r2 ϕ(r) = 0.

Integrating the above equation we obtain that there exist c1, c2 ∈ R such that

ϕ(r) = c1rσ
+
k0 + c2rσ

−
k0 ,

where

σ+
k0

= −
N − 1

2
+

√(N − 1
2

)2

+ µk0 =
k0

2

and

σ−k0
= −

N − 1
2
−

√(N − 1
2

)2

+ µk0 = −
(
N − 1 + k0

2

)
.

Since the function |x|σ
−
k0ψ

( x
|x|

)
< L2∗(B1) (where 2∗ = 2(N + 1)/(N − 1)), we have that |x|σ

−
k0ψ

( x
|x|

)
does

not belong to H1(B1); then necessarily c2 = 0 and ϕ(r) = c1rk0/2. Since ϕ(1) = 1, we obtain that c1 = 1
and then

w(rθ) = rk0/2ψ(θ), for all r ∈ (0, 1) and θ ∈ SN \ Σ. (5.29)

Let us now consider the sequence {wλnk }. Up to a further subsequence still denoted by wλnk , we may
suppose that wλnk ⇀ w weakly in H1(B1) for some w ∈ H1(B1) and that Rλnk

→ R for some R ∈ [1, 2].
Strong convergence of wλnk Rλnk in H1(B1) implies that, up to a subsequence, both wλnk Rλnk and |∇wλnk Rλnk |
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are dominated by a L2(B1)-function uniformly with respect to k. Furthermore, in view of (5.7), up to a
subsequence we can assume that the limit

` := lim
k→+∞

H(λnkRλnk
)

H(λnk)

exists and is finite. The Dominated Convergence Theorem then implies

lim
k→+∞

∫
B1

wλnk (x)v(x) dx = lim
k→+∞

RN+1
λnk

∫
B1/Rλnk

wλnk (Rλnk
x)v(Rλnk

x) dx

= lim
k→+∞

RN+1
λnk

√
H(λnkRλnk

)

H(λnk)

∫
B1

χB1/Rλnk
(x)wλnk Rλnk (x)v(Rλnk

x) dx

= R
N+1√

`

∫
B1

χB1/R
(x)w(x)v(Rx) dx = R

N+1√
`

∫
B1/R

w(x)v(Rx) dx =
√
`

∫
B1

w(x/R)v(x) dx

for any v ∈ C∞c (B1). By density it is easy to verify that the previous convergence also holds for all
v ∈ L2(B1). We conclude that wλnk ⇀

√
`w(·/R) weakly in L2(B1); as a consequence we have that

w =
√
`w

(
·

R

)
and wλnk ⇀

√
`w(·/R) weakly in H1(B1). Moreover

lim
k→+∞

∫
B1

|∇wλnk (x)|2 dx = lim
k→+∞

RN+1
λnk

∫
B1/Rλnk

|∇wλnk (Rλnk
x)|2 dx

= lim
k→+∞

RN−1
λnk

H(λnkRλnk
)

H(λnk)

∫
B1

χB1/Rλnk
(x)|∇wλnk Rλnk (x)|2 dx

= R
N−1

`

∫
B1

χB1/R
(x)|∇w(x)|2 dx = R

N−1
`

∫
B1/R

|∇w(x)|2 dx =

∫
B1

|
√
`∇(w(x/R))|2 dx.

Therefore we conclude that wλnk → w =
√
`w(·/R) strongly in H1(B1). Furthermore, by (5.29) and the

fact that
∫
∂B1
|w|2 dS =

∫
∂B1
|w|2 dS = 1, we deduce that w = w.

It remains to prove part (i). From (5.29) and (5.28) it follows that Hw(r) = rk0 . Therefore (5.27) and
Lemma 4.1 applied to w imply that

γ =
r
2

H′w(r)
Hw(r)

=
r
2

k0 rk0−1

rk0
=

k0

2
,

thus completing the proof. �

In order to make more explicit the blow-up result proved above, we are going to describe the
asymptotic behavior ofH(r) as r → 0+.

Lemma 5.7. Let γ be as in Lemma 4.7. The limit limr→0+ r−2γH(r) exists and it is finite.

Proof. Thanks to estimate (4.23), it is enough to prove that the limit exists. By (4.4) and Lemma 4.7
we have

d
dr
H(r)
r2γ = 2r−2γ−1(D(r) − γH(r)) = 2r−2γ−1H(r)

∫ r

0
N ′(s) ds. (5.30)

Mathematics in Engineering Volume 3, Issue 3, 1–40.



29

Let us write N ′ = α1 + α2, where, using the same notation as in Section 4,

α1(r) = N ′(r) + C1

(
C2 +

N − 1
2

)
α(r) and α2 = −C1

(
C2 +

N − 1
2

)
α(r).

From (4.25) we have that α1(r) ≥ 0 for a.e. r ∈ (0, r0). Moreover (4.16) and assumptions (H1-2),
(H2-2) and (H2-4) ensure that α2 ∈ L1(0, r0) and

1
s

∫ s

0
α2(t) dt ∈ L1(0, r0). (5.31)

Integration of (5.30) over (r, r0) yields

H(r0)

r2γ
0

−
H(r)
r2γ =

∫ r0

r
2s−2γ−1H(s)

(∫ s

0
α1(t)dt

)
ds +

∫ r0

r
2s−2γ−1H(s)

(∫ s

0
α2(t)dt

)
ds. (5.32)

Since α1(t) ≥ 0 we have that limr→0+

∫ r0

r
2s−2γ−1H(s)

(∫ s

0
α1(t)dt

)
ds exists. On the other hand, (4.23)

and (5.31) imply that ∣∣∣∣∣s−2γ−1H(s)
(∫ s

0
α2(t)dt

)
ds

∣∣∣∣∣ ≤ K1s−1
∫ s

0
α2(t) dt ∈ L1(0, r0)

for all s ∈ (0, r0), thus proving that s−2γ−1H(s)
(∫ s

0
α2(t)dt

)
∈ L1(0, r0). Then we may conclude that both

terms in the right hand side of (5.32) admit a limit as r → 0+ and at least one of such limits is finite,
thus completing the proof of the lemma. �

6. Straightening the domain

In order to detect the sharp vanishing order of the function H and to give a more explicit blow-up
result, in this section we construct an auxiliary equivalent problem by a diffeomorphic deformation of
the domain, inspired by [15], see also [2] and [29]. The purpose of such deformation is to straighten
the crack; the advantage of working in a domain with a straight crack will then rely in the possibility
of separating radial and angular coordinates in the Fourier expansion of solutions (see (6.30)).

Lemma 6.1. There exists r̄ ∈ (0, r0) such that the function

Ξ : Br̄ → Br̄,

Ξ(y) = Ξ(y′, yN , yN+1) =


(y′, yN − g(y′), yN+1)√

1 +
g2(y′)−2g(y′)yN

|y′ |2+y2
N+y2

N+1

, if y , 0,

0, if y = 0,

is a C1-diffeomorphism. Furthermore, setting Φ = Ξ−1, we have that

Φ(Br \ Γ̃) = Br \ Γ, Φ−1(Br \ Γ) = Br \ Γ̃ for all r ∈ (0, r̄), (6.1)
Φ(∂Br) = ∂Br for all r ∈ (0, r̄), (6.2)
Φ(x) = x + O(|x|2) and JacΦ(x) = IdN+1 + O(|x|) as |x| → 0, (6.3)
Φ−1(y) = y + O(|y|2) and JacΦ−1(y) = IdN+1 + O(|y|) as |y| → 0, (6.4)
det JacΦ(x) = 1 + O(|x|) and det JacΦ−1(y) = 1 + O(|y|) as |x| → 0, |y| → 0. (6.5)
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Proof. The proof follows from the local inversion theorem, (1.2)–(1.4), and direct calculations. �

Let u ∈ H1(BR̂) be a weak solution to (1.6). Then

v = u ◦Φ ∈ H1(Br̄) (6.6)

is a weak solution to −div(A(x)∇v(x)) = f̃ (x)v(x) in Br̄ \ Γ̃,

v = 0 on Γ̃,
(6.7)

i.e., 
v ∈ H1

Γ̃
(Br̄),∫

Br̄

A(x)∇v(x) · ∇ϕ(x) dx −
∫

Br̄

f̃ (x)v(x)ϕ(x) dx = 0 for any ϕ ∈ C∞c (Br̄ \ Γ̃).

where
A(x) = |det JacΦ(x)|(JacΦ(x))−1((JacΦ(x))T )−1, f̃ (x) = |det JacΦ(x)| f (Φ(x)). (6.8)

By Lemma 6.1 and direct calculations, we obtain that

A(x) = IdN+1 + O(|x|) as |x| → 0. (6.9)

Lemma 6.2. LettingH be as in (4.2) and v = u ◦Φ as in (6.6), we have that

H(λ) = (1 + O(λ))
∫
SN

v2(λθ) dS as λ→ 0+, (6.10)

and ∫
B1
|∇v̂λ(x)|2dx

H(λ)
= (1 + O(λ))

∫
B1

|∇wλ(y)|2dy = O(1) as λ→ 0+, (6.11)

where wλ is defined in (5.1) and v̂λ(x) := v(λx).

Proof. From (6.1) and a change of variable it follows that∫
Bλ

u2(x) dx =

∫
Bλ

v2(y)|det JacΦ(y)| dy for all λ ∈ (0, r̄).

Differentiating the above identity with respect to λ we obtain that∫
∂Bλ

u2 dS =

∫
∂Bλ

v2|det JacΦ| dS for a.e. λ ∈ (0, r̄).

Hence, by the continuity ofH ,

H(λ) = λ−N
∫
∂Bλ

v2|det JacΦ| dS =

∫
SN

v2(λθ)|det JacΦ(λθ)|dS for all λ ∈ (0, r̄),

which yields (6.10) in view of (6.5).
From (6.1) and a change of variable it also follows that∫

B1
|∇v̂λ(x)|2dx

H(λ)
=

∫
B1

|∇wλ(y) JacΦ(Φ−1(λy))|2|det JacΦ−1(λy)|dy

for all λ ∈ (0, r̄). The above identity, together with (6.3)–(6.5) and the boundedness in H1(B1) of {wλ}

established in Lemma 5.2, implies estimate (6.11). �
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Lemma 6.3. Let v = u ◦ Φ be as in (6.6) and let k0 and γ be as in Lemma 5.6 (i). Then, for every
sequence λn → 0+, there exist a subsequence {λnk}k∈N and an eigenfunction ψ of problem (1.7)
associated with the eigenvalue µk0 such that ‖ψ‖L2(SN ) = 1, the convergence (5.15) holds and

v(λnk ·)√∫
SN v2(λnkθ)dS

→ ψ strongly in L2(SN).

Proof. From Lemma 5.6, there exist a subsequence λnk and an eigenfunction ψ of problem (1.7)
associated with the eigenvalue µk0 such that ‖ψ‖L2(SN ) = 1 and (5.15) holds. From (5.15) it follows that,
up to passing to a further subsequence, wλnk

∣∣∣
∂B1

converges to ψ in L2(SN) and almost everywhere on

SN , where wλ is defined in (5.1). From Lemma 6.2 it follows that {v̂λ/
√
H(λ)}λ is bounded in H1(B1)

and hence, in view of (6.10), there exists ψ̃ ∈ L2(SN) such that, up to a further subsequence,

v(λnk ·)√∫
SN v2(λnkθ)dS

→ ψ̃ strongly in L2(SN) and almost everywhere on SN . (6.12)

To conclude it is enough to show that ψ̃ = ψ. To this aim we observe that, for every ϕ ∈ C∞c (SN), from
(6.6), (6.10), and a change of variable it follows that∫

SN

v(λnkθ)√∫
SN v2(λnk ·)dS

ϕ(θ) dS = (1 + O(λnk))
∫
SN

wλnk (θ)ϕ
(

Φ−1(λnk θ)
λnk

)
| det Jac Φ−1(λnkθ)| dS . (6.13)

In view of (6.4) and (6.5) we have that, for all θ ∈ SN ,

lim
k→∞

ϕ
(

Φ−1(λnk θ)
λnk

)
| det Jac Φ−1(λnkθ)| = ϕ(θ),

so that, by the Dominated Convergence Theorem, the right hand side of (6.13) converges to∫
SN ψ(θ)ϕ(θ) dS . On the other hand (6.12) implies that the left hand side of (6.13) converges to∫
SN ψ̃(θ)ϕ(θ) dS . Therefore, passing to the limit in (6.13), we obtain that∫

SN
ψ(θ)ϕ(θ) dS =

∫
SN
ψ̃(θ)ϕ(θ) dS for all ϕ ∈ C∞c (SN)

thus implying that ψ = ψ̃. �

Lemma 6.4. Let k0 be as in Lemma 5.6 and let Mk0 ∈ N \ {0} be the multiplicity of µk0 as an
eigenvalue of (1.7). Let {Yk0,m}m=1,2,...,Mk0

be as in (1.9). Then, for any sequence λn → 0+, there exists
m ∈ {1, 2, . . . ,Mk0} such that

lim inf
n→+∞

∣∣∣∫
SN v(λnθ)Yk0,m(θ) dS

∣∣∣√
H(λn)

> 0.

Proof. We argue by contradiction and assume that, along a sequence λn → 0+,

lim inf
n→+∞

∣∣∣∫
SN v(λnθ)Yk0,m(θ) dS

∣∣∣√
H(λn)

= 0 (6.14)
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for all m ∈ {1, 2, . . . ,Mk0}. From Lemma 6.3 and (6.10) it follows that there exist a subsequence {λnk}

and an eigenfunction ψ of problem (1.7) associated to the eigenvalue µk0 such that ‖ψ‖L2(SN ) = 1 and

v(λnkθ)√
H(λnk)

→ ψ(θ) strongly in L2(SN).

Furthermore, from (6.14) we have that, for every m ∈ {1, 2, . . . ,Mk0}, there exists a further subsequence
{λnm

k
} such that

lim
k→+∞

∫
SN

v(λnm
k
θ)√

H(λnm
k
)
Yk0,m(θ) dS = 0.

Therefore
∫
SN ψYk0,m dS = 0 for all m ∈ {1, 2, . . . ,Mk0}, thus implying that ψ ≡ 0 and giving rise to a

contradiction. �

For all k ∈ N \ {0}, m ∈ {1, 2, . . . ,Mk}, and λ ∈ (0, r̄), we define

ϕk,m(λ) :=
∫
SN

v(λθ)Yk,m(θ) dS (6.15)

and

Υk,m(λ) = −

∫
Bλ

(A − IdN+1)∇v(x) ·
∇SN Yk,m(x/|x|)

|x|
dx +

∫
Bλ

f̃ (x)v(x)Yk,m(x/|x|) dx

+

∫
∂Bλ

(A − IdN+1)∇v(x) ·
x
|x|

Yk,m(x/|x|) dS ,
(6.16)

where the functions {Yk,m}m=1,2,...,Mk are introduced in (1.9).

Lemma 6.5. Let k0 be as in Lemma 5.6. For all m ∈ {1, 2, . . . ,Mk0} and R ∈ (0, r̄]

ϕk0,m(λ) = λ
k0
2

(
R−

k0
2 ϕk0,m(R) +

2N + k0 − 2
2(N + k0 − 1)

∫ R

λ

s−N− k0
2 Υk0,m(s)ds

+
k0 R−N+1−k0

2(N + k0 − 1)

∫ R

0
s

k0
2 −1Υk0,m(s) ds

)
+ o(λ

k0
2 )

(6.17)

as λ→ 0+.

Proof. For all k ∈ N \ {0} and m ∈ {1, 2, . . . ,Mk}, we consider the distribution ζk,m on (0, r̄) defined as

D′(0,r̄)〈ζk,m, ω〉D(0,r̄) =

∫ r̄

0
ω(λ)

(∫
SN

f̃ (λθ)v(λθ)Yk,m(θ)dS
)
dλ

+H−1(Br̄)
〈
div((A − IdN+1)∇v), |x|−Nω(|x|)Yk,m(x/|x|)

〉
H1

0 (Br̄)

for all ω ∈ D(0, r̄), where

H−1(Br̄)
〈
div((A − IdN+1)∇v), φ

〉
H1

0 (Br̄) = −

∫
Br̄

(A − IdN+1)∇v · ∇φ dx
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for all φ ∈ H1
0(Br̄). Letting Υk,m be defined in (6.16), we observe that Υk,m ∈ L1

loc(0, r̄) and, by direct
calculations,

Υ′k,m(λ) = λNζk,m(λ) inD′(0, r̄). (6.18)

From the definition of ζk,m, (6.7), and the fact that Yk,m is an eigenfunction of (1.7) associated to the
eigenvalue µk, it follows that, for all k ∈ N \ {0} and m ∈ {1, 2, . . . ,Mk}, the function ϕk,m defined in
(6.15) solves

−ϕ′′k,m(λ) −
N
λ
ϕ′k,m(λ) +

µk

λ2ϕk,m(λ) = ζk,m(λ)

in the sense of distributions in (0, r̄), which, in view of (1.8), can be also written as

−(λN+k(λ−
k
2ϕk,m(λ))′)′ = λN+ k

2 ζk,m(λ)

in the sense of distributions in (0, r̄). Integrating the right-hand side of the above equation by parts and
taking into account (6.18), we obtain that, for every k ∈ N\ {0}, m ∈ {1, 2, . . . ,Mk}, and R ∈ (0, r̄], there
exists ck,m(R) ∈ R such that

(λ−
k
2ϕk,m(λ))′ = −λ−N− k

2 Υk,m(λ) −
k
2
λ−N−k

(
ck,m(R) +

∫ R

λ

s
k
2−1Υk,m(s) ds

)
in the sense of distributions in (0, r̄). In particular, ϕk,m ∈ W1,1

loc (0, r̄) and, by a further integration,

ϕk,m(λ) = λ
k
2

(
R−

k
2ϕk,m(R) +

∫ R

λ

s−N− k
2 Υk,m(s)ds

)
+

k
2
λ

k
2

∫ R

λ

s−N−k
(
ck,m(R) +

∫ R

s
t

k
2−1Υk,m(t)dt

)
ds

= λ
k
2

(
R−

k
2ϕk,m(R) +

2N + k − 2
2(N + k − 1)

∫ R

λ

s−N− k
2 Υk,m(s)ds −

k ck,m(R)R−N+1−k

2(N + k − 1)

)
+

k λ−N+1− k
2

2(N − 1 + k)

(
ck,m(R) +

∫ R

λ

t
k
2−1Υk,m(t)dt

)
.

(6.19)

Let now k0 be as in Lemma 5.6. We claim that

the function s 7→ s−N− k0
2 Υk0,m(s) belongs to L1(0, r̄) for any m ∈ {1, 2, . . . ,Mk0}. (6.20)

To this purpose, let us estimate each term in (6.16). By (6.9), (6.11), Lemma 5.2, the Hölder inequality
and a change of variable we obtain that, for all s ∈ (0, r̄),∣∣∣∣∣∫

Bs

(A(x) − IdN+1)∇v(x) ·
∇SN Yk0,m

( x
|x|

)
|x|

dx
∣∣∣∣∣ ≤ const

∫
Bs

|x||∇v(x)|
|∇SN Yk0,m

( x
|x|

)
|

|x|
dx

≤ const

√∫
Bs

|∇v(x)|2dx

√∫
Bs

|∇SN Yk0,m
( x
|x|

)
|2dx

≤ const s
N−1

2 s
N+1

2
√
H(s)

√∫
B1

|∇v̂s(x)|2

H(s)
dx ≤ const sN

√
H(s).

(6.21)
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By the Hölder inequality, (6.6), (6.1), and the definition of f̃ in (6.8) we have that,∣∣∣∣∣∫
Bs

f̃ (x)v(x)Yk0,m
( x
|x|

)
dx

∣∣∣∣∣ ≤
√∫

Bs

| f̃ (x)|v2(x) dx

√∫
Bs

| f̃ (x)|Y2
k0,m

( x
|x|

)
dx

=

√∫
Bs

| f (y)|u2(y) dy

√∫
Bs

| f (y)|Y2
k0,m

( Φ−1(y)
|Φ−1(y)|

)
dy.

From (H2-5), (4.17), (2.8), (4.21), and (4.18) it follows that∫
Bs

| f |u2 dx ≤ const β(s, f )sN−1H(s)

where β(s, f ) = η(s, f ) under assumptions (H2-1)–(H2-5) and β(s, f ) = ξ f (s) under assumptions
(H1-1)–(H1-3). Moreover, by (H2-5), (2.7) and direct calculations we also have that∫

Bs

| f (y)|Y2
k0,m

( Φ−1(y)
|Φ−1(y)|

)
dy ≤ const β(s, f )sN−1.

Therefore we conclude that, for all s ∈ (0, r̄),∣∣∣∣∣∫
Bs

f̃ (x)v(x)Yk0,m
( x
|x|

)
dx

∣∣∣∣∣ ≤ const β(s, f )sN−1
√
H(s). (6.22)

As regards the last term in (6.16), we observe that, for a.e. s ∈ (0, r̄),∣∣∣∣∣∫
∂Bs

(A − IdN+1)∇v(x) ·
x
|x|

Yk0,m
( x
|x|

)
dS

∣∣∣∣∣ ≤ const s
∫
∂Bs

|∇v|
∣∣∣Yk0,m

( x
|x|

)∣∣∣dS , (6.23)

as a consequence of (6.9). Integrating by parts and using (6.11), Lemma 5.2, the Hölder inequality and
a change of variable we have that, for every R ∈ (0, r̄],∫ R

0
s−N− k0

2 +1
( ∫

∂Bs

|∇v||Yk0,m
( x
|x|

)
|dS

)
ds = R−N− k0

2 +1
∫

BR

|∇v|
∣∣∣Yk0,m

( x
|x|

)∣∣∣dx

+
(
N + k0

2 − 1
) ∫ R

0
s−N− k0

2

(∫
Bs

|∇v|
∣∣∣Yk0,m

( x
|x|

)∣∣∣ dx
)
ds

≤ const
(
R−

k0
2 +1

√
H(R) +

∫ R

0
s−

k0
2
√
H(s)ds

)
.

(6.24)

From (6.16), (6.21), (6.22), (6.23), and (6.24) we deduce that, for all m ∈ {1, 2, . . . ,Mk0} and R ∈ (0, r̄],∫ R

0
s−N− k0

2 |Υk0,m(s)| ds ≤ const R−
k0
2 +1

√
H(R) +

∫ R

0
s−

k0
2
√
H(s)

(
1 + s−1β(s, f )

)
ds. (6.25)

Thus claim (6.20) follows from (6.25), (4.23) and assumptions (H1-2) and (H2-2).
From (6.20) we deduce that, for every fixed R ∈ (0, r̄],

λ
k0
2

(
R−

k0
2 ϕk0,m(R) +

2N + k0 − 2
2(N + k0 − 1)

∫ R

λ

s−N− k0
2 Υk0,m(s)ds −

k0 ck0,m(R)R−N+1−k0

2(N + k0 − 1)

)
= O(λ

k0
2 ) = o(λ−N+1− k0

2 ) as λ→ 0+.

(6.26)
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On the other hand, (6.20) also implies that t 7→ t
k0
2 −1Υk0,m(t) ∈ L1(0, r̄). We claim that, for every

R ∈ (0, r̄],

ck0,m(R) +

∫ R

0
t

k0
2 −1Υk0,m(t)dt = 0. (6.27)

Suppose by contradiction that (6.27) is not true for some R ∈ (0, r̄]. Then, from (6.19) and (6.26) we
infer that

ϕk0,m(λ) ∼
k0 λ

−N+1− k0
2

2(N − 1 + k0)

(
ck0,m(R) +

∫ R

0
t

k0
2 −1Υk0,m(t)dt

)
as λ→ 0+. (6.28)

Lemma 2.3 and the fact that v ∈ H1(Br̄) imply that∫ r̄

0
λN−2|ϕk0,m(λ)|2 dλ ≤

∫ r̄

0
λN−2

(∫
SN
|v(λθ)|2dS

)
dλ =

∫
Br̃

|v(x)|2

|x|2
dx < +∞,

thus contradicting (6.28). Claim (6.27) is thereby proved.
From (6.20) and (6.27) it follows that, for every R ∈ (0, r̄],∣∣∣∣∣λ−N+1− k0

2

(
ck0,m(R) +

∫ R

λ

t
k0
2 −1Υk0,m(t)dt

)∣∣∣∣∣ = λ−N+1− k0
2

∣∣∣∣∣ ∫ λ

0
t

k0
2 −1Υk0,m(t)dt

∣∣∣∣∣
≤ λ−N+1− k0

2

∫ λ

0
tN+k0−1

∣∣∣∣t−N− k0
2 Υk0,m(t)

∣∣∣∣dt ≤ λ
k0
2

∫ λ

0

∣∣∣∣t−N− k0
2 Υk0,m(t)

∣∣∣∣dt = o(λ
k0
2 )

(6.29)

as λ→ 0+.
The conclusion follows by combining (6.19), (6.29), and (6.27). �

Lemma 6.6. Let γ be as in Lemma 4.7. Then limr→0+ r−2γH(r) > 0.

Proof. For any λ ∈ (0, r̄), we expand θ 7→ v(λθ) ∈ L2(SN) in Fourier series with respect to the
orthonormal basis {Yk,m}m=1,2,...,Mk introduced in (1.9), i.e.,

v(λθ) =

∞∑
k=1

Mk∑
m=1

ϕk,m(λ)Yk,m(θ) in L2(SN), (6.30)

where, for all k ∈ N \ {0}, m ∈ {1, 2, . . . ,Mk}, and λ ∈ (0, r̄), ϕk,m(λ) is defined in (6.15).
Let k0 ∈ N, k0 ≥ 1, be as in Lemma 5.6, so that

γ = lim
r→0+
N(r) =

k0

2
. (6.31)

From (6.10) and the Parseval identity we deduce that

H(λ) = (1 + O(λ))
∫
SN

v2(λθ) dS = (1 + O(λ))
∞∑

k=1

Mk∑
m=1

ϕ2
k,m(λ), (6.32)

for all 0 < λ ≤ r̄. Let us assume by contradiction that limλ→0+ λ−2γH(λ) = 0. Then, (6.31) and (6.32)
imply that

lim
λ→0+

λ−k0/2ϕk0,m(λ) = 0 for any m ∈ {1, 2, . . . ,Mk0}. (6.33)
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From (6.17) and (6.33) we obtain that

R−
k0
2 ϕk0,m(R) +

2N + k0 − 2
2(N + k0 − 1)

∫ R

0
s−N− k0

2 Υk0,m(s)ds

+
k0 R−N+1−k0

2(N + k0 − 1)

∫ R

0
s

k0
2 −1Υk0,m(s) ds = 0

(6.34)

for all R ∈ (0, r̄] and m ∈ {1, 2, . . . ,Mk0}.
Since we are assuming by contradiction that limλ→0+ λ−2γH(λ) = 0, there exists a sequence

{Rn}n∈N ⊂ (0, r̄) such that Rn+1 < Rn, limn→∞ Rn = 0 and

R−k0/2
n

√
H(Rn) = max

s∈[0,Rn]

(
s−k0/2

√
H(s)

)
.

By Lemma 6.4 with λn = Rn, there exists m0 ∈ {1, 2, . . . ,Mk0} such that, up to a subsequence,

lim
n→∞

ϕk0,m0(Rn)√
H(Rn)

, 0. (6.35)

By (6.34), (6.25), (6.35), (4.23), (H1-2) and (H2-2), we have∣∣∣∣∣R− k0
2

n ϕk0,m0(Rn) +
k0 R−N+1−k0

n

2(N + k0 − 1)

∫ Rn

0
s

k0
2 −1Υk0,m0(s) ds

∣∣∣∣∣
=

∣∣∣∣∣ 2N + k0 − 2
2(N + k0 − 1)

∫ Rn

0
s−N− k0

2 Υk0,m0(s)ds
∣∣∣∣∣

≤
2N + k0 − 2

2(N + k0 − 1)

∫ Rn

0
s−N− k0

2 |Υk0,m0(s)|ds

≤ const
(
R−

k0
2 +1

n

√
H(Rn) +

∫ Rn

0
s−

k0
2
√
H(s)

(
1 + s−1β(s, f )

)
ds

)
≤ const

(
R−

k0
2

n

√
H(Rn)Rn + R−

k0
2

n

√
H(Rn)

∫ Rn

0

β(s, f )
s

ds
)

≤ const
(∣∣∣∣∣

√
H(Rn)

ϕk0,m0(Rn)

∣∣∣∣∣∣∣∣∣∣ϕk0,m0(Rn)

Rk0/2
n

∣∣∣∣∣Rn +

∣∣∣∣∣
√
H(Rn)

ϕk0,m0(Rn)

∣∣∣∣∣∣∣∣∣∣ϕk0,m0(Rn)

Rk0/2
n

∣∣∣∣∣ ∫ Rn

0

β(s, f )
s

ds
)

= o
(ϕk0,m0(Rn)

Rk0/2
n

)

(6.36)

as n→ +∞. On the other hand, by (6.36) we also have that

k0 R−N+1−k0
n

2(N + k0 − 1)

∣∣∣∣∣∣
∫ Rn

0
t

k0
2 −1Υk0,m0(t)dt

∣∣∣∣∣∣
=

k0 R−N+1−k0
n

2(N + k0 − 1)

∣∣∣∣∣∣
∫ Rn

0
tN+k0−1t−N− k0

2 Υk0,m0(t)dt

∣∣∣∣∣∣
≤

k0

2(N + k0 − 1)

∫ Rn

0
t−N− k0

2 |Υk0,m0(t)|dt = o
(ϕk0,m0(Rn)

Rk0/2
n

) (6.37)
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as n→ +∞. Combining (6.36) with (6.37) we obtain that

R−
k0
2

n ϕk0,m0(Rn) = o
(
R−

k0
2

n ϕk0,m0(Rn)
)

as n→ +∞,

which is a contradiction. �

Combining Lemma 5.6, Lemma 6.3 and Lemma 6.6, we can now prove the following theorem
which is a more precise and complete version of Theorem 1.1.

Theorem 6.7. Let N ≥ 2 and u ∈ H1(BR̂) \ {0} be a non-trivial weak solution to (1.6), with f satisfying
either assumptions (H1-1)–(H1-3) or (H2-1)–(H2-5). Then, letting N(r) be as in (4.9), there exists
k0 ∈ N, k0 ≥ 1, such that

lim
r→0+
N(r) =

k0

2
. (6.38)

Furthermore, if Mk0 ∈ N \ {0} is the multiplicity of µk0 as an eigenvalue of problem (1.7) and
{Yk0,m}m=1,2,...,Mk0

is a L2(SN)-orthonormal basis of the eigenspace associated to µk0 , then

λ−k0/2u(λx)→ |x|k0/2
Mk0∑
m=1

βmYk0,m

( x
|x|

)
in H1(B1) as λ→ 0+, (6.39)

where (β1, β2, . . . , βMk0
) , (0, 0, . . . , 0) and

βm =

∫
SN

R−k0/2u(Φ(Rθ))Yk0,m(θ)dS

+
1

1 − N − k0

∫ R

0

(1 − N − k0
2

sN+
k0
2

−
k0 s

k0
2 −1

2RN−1+k0

)
Υk0,m(s) ds

(6.40)

for all R ∈ (0, r̄) for some r̄ > 0, where Υk0,m is defined in (6.16) and Φ is the diffeomorphism introduced
in Lemma 6.1.

Proof. Identity (6.38) follows immediately from Lemma 5.6.
In order to prove (6.39), let {λn}n∈N ⊂ (0,∞) be such that λn → 0+ as n → +∞. By Lemmas 5.6,

5.7, 6.3, 6.6 and (6.10), there exist a subsequence {λn j} j and constants β1, β2, . . . , βMk0
∈ R such that

(β1, β2, . . . , βMk0
) , (0, 0, . . . , 0),

λ
−

k0
2

n j u(λn j x)→ |x|
k0
2

Mk0∑
m=1

βmYk0,m

( x
|x|

)
in H1(B1) as j→ +∞ (6.41)

and

λ
−

k0
2

n j v(λn j ·)→
Mk0∑
m=1

βmYk0,m in L2(SN) as j→ +∞. (6.42)

We will now prove that the βm’s depend neither on the sequence {λn}n∈N nor on its subsequence {λn j} j∈N.
Let us fix R ∈ (0, r̄), with r̄ as in Lemma 6.1, and define ϕk0,m as in (6.15). From (6.42) it follows that,
for any m = 1, 2, . . . ,Mk0 ,

lim
j→+∞

λ
−

k0
2

n j ϕk0,m(λn j) = lim
j→+∞

∫
SN

v(λn jθ)

λk0/2
n j

Yk0,m(θ)dS =

Mk0∑
i=1

βi

∫
SN

Yk0,i Yk0,mdS = βm. (6.43)
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On the other hand, (6.17) implies that, for any m = 1, 2, . . . ,Mk0 ,

lim
λ→0+

λ−
k0
2 ϕk0,m(λ) = R−

k0
2 ϕk0,m(R) +

2N + k0 − 2
2(N + k0 − 1)

∫ R

0
s−N− k0

2 Υk0,m(s)ds

+
k0 R−N+1−k0

2(N + k0 − 1)

∫ R

0
s

k0
2 −1Υk0,m(s) ds,

with Υk0,m as in (6.16), and therefore from (6.43) we deduce that

βm = R−
k0
2 ϕk0,m(R) +

2N + k0 − 2
2(N + k0 − 1)

∫ R

0
s−N− k0

2 Υk0,m(s)ds +
k0 R−N+1−k0

2(N + k0 − 1)

∫ R

0
s

k0
2 −1Υk0,m(s) ds

for any m = 1, 2, . . . ,Mk0 . In particular the βm’s depend neither on the sequence {λn}n∈N nor on its
subsequence {λnk}k∈N, thus implying that the convergence in (6.41) actually holds as λ → 0+, and
proving the theorem. �
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12. Duduchava R, Wendland WL (1995) The Wiener-Hopf method for systems of pseudodifferential
equations with an application to crack problems. Integr Equat Oper Th 23: 294–335.

13. Fabes EB, Garofalo N, Lin FH (1990) A partial answer to a conjecture of B. Simon concerning
unique continuation. J Funct Anal 88: 194–210.

14. Fall MM, Felli V, Ferrero A, et al. (2019) Asymptotic expansions and unique continuation at
Dirichlet–Neumann boundary junctions for planar elliptic equations. Mathematics in Engineering
1: 84–117.

15. Felli V, Ferrero A (2013) Almgren-type monotonicity methods for the classification of behaviour
at corners of solutions to semilinear elliptic equations. P Roy Soc Edinb A 143: 957–1019.

16. Felli V, Ferrero A (2014) On semilinear elliptic equations with borderline Hardy potentials. J Anal
Math 123: 303–340.

17. Felli V, Ferrero A, Terracini S (2011) Asymptotic behavior of solutions to Schrödinger equations
near an isolated singularity of the electromagnetic potential. J Eur Math Soc 13: 119–174.

18. Felli V, Ferrero A, Terracini S (2012) A note on local asymptotics of solutions to singular elliptic
equations via monotonicity methods. Milan J Math 80: 203–226.

19. Felli V, Ferrero A, Terracini S (2012) On the behavior at collisions of solutions to Schrödinger
equations with many-particle and cylindrical potentials. Discrete Contin Dyn Syst 32: 3895–3956.

20. Garofalo N, Lin FH (1986) Monotonicity properties of variational integrals, Ap weights and unique
continuation. Indiana U Math J 35: 245–268.

21. Kassmann M, Madych WR (2007) Difference quotients and elliptic mixed boundary value
problems of second order. Indiana U Math J 56: 1047–1082.

22. Khludnev A, Leontiev A, Herskovits J (2003) Nonsmooth domain optimization for elliptic
equations with unilateral conditions. J Math Pure Appl 82: 197–212.

23. Kukavica I (1998) Quantitative uniqueness for second-order elliptic operators. Duke Math J 91:
225–240.

24. Kukavica I, Nyström K (1998) Unique continuation on the boundary for Dini domains. P Am Math
Soc 126: 441–446.

25. Lazzaroni G, Toader R (2011) Energy release rate and stress intensity factor in antiplane elasticity.
J Math Pure Appl 95: 565–584.

26. Mosco U (1969) Convergence of convex sets and of solutions of variational inequalities. Adv Math
3: 510–585.
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A. Eigenvalues of problem (1.7)

In this appendix, we derive the explicit formula (1.8) for the eigenvalues of problem (1.7).
Let us start by observing that, if µ is an eigenvalue of (1.7) with an associated eigenfunction ψ, then,

letting σ = −N−1
2 +

√(N−1
2

)2
+ µ, the function W(ρθ) = ρσψ(θ) belongs to H1

Γ̃
(B1) and is harmonic in

B1 \ Γ̃. From [8] it follows that there exists k ∈ N \ {0} such that σ = k
2 , so that µ = k

4 (k + 2N − 2).
Moreover, from [8] we also deduce that W ∈ L∞(B1), thus implying that ψ ∈ L∞(SN).

Viceversa, let us prove that all numbers of the form µ = k
4 (k+2N−2) with k ∈ N\{0} are eigenvalues

of (1.7). Let us fix k ∈ N \ {0} and consider the function W defined, in cylindrical coordinates, as

W(x′, r cos t, r sin t) = rk/2 sin
(k
2

t
)
, x′ ∈ RN−1, r ≥ 0, t ∈ [0, 2π].

We have that W belongs to H1
Γ̃
(B1) and is harmonic in B1 \ Γ̃; furthermore W is homogeneous of degree

k/2, so that, letting ψ := W
∣∣∣
SN , we have that ψ ∈ H1

0(SN \ Σ), ψ . 0, and

W(ρθ) = ρk/2ψ(θ), ρ ≥ 0, θ ∈ SN . (A.1)

Plugging (A.1) into the equation ∆W = 0 in B1 \ Γ̃, we obtain that

ρ
k
2−2

(
k
2

( k
2 − 1 + N

)
ψ(θ) + ∆SNψ

)
= 0, ρ > 0, θ ∈ SN \ Σ,

so that k
4 (k + 2N − 2) is an eigenvalue of (1.7).

We then conclude that the set of all eigenvalues of problem (1.7) is
{

k(k+2N−2)
4 : k ∈ N \ {0}

}
and all

eigenfunctions belong to L∞(SN).
We observe in particular that the first eigenvalue µ1 = 2N−1

4 is simple and an associated eigenfunction
is given by the function

Φ(θ′, θN , θN+1) =

√√
θ2

N + θ2
N+1 − θN , (θ′, θN , θN+1) ∈ SN .
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