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Genome-wide association analyses define 
pathogenic signaling pathways and prioritize 
drug targets for IgA nephropathy

IgA nephropathy (IgAN) is a progressive form of kidney disease defined by 
glomerular deposition of IgA. Here we performed a genome-wide association 
study of 10,146 kidney-biopsy-diagnosed IgAN cases and 28,751 controls 
across 17 international cohorts. We defined 30 genome-wide significant 
risk loci explaining 11% of disease risk. A total of 16 loci were new, including 
TNFSF4/TNFSF18, REL, CD28, PF4V1, LY86, LYN, ANXA3, TNFSF8/TNFSF15, 
REEP3, ZMIZ1, OVOL1/RELA, ETS1, IGH, IRF8, TNFRSF13B and FCAR. The risk loci 
were enriched in gene orthologs causing abnormal IgA levels when genetically 
manipulated in mice. We also observed a positive genetic correlation between 
IgAN and serum IgA levels. High polygenic score for IgAN was associated with 
earlier onset of kidney failure. In a comprehensive functional annotation 
analysis of candidate causal genes, we observed convergence of biological 
candidates on a common set of inflammatory signaling pathways and 
cytokine ligand–receptor pairs, prioritizing potential new drug targets.

IgA nephropathy (IgAN) is a common form of immune-mediated 
glomerulonephritis characterized by glomerular deposition of 
IgA-containing immune complexes. Examination of kidney-biopsy 
tissue and demonstration of glomerular IgA deposits are required 
to establish the diagnosis. No approved targeted therapies presently 
exist for IgAN, and a large fraction of cases progress to kidney failure 
requiring kidney transplantation or dialysis.

Because the diagnosis requires a kidney biopsy, genetic discov-
eries have been hindered by small patient cohorts. Approximately 15 
independent risk loci have been previously identified for IgAN, impli-
cating defects in the complement pathway, intestinal network of IgA 
production and innate immunity against mucosal pathogens1–7. These 
findings have led to the reformulation of the disease pathogenesis 
model, with most candidate mechanisms mapping to the immune 
system rather than the kidney8,9. Nevertheless, prior genome-wide 
association studies (GWASs) had a two-stage design, with the sample 
size of the discovery stage limiting the power to identify new loci.

Herein we report a large GWAS discovery study for IgAN, involv-
ing 38,897 individuals (10,146 kidney biopsy-defined cases and 28,751 
controls) recruited across 17 international cohorts. With the discovery 
of 16 new non-HLA (human leukocyte antigen) risk loci, we provide 

strong support for a highly polygenic architecture of IgAN. We assess 
the functional consequences of the risk alleles, define causal cell types 
and pathways and explore genetic correlations and pleiotropic associa-
tions of the risk loci. Notably, we report the convergence of multiple 
risk loci on a set of common signaling pathways and ligand–receptor 
pairs involved in the regulation of IgA production, prioritizing plausible 
new molecular drug targets.

Results
Study design
We performed GWAS and meta-analysis of 17 independent interna-
tional case–control cohorts (12 newly genotyped and five published 
cohorts) comprising 38,897 individuals (10,146 cases and 28,751 con-
trols). All cases were defined by dominant mesangial IgA staining by 
immunofluorescence of kidney biopsy tissue. We excluded any cases 
with suspected secondary causes (for example, liver, autoimmune 
or malignant disease). The patient characteristics are summarized in 
Supplementary Table 1. The controls were unrelated to the cases, were 
derived from the same populations or geographic regions as the cases 
and had no known kidney disease. Of the 17 cohorts, 11 were of Euro-
pean ancestry, with participants from Italy, Poland, Germany, France, 
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analyses were conducted to identify potential ancestry-specific and 
sex-specific loci, including under alternative (dominant and recessive) 
genetic models.

Genome-wide significant loci
Our primary analysis consisted of a combined meta-analysis across 
all cohorts (Fig. 1, Table 1 and Supplementary Tables 3–5). We con-
firmed multiple independently genome-wide significant (P < 5 × 10−8) 
signals in the HLA region, with an overall λ = 1.048 and 1.042 before 
and after excluding the HLA region (Extended Data Fig. 1). In addi-
tion, we detected 24 independent non-HLA loci at genome-wide 

Belgium, Czech Republic, Hungary, Croatia, Turkey, Spain, Sweden, 
the United Kingdom, the United States, Canada and Argentina, and 
six were of East Asian ancestry, with participants from China, Japan 
and the Republic of Korea. A total of 14 cohorts (8,139 cases and 17,713 
controls) were genotyped with high-density SNP arrays, ancestrally 
matched to controls and imputed using ancestry-specific reference 
panels, and three additional cohorts (2,007 cases and 11,038 controls) 
were genotyped with the Immunochip (Supplementary Table 2).

Detailed descriptions of each cohort are provided in the Supple-
mentary Note. Our primary discovery involved the combined analysis of 
all 17 cohorts under an additive genetic model. Additional exploratory 
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Fig. 1 | Cross-ancestry GWAS for IgAN. a, Manhattan plot for the combined 
meta-analysis across 38,897 individuals. The dashed horizontal line indicates 
a genome-wide significant P value = 5.0 × 10−8. The y axis shows −log10 of 
two-sided P values (fixed-effects meta-analysis of all cohorts without correcting 
for multiple testing) and is truncated to accommodate the HLA signal. The 
x axis shows genomic position for each chromosome (1–22 and X). Red, new 
genome-wide significant loci associated with IgAN; dark blue, previously known 
loci reaching genome-wide significance in this study. Locus name based on the 
top candidate gene from our biological prioritization strategy. b, Effect size  
(β, y axis) as a function of MAF (x axis) for suggestive and significant GWAS loci. 
Minor alleles with positive effect sizes (risk alleles) are represented at the top,  
and negative effect sizes (protective alleles) are represented at the bottom.  
A three-degree polynomial regression curve was fitted to illustrate positive  

and negative correlations. Correlation coefficients (R) and their corresponding  
P values (P) are also provided. Light-blue circles represent genome-wide 
significant loci and are labeled using the most likely candidate gene per locus. 
Blue triangles represent suggestive loci. c, Pleiotropic effects of non-HLA GWAS 
loci for IgAN based on the NHGRI GWAS catalog. Only genome-wide significant 
associations in LD (r2 > 0.5) with IgAN top SNPs are included as edges. Yellow 
are diseases and traits sharing at least one locus with IgAN. Edge thickness is 
proportional to the LD between the IgAN top SNP and the lead association SNP 
for GWAS catalog traits. Concordant effects are indicated in red, and opposed 
effects are indicated in blue. Green nodes represent IgAN GWAS loci, and 
light-blue nodes are IgAN-suggestive loci. Only 14 suggestive loci sharing at  
least one pleiotropic association with a genome-wide significant IgAN locus  
are depicted.
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significance, including eight known loci (CFH, FCRL3, IRF4/DUSP22, 
DEFA1/4, CARD9, ITGAM/ITGAX, TNFSF13/12, LIF/OSM) and 16 new loci 
(TNFSF4/18, CD28, REL, PF4V1, LY86, LYN, ANXA3, TNFSF8/15, ZMIZ1, 
REEP3, OVOL1/RELA, ETS1, IGH, IRF8, TNFRSF13B and FCAR; Extended 
Data Fig. 2), and 48 suggestive loci at P < 1 × 10−5 (Supplementary 
Tables 3 and 4).

Secondary analyses by ancestry revealed another locus (CCR6, 
P = 3.9 × 10−8) evident only in the East Asian cohorts (Extended Data  
Fig. 3a) and 11 additional suggestive signals in this ancestral group  
(Supplementary Table 5a). One of the suggestive signals in the combined 
meta-analysis (PADI3/PADI4 locus) reached genome-wide significance  
in the East Asian meta-analysis under a recessive model (Extended 

Data Fig. 3b). The European-only meta-analysis showed a total of 
19 suggestive signals, but no new genome-wide significant loci  
(Supplementary Table 5b). No sex-specific loci were found in a 
sex-stratified meta-analysis or in the analysis of sex chromosomal 
markers.

We next performed stepwise conditional analyses of the 24 sig-
nificant non-HLA loci, but only the CFH locus showed evidence of two 
independent genome-wide significant variants (Supplementary Table 
6 and Extended Data Fig. 4a). Stepwise conditional analyses of the HLA 
region revealed a complex pattern of association, with at least five inde-
pendently significant SNPs (Extended Data Fig. 4b and Supplementary 
Table 7). In addition, the patterns of association across the HLA region 

Table 1 | New and known genome-wide significant loci based on meta-analysis

Chr. Genomic 
location  
(bpa)

SNPb Locus Risk 
allele

Freq. 
European 
controls

Freq. 
Asian 
controls

Q test I2 OR (95% CI) Fixed 
effects  
P valuec

TransMeta 
random 
effects  
P valuec

Supporting 
cohortsd

New

1 157,542,162 rs849815 FCRL3 A 0.66 0.50 0.57 0 1.14 (1.09–1.19) 3.9 × 10−9 3.6 × 10−9 GWAS + IC Known

1 173,146,357 rs4916312 TNFSF4/18 A 0.35 0.07 0.68 0 1.14 (1.09–1.20) 5.0 × 10−8 6.3 × 10−8 GWAS + IC New

1 196,686,918 rs6677604 CFH G 0.80 0.93 0.97 0 1.21 (1.20–1.34) 1.5 × 10−17 5.9 × 10−17 GWAS + IC Known

1 196,603,302 rs12029571 CFH A 0.22 0.35 0.88 0 1.12 (1.07–1.18) 2.5 × 10−6 3.3 × 10−6 GWAS Known

2 61,092,678 rs842638 REL T 0.44 0.15 0.002e 64 1.17 (1.11–1.23) 9.6 × 10−10 1.1 × 10−9 GWAS New

2 204,584,759 rs3769684 CD28 T 0.95 0.49 0.93 0 1.19 (1.13–1.25) 5.1 × 10−11 2.1 × 10−10 GWAS + IC New

4 74,725,320 rs6828610 PF4V1 G 0.16 0.27 0.98 0 1.14 (1.10–1.22) 3.5 × 10−8 3.5 × 10−8 GWAS New

6 249,571 rs12201499 IRF4/
DUSP22

C 0.12 0.28 0.39 5 1.18 (1.15–1.29) 3.1 × 10−11 4.0 × 10−11 GWAS Known

6 7,214,676 rs12530084 LY86 C 0.77 0.51 0.49 0 1.13 (1.10–1.21) 1.3 × 10−9 1.7 × 10−9 GWAS New

6 32,389,305 rs9268557 HLA-DRA C 0.51 0.57 <0.001e 72 1.24 (1.27–1.36) 4.5 × 10−47 1.5 × 10−51 GWAS + IC Known

6 32,667,829 rs9275355 HLA-DQB/
DQA

C 0.23 0.33 0.21 25 1.26 (1.30–1.43) 1.7 × 10−34 2.1 × 10−37 GWAS Known

6 32,599,999 rs9272105 HLA-DQA A 0.60 0.45 0.001e 73 1.25 (1.20–1.30) 1.2 × 10−28 5.2 × 10−31 GWAS + IC Known

6 32,681,631 rs9275596 HLA-DQB/
DQA

T 0.66 0.81 0.05 46 1.33 (1.27–1.39) 3.2 × 10−36 1.4 × 10−35 GWAS + IC Known

6 33,074,288 rs3128927 HLA-DPA/
DPB

C 0.73 0.83 0.38 6 1.22 (1.22–1.34) 1.5 × 10−25 5.4 × 10−25 GWAS + IC Known

8 6,808,722 rs2075836 DEFA1/4 T 0.31 0.30 0.90 0 1.21 (1.14–1.28) 5.8 × 10−11 2.2 × 10−10 GWAS Known

8 56,852,496 rs75413466 LYN A 0.02 0.06 0.80 0 1.40 (1.27–1.56) 1.4 × 10−10 2.4 × 10−10 GWAS + IC New

8 124,765,474 rs34354351 ANXA3 T 0.17 0.32 0.84 0 1.15 (1.10–1.21) 3.5 × 10−8 3.9 × 10−8 GWAS New

9 117,643,362 rs13300483 TNFSF8/15 T 0.24 0.31 0.88 0 1.13 (1.09–1.18) 1.3 × 10−8 2.5 × 10−8 GWAS + IC New

9 139,266,496 rs4077515 CARD9 T 0.41 0.29 0.41 2 1.14 (1.10–1.18) 2.6 × 10−11 1.1 × 10−11 GWAS + IC Known

10 65,363,048 rs57917667 REEP3 G 0.02 0.19 0.91 0 1.22 (1.18–1.40) 1.1 × 10−8 1.3 × 10−8 GWAS New

10 81,043,743 rs1108618 ZMIZ1 A 0.60 0.49 0.43 0 1.14 (1.09–1.18) 1.9 × 10−10 3.9 × 10−10 GWAS + IC New

11 65,555,524 rs10896045 OVOL1/ 
RELA

A 0.30 0.48 0.03e 51 1.18 (1.13–1.24) 4.7 × 10−13 8.5 × 10−14 GWAS New

11 128,487,069 rs7121743 ETS1 C 0.16 0.47 0.79 0 1.13 (1.09–1.20) 3.4 × 10−8 3.2 × 10−8 GWAS New

14 107,222,014 rs751081288 IGH A 0.43 0.53 0.74 0 1.17 (1.11–1.23) 1.9 × 10−8 2.1 × 10−8 GWAS New

16 31,357,760 rs11150612 ITGAM/
ITGAX

A 0.64 0.27 0.10 37 1.16 (1.12–1.21) 8.4 × 10−14 3.4 × 10−13 GWAS + IC Known

16 86,017,715 rs1879210 IRF8 T 0.64 0.86 0.96 0 1.14 (1.09–1.20) 9.9 × 10−9 1.4 × 10−8 GWAS + IC New

17 7,462,969 rs3803800 TNFSF12/13 A 0.21 0.32 0.19 27 1.15 (1.10–1.20) 1.2 × 10−10 5.2 × 10−11 GWAS + IC Known

17 16,851,450 rs57382045 TNFRSF13B A 0.11 0.33 0.84 0 1.16 (1.11–1.22) 3.4 × 10−9 3.6 × 10−9 GWAS New

19 55,397,217 rs1865097 FCAR A 0.30 0.38 0.49 0 1.12 (1.08–1.16) 7.7 × 10−9 1.3 × 10−8 GWAS + IC New

22 30,512,478 rs4823074 LIF/OSM G 0.54 0.67 0.51 0 1.16 (1.14–1.24) 7.8 × 10−15 9.2 × 10−16 GWAS Known
aGenome Reference Consortium Human Build 37 (hg19). bOnly independent SNPs in each locus are included. cTwo-sided P values for variant association without multiple testing correction. 
dGWAS cohorts: n = 8,139 cases and 17,713 controls; GWAS + IC cohorts: n = 10,146 cases and 28,751 controls. eHeterogeneity P < 0.05. Chr., chromosome; freq., frequency; Q test, two-sided  
P value for Cochrane’s Q statistic; I2, heterogeneity index; IC, Immunochip.
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differed when stepwise conditioning was performed separately in East 
Asian and European cohorts—a total of five independent signals were 
detected in Europeans and four in East Asians. In the meta-analysis, 
we observed an inverse relationship between minor allelic frequency 
(MAF) of the top variants and their effect sizes (Fig. 1b). We estimated 
the overall SNP-based heritability of IgAN at 0.23 (95% confidence 
interval (CI): 0.15–0.30), and the heritability estimates were com-
parable between East Asian and European subgroups at 0.27 (95% 
CI: 0.10–0.43) and 0.24 (95% CI: 0.09–0.40), respectively. Excluding 
the HLA region reduced the SNP-based heritability estimate to 0.12 
(95% CI: 0.10–0.13). The genetic risk score (GRS) based on 30 indepen-
dently significant SNPs (30-SNP GRS) explained 11% of overall disease 
variance, a notable improvement compared to the 6% explained by 
the previous 15-SNP GRS4.

Classical HLA alleles
To better understand the signal at the HLA region, we imputed amino 
acid sequences and classical HLA alleles at four-digit resolution using 
ancestry-specific reference panels (Methods). The analysis of imputed 
amino acid sequences in class II genes pointed to DRB1 as the gene with 
most strongly associated polymorphic positions in both ancestral 
groups (Extended Data Fig. 5). In East Asian cohorts, stepwise condi-
tioning demonstrated independently significant associations at DRβ1 
positions 11 and 71, and the same positions were also associated with 
the disease in Europeans. Specifically, proline at position 11 (in linkage 
disequilibrium (LD) with alanine at position 71) conferred significant 
protection, while arginine at position 71 (in LD with valine at position 11)  
was associated with increased risk in both ancestral groups (Supple-
mentary Table 8). In Europeans, we additionally observed significant 
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Fig. 2 | Genome-wide genetic correlation analysis between IgAN and other 
complex traits. a, Including HLA region. b, Excluding HLA region. The traits are 
organized by immune-mediated (blue), infectious (green) and cardiometabolic 
(orange) categories and sorted based on the genetic correlation coefficient (rg). 
The data are presented as rg point estimates (center) with bars corresponding to 
95% CIs. PSC, primary sclerosing cholangitis; MN, membranous nephropathy; 
SLE, systemic lupus erythematosus; IBD, inflammatory bowel disease; MS, 
multiple sclerosis; UC, ulcerative colitis; T1D, type 1 diabetes; AS, ankylosing 
spondylitis; RA, rheumatoid arthritis; Chol, total serum cholesterol levels; 

TG, total serum triglycerides levels; LDL, low-density lipoprotein levels; BUN, 
blood urea nitrogen; eGFR Cr, estimated glomerular filtration rate using 
serum creatinine levels; T2D, type 2 diabetes; BMI, body mass index; eGFR 
cystatin, estimated glomerular filtration rate using serum cystatin levels; HTN, 
essential hypertension; FEV1/FVC, forced expiration volume at 1 s over forced 
vital capacity; CAD, coronary artery disease. The asterisk indicates nominal 
two-sided P < 0.05 for a test of genetic correlation without multiple testing 
correction. Supplementary Table 13 provides references to all GWAS used in this 
analysis along with the statistics for each correlation test.
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effects of glycine (protective) and leucine (risk) at position 11, but these 
substitutions are infrequent in East Asians.

The association patterns of classical HLA alleles were complex 
but generally consistent with the analysis of amino acid sequences. 
In East Asians, we observed a protective effect of the DRB1*1501–
DQA1*0102–DQB1*0602 haplotype (DR15 serotype), and an independ-
ent risk effect of DRB1*0405, with no significant associations after 
conditioning for both DRB1*1501 and DRB1*0405 (Supplementary 
Table 9). In Europeans, we confirmed a strong protective association 
of the DRB1*1501–DQA1*0102–DQB1*0602 haplotype. DRB1*0405 had 
low frequency in Europeans; thus, this association was not observed. 
Instead, we observed three additional independent European hap-
lotypes (rare in East Asians), including two protective haplotypes, 
DRB1*0301–DQA1*0501–DQB1*0201 (DR3 serotype) and DRB1*0701–
DQA1*0201–DQB1*0202/0203 (DR7 serotype), and one risk haplotype 
DRB1*0101–DQA1*0101–DQB1*0501 (DR1 serotype; Supplementary 
Table 10). After conditioning on the four independently significant 
DRB1 alleles residing on these haplotypes, we observed additional 
independent protective associations of DQA1*0102 and DPA1*0103 
in Europeans. There were no independently significant associations 
for the class I genes.

Pleiotropic associations of individual IgAN loci
To describe the full spectrum of pleiotropic associations of individual 
risk variants, we cross-annotated our non-HLA signals against all studies 
listed in the National Human Genome Research Institute (NHGRI) GWAS 
catalog (Supplementary Tables 11 and 12). We identified concordant 
and opposed associations for multiple autoimmune and inflammatory 
diseases, suggesting shared pathogenic pathways with IgAN. Among  
the loci with the highest level of pleiotropy were LIF/OSM and ZMIZ1,  
but autoimmune pleiotropy was also evident for CARD9, TNFSF8/15,  
REL, OVOL1/RELA, IRF4/DUSP22 and IRF8 loci. Some new loci, including  
TNFRSF13B, PF4V1, LY86 and ETS1, showed concordant effects on blood 
levels of distinct immune cell types or immunoglobulins, suggesting 
that these loci alter immune cell proliferation and immunoglobulin 
production. When we expanded this analysis to all suggestive loci, we 
found that 14 of the 47 suggestive loci were associated with the same 
autoimmune or blood immune cell traits as the genome-wide signifi-
cant loci, prioritizing these 14 loci for future follow-up studies (Fig. 1c).

Shared genetic architecture with IgA levels and related traits
To interrogate shared susceptibility between IgAN and other diseases, 
we explored genome-wide genetic correlations with immune, infec-
tious and cardiometabolic traits using bivariate LD score regression 
(Fig. 2 and Supplementary Table 13)10. We found negative genetic  
correlations with primary sclerosing cholangitis (rg = −0.37,  
P = 4.1 × 10−3) and inflammatory bowel disease (rg = −0.16, P = 9.9 × 10−3),  
and positive correlations with pneumonia (rg = 0.26, P = 9.0 × 10−4) and  
urinary tract infection (rg = 0.25, P = 2.1 × 10−3). After excluding the HLA  
region, we observed a positive genetic correlation with serum IgA 
levels (rg = 0.31, P = 2.1 × 10−3), allergy (rg = 0.18, P = 5.2 × 10−3) and ton-
sillectomy (rg = 0.17, P = 0.036), a procedure performed for recurrent 
pharyngeal infections and sometimes used to treat relapsing IgAN11. 
We next interrogated all independent IgAN risk alleles in our recent 
GWAS for serum IgA levels12 (Supplementary Table 14). Of 25 non-HLA 
loci, nine were nominally (P < 0.05) associated with increased serum 
IgA levels, all with concordant effects. Conversely, of 31 significant loci 
for IgA levels, 12 were nominally associated with the risk of IgAN, also 
with concordant effects. The intersection includes the following four  
genome-wide significant loci in both GWAS: TNFSF12/13, TNFSF8/15,  
OVOL1/RELA and LIF/OSM. At the same time, the effects at the  
HLA region were either opposed or not associated with serum IgA  
levels, consistent with our genetic correlation analyses in which  
positive correlation became significant only after excluding the  
HLA region.

Mouse phenotypes support IgA dysregulation in IgAN
We tested the candidate gene set defined by our significant GWAS loci 
for overlap with human ortholog gene sets producing 27 phenotype 
categories when genetically manipulated in mice. We observed the 
top-most significant enrichments in ‘immune system’ (P = 1.3 × 10−12) 
and ‘hematopoietic system’ (P = 3.2 × 10−9) phenotypes (Supplementary 
Table 15). Within these categories, we observed significant enrich-
ments in genes whose disruption in mice was associated with ‘abnormal  
IgA levels’ (P = 6.4 × 10−6; Extended Data Fig. 6), including TNFSF13,  
TNFSF13B, ITGAM, RELA, REL, CD28 and LYN genes. These observations  
corroborate our findings of overlapping loci between serum IgA levels 
and IgAN and further highlight the role of dysregulated IgA produc-
tion in the disease pathogenesis. Moreover, this analysis also supports 
the named genes as causal at the corresponding loci and nominates 
appropriate animal models for experimental follow-up.

Global pathway and tissue/cell-type enrichment analyses
We next used several unbiased strategies to explore biological 
pathway and tissue enrichments using genome-wide approaches. 
Pathway-enrichment analysis using multimarker analysis of genomic 
annotation (MAGMA)13 revealed 24 enriched gene sets (Extended Data 
Fig. 7). The most strongly enriched Gene Ontology (GO) terms after 
excluding the HLA region were ‘immune system processes’ (enrichment 
P = 1.4 × 10−9) and ‘immune response’ (enrichment P = 2.6 × 10−9). Exami-
nation of significant non-HLA loci revealed enrichments in pathways 
involved in innate and adaptive immunity, with the most significant 
enrichment in the ‘cytokine–cytokine receptor interactions’ (enrich-
ment P = 4.0 × 10−11; Fig. 3a).

To map the most likely causal tissues and cell types, we parti-
tioned SNP-based heritability by tissue and cell-type-specific FUN-LDA 
scores14. We found the most statistically significant heritability 
enrichments in blood, immune and gastrointestinal mucosa cells 
(Fig. 3b and Supplementary Table 16). The top enriched cell types 
were primary neutrophils from peripheral blood (P = 5.9 × 10−10), PMA 
(phorbol-12-myristate-13-acetate)-I-stimulated primary T helper cells 
(P = 2.1 × 10−9) and primary B cells from peripheral blood (P = 2.0 × 10−8). 
Analogous analysis performed using experimental mouse datasets 
pointed to small intestine inflammatory cells under basal conditions 
and after Salmonella infection as the top tissue (Extended Data Fig. 7). 
Additional independent analytical methods (DEPICT15 and GARFIELD16) 
similarly prioritized extrarenal tissues as likely causal in IgAN, converg-
ing on hematopoietic, immune, and gastrointestinal tissues as the most 
likely tissues to harbor causal cell types (Fig. 3c,d and Supplementary 
Tables 17 and 18).

Transcription factor (TF) enrichment analysis
We tested for potential intersection of GWAS loci with a comprehensive 
database of TF chromatin immunoprecipitation (ChIP)–seq datasets 
using the regulatory element locus intersection (RELI) algorithm17. In 
the analysis of genome-wide significant and suggestive loci, we detected 
significant intersection with binding sites for up to 32 TFs in 52 immune 
cell types, with the most significant enrichments for RELA (corrected 
P = 5.3 × 10−13) and NFKB1 (corrected P = 1.9 × 10−12; Fig. 4d and Supplemen-
tary Table 19). Nearly half of these TFs interact with Epstein–Barr virus 
super-enhancers, which control B-cell proliferation and have previously 
been found to intersect multiple autoimmune loci17,18. Moreover, some of 
the prioritized TFs, such as RUNX (runt-related transcription factor)19 and 
SMAD (sma- and mad-related protein)20 family, are well known to regulate 
IgA levels, and RUNX3, RUNX2 and OVOL1/RELA loci are substantially 
associated with serum IgA levels12, further supporting perturbations in 
IgA homeostasis as a primary pathogenetic factor in IgAN.

Protein–protein interactions (PPIs) and ligand–receptor pairs
We next tested whether candidate genes within our significant loci 
encode proteins that are likely to have physical interactions. Using 
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a refined database of high-confidence PPIs, we constructed a net-
work with 76 candidate proteins defined by GWAS using InWeb_IM21 
and GeneMANIA22. The final network composed of 53 nodes and 63 
edges exhibited an excess of direct physical interactions compared to 
null expectation (P < 1.0 × 10−16; Fig. 4c). Gene set enrichment analy-
ses (GSEA) of individual modules in this network (Supplementary 

Table 20) identified strong enrichments in stress and defense 
responses (module 1), chemokine signaling pathways (module 4), 
immune responses (module 5), cytokine-mediated signaling (mod-
ule 6) and regulation of nuclear factor kappa B (NF-κB) signaling  
(module 7). Consistent with the observed enrichments in chemokine 
and cytokine pathways and global cytokine–receptor interactions, we 
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Fig. 3 | Global pathway, cell-type and tissue enrichment analyses. a, KEGG, 
REACTOME and BIOCARTA pathway-enrichment map based on the gene 
set defined by genome-wide significant risk loci excluding HLA. The top ten 
most substantially enriched pathways and their intersecting GWAS genes are 
shown. Node size reflects −log10-transformed two-sided P values of the multiple 
testing-adjusted hypergeometric enrichment test in GSEA. b, Cell-type-specific 
heritability enrichment for functional annotations based on FUN-LDA scoring 
system for all ENCODE and Roadmap Epigenomics cell types and tissues. The 
x axis depicts −log10 of two-sided P values for heritability enrichment without 
multiple testing correction with only significant results grouped by the tissue 
type depicted. Solid red line represents the Bonferroni-corrected significance 
threshold (P = 3.9 × 10−4). Dashed black line represents the −log10 of the nominal 
uncorrected P value (P = 0.05). The most significant heritability enrichments 
were found in blood immune cells and gastrointestinal tissues. c, Tissue and 

cell-type enrichment analysis with DEPICT; only cells and tissues with a false 
discovery rate (FDR) < 0.05 are shown. The y axis represents the −log10 of the 
two-sided empirical P value without multiple testing correction. The x axis shows 
the first-level Medical Subject Headings (MeSH) annotations. The strongest 
enrichment is observed for blood and immune cells. The red horizontal line 
corresponds to FDR = 0.05. d, Global GWAS enrichment in DNase I-hypersensitive 
sites (DHS) using GARFIELD. Radial lines show odds ratios at two genome-wide 
significance thresholds (T) for all DHS cells and tissues on the outer circle. Dots 
in the inner ring of the outer circle denote significant GARFIELD enrichments 
for T < 1.0 × 10−5 (outermost) and T < 1.0 × 10−8 (innermost) loci by a two-sided 
enrichment test after multiple-testing correction for the number of effective 
annotations. Similar to FUN-LDA, GWAS results are most enriched in DHS sites 
in blood and immune cells, and intestinal mucosal tissue (labeled). ES cell, 
embryonic stem cell; iPS cell, induced pluripotent stem cell.
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identified enrichment in soluble ligand–receptor pairs, attributable 
to 16 ligand–receptor pairs spanning 12 independent significant or 
suggestive loci (enrichment P = 0.01; Supplementary Table 21). This 
included APRIL and its receptor TACI (transmembrane activator and 
CAML interactor) encoded by two independent genome-wide signifi-
cant loci (TNFSF12/13 and TNFRSF13B, respectively), both implicated in 
IgA homeostasis. Several IL6-related cytokine–receptor pairs were also 
identified (IL6–IL6ST, LIF (leukemia inhibitory factor)–LIFR/IL6ST and 
OSM (oncostatin M)–OSMR/LIFR/IL6ST), with OSM/LIF being encoded 
by a single genome-wide significant locus and related receptors being 
encoded by two independent suggestive loci, OSMR/LIFR and IL6ST. 
Notably, APRIL is known to alter the glycosylation of IgA1 (ref. 23), IL6, 

LIF and OSM are involved in mucosal immunity, and IL6 and LIF lead to 
enhanced production of galactose-deficient IgA1 (refs. 24–26). These 
ligand–receptor pairs nominate candidate genes within corresponding 
loci and delineate potentially targetable pathways in IgAN.

Functional annotations of individual GWAS loci
We performed genomic annotations of our significant loci, including 
intersection with tissue and cell-type-specific functional scores, colo-
calization with expression quantitative trait loci (eQTLs) in primary 
immune cells, whole blood and other tissues and cross-annotation 
with blood proteome and metabolome data (Methods)27. Most sig-
nals mapped to noncoding regions, and there were only two missense 
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Fig. 4 | Functional annotations of non-HLA loci. a, Cis-eQTL effects in primary 
immune cells. The x axis shows 15 immune cell types (DICE project). The y axis 
shows significant eGene–eSNP pairs with shared loci depicted by a color bar. 
Two-sided eQTL P values without multiple testing correction were used for a 
color scale. Posterior probability for a shared causal variant (PP4) is shown for 
the eQTL effects that colocalize at PP4 > 0.50. An asterisk indicates eGenes with 
blood cis-eQTLs. b, pQTL (protein quantitative trait loci) effects in blood. IgAN 
risk alleles or their proxies (yellow nodes) with significant blood pQTLs depicted 
by blue (reduced protein levels) and red (increased protein levels) nodes. Edge 
thickness corresponds to the LD between the lead GWAS and pQTL SNPs at 
a given locus. c, Protein–protein interaction network for candidate genes at 
GWAS loci. Modules represent genes that are more connected to one another 
than they are to other genes. Each of the following modules exhibits a functional 
enrichment network based on GO biological processes: module 1 (orange) 
represents response to stress and defense response networks; module 2 (light 
blue) represents regulation of inflammatory response network; module 3 (red) 

represents mRNA splicing via spliceosome network; module 4 (green) represents 
chemokine-mediated signaling pathway; module 5 (purple) represents an 
immune response network; module 6 (pink) represents cytokine-mediated 
signaling pathway; module 7 (dark blue) represents regulation of I-κB kinase/
NF-κB signaling and apoptotic signaling pathway; and module 8 (yellow) 
represents innate immune response in mucosa and antibacterial humoral 
response. The gray module has no functional enrichment. d, Intersection with 
TF ChIP–seq peaks with the significant (top) and suggestive (bottom) IgAN risk 
loci. The x axis shows IgAN risk loci. The y axis shows top significant TFs ranked by 
the number of intersecting loci. A colored box at the intersection indicates that 
a given locus has at least one IgAN-associated variant located within a ChIP–seq 
peak for the given TF. Datasets were considered significant if their RELI empirical 
P values corrected for multiple testing were <1 × 10−4. TFs binding to EBNA2 
super-enhancers are colored in red; ChIP–seq dataset cell types are indicated 
in parentheses. Related cell lines for a given TF (for example, GM12878 and 
GM12891) were merged for clarity. I-κB, inhibitor of nuclear factor kappa B.

http://www.nature.com/naturegenetics


Nature Genetics | Volume 55 | July 2023 | 1091–1105 1098

Article https://doi.org/10.1038/s41588-023-01422-x

variants (rs4077515 CARD9 p.(Ser12Asn) and rs3803800 TNFSF13 
p.(Asn96Ser)) among the top SNPs (Supplementary Table 22). The 
CARD9 risk allele (rs4077515-T), a nonsynonymous S12N substitution 
in exon 2 of CARD9, is associated with increased blood transcript level 
of CARD9 and a significant splice QTL in Genotype-Tissue Expression 
(GTEx). The protective allele is associated with a truncation of the 
functional CARD (caspase recruitment domain), while the risk allele 
is associated with higher levels of the intact, active isoform, affecting 
both expression and splicing of CARD9 (Extended Data Fig. 8).

For top signals mapping to noncoding regions, we found 79 signifi-
cant cis-eQTL effects with 17 IgAN colocalizations at 20 independent 
non-HLA risk loci (Fig. 4a and Supplementary Tables 23 and 24). Twelve 
loci had 27 significant cis-eQTL effects across 15 primary immune cell 
types, and 17 of the 27 cis-eQTLs colocalized with IgAN with PP4 > 0.5 
(Supplementary Table 23). In GTEx, we further found 19 cis-eQTL effects 
for eight IgAN loci across the 28 available tissues and cell types. As an 
example, two loci (ITGAM/ITGAX and IRF4/DUSP22) mapped specifically 
to monocytes, an understudied cell type in IgAN. The top signals at 
these loci intersect monocyte-specific functional elements by FUN-LDA 
and colocalize with monocyte-specific eQTLs, with the risk alleles 
associated with upregulation and downregulation of ITGAX and IRF4/
DUSP22, respectively. As another example of cell-type specificity, the 
ZMIZ1 locus colocalized with an eQTL in natural killer (NK) cells, with 
the risk allele associated with lower expression of ZMIZ1, which encodes 
an inhibitor of JAK/STAT ( Janus kinase/signal transducer and activator 
of transcription) signaling and is also involved in transforming growth 
factor-beta (TGF-β) signaling and intestinal inflammation28,29. In whole 
blood, notable eQTL colocalizations included the FCRL3 risk locus, 
where the risk allele was associated with reduced transcript levels of 
FCRL3 and FCRL5, and with lower levels of circulating FCRL3 protein 
(Supplementary Table 25). As FCRL3 is a specific receptor for secretory 
IgA30,31, we prioritized FCRL3 as the most likely causal gene at this locus.

Three independent IgAN risk loci with colocalizing cis-eQTLs 
also exhibited trans-eQTL effects, suggesting that these loci induce a 
more global transcriptional perturbation in blood cells (Supplemen-
tary Table 26). For example, the CARD9 locus was associated with 12 
trans-eQTL effects, nine of which involve genes in the ‘type I interferon 
signaling pathway’ (enrichment P = 9.5 × 10−18). The TNFSF8/15 locus 
was associated with eight trans-eQTL effects with three represent-
ing ‘cytokines involved in lymphocyte differentiation’ (enrichment 
P = 4.3 × 10−3). Interestingly, the ITGAM/ITGAX locus had only one 
trans-eQTL association, lowering mRNA level of IGHG4, encoded by 
an independent IgAN risk locus on chromosome 14.

Several loci were also associated with perturbations in blood 
proteome or metabolome. The PF4V1 locus colocalized with a PF4V1 
cis-eQTL and exhibited multiple protein QTL (pQTL) associations with 
blood protein levels (Supplementary Table 25), including four cis- and 
40 trans-pQTL proteins. These proteins were most enriched in the 
GO process of ‘positive regulation of neutrophil chemotaxis’ (enrich-
ment P = 1.3 × 10−3), providing additional support for PF4V1 as the 
likely causal gene32. Similarly, the CFH locus, where a protective allele 
tags a common deletion of CFHR1 and CFHR3 (ref. 2), was associated 
with reduced expression of CFHR1 and CFHR3 in the liver, kidney and 
other tissues (Supplementary Tables 27 and 28). This allele was also 
associated with reduced levels of circulating FHR1 (encoded by CFHR1) 
and higher blood levels of factor H (Supplementary Table 25). Moreo-
ver, this locus exhibited a widespread proteomic and metabolomic 

signature in blood, with 64 additional trans-pQTL associations includ-
ing seven proteins involved in the ‘regulation of complement cascade’ 
(enrichment P = 2.1 × 10−10; Fig. 4b), and altered blood levels of multiple 
inflammation-related metabolites (Supplementary Table 29)33,34.

Integrative prioritization of biological candidate genes
To systematically prioritize the 308 candidate genes encoded within the 
24 non-HLA risk loci, we scored for convergence of in silico annotation 
methods by assigning one point for each of the following criteria: (1) 
genes most proximal to the top SNP at the locus; (2) genes with a nonsyn-
onymous coding variant tagged (r2 ≥ 0.8) by the top SNP; (3) genes with 
a 3D chromatin interaction predicted by the activity-by-contact (ABC) 
model35 or (4) GeneHancer36, with enhancers that are intersected by vari-
ants tagged (r2 ≥ 0.8) by the top SNP or contained within a 95% credible 
set for the locus; (5) eGenes controlled by at least one eQTL (any GTEx 
tissue) tagged by the top SNP; (6) eGenes colocalizing with the risk locus 
in peripheral blood or (7) primary immune cells at PP4 > 0.5; (8) pGenes 
encoding blood proteins controlled by at least one cis-pQTL tagged by 
the top SNP; (9) genes prioritized by PPI network connectivity at P < 0.05; 
(10) genes with shared mouse knockout phenotypes; (11) genes within 
shared MAGMA pathways; (12) genes prioritized by DEPICT; and (13) 
genes prioritized by manual literature review. Using this approach, we 
prioritized 26 ‘biological candidate genes’, 19 (73%) of which were also 
most proximal genes to the top SNP (Fig. 5). This approach had 79% 
ranking concordance with the variant-to-gene (V2G) scoring method37.

Prioritization of plausible drug targets
To facilitate drug repurposing and to prioritize new targets with GWAS 
support, we evaluated whether any of the 308 genes contained within 
significant loci encoded a protein or directly interacted with a protein 
that was a pharmacologically active drug target either approved or in 
development for human disease. In total, 13 GWAS loci (54%) encoded 17 
proteins that were already targeted by existing drugs, and 11 loci (46%) 
encoded 14 proteins with a direct PPI target (Fig. 6 and Supplementary 
Table 30). Among the top 26 high-priority ‘biological candidates’, 11 (42%) 
were targeted directly or indirectly by the existing drugs. This included 
the following: (1) inhibitors of the alternative complement pathway that 
are currently in clinical trials for glomerulopathies38; (2) drugs targeting 
B cells by inhibiting APRIL or TACI interactions that are already in clinical 
trials for IgAN; (3) drugs that inhibit T-cell activation by targeting ligands 
of CD28 protein, such as Belatacept (approved for allograft rejection) 
or Abatacept (approved for rheumatoid arthritis); (4) drugs that inhibit 
IL8 (ABX-IL8) or IL8 receptor (Clotrimazole) and (5) drugs that inhibit 
NF-κB pathway, such as Bardoxolone that is already in clinical trials for 
glomerular disorders. We also note that some of our top prioritized 
causal genes with expression increased by the risk alleles, such as CARD9, 
ITGAX, PF4V1, CFHR1 or FCAR, do not yet have effective drug inhibitors. 
Other loci encode secreted proteins that appear protective, such as 
FCRL3 and TNFSF4, suggesting that targeting their upregulation may 
present a rational therapeutic strategy. Our data additionally imply 
that activation of transcriptional programs controlled by ZMIZ1 and 
IRF4, but reduced activation of NF-κB, may confer a protective effect.

Genome-wide polygenic risk score (GPS) and clinical 
correlations
Based on GWAS statistics after excluding Immunochip cohorts, 
we designed and optimized a GPS for IgAN. The best-performing 

Fig. 5 | Prioritization of candidate genes at non-HLA loci. Blue boxes indicate 
prioritization criteria based on genomic coordinates (the nearest gene to the 
index SNP, exonic variant in LD with the top SNP or top signal intersecting 
chromatin interaction site with the gene promoter). Red boxes indicate the 
presence of additional functional criteria (any GTEx eQTL effect, blood and 
immune cell eQTL colocalization, pQTL effects, PPI network connectivity, shared 
mouse knockout phenotype, shared pathways by MAGMA, prioritized by DEPICT 

and prioritized by manual PubMed review). The priority score represents a sum 
of the 13 scoring criteria depicted in blue and red. The genes with the maximum 
score at each locus (light green) were defined as ‘biological candidate genes’. 
V2G scores are also provided for comparison. Additional annotation indicates 
drug-target genes (orange). Only 58 of 311 positional candidate genes with 
a priority score >3 (or top V2G score per locus) are depicted.
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GPS was based on LDPred method and assumed 1% causal variants 
genome-wide. When tested in the independent German Chronic Kid-
ney Disease (GCKD) study39,40, the GPS explained 7.3% of disease risk 
(P = 3.1 × 10−12; C-statistic, 0.65; 95% CI, 0.61–0.68). We then performed 

a comprehensive analysis of clinical disease features associated 
with the GPS (Supplementary Table 31a). Consistent with previous 
observations for the 15-SNP GRS4, the GPS was inversely associated 
with the age at diagnosis. The GPS was also significantly associated 
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CFH 10 0.20

CFHR1 5 0.19

CFHR3 4 0.17

FCRL3 7 0.36

FCRL4 5 0.22

FCRL5 4 0.31

TNFSF4 8 0.21

TNFSF18 4 0.21

CD28 7 0.11

CTLA4 5 0.07

RAPH1 4 0.05

REL 7 0.18

PUS10 ! 0.21

PF4V1 9 0.33

CXCL1 8 0.27

CXCL8 5 0.17

CXCL6 4 0.23

CXCL5 4 0.14

IRF4 7 0.11

DUSP22 6 0.08

LY86 5 NA

RREB1 4 0.14

DEFA1 4 0.07

DEFA4 4 0.10

DEFA3 ! 0.14

8q12 rs75413466 LYN 6 0.22

ANXA13 4 0.10

FAM91A1 ! 0.18

CARD9 10 0.42

INPP5E 5 0.24

SNAPC4 4 0.19

TNFSF15 7 0.12

TNFSF8 6 0.22

ZMIZ1 8 0.21

PPIF 6 0.19

REEP3 5 0.12

NRBF2 ! 0.14

OVOL1 5 0.28

RELA 5 0.06

EHBP1L1 4 NA

CFL1 4 0.22

11q24 rs7121743 ETS1 5 0.15

14q32 rs751081288 IGH 6 0.24

ITGAX 10 0.25

ITGAM 7 0.18

PYCARD 5 0.14

ITGAD 4 0.22

FUS 4 0.17

KAT8 4 0.17

16q24 rs1879210 IRF8 8 0.14

TNFSF13 8 0.38

TNFSF12 6 0.38

17p11 rs57382045 TNFRSF13B 7 0.11
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rs20758368p23

2p16 rs842638

8q24 rs34354351
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with higher lifetime risk of kidney failure among 2,879 cases with 
long-term follow-up (hazard ratio (HR) = 1.17 per s.d.; 95% CI, 1.09–
1.24; P = 3.3 × 10−6). For example, individuals in the top 20% tail of the 
GPS distribution had 34% increased risk of kidney failure (HR = 1.34; 
95% CI, 1.15–1.56; P = 2.0 × 10−4), while individuals in the top 10% tail 
had 48% increased risk of kidney failure (HR = 1.48; 95% CI, 1.22–1.79; 
P = 6.6 × 10−5) compared to the rest of the cohort (Fig. 7a). However, 
the GPS was not a significant predictor of ESKD at the time of kidney 
biopsy after accounting for age, sex and other clinical risk factors 
(Supplementary Table 31b).

To explore additional clinical associations of the GPS, we 
performed a meta-analysis of phenome-wide association study 
(meta-PheWAS) across 590,515 participants of the UK Biobank (UKBB) 
and Electronic Medical Records and Genomics-III (eMERGE-III) data-
sets (Fig. 7b). We detected positive correlation of the GPS with hema-
turia, the most common manifestation of IgAN (P = 7.3 × 10−21). Other 
notable associations included a protective association with celiac  
disease (P = 4.2 × 10−148) and several risk associations, includ-
ing with rheumatoid arthritis (P = 1.1 × 10−39), hypothyroidism 
(P = 2.0 × 10−15), epistaxis or throat hemorrhage (P = 2.6 × 10−9) and 
asthma (P = 1.5 × 10−6). These associations remained significant after 
removing the HLA region from the GPS (Fig. 7c and Supplementary  
Table 32). Notably, the directions of effect were generally consist-
ent with our genome-wide genetic correlation analyses of IgAN with 
related traits, providing a validation of the shared polygenic architec-
ture for these traits.

Discussion
Our GWAS of 10,146 cases and 28,751 controls defined 30 independently 
significant risk loci and provided support for a highly polygenic archi-
tecture of IgAN. The SNP-based heritability of IgAN was estimated at 
~23%, and high polygenic risk was associated with earlier disease onset 
and greater lifetime risk of kidney failure, suggesting that polygenic 
background is predictive of a more aggressive disease. Future stud-
ies are needed to test whether our polygenic stratification is useful 
in the diagnosis, clinical risk assessment or prediction of treatment 
responsiveness.

Our results reinforce the hypothesis that the genetic regulation 
of IgA production represents the key pathogenic pathway in IgAN. 
Significant risk loci were enriched in human orthologs of mouse genes 
that, when genetically modified, cause abnormal IgA levels. Moreover, 
21 of 25 independent genome-wide significant non-HLA risk loci for 
IgAN have a concordant effect on serum IgA levels, and four of these are 
also genome-wide significant in our recent GWAS for serum IgA levels12.

We observed positive genetic correlations with IgA levels, infec-
tions and tonsillectomy, indicating a genetic link between the IgA sys-
tem, mucosal infections and IgAN. The association with tonsillectomy 
is especially intriguing, because IgAN is often triggered by pharyngitis, 
and tonsillectomy has been employed as a treatment for IgAN11. In 
contrast, the observed negative genetic correlations with inflamma-
tory bowel disease may be due to genetically increased production 
of secretory IgA that has known homeostatic anti-inflammatory and 
immunosuppressive effects at the level of the gut mucosa41. Moreover, 
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Fig. 6 | Drug targets among candidate causal genes. IgAN risk alleles (green), 
prioritized positional candidate genes (gray), related genes in PPI (for example, 
ligands/receptors) or same pathway (yellow), targeting drugs approved or 
currently in clinical trials including agonists and antagonists (blue) and diseases 

targeted by these drugs (orange). High-priority targets defined in Fig. 5 are 
indicated by an asterisk. GWAS loci with candidate causal genes not targeted by 
existing drugs are not depicted.
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our analyses of partitioned heritability clearly support a causal role of 
extrarenal tissues, prioritizing immune, hematopoietic and intestinal 
mucosal cells. This extrarenal mapping of causal tissues is consistent 
with the established observation that IgAN commonly recurs after 
kidney transplantation42.

Our GWAS loci encoded proteins that were more likely to interact 
physically despite being encoded by distant genomic regions. This 
included several ligand–receptor pairs that are amenable to thera-
peutic targeting. IgAN currently lacks effective targeted therapies, 
and recent pharmaceutical database analyses indicate that drug 
targets with genetic support are more likely to advance in the devel-
opment pipeline43. Similar to recent strategies for type 1 diabetes44 
and other autoimmune conditions45, we prioritized several candi-
date genes whose products are targeted by drugs that are presently 
approved or in clinical development for another condition, and 
which could be repurposed for IgAN. Mechanistic studies are still 
needed to confirm the candidate target genes prioritized by our in 
silico annotations.

Our study has several limitations. First, we pooled data across 
cohorts recruited across diverse timeframes, clinical settings, ances-
tries and nationalities. To reduce heterogeneity and bias, we used 
stringent biopsy-based diagnostic criteria, standardized covariates, 
genetic matching by platform and ancestry and a uniform statistical 
analysis for each cohort. Second, we note that our meta-analysis 
included Immunochip and other lower-resolution platforms, result-
ing in uneven coverage (and power) across the genome. Third, our 
case cohorts included only biopsy-diagnosed individuals; thus, we 
are missing patients presenting with mild symptoms that are not 
routinely biopsied. Our clinical correlation analyses are limited 
by the retrospective nature of data and the lack of uniform histo-
pathology grading. Fourth, the use of population controls might 
have led to some control misclassification, although this problem 

is likely minimized by the low IgAN prevalence. Fifth, our GWAS was 
performed in European (68.7%) and East Asian (31.3%) ancestries; 
thus, our results may not be generalizable to other populations. 
Our functional annotations are also limited by the fact that some 
of the functional genomic datasets may not be well matched based 
on ancestry to our study. Our meta-analysis clearly favors loci sup-
ported by all cohorts, and we were less powered for the discovery of 
ancestry-specific or sex-specific effects. Finally, we were not able to 
evaluate the contribution of rare variants in this study, and sequenc-
ing studies are still needed to evaluate relative contributions of rare 
and common variants to the overall disease risk.
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Fig. 7 | Clinical associations of the GPS for IgAN. a, Survival analysis of lifetime 
risk of kidney failure for IgAN cases in the top 90th percentile of the GPS 
distribution (n = 2,879 cases with follow-up data). The x axis shows age starting 
from 18 years, and the y axis shows survival probability without kidney failure 
with the number of participants at risk at each age cut-off of 20, 40, 60 and 80 
years depicted below. HR (95% CI) of kidney failure adjusted for sex, site and 
ancestry; two-sided P value from the adjusted Cox proportional hazards model 
is also provided. b,c, PheWAS for the GPS with (b) or without (c) the HLA region, 
based on joint meta-analysis of eMERGE-III (n = 102,138) and UKBB (n = 488,377) 

datasets. The x axis indicates electronic health record phenotypes (phecodes) 
grouped by system and sorted by significance. The y axis indicates the level of 
statistical significance expressed as −log10(P value). All P values are two-sided and 
correspond to a fixed effects meta-analysis of both datasets without correction 
for multiple testing. Dashed horizontal line represents the significance 
threshold after Bonferroni correction for the number of phenotypes; significant 
associations are labeled. An upward triangle indicates a positive association 
(increased risk) and a downward triangle indicates a negative association 
(decreased risk) with increasing GPS.
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Methods
Association analyses
Individual study cohorts are described in the Supplemental Note, 
including ethics oversight, recruitment, genotyping, imputation, 
and quality control analyses. We conducted genome-wide association 
analysis in each of the 17 cohorts using imputed dosage data under 
an additive model with adjustment for significant PCs in PLINK v1.9 
(ref. 46). Only high-quality (R2 > 0.8) common (MAF > 0.01) SNPs were 
included in GWAS. Subsequently, we performed meta-analyses using 
the fixed effects inverse-variance-weighted method (METAL v.2011-
03-25)47 and TransMeta random effects model (TransMeta software)48. 
Genome-wide distributions of P values were examined visually using 
quantile–quantile (QQ) plots for each cohort and for the combined 
analysis. The meta-analysis QQ plot showed no departure from the 
expected distribution of P values with the genomic inflation factor (λ) 
estimated at 1.04 (Extended Data Fig. 1). Similarly, our analyses under 
dominant and recessive models had no evidence of genomic inflation 
(λ = 1.03 for dominant and λ = 0.94 for recessive model; Extended Data 
Fig. 3). Sex-specific analyses were conducted by cohort separately for 
males and females and subsequently meta-analyzed. A total of 21,236 
males and 17,661 females were used in the meta-analysis with overall 
λ = 1.01 for males and λ = 0.99 for females. A total of 1,990,322 imputed 
chromosome X markers (R2 > 0.8 and MAF > 0.01) were analyzed sep-
arately by sex-encoding genotypes as (0, 2) in males and (0, 1, 2) in 
females. Significant PCs for each cohort were included as covariates 
in each model. Genome-wide significant loci were defined by at least 
one SNP with P < 5.0 × 10−8 that is successfully typed or imputed in ≥50% 
of cohorts. Signals with P < 1.0 × 10−5 were considered as suggestive.

Conditional analyses
To detect independent associations at individual loci, we conducted 
stepwise conditional analyses using the conditional and joint (COJO) 
association analysis method49 implemented in GCTA v.1.92.0beta49,50. 
Using the summary statistics, we conducted conditional analyses with 
a threshold of P ≤ 5.0 × 10−8 and the LD reference composed of 1000 
Genomes Phase 3 (European and East Asian populations). Subsequent 
conditional analyses were performed for makers with a conditioned 
P ≤ 5.0 × 10−8 until no residual genome-wide significant associations 
were observed (Supplementary Table 6).

HLA imputation
We used the SNP2HLA v.1.0 software to impute classical HLA alleles51. 
The Type 1 Diabetes Genetics Consortium reference panel of 5,225 
Europeans and 8,961 markers was used for our European cohorts51, 
and the Pan-Asian reference panel of 530 individuals and 8,245 mark-
ers was used for East Asian cohorts52. Only common and high-quality 
variants (MAF > 0.01, R2 > 0.8) were used for association testing. For 
validation, we used exome sequence data (average depth 60× or above) 
available for a subset of 500 cases of European ancestry. Classical HLA 
alleles were called from exome sequence using HLAscan software53, 
and the sequence-based results were compared to SNP2HLA. Using 
this approach, the imputation accuracies for DRB1*1501, DRB1*0405, 
DRB1*0301, DRB1*0701 and DRB1*0101 alleles were estimated at 98.3%, 
99.8%, 98.8%, 96.7% and 98.0%, respectively.

HLA classical alleles analysis
We analyzed each imputed variant using logistic regression, assuming 
additive dosage effects and controlling for significant PCs of ancestry. For 
testing multi-allelic loci, we used the following logistic regression model:

log(odds) = β0 +
m−1
∑
j=1

βjXj,i +
n
∑
k=1

βkPCk,i

where m indicates a total number of alleles at a multi-allelic locus,  
j indicates a specific allele and Xj,i is the imputed dosage for allele j  

in individual i; β0 represents the intercept and βj represents the addi-
tive effect of an allele j; PCk,i denotes the value for kth ancestry PC of 
individual i, n is the total number of significant PCs in the dataset; βk 
is the effect size of principal component k. For statistical testing, we 
compared the log-likelihoods of the following two nested models: the 
full model containing the test locus and relevant covariates with the 
reduced model (null model) without the test locus, but with the same 
set of covariates.

HLA peptide sequence analysis
To test the effects of individual amino acid substitution sites, we applied 
a conditional haplotype analysis using fully phased haplotypes across 
the HLA region. We tested each single amino acid position by first 
identifying the m possible amino acid residues occurring at that posi-
tion and then using m − 1 degrees of freedom test to derive P values 
with a single amino acid residue arbitrarily selected as a reference. 
For conditioning on individual amino acid sites, we used the following 
procedure: by adding a new amino acid position to the model, a total 
of κ additional unique haplotypes were generated and tested over the 
null model using the likelihood ratio test with κ degrees of freedom. If 
the new position was independently significant, we further updated 
the null model to include all unique haplotypes created by all amino 
acid residues at both positions to identify another independent posi-
tion. The procedure was repeated until no significant (conditioned 
P ≤ 5.0 × 10−8) site was observed. To resolve relationships between HLA 
alleles and individual amino acid substitutions, we performed joint 
haplotype phasing of amino acid residues and classical HLA alleles 
using PLINK v1.07 (ref. 54). HLA protein structure was visualized using 
UCSF Chimera v1.16 (ref. 55).

Heritability and genetic correlations
SNP-based heritability was estimated using LD score regression (LDSC 
software)10 using 1000 Genomes phase 3 European and East Asian pop-
ulations combined as reference56. We also estimated SNP heritability 
after excluding the HLA region (Chr.6: 28,000,000–33,000,000 bp). To 
investigate evidence for possible shared genetic effects between IgAN 
and other traits, we estimated genetic correlations using bivariate LD 
score regression10. For each phenotype, we used summary statistics 
from the largest available GWAS with a minimum coverage of 2 mil-
lion SNPs. We excluded traits with estimated SNP-based heritability 
<1%. Genetic correlations were calculated with and without the HLA 
region. Summary statistics for immune and cardiometabolic traits 
were downloaded from the LD Hub or GWAS catalog or provided by 
the corresponding consortia. Summary statistics for infection-related 
phenotypes were provided by 23andMe57.

Pleiotropy maps
GWAS loci were cross-annotated against GWAS catalog (last update: 
January 31, 2019). For each locus, we selected all variants in strong 
LD (r2 ≥ 0.8) with the top SNP. We then queried the GWAS Catalog for 
genome-wide significant (P < 5.0 × 10−8) associations of the selected 
SNPs with other traits. We manually confirmed the direction of allelic 
effects by reviewing original publications. In cases where there were 
multiple GWAS for the same trait, we selected studies with the largest 
sample size. To evaluate the overlap of pleiotropic effects between sig-
nificant and suggestive IgAN loci, the traits associated with significant 
loci were queried against GWAS catalog for associations with any of the 
suggestive SNPs or their proxies (r2 ≥ 0.8). The results were visualized 
using Cytoscape v3.7.0 software.

Polygenic risk models
To assess the cumulative effect of risk loci, we performed a GRS analy-
sis. We first created the following two new GRS models based on the 
new meta-analysis: the 30-SNP model that comprises 30 independent 
genome-wide significant SNPs, and the 77-SNP GRS model that includes 
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the same 30 SNPs plus 47 independent suggestive loci (P < 1.0 × 10−5). 
Each GRS was standard normalized against the control distribution. 
We evaluated the performance of each GRS by estimating Nagelkerke’s 
pseudo R2 and the area under the receiver operating characteristics 
curve. GPS was calculated using the following two methods: LDpred58 
and LD-pruning and P value thresholding (P + T)59,60. We used the com-
bined meta-analysis including 2,408,512 high-quality SNPs that over-
lapped across all cohorts but excluding the Immunochip cohorts. For 
LDPred, the fraction of causal variants was used as a tuning parameter  
(ρ) across the range of 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 3.0 × 10−4,  
1.0 × 10−4, 1.0 × 10−5 and 1.0 × 10−6; a GPS was calculated for each value  
of ρ and the best-performing score was selected. For P + T method, we  
used a range of r2 (0.2, 0.4, 0.6 and 0.8) and P value thresholds (1, 0.3,  
0.1, 0.03, 0.01, 0.003, 0.001, 3.0 × 10−4, 1.0 × 10−4, 3.0 × 10−5, 1.0 × 10−5,  
1.0 × 10−6, 1.0 × 10−7, 5.0 × 10−8 and 1.0 × 10−8), and we again selected the  
best-performing model. The performance of 30-SNP GRS, 77-SNP GRS  
and best GPS were compared to the previously published 15-SNP GRS4.  
We additionally tested these models in the GCKD study39,40, including  
314 histologically confirmed IgAN cases versus 663 disease controls 
with biopsy-diagnosed kidney disease of another cause (Supplemen-
tary Note). The analyses were implemented in R v.3.5.2 software.

Gene set and pathway-enrichment analyses
We defined each IgAN-associated locus by first selecting all proxy 
SNPs in LD (r2 ≥ 0.5) with the lead SNP, and then extending the genomic 
region 250 kb upstream and downstream of the first and last proxy. 
Each region was annotated using the BiomaRt package (Bioconductor 
release 3.16), which retrieves Ensembl human gene annotations. Gene 
sets were created for all significant and suggestive loci, excluding the 
HLA region. For GSEA, we used the Molecular Signatures Database 
(MSigDB), including GO, Kyoto Encyclopedia of Genes and Genomes 
(KEGG), BioCarta, REACTOME, chemical and genetic perturbations and 
transcription factor targets. Statistical significance for enrichment was 
set at a false discovery rate <0.05. We additionally applied genome-wide 
gene set enrichment testing (excluding the HLA) using MAGMA (v.1.09) 
with default parameters13. We used DEPICT v1 release 194 (ref. 15) to 
perform pathway/gene set enrichment and tissue/cell-type analyses. 
For this analysis, we first used PLINK to identify independently asso-
ciated SNPs setting P < 5.0 × 10−5 and r2 < 0.05 in a physical window of 
500 kb. We then used DEPICT to prioritize genes and identify tissue and 
cell-type annotations in which genes from the associated regions are 
expressed. Specifically, for each tissue, the DEPICT method performs 
a t-test comparing the tissue-specific expression of trait-associated 
genes versus all other genes. Next, for each tissue, empirical enrich-
ment P values are computed by repeatedly sampling random sets of loci 
across the genome to estimate the null distribution for the enrichment 
statistic as previously described61,62.

Prioritization of causal tissues and cell types
We estimated SNP-based heritability enrichment for functional cat-
egories in tissue/cell-type-specific regulatory elements using stratified 
LD score regression. This method regresses the chi-squared statistics 
of SNPs from summary statistics on their LD scores10 and partitions 
heritability by functional annotation63. For this analysis, we used the 
meta-analysis statistics without the HLA region and excluding the 
Immunochip cohorts. Heritability enrichment was defined as the pro-
portion of SNP heritability in a specific category, divided by the propor-
tion of SNPs that belong to that category. We first calculated heritability 
enrichment for a control model of 96 noncell-type-specific functional 
categories and compared it to the enrichment in cell-type-specific 
annotations from the ENCODE and Roadmap Epigenomics64, as well 
as mouse immune cell-specific functional categories from the Immu-
nological Genome Project (ImmGen)65. We also evaluated tissue/
cell-type-specific heritability enrichments based on the FUN-LDA 
scores14. As an alternative, we used the GARFIELD v2 (ref. 16) method 

to assess enrichment within the ENCODE and Roadmap-derived regu-
latory regions.

Analysis of relevant phenotypes in mice
We used the Mouse Genome Informatics (MGI) database to identify all 
genes, the disruption of which causes relevant phenotypes in mice66. 
The mouse phenotypes in MGI are categorized based on the mamma-
lian phenotype ontology and emerge as a result of different genetic 
models, including targeted knockouts and chemically induced (ENU) 
and spontaneous mutations. MGI includes a total of 17,101 mouse genes 
with human orthologs67. There were 62 genes with mouse orthologs 
across the 24 non-HLA risk loci used for testing against MGI phenotypes 
to define substantially enriched categories.

Functional annotations of individual loci
For the purpose of detailed functional annotation, we calculated 95% 
credible sets for each of the significant loci using CAVIAR software68. 
We added variants that were neither typed nor imputed in our data, 
but in strong LD with the top SNP based on external reference (r2 ≥ 0.8 
in 1000G European and East Asian populations). These SNP sets were 
annotated using ANNOVAR to first define any coding variants and their 
predicted effects. Using the FUN-LDA method, we next calculated the 
posterior probability of a functional effect for each of the selected vari-
ants, as described previously14. These SNPs were interrogated against 
the following datasets: (1) eQTLs for 13 human immune cell types from 
the Database of Immune Cell eQTLs (DICE) project69; (2) blood eQTLs 
from the eQTLGen consortium27 (31,684 individuals of European ances-
try); (3) tissue eQTLs and (4) splicing QTLs from GTEx70; (5) glomeru-
lar and tubular eQTLs71; (6) blood mQTLs from KORA (n = 2,820) and 
TwinsUK (n = 7,824) studies72,73 and (7) blood pQTLs from three recent 
well-powered multi-ancestry studies74–76. We additionally performed 
colocalization analysis between IgAN and eQTL summary statistics for 
each GWAS locus using COLOC software77. We considered PP4 > 0.5 as 
supportive of a shared causal variant.

PPIs
PPIs were predicted using InWeb_InBioMap (InWeb_IM)78. InWeb_IM 
is a curated and computationally derived protein–protein network of 
420,000 PPIs that has 2.8 times more interactions than other compa-
rable resources. We used only high-confidence PPIs with confidence 
score ≥0.1. All annotated genes within the 76 significant and suggestive 
loci were used to probe the PPI database; the final network contained 53 
nodes connected by 63 edges. Enrichment P value was computed using 
a hypergeometric test and corrected for multiple testing using the Ben-
jamini–Hochberg method. The GLay community clustering algorithm 
was implemented for module detection and modules were visualized 
in GeNets79. Subsequently, the clustering with overlapping neighbor-
hood expansion algorithm80 was used to extract protein clusters using 
the default parameters with confidence scores as edge weights. Func-
tional and pathway enrichments were identified using STRING81 based 
on GO, KEGG and Reactome databases. We used ToppGene Suite82 to 
calculate PPI enrichment P values. A Bonferroni-corrected P < 0.05 was 
interpreted as significant.

TF–DNA binding interactions
To identify TF binding sites enriched across IgAN risk loci, we used the 
RELI algorithm17. RELI uses a set of genetic variants as input, expands the 
set using LD blocks (r2 > 0.8) and calculates the statistical intersection 
of the resulting loci with ChIP–seq datasets by counting the number of 
loci with one or more variants intersecting the TF ChIP–seq peaks. The 
LD blocks were calculated using 1000 Genomes Project East Asian and 
European populations combined. The null distribution was generated 
using 2,000 random repeats of the procedure and was used to calculate 
z-scores and empirical P values for the observed intersections. The 
final reported P values were Bonferroni-corrected (Pc) for the 1,544 TF 
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datasets tested, as previously published17. As input, we used a set of 28 
independent significant loci (P ≤ 5.0 × 10−8) and a set of 76 loci including 
significant and suggestive variants (P < 1.0 × 10−5). Pc < 1.0 × 10−4 was 
used as a significance cut-off for each set.

Ligand–receptor pairs
To identify the number of potential ligand–receptor pairs associated 
with IgAN risk, we queried the Database of Ligand–Receptor Partners 
(DLRP)83. This database includes 175 protein ligands, 131 protein recep-
tors and 451 experimentally determined ligand–receptor pairings. To 
test for ligand–receptor enrichment in our dataset, we used a hypergeo-
metric test for overlap between this dataset and the gene set defined 
by our significant and suggestive GWAS loci.

Analysis of drug targets
We obtained drug-target genes and corresponding drug information 
from DrugBank84, the Therapeutic Targets Database85, the Open Targets 
Platform86,87 and GlobalData combined with manual literature searches. 
To search for potential drug targets, we extracted all genes in direct 
PPIs with IgAN risk genes by using the In_Web_IM database. We selected 
drug-target genes that had pharmacological activities and human 
orthologs, and that were targeted by any of the drugs that are approved 
or currently in development (experimental or in clinical trials).

Prioritization of biological candidate genes
Each of the positional candidate genes was scored adopting the fol-
lowing criteria and calculating the number of the satisfied criteria, 
including: (1) genes most proximal to the top SNP; (2) genes with cod-
ing variants in 95% credible sets and/or high LD (r2 > 0.8) with the index 
SNP; (3) genes with promoter chromatin interaction by ABC model35 or 
(4) GeneHancer36 involving regions intersected by top SNP and its 95% 
credible sets/high LD proxies; (5) eGenes controlled by at least one eQTL 
(any tissue) tagged by the top SNP in any tissues (primary immune cells, 
whole blood, kidney, GTEx); (6) eGenes colocalized with the risk locus in 
blood or (7) primary immune cells with PP4 > 0.5; (8) pGenes controlled 
by at least one blood pQTL tagged by the top SNP; (9) genes prioritized 
by PPI network connectivity analysis at P < 0.05; (10) genes that when 
knocked out in mice produce at least two phenotype labels—‘immune 
system’, ‘haematopoietic system’ or ‘cellular phenotype’; (11) genes pri-
oritized by MAGMA, (12) DEPICT with gene-based P < 0.05 or (13) manual 
review of the literature as related to IgAN, IgA production or mucosal 
immunity. For each locus, the gene ranking using our scoring method 
was then compared to the recently proposed V2G score ranking37.

Genotype–phenotype correlations
GRSs (15-SNP, 30-SNP, 77-SNP and GPS) were tested for clinical cor-
relations in the subset of cases with available clinical data. We tested 
each risk score predictor for association with clinical disease features 
(outcomes) at the time of diagnosis, including age at biopsy, esti-
mated glomerular filtration rate (eGFR), proteinuria, microhematuria, 
hypertension and gross hematuria. The GFR was estimated using the 
CKD–EPI formula in adults88 and the Schwartz formula in children89. 
The GFR was normalized using logarithmic transformation, proteinuria 
was normalized with a ln(P24 + 1) transformation, microhematuria 
was defined as positive if 1+ or greater on a urine dipstick test; gross 
hematuria was defined by self-report; hypertension was defined as 
systolic pressure ≥140 mmHg or diastolic pressure ≥90 mmHg, or 
anti-hypertensive medication use. The outcome of kidney failure was 
defined as eGFR < 15 ml min−1 1.73 m−2 or initiation of dialysis or kidney 
transplantation. All analyses were adjusted for age, gender, site and 
ancestry. The analyses were implemented in R v3.5.2.

PheWAS
We performed meta-PheWAS across the eMERGE-III and the UKBB 
datasets. The eMERGE-III dataset contains EHR information linked 

to GWAS data for 102,138 individuals90,91. The UKBB is comprised of 
488,377 individuals with EHR information linked to GWAS data92. For 
meta-analysis, we harmonized phenotype data by converting all avail-
able ICD-10 codes to the ICD-9-CM system; the eMERGE participants 
had 20,783 unique ICD-9 codes and the UKBB participants had 10,221 
unique ICD-9 codes. These codes were next mapped to 1,817 unique 
phecodes and tested using logistic regression adjusted for age, sex, 
study site, imputation batch and threee PCs of ancestry using PheWAS 
R package93. Meta-PheWAS was performed across both datasets using 
metagen under fixed effects93. For phenome-wide significance, we used 
the Bonferroni-corrected P < 2.75 × 10−5 to account for 1,817 independ-
ent phecodes tested.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Primary genotype data for previously published cohorts are avail-
able through dbGAP under accession number phs000431.v2.p1, and 
the new genotype data are available under dbGAP accession number 
phs000431.v3.p1. Our IRB determined that the use of the primary 
genotype data is restricted to genetic studies of kidney disease. 
GWAS summary statistics are available from the Kiryluk Lab website: 
https://www.columbiamedicine.org/divisions/kiryluk/study_gwas_ 
stat_IgA_summary.php. The PAGE consortium control genotype data  
are available on dbGAP under accession number phs000356.v2.p1. 
The eMERGE-III imputed genotype and phenotype data are available 
through dbGAP, accession number phs001584.v2.p2. The UKBB geno-
type and phenotype data are available through the UKBB web portal 
https://www.ukbiobank.ac.uk/. The DICE dataset is available at https:// 
dice-database.org/; the Blood eQTL meta-analysis by eQTLGen is  
available at https://www.eqtlgen.org/; the Kidney eQTL Atlas is avail-
able at http://susztaklab.com/eqtl; NEPTUNE eQTL Browser is available  
at http://nephqtl.org/; GTEx is available at https://gtexportal.org/ 
home/; GWAS catalog is available at https://www.ebi.ac.uk/gwas; LD  
Hub is available at http://www.nealelab.is/tools-and-software; Open  
Targets platform is available at https://www.targetvalidation.org;  
DLRP can be accessed at https://dip.doe-mbi.ucla.edu/dip/DLRP.cgi;  
DrugBank can be accessed at https://www.drugbank.ca; GlobalData  
database is available at https://www.globaldata.com/industries-we- 
cover/pharmaceutical; FUN-LDA scores are available at http://www. 
columbia.edu/~ii2135/funlda.html; MSigDB and GSEA are available  
at http://software.broadinstitute.org/gsea/msigdb/; STRING is  
available at https://string-db.org; InWeb is available at http://www. 
lagelab.org/resources/; the Metabolomics GWAS Server is available  
at http://metabolomics.helmholtz-muenchen.de/gwas/; and the MGI  
database is available at http://www.informatics.jax.org.

Code availability
Only publicly available open-source software was used in the analyses; 
there was no custom software.
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Extended Data Fig. 1 | Quantile-quantile (QQ) plot of the combined 
meta-analysis across 38,897 individuals. Blue dots represent the QQ plot 
based on all SNPs in the meta-analysis, and red dots represent the QQ plot after 
exclusion of SNPs within the MHC region. The overall genomic inflation factor 

(λ) was 1.048 with the MHC region, and 1.042 without the MHC region. The y-axis 
depicts −log10 of the observed two-sided P-values for a fixed effects meta-analysis 
of all cohorts without correction for multiple testing. The x-axis depicts −log10 of 
the expected two-sided P-values under the null hypothesis.
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Extended Data Fig. 2 | Regional plots for non-HLA genome-wide significant  
loci. a, The FCRL locus. b, The TNFSF4 locus. c, The CFH locus. d, The REL locus.  
e, The CD28 locus. f, The PF4V1/CXCL8 locus. g, The IRF4 locus. h, The RREB1 
locus. i, The DEFA locus. j, The LYN locus. k, The ANXA3 locus. l, The TNFSF8 locus. 
m, The CARD9 locus. n, The REEP3 locus. o, The ZMIZ1 locus. p, The RELA locus.  
q, The ETS1 locus. r, The IGH locus. s, The ITGAM locus. t, The IRF8 locus. u, The  
TNFSF13 locus. v, The TNFRSF13B locus. w, The FCAR locus. x, The HORMAD2/LIF  

locus. The x-axis shows the physical position in Mb (hg19 coordinates) and known  
genes. The left y-axis presents −log10 of two-sided P-values for variant association 
statistics (fixed effects meta-analysis under an additive model without correction 
for multiple testing), and the right y-axis shows the recombination rate across 
the region. The dotted horizontal line indicates a genome-wide significance 
threshold of 5.0 × 10−8.
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Extended Data Fig. 3 | Manhattan plots for East Asian GWAS subgroup 
analyses. a, East Asian meta-analysis under an additive genetic model (λ = 1.040) 
revealed a new genome-wide significant locus on chr. 6 (CCR6, green).  
b, East Asian meta-analysis under a recessive model (λ = 0.940) revealed a new 
genome-wide significant locus on chr. 1 (encoding PADI3 and PADI4, green).  

The y-axis shows -log10 of two-sided P-values for a fixed effects meta-analysis 
under an additive or recessive genetic model without correction for multiple 
testing (note that y-axis is truncated to accommodate the HLA peak). The x-axis 
shows genomic position along each chromosome (1-22 and X). The dotted 
horizontal line indicates P = 5.0 × 10−8.
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Extended Data Fig. 4 | Stepwise conditional analyses of the CFH and HLA 
loci. a, CFH locus. Initial meta-analysis results without conditioning (top left); 
after conditioning for the top SNP rs6677604 (top middle); and after controlling 
for the two significant SNPs rs6677604 and rs12029571 (top right). b, HLA 
locus. Initial meta-analysis results without conditioning (middle left); after 
conditioning for the top SNP rs9268557 (middle), after controlling for rs9268557 
and rs9275355 (middle right), after controlling for rs9268557, rs9275355 and 
rs9272105 (bottom left), after controlling for rs9268557, rs9275355, rs9272105 
and rs9275596 (bottom middle), and after controlling for rs9268557, rs9275355 

rs9272105, rs9275596 and rs3128927 (bottom right) with no additional significant 
signals. The x-axis shows genomic position in Mb (hg19 coordinates) and known 
genes. The left y-axis presents −log10 P-values for association statistics (two-sided 
P-values for a fixed effects meta-analysis under an additive genetic model 
without correction for multiple testing). The right y-axis (light-blue line) shows 
the average recombination rate across the region. The dotted horizontal line 
indicates a genome-wide significance threshold of 5.0 × 10−8. The top SNP in each 
panel is marked by a red diamond.
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Extended Data Fig. 5 | Stepwise conditional analysis of imputed polymorphic 
amino-acid positions in DRβ, DQβ, and DQα peptides in East Asian and 
European cohorts. a, East Asian cohorts. b, European cohorts. Each symbol 
represents a polymorphic site tested for association with IgAN along the peptide 
sequence. The x-axis shows genomic position of the sequence encoding each 
amino acid. The y-axis shows global statistical significance for each polymorphic 

site (two-sided multiallelic Wald test without adjustment for multiple testing). 
The dashed horizontal line corresponds to a genome-wide significance 
threshold of 5.0 × 10−8. c, Physical location of independently associated amino 
acid positions 11 (red) and 71 (orange) in the structural model of DRβ. The DR 
structure was visualized using UCSF Chimera v1.16 based on Protein Data Bank 
entry 3PDO.
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Extended Data Fig. 7 | Pathway, cell type and tissue enrichment analyses.  
a,b, MAGMA pathway enrichment analysis based on GWAS summary statistics 
with (a) and without (b) the HLA region. −log10 of two-sided P-values for the 
enrichment test (not corrected for multiple testing) are depicted along the 
x-axis. Significant pathways are listed along the y-axis. Red vertical lines indicate 
significance threshold after accounting for multiple testing. c, Cell type-specific 
heritability enrichment for functional annotations in ImmGen dataset of 
mouse regulatory elements and expression data demonstrating the strongest 
enrichment in small intestine-derived macrophages profiled three days after 

Salmonella infection. d, Cell type-specific heritability enrichment for individual 
functional annotations generated by Roadmap Epigenomics demonstrates 
significant enrichment in immune cells, especially of B-cell lineage. All 
enrichments at nominal two-sided uncorrected P < 0.05 are displayed and 
grouped according to cell and tissue class. A solid red line represents a stringent 
Bonferroni-corrected −log10 of the two-sided P-value threshold of significance 
for the Roadmap dataset (P = 1.3 × 10−4). A dotted black line represents the −log10 
of the nominal P-value of 0.05. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; MF, macrophages; P/I, post-injection.
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Extended Data Fig. 8 | Cis-regulatory effects at the CARD9 locus. a, The CARD9 
gene model depicting 13 exons of CARD9 and the splicing events from GTEx 
blood RNA-seq. The top IgAN risk allele (rs4077515-T) encodes S12N substitution 
in the second exon of CARD9. This SNP also exhibits a strong and statistically 
significant blood sQTL effect, wherein the risk allele is associated with higher 
rates of the chr9:136372094:136373532:clu_47895 splicing event, leading to the 
retention of exon 2 (red) in the coding sequence of CARD9 (isoform A), while the 
protective (rs4077515-C) allele is associated with the alternative splicing event 
that truncates exon 2 (isoform B). The functional CARD domain (green) maps to 
a portion of exon 2 that is intact in isoform A, but truncated in isoform B. b, Blood 
splice QTL violin plots of normalized intron excision ratios (corresponding to the 
ratio of isoform A to isoform B) by the genotype of rs10870077 (top blood sQTL 
in GTEx) and rs4077515 (top SNP in GWAS for IgAN). These two SNPs are in near 

perfect linkage disequilibrium (r2 > 0.98). The white bar represents a median, 
the thick gray bar represents an interquartile range, and the blue shape reflects 
the distribution kernel density estimation. Numbers in parentheses under 
the x-axis indicate n independent samples per each genotype group. c, Both 
rs10870077 and rs4077515 are also associated with a significant cis-eQTL effect 
on CARD9 mRNA levels in GTEx blood (violin plots with similar definitions as in 
b). d, The blood eQTL signal for CARD9 significantly co-localizes with the GWAS 
signal (PP4 of 0.86). The top panel represents a regional plot for the GWAS signal 
(Immunochip data excluded). The bottom panel represents a blood cis-eQTL 
signal for CARD9 from the QTLGen Consortium meta-analysis (y-axis truncated 
at P < 1 × 10−310); rs10870077 and rs4077515 are indicated in red. All P-values 
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genetic model, and are not corrected for multiple testing.
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