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IgA nephropathy (IgAN) is a progressive form of kidney disease defined by
glomerular deposition of IgA. Here we performed a genome-wide association
study of 10,146 kidney-biopsy-diagnosed IgAN cases and 28,751 controls
across 17 international cohorts. We defined 30 genome-wide significant

risk loci explaining 11% of disease risk. A total of 16 loci were new, including
TNFSF4/TNFSF18,REL,CD28, PF4V1,LY86,LYN,ANXA3, TNFSFS/TNFSF15,
REEP3,ZMIZ1,0VOL1/RELA, ETS1,IGH, IRF8, TNFRSF13B and FCAR. Therisk loci
were enriched in gene orthologs causing abnormal IgA levels when genetically
manipulated in mice. We also observed a positive genetic correlation between
IgAN and serum IgA levels. High polygenic score for IgAN was associated with

earlier onset of kidney failure. Ina comprehensive functional annotation
analysis of candidate causal genes, we observed convergence of biological
candidates onacommon set of inflammatory signaling pathways and
cytokine ligand-receptor pairs, prioritizing potential new drug targets.

IgA nephropathy (IgAN) is a common form of immune-mediated
glomerulonephritis characterized by glomerular deposition of
IgA-containing immune complexes. Examination of kidney-biopsy
tissue and demonstration of glomerular IgA deposits are required
to establish the diagnosis. No approved targeted therapies presently
exist for IgAN, and a large fraction of cases progress to kidney failure
requiring kidney transplantation or dialysis.

Because the diagnosis requires a kidney biopsy, genetic discov-
eries have been hindered by small patient cohorts. Approximately 15
independentrisk loci have been previously identified for IgAN, impli-
cating defects in the complement pathway, intestinal network of IgA
production and innate immunity against mucosal pathogens'”. These
findings have led to the reformulation of the disease pathogenesis
model, with most candidate mechanisms mapping to the immune
system rather than the kidney®’. Nevertheless, prior genome-wide
association studies (GWASs) had a two-stage design, with the sample
size of the discovery stage limiting the power to identify new loci.

Herein we report a large GWAS discovery study for IgAN, involv-
ing 38,897 individuals (10,146 kidney biopsy-defined cases and 28,751
controls) recruited across 17 international cohorts. With the discovery
of 16 new non-HLA (human leukocyte antigen) risk loci, we provide

strong support for a highly polygenic architecture of IgAN. We assess
the functional consequences of therisk alleles, define causal cell types
and pathways and explore genetic correlations and pleiotropic associa-
tions of the risk loci. Notably, we report the convergence of multiple
risk loci on a set of common signaling pathways and ligand-receptor
pairsinvolvedin the regulation of IgA production, prioritizing plausible
new molecular drug targets.

Results

Study design

We performed GWAS and meta-analysis of 17 independent interna-
tional case-control cohorts (12 newly genotyped and five published
cohorts) comprising 38,897 individuals (10,146 cases and 28,751 con-
trols). All cases were defined by dominant mesangial IgA staining by
immunofluorescence of kidney biopsy tissue. We excluded any cases
with suspected secondary causes (for example, liver, autoimmune
or malignant disease). The patient characteristics are summarized in
Supplementary Table 1. The controls were unrelated to the cases, were
derived fromthe same populations or geographicregions as the cases
and had no known kidney disease. Of the 17 cohorts, 11 were of Euro-
pean ancestry, with participants fromItaly, Poland, Germany, France,
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Fig.1| Cross-ancestry GWAS for IgAN. a, Manhattan plot for the combined
meta-analysis across 38,897 individuals. The dashed horizontal line indicates
agenome-wide significant Pvalue = 5.0 x 1078, The y axis shows —log;,, of
two-sided Pvalues (fixed-effects meta-analysis of all cohorts without correcting
for multiple testing) and is truncated to accommodate the HLA signal. The

X axis shows genomic position for each chromosome (1-22 and X). Red, new
genome-wide significant loci associated with IgAN; dark blue, previously known
loci reaching genome-wide significance in this study. Locus name based on the
top candidate gene from our biological prioritization strategy. b, Effect size
(B,y axis) as a function of MAF (x axis) for suggestive and significant GWAS loci.
Minor alleles with positive effect sizes (risk alleles) are represented at the top,
and negative effect sizes (protective alleles) are represented at the bottom.
Athree-degree polynomial regression curve was fitted to illustrate positive
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and negative correlations. Correlation coefficients (R) and their corresponding
Pvalues (P) are also provided. Light-blue circles represent genome-wide
significant lociand are labeled using the most likely candidate gene per locus.
Blue triangles represent suggestive loci. ¢, Pleiotropic effects of non-HLA GWAS
loci for IgAN based on the NHGRI GWAS catalog. Only genome-wide significant
associationsin LD (r*> 0.5) with IgAN top SNPs are included as edges. Yellow
are diseases and traits sharing at least one locus with IgAN. Edge thickness is
proportional to the LD between the IgAN top SNP and the lead association SNP
for GWAS catalog traits. Concordant effects are indicated in red, and opposed
effects are indicated in blue. Green nodes represent IgSAN GWAS loci, and
light-blue nodes are IgAN-suggestive loci. Only 14 suggestive loci sharing at
least one pleiotropic association with a genome-wide significant IgAN locus

are depicted.

Belgium, Czech Republic, Hungary, Croatia, Turkey, Spain, Sweden,
the United Kingdom, the United States, Canada and Argentina, and
six were of East Asian ancestry, with participants from China, Japan
and the Republic of Korea. A total of 14 cohorts (8,139 casesand 17,713
controls) were genotyped with high-density SNP arrays, ancestrally
matched to controls and imputed using ancestry-specific reference
panels, and three additional cohorts (2,007 cases and 11,038 controls)
were genotyped with the Immunochip (Supplementary Table 2).
Detailed descriptions of each cohort are provided in the Supple-
mentary Note. Our primary discovery involved the combined analysis of
all17 cohorts under an additive genetic model. Additional exploratory

analyses were conducted to identify potential ancestry-specific and
sex-specificloci, including under alternative (dominant and recessive)
genetic models.

Genome-wide significantloci

Our primary analysis consisted of a combined meta-analysis across
all cohorts (Fig. 1, Table 1 and Supplementary Tables 3-5). We con-
firmed multiple independently genome-wide significant (P <5 x 1078)
signalsin the HLA region, with an overall 1 =1.048 and 1.042 before
and after excluding the HLA region (Extended Data Fig. 1). In addi-
tion, we detected 24 independent non-HLA loci at genome-wide
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Table 1| New and known genome-wide significant loci based on meta-analysis

Chr. Genomic SNP® Locus Risk  Freq. Freq. Qtest P OR(95%CI) Fixed TransMeta Supporting New
location allele European Asian effects random cohorts?
(bp?) controls controls Pvalue® effects
Pvalue®
1 157,542,162 rs849815 FCRL3 A 0.66 0.50 0.57 0  114(1.09-119) 3.9x10° 3.6x107° GWAS+IC  Known
1 173,146,357 rs4916312 TNFSF4/18 A 0.35 0.07 0.68 0 114(1.09-1.20) 5.0x10® 6.3x10® GWAS+IC New
1 196,686,918 rs6677604 CFH G 0.80 0.93 0.97 0 1.21(1.20-1.34) 1.5x10"7  59x107" GWAS+IC Known
1 196,603,302  rs12029571 CFH A 0.22 0.35 0.88 0 112(1.07-118) 25x10°®  3.3x10°° GWAS Known
2 61,092,678 rs842638 REL T 0.44 0.15 0.002° 64 117(111-1.23) 96x10™"  11x107° GWAS New
2 204,584,759  rs3769684 CD28 T 0.95 0.49 0.93 0 119(113-1.25) 51x10™"  21x10™ GWAS+IC New
4 74,725,320 rs6828610 PF4Vv1 G 0.16 0.27 0.98 114 (110-1.22) 3.5x10® 3.5x10°® GWAS New
6 249,571 rs12201499  IRF4/ C 0.12 0.28 0.39 118 (1.15-1.29) 31x10™"  4.0x10™ GWAS Known
DUSP22
7,214,676 rs12530084 LY86 C 0.77 0.51 0.49 0 113(110-1.21) 1.3x10°  17x107° GWAS New
6 32,389,305 rs9268557 HLA-DRA C 0.51 0.57 <0.001* 72 1.24(1.27-1.36) 45x10%  15x10 GWAS+IC Known
6 32,667,829 rs9275355 HLA-DQB/ C 0.23 0.33 0.21 25 1.26(1.30-1.43) 17x103  21x107¥ GWAS Known
DQA
6 32,599,999 rs9272105 HLA-DQA A 0.60 0.45 0.001° 73 125(120-1.30) 1.2x10% 5.2x107 GWAS+IC Known
6 32,681,631 rs9275596 HLA-DQB/ T 0.66 0.81 0.05 46 1.33(1.27-1.39)  3.2x107% 14x10%*  GWAS+IC  Known
DQA
6 33,074,288 rs3128927 HLA-DPA/ C 0.73 0.83 0.38 6 1.22(1.22-1.34) 15x10%® 54x10% GWAS+IC Known
DPB
8 6,808,722 rs2075836 DEFA1/4 T 0.31 0.30 0.90 0 1.21(114-1.28) 5.8x10™  2.2x107° GWAS Known
8 56,852,496 rs75413466  LYN A 0.02 0.06 0.80 0 140(1.27-1.56) 1.4x10" 2.4x10™ GWAS+IC New
8 124,765,474 rs34354351 ANXA3 T 0.17 0.32 0.84 0 115(110-1.21) 35x10®  3.9x10°® GWAS New
9 117,643,362 rs13300483 TNFSF8/15 T 0.24 0.31 0.88 0  113(1.09-1.18) 1.3x10°  2.5x10® GWAS+IC  New
9 139,266,496  rs4077515 CARD9 T 0.4 0.29 0.4 2 114 (110-118) 26x10™"  11x10™ GWAS+IC Known
10 65,363,048 rs57917667  REEP3 G 0.02 0.19 0.91 0 122(118-1.40) 11x10®  1.3x10® GWAS New
10 81,043,743 rs1108618 ZMIZ1 A 0.60 0.49 043 0 114(1.09-118) 1.9x10  3.9x10™ GWAS+IC New
n 65,555,524 rs10896045 OVOL1/ A 0.30 0.48 0.03° 51  1.18(113-1.24) 47x10™  85x10™ GWAS New
RELA
n 128,487,069 rs7121743 ETS1 C 0.16 0.47 0.79 113 (1.09-120)  3.4x10° 3.2x10°® GWAS New
14 107,222,014 rs751081288 IGH A 0.43 0.53 0.74 117 1.11-1.23) 1.9x10%  21x107® GWAS New
16 31,357,760 rs11150612 ITGAM/ A 0.64 0.27 0.10 37 116(112-1.21) 8.4x10™  3.4x10™ GWAS+IC Known
ITGAX
16 86,017,715 rs1879210 IRF8 T 0.64 0.86 0.96 0 114(1.09-1.20) 9.9x10° 1.4x10® GWAS+IC New
17 7,462,969 rs3803800  TNFSF12/13 A 0.21 0.32 0.19 27 115(110-1.20) 1.2x10™  5.2x10™ GWAS+IC Known
17 16,851,450 rs57382045 TNFRSF13B A on 0.33 0.84 0 116(111-1.22) 3.4x10° 3.6x10° GWAS New
19 55,397,217 rs1865097 FCAR A 0.30 0.38 0.49 0 112(1.08-1.16) 77x107° 1.3x1078 GWAS+IC New
22 30,512,478 rs4823074 LIF/OSM G 0.54 0.67 0.51 0 116 (114-1.24) 7.8x10™  9.2x10™ GWAS Known

?Genome Reference Consortium Human Build 37 (hg19). ®Only independent SNPs in each locus are included. °Two-sided P values for variant association without multiple testing correction.
4GWAS cohorts: n=8,139 cases and 17,713 controls; GWAS+IC cohorts: n=10,146 cases and 28,751 controls. °Heterogeneity P<0.05. Chr., chromosome; freq., frequency; Q test, two-sided

P value for Cochrane’s Q statistic; I, heterogeneity index; IC, Immunochip.

significance, including eight known loci (CFH, FCRL3, IRF4/DUSP22,
DEFA1/4, CARD9, ITGAM/ITGAX, TNFSF13/12, LIF/OSM) and 16 new loci
(TNFSF4/18, CD28, REL, PF4V1,LY86, LYN, ANXA3, TNFSF8/15, ZMIZ1,
REEP3,0VOL1/RELA,ETS1,IGH, IRF8, TNFRSF13B and FCAR; Extended
Data Fig. 2), and 48 suggestive loci at P<1x 107 (Supplementary
Tables3and 4).

Secondary analyses by ancestry revealed another locus (CCR6,
P=3.9x107®) evident only in the East Asian cohorts (Extended Data
Fig. 3a) and 11 additional suggestive signals in this ancestral group
(Supplementary Table 5a). One of the suggestive signalsinthe combined
meta-analysis (PADI3/PADI41ocus) reached genome-wide significance
in the East Asian meta-analysis under a recessive model (Extended

Data Fig. 3b). The European-only meta-analysis showed a total of
19 suggestive signals, but no new genome-wide significant loci
(Supplementary Table 5b). No sex-specific loci were found in a
sex-stratified meta-analysis or in the analysis of sex chromosomal

markers.

We next performed stepwise conditional analyses of the 24 sig-
nificant non-HLA loci, but only the CFH locus showed evidence of two
independent genome-wide significant variants (Supplementary Table
6 and Extended DataFig. 4a). Stepwise conditional analyses of the HLA
regionrevealed acomplex pattern of association, with atleast fiveinde-
pendently significant SNPs (Extended Data Fig. 4b and Supplementary
Table 7).Inaddition, the patterns of association across the HLA region
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Fig.2|Genome-wide genetic correlation analysis between IgAN and other
complex traits. a, Including HLA region. b, Excluding HLA region. The traits are
organized by immune-mediated (blue), infectious (green) and cardiometabolic
(orange) categories and sorted based on the genetic correlation coefficient (r,).
The dataare presented as r, point estimates (center) with bars corresponding to
95% Cls. PSC, primary sclerosing cholangitis; MN, membranous nephropathy;
SLE, systemic lupus erythematosus; IBD, inflammatory bowel disease; MS,
multiple sclerosis; UC, ulcerative colitis; T1D, type 1 diabetes; AS, ankylosing
spondylitis; RA, rheumatoid arthritis; Chol, total serum cholesterol levels;
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TG, total serum triglycerides levels; LDL, low-density lipoprotein levels; BUN,
blood urea nitrogen; eGFR Cr, estimated glomerular filtration rate using

serum creatinine levels; T2D, type 2 diabetes; BMI, body mass index; eGFR
cystatin, estimated glomerular filtration rate using serum cystatin levels; HTN,
essential hypertension; FEV1/FVC, forced expiration volume at1s over forced
vital capacity; CAD, coronary artery disease. The asterisk indicates nominal
two-sided P < 0.05 for a test of genetic correlation without multiple testing
correction. Supplementary Table 13 provides references to all GWAS used in this
analysis along with the statistics for each correlation test.

differed when stepwise conditioning was performed separately in East
Asianand European cohorts—atotal of five independent signals were
detected in Europeans and four in East Asians. In the meta-analysis,
we observed aninverse relationship between minor allelic frequency
(MAF) of the top variants and their effect sizes (Fig. 1b). We estimated
the overall SNP-based heritability of IgAN at 0.23 (95% confidence
interval (Cl): 0.15-0.30), and the heritability estimates were com-
parable between East Asian and European subgroups at 0.27 (95%
Cl:0.10-0.43) and 0.24 (95% Cl: 0.09-0.40), respectively. Excluding
the HLA region reduced the SNP-based heritability estimate to 0.12
(95% Cl:0.10-0.13). The genetic risk score (GRS) based on 30 indepen-
dently significant SNPs (30-SNP GRS) explained 11% of overall disease
variance, a notable improvement compared to the 6% explained by
the previous 15-SNP GRS*.

Classical HLA alleles

To better understand the signal at the HLA region, we imputed amino
acid sequences and classical HLA alleles at four-digit resolution using
ancestry-specific reference panels (Methods). The analysis ofimputed
amino acid sequencesin class lIgenes pointed to DRBI as the gene with
most strongly associated polymorphic positions in both ancestral
groups (Extended Data Fig. 5). In East Asian cohorts, stepwise condi-
tioning demonstrated independently significant associations at DR1
positions 11and 71, and the same positions were also associated with
the disease in Europeans. Specifically, proline at position11 (in linkage
disequilibrium (LD) with alanine at position 71) conferred significant
protection, while arginine at position 71 (in LD with valine at position 11)
was associated with increased risk in both ancestral groups (Supple-
mentary Table 8). In Europeans, we additionally observed significant
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effects of glycine (protective) and leucine (risk) at position 11, but these
substitutions are infrequent in East Asians.

The association patterns of classical HLA alleles were complex
but generally consistent with the analysis of amino acid sequences.
In East Asians, we observed a protective effect of the DRBI*1501-
DQAI*0102-DQBI*0602haplotype (DR15 serotype), and anindepend-
ent risk effect of DRBI*040S5, with no significant associations after
conditioning for both DRB1*1501 and DRBI1*0405 (Supplementary
Table 9).In Europeans, we confirmed a strong protective association
ofthe DRB1*1501-DQA1*0102-DQBI*0602 haplotype. DRBI*0405had
low frequency in Europeans; thus, this association was not observed.
Instead, we observed three additional independent European hap-
lotypes (rare in East Asians), including two protective haplotypes,
DRBI1*0301-DQAI1*0501-DQBI*0201 (DR3 serotype) and DRBI*0701-
DQA1*0201-DQBI*0202/0203 (DR7 serotype), and one risk haplotype
DRBI1*0101-DQAI*0101-DQBI*0501 (DR1 serotype; Supplementary
Table 10). After conditioning on the four independently significant
DRBI alleles residing on these haplotypes, we observed additional
independent protective associations of DQAI*0102 and DPAI*0103
in Europeans. There were no independently significant associations
for the classIgenes.

Pleiotropic associations of individual IgAN loci

To describe the full spectrum of pleiotropic associations of individual
risk variants, we cross-annotated our non-HLA signals againstaall studies
listed in the National Human Genome Research Institute (NHGRI) GWAS
catalog (Supplementary Tables 11 and 12). We identified concordant
and opposed associations for multiple autoimmune and inflammatory
diseases, suggesting shared pathogenic pathways with IgAN. Among
the loci with the highest level of pleiotropy were LIF/OSM and ZMIZ1,
but autoimmune pleiotropy was also evident for CARD9, TNFSF8/15,
REL,OVOL1/RELA, IRF4/DUSP22 and IRF8loci.Some new loci, including
TNFRSF13B, PF4V1,LY86 and ETS1, showed concordant effects on blood
levels of distinct immune cell types or immunoglobulins, suggesting
that these loci alter immune cell proliferation and immunoglobulin
production. When we expanded this analysis to all suggestive loci, we
found that 14 of the 47 suggestive loci were associated with the same
autoimmune or blood immune cell traits as the genome-wide signifi-
cantloci, prioritizing these 14 loci for future follow-up studies (Fig. 1c).

Shared genetic architecture with IgA levels and related traits
Tointerrogate shared susceptibility between IgAN and other diseases,
we explored genome-wide genetic correlations with immune, infec-
tious and cardiometabolic traits using bivariate LD score regression
(Fig. 2 and Supplementary Table 13)'°. We found negative genetic
correlations with primary sclerosing cholangitis (r,=-0.37,
P=4.1x107)and inflammatory bowel disease (r,=-0.16, P= 9.9 x10),
and positive correlations with pneumonia (r, = 0.26,P= 9.0 x10™) and
urinary tractinfection (r, = 0.25, P=2.1x107). After excluding the HLA
region, we observed a positive genetic correlation with serum IgA
levels (r,=0.31, P=2.1x107), allergy (r,= 0.18, P=5.2x107) and ton-
sillectomy (r,=0.17, P= 0.036), a procedure performed for recurrent
pharyngeal infections and sometimes used to treat relapsing IgAN".
We next interrogated all independent IgAN risk alleles in our recent
GWAS for serum IgA levels” (Supplementary Table 14). Of 25 non-HLA
loci, nine were nominally (P < 0.05) associated with increased serum
IgAlevels, allwith concordant effects. Conversely, of 31 significant loci
forIgA levels, 12 were nominally associated with the risk of IgAN, also
with concordant effects. The intersection includes the following four
genome-wide significant lociin both GWAS: TNFSF12/13, TNFSF8/1S5,
OVOL1/RELA and LIF/OSM. At the same time, the effects at the
HLA region were either opposed or not associated with serum IgA
levels, consistent with our genetic correlation analyses in which
positive correlation became significant only after excluding the
HLAregion.

Mouse phenotypes support IgA dysregulationin IgAN
Wetested the candidate gene set defined by our significant GWAS loci
for overlap with human ortholog gene sets producing 27 phenotype
categories when genetically manipulated in mice. We observed the
top-most significant enrichments in ‘immune system’ (P=1.3 x10™?)
and ‘hematopoietic system’ (P=3.2 x10~°) phenotypes (Supplementary
Table 15). Within these categories, we observed significant enrich-
mentsin genes whose disruptionin mice was associated with ‘abnormal
IgAlevels’ (P= 6.4 x107%; Extended Data Fig. 6), including TNFSF13,
TNFSF13B,ITGAM,RELA, REL, CD28 and LYN genes. These observations
corroborate our findings of overlapping locibetween serum IgA levels
and IgAN and further highlight the role of dysregulated IgA produc-
tioninthe disease pathogenesis. Moreover, this analysis also supports
the named genes as causal at the corresponding loci and nominates
appropriate animal models for experimental follow-up.

Global pathway and tissue/cell-type enrichment analyses

We next used several unbiased strategies to explore biological
pathway and tissue enrichments using genome-wide approaches.
Pathway-enrichment analysis using multimarker analysis of genomic
annotation (MAGMA)" revealed 24 enriched gene sets (Extended Data
Fig. 7). The most strongly enriched Gene Ontology (GO) terms after
excludingthe HLA region were ‘immune system processes’ (enrichment
P=1.4x10"%) and ‘immune response’ (enrichment P=2.6 x10°°). Exami-
nation of significant non-HLA loci revealed enrichments in pathways
involved in innate and adaptive immunity, with the most significant
enrichment in the ‘cytokine-cytokine receptor interactions’ (enrich-
ment P=4.0 x10™; Fig. 3a).

To map the most likely causal tissues and cell types, we parti-
tioned SNP-based heritability by tissue and cell-type-specific FUN-LDA
scores. We found the most statistically significant heritability
enrichments in blood, immune and gastrointestinal mucosa cells
(Fig. 3b and Supplementary Table 16). The top enriched cell types
were primary neutrophils from peripheral blood (P=5.9 x107°), PMA
(phorbol-12-myristate-13-acetate)-I-stimulated primary T helper cells
(P=2.1x107)and primary B cells from peripheral blood (P=2.0 x107%).
Analogous analysis performed using experimental mouse datasets
pointed to small intestine inflammatory cells under basal conditions
and after Salmonellainfection as the top tissue (Extended Data Fig. 7).
Additionalindependent analytical methods (DEPICT” and GARFIELD™)
similarly prioritized extrarenal tissues as likely causal in IgAN, converg-
ingonhematopoietic,immune, and gastrointestinal tissues as the most
likely tissues to harbor causal cell types (Fig. 3¢c,d and Supplementary
Tables17 and 18).

Transcription factor (TF) enrichment analysis

Wetested for potentialintersection of GWAS loci withacomprehensive
database of TF chromatin immunoprecipitation (ChIP)-seq datasets
using the regulatory element locus intersection (RELI) algorithm". In
the analysis of genome-wide significant and suggestive loci, we detected
significantintersection with bindingsites forupto32 TFsin52immune
cell types, with the most significant enrichments for RELA (corrected
P=5.3x10")and NFKB1 (corrected P=1.9 x 107 Fig.4d and Supplemen-
tary Table 19). Nearly half of these TFs interact with Epstein-Barr virus
super-enhancers, which control B-cell proliferation and have previously
been foundtointersect multiple autoimmune loci"”’, Moreover, some of
the prioritized TFs, such as RUNX (runt-related transcription factor)” and
SMAD (sma- and mad-related protein)* family, are well known to regulate
IgA levels, and RUNX3, RUNX2 and OVOLI1/RELA loci are substantially
associated withserumIgA levels®, further supporting perturbations in
IgA homeostasis as a primary pathogenetic factor in IgAN.

Protein-proteininteractions (PPIs) and ligand-receptor pairs
We next tested whether candidate genes within our significant loci
encode proteins that are likely to have physical interactions. Using
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Fig.3| Global pathway, cell-type and tissue enrichment analyses. a, KEGG,
REACTOME and BIOCARTA pathway-enrichment map based on the gene

set defined by genome-wide significant risk loci excluding HLA. The top ten
most substantially enriched pathways and their intersecting GWAS genes are
shown. Node size reflects —log,,-transformed two-sided P values of the multiple
testing-adjusted hypergeometric enrichment testin GSEA. b, Cell-type-specific
heritability enrichment for functional annotations based on FUN-LDA scoring
system for all ENCODE and Roadmap Epigenomics cell types and tissues. The

X axis depicts —log,, of two-sided Pvalues for heritability enrichment without
multiple testing correction with only significant results grouped by the tissue
type depicted. Solid red line represents the Bonferroni-corrected significance
threshold (P=3.9 x10™*). Dashed black line represents the —log,, of the nominal
uncorrected Pvalue (P=0.05). The most significant heritability enrichments
were found in blood immune cells and gastrointestinal tissues. ¢, Tissue and

cell-type enrichment analysis with DEPICT; only cells and tissues with a false
discovery rate (FDR) < 0.05 are shown. The y axis represents the -log,, of the
two-sided empirical Pvalue without multiple testing correction. The x axis shows
the first-level Medical Subject Headings (MeSH) annotations. The strongest
enrichmentis observed for blood and immune cells. The red horizontal line
corresponds to FDR = 0.05.d, Global GWAS enrichment in DNase I-hypersensitive
sites (DHS) using GARFIELD. Radial lines show odds ratios at two genome-wide
significance thresholds (7) for all DHS cells and tissues on the outer circle. Dots
inthe inner ring of the outer circle denote significant GARFIELD enrichments

for T<1.0 x 107 (outermost) and T<1.0 x 10°® (innermost) loci by a two-sided
enrichment test after multiple-testing correction for the number of effective
annotations. Similar to FUN-LDA, GWAS results are most enriched in DHS sites
inblood and immune cells, and intestinal mucosal tissue (labeled). ES cell,
embryonic stem cell; iPS cell, induced pluripotent stem cell.

arefined database of high-confidence PPIs, we constructed a net-
work with 76 candidate proteins defined by GWAS using InWeb_IM*'
and GeneMANIA?. The final network composed of 53 nodes and 63
edges exhibited an excess of direct physicalinteractions compared to
null expectation (P < 1.0 x 107%; Fig. 4c). Gene set enrichment analy-
ses (GSEA) of individual modules in this network (Supplementary

Table 20) identified strong enrichments in stress and defense
responses (module 1), chemokine signaling pathways (module 4),
immune responses (module 5), cytokine-mediated signaling (mod-
ule 6) and regulation of nuclear factor kappa B (NF-kB) signaling
(module 7). Consistent with the observed enrichments in chemokine
and cytokine pathways and global cytokine-receptor interactions, we
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represents mRNA splicing via spliceosome network; module 4 (green) represents
chemokine-mediated signaling pathway; module 5 (purple) represents an
immune response network; module 6 (pink) represents cytokine-mediated
signaling pathway; module 7 (dark blue) represents regulation of I-kB kinase/
NF-kB signaling and apoptotic signaling pathway; and module 8 (yellow)
represents innate immune response in mucosa and antibacterial humoral
response. The gray module has no functional enrichment. d, Intersection with

TF ChIP-seq peaks with the significant (top) and suggestive (bottom) IgAN risk
loci. The x axis shows IgAN risk loci. The y axis shows top significant TFs ranked by
the number of intersecting loci. A colored box at the intersection indicates that
agivenlocus has at least one IgAN-associated variant located within a ChIP-seq
peak for the given TF. Datasets were considered significant if their RELIempirical
Pvalues corrected for multiple testing were <1 x 10™*. TFs binding to EBNA2
super-enhancers are colored in red; ChIP-seq dataset cell types are indicated
inparentheses. Related cell lines for a given TF (for example, GM12878 and
GM12891) were merged for clarity. I-kB, inhibitor of nuclear factor kappa B.

identified enrichment in soluble ligand-receptor pairs, attributable
to 16 ligand-receptor pairs spanning 12 independent significant or
suggestive loci (enrichment P= 0.01; Supplementary Table 21). This
included APRIL and its receptor TACI (transmembrane activator and
CAML interactor) encoded by twoindependent genome-wide signifi-
cantloci (TNFSF12/13and TNFRSF13B, respectively), bothimplicatedin
IgA homeostasis. Several IL6-related cytokine-receptor pairs were also
identified (IL6-IL6ST, LIF (leukemiainhibitory factor)-LIFR/IL6ST and
OSM (oncostatin M)-OSMR/LIFR/IL6ST), with OSM/LIF being encoded
by asingle genome-wide significant locus and related receptorsbeing
encoded by two independent suggestive loci, OSMR/LIFR and IL6ST.
Notably, APRILis known to alter the glycosylation of IgAl (ref. 23),IL6,

LIF and OSM are involved in mucosalimmunity, and IL6 and LIF lead to
enhanced production of galactose-deficient IgAl (refs. 24-26). These
ligand-receptor pairs nominate candidate genes within corresponding
loci and delineate potentially targetable pathways in IgAN.

Functional annotations of individual GWAS loci

We performed genomic annotations of our significant loci, including
intersection with tissue and cell-type-specific functional scores, colo-
calization with expression quantitative trait loci (eQTLs) in primary
immune cells, whole blood and other tissues and cross-annotation
with blood proteome and metabolome data (Methods)”. Most sig-
nals mapped to noncodingregions, and there were only two missense
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variants (rs4077515 CARD9 p.(Ser12Asn) and rs3803800 TNFSFI13
p.(Asn96Ser)) among the top SNPs (Supplementary Table 22). The
CARDO9risk allele (rs4077515-T), anonsynonymous SI12N substitution
inexon2of CARD9, is associated with increased blood transcript level
of CARD9 and a significant splice QTL in Genotype-Tissue Expression
(GTEXx). The protective allele is associated with a truncation of the
functional CARD (caspase recruitment domain), while the risk allele
isassociated with higher levels of the intact, active isoform, affecting
both expression and splicing of CARD9 (Extended Data Fig. 8).

For top signals mapping to noncoding regions, we found 79 signifi-
cant cis-eQTL effects with 17 IgAN colocalizations at 20 independent
non-HLAr isk loci (Fig. 4a and Supplementary Tables 23 and 24). Twelve
loci had 27 significant cis-eQTL effects across 15 primary immune cell
types, and 17 of the 27 cis-eQTLs colocalized with IgAN with PP4 > 0.5
(Supplementary Table 23).In GTEx, we further found 19 cis-eQTL effects
for eight IgAN loci across the 28 available tissues and cell types. As an
example, twoloci /TGAM/ITGAX and IRF4/DUSP22) mapped specifically
to monocytes, an understudied cell type in IgAN. The top signals at
theselociintersect monocyte-specific functional elements by FUN-LDA
and colocalize with monocyte-specific eQTLs, with the risk alleles
associated with upregulation and downregulation of ITGAX and IRF4/
DUSP22, respectively. As another example of cell-type specificity, the
ZMIZ1 locus colocalized with an eQTL in natural killer (NK) cells, with
therisk allele associated with lower expression of ZMIZ1, which encodes
aninhibitor of JAK/STAT (Janus kinase/signal transducer and activator
oftranscription) signaling and is also involved in transforming growth
factor-beta (TGF-pB) signaling and intestinal inflammation®*?. Inwhole
blood, notable eQTL colocalizations included the FCRL3risk locus,
where the risk allele was associated with reduced transcript levels of
FCRL3 and FCRLS5, and with lower levels of circulating FCRL3 protein
(Supplementary Table 25). As FCRL3 is a specific receptor for secretory
IgA***, we prioritized FCRL3 as the most likely causal gene at this locus.

Three independent IgAN risk loci with colocalizing cis-eQTLs
also exhibited trans-eQTL effects, suggesting that these lociinduce a
more global transcriptional perturbation in blood cells (Supplemen-
tary Table 26). For example, the CARD9 locus was associated with 12
trans-eQTL effects, nine of whichinvolve genesinthe ‘typelinterferon
signaling pathway’ (enrichment P=9.5 x107'%). The TNFSF8/15 locus
was associated with eight trans-eQTL effects with three represent-
ing ‘cytokines involved in lymphocyte differentiation’ (enrichment
P=4.3x107). Interestingly, the ITGAM/ITGAX locus had only one
trans-eQTL association, lowering mRNA level of IGHG4, encoded by
anindependent IgAN risk locus on chromosome 14.

Several loci were also associated with perturbations in blood
proteome or metabolome. The PF4V1 locus colocalized with a PF4V1
cis-eQTL and exhibited multiple protein QTL (pQTL) associations with
blood proteinlevels (Supplementary Table 25), including four cis-and
40 trans-pQTL proteins. These proteins were most enriched in the
GO process of ‘positive regulation of neutrophil chemotaxis’ (enrich-
ment P=1.3 x107%), providing additional support for PF4VI as the
likely causal gene®. Similarly, the CFH locus, where a protective allele
tags a common deletion of CFHR1 and CFHR3 (ref. 2), was associated
with reduced expression of CFHRI and CFHR3 in the liver, kidney and
other tissues (Supplementary Tables 27 and 28). This allele was also
associated withreduced levels of circulating FHR1 (encoded by CFHRI)
and higher blood levels of factor H (Supplementary Table 25). Moreo-
ver, this locus exhibited a widespread proteomic and metabolomic

signatureinblood, with 64 additional trans-pQTL associationsinclud-
ingseven proteinsinvolvedin the ‘regulation of complement cascade’
(enrichment P=2.1x107"; Fig. 4b), and altered blood levels of multiple
inflammation-related metabolites (Supplementary Table 29)****,

Integrative prioritization of biological candidate genes

To systematically prioritize the 308 candidate genes encoded within the
24 non-HLArisk loci, we scored for convergence of insilico annotation
methods by assigning one point for each of the following criteria: (1)
genes most proximal to the top SNP at the locus; (2) genes with anonsyn-
onymous coding variant tagged (r? > 0.8) by the top SNP; (3) genes with
a3D chromatininteraction predicted by the activity-by-contact (ABC)
model® or (4) GeneHancer’®, with enhancers that are intersected by vari-
antstagged (* = 0.8) by the top SNP or contained within a 95% credible
set for the locus; (5) eGenes controlled by at least one eQTL (any GTEx
tissue) tagged by the top SNP; (6) eGenes colocalizing with therisklocus
inperipheralblood or (7) primary immune cells at PP4 > 0.5; (8) pGenes
encodingblood proteins controlled by at least one cis-pQTL tagged by
thetop SNP; (9) genes prioritized by PPInetwork connectivity at P < 0.05;
(10) genes with shared mouse knockout phenotypes; (11) genes within
shared MAGMA pathways; (12) genes prioritized by DEPICT; and (13)
genes prioritized by manual literature review. Using this approach, we
prioritized 26 ‘biological candidate genes’, 19 (73%) of which were also
most proximal genes to the top SNP (Fig. 5). This approach had 79%
ranking concordance with the variant-to-gene (V2G) scoring method™.

Prioritization of plausible drug targets

Tofacilitate drug repurposing and to prioritize new targets with GWAS
support, we evaluated whether any of the 308 genes contained within
significant loci encoded a protein or directly interacted with a protein
that was a pharmacologically active drug target either approved or in
development for human disease. Intotal, 13 GWAS loci (54%) encoded 17
proteins that were already targeted by existing drugs, and 11loci (46%)
encoded 14 proteins with a direct PPl target (Fig. 6 and Supplementary
Table 30). Among the top 26 high-priority ‘biological candidates’, 11 (42%)
weretargeted directly or indirectly by the existing drugs. This included
thefollowing: (1) inhibitors of the alternative complement pathway that
arecurrentlyinclinical trials for glomerulopathies®; (2) drugs targeting
Bcells by inhibiting APRIL or TAClinteractions thatare already in clinical
trials for IgAN; (3) drugs that inhibit T-cell activation by targeting ligands
of CD28 protein, such as Belatacept (approved for allograft rejection)
or Abatacept (approved for rheumatoid arthritis); (4) drugs that inhibit
IL8 (ABX-IL8) or IL8 receptor (Clotrimazole) and (5) drugs that inhibit
NF-kB pathway, such as Bardoxolone thatis already in clinical trials for
glomerular disorders. We also note that some of our top prioritized
causal genes withexpressionincreased by therisk alleles, such as CARD9,
ITGAX, PF4V1,CFHRI or FCAR, do not yet have effective druginhibitors.
Other loci encode secreted proteins that appear protective, such as
FCRL3 and TNFSF4, suggesting that targeting their upregulation may
present a rational therapeutic strategy. Our data additionally imply
that activation of transcriptional programs controlled by ZMIZ1 and
IRF4, but reduced activation of NF-kB, may confer a protective effect.

Genome-wide polygenicrisk score (GPS) and clinical
correlations

Based on GWAS statistics after excluding Immunochip cohorts,
we designed and optimized a GPS for IgAN. The best-performing

Fig. 5| Prioritization of candidate genes at non-HLA loci. Blue boxes indicate
prioritization criteriabased on genomic coordinates (the nearest gene to the
index SNP, exonic variantin LD with the top SNP or top signal intersecting
chromatin interaction site with the gene promoter). Red boxes indicate the
presence of additional functional criteria (any GTEx eQTL effect, blood and
immune cell eQTL colocalization, pQTL effects, PPI network connectivity, shared
mouse knockout phenotype, shared pathways by MAGMA, prioritized by DEPICT

and prioritized by manual PubMed review). The priority score represents a sum
ofthe13 scoring criteria depicted in blue and red. The genes with the maximum
score at eachlocus (light green) were defined as ‘biological candidate genes’.
V2G scores are also provided for comparison. Additional annotation indicates
drug-target genes (orange). Only 58 of 311 positional candidate genes with
apriority score >3 (or top V2Gscore per locus) are depicted.
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GPS was based on LDPred method and assumed 1% causal variants
genome-wide. When tested in the independent German Chronic Kid-
ney Disease (GCKD) study®**°, the GPS explained 7.3% of disease risk
(P=3.1x107"; C-statistic, 0.65;95% Cl, 0.61-0.68). We then performed

a comprehensive analysis of clinical disease features associated
with the GPS (Supplementary Table 31a). Consistent with previous
observations for the 15-SNP GRS*, the GPS was inversely associated
with the age at diagnosis. The GPS was also significantly associated
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Risk allele

Candidate target

Related targets

Targeting drugs

Current indications

TNFSF13* (APRIL) TNFRSF13B* (TACI)

{ TT-30 }— Autoimmune diabetes, PNH
c3 —{ APL-2, POT-4, AMY-101 }— AMD, PNH, C3GN, IgAN, allograft rejection, periodontitis
rs6677604-G (1931) }—> CFH* " B
‘ Eculizumab, Ravulizumab }— AMD, PNH, aHUS, C3GN, allograft rejection, COVID-19
C5
Cemdisiran }— PNH, IgA nephropathy
CFB ———( Iptacopan, IONIS-FB-LRx }— PNH, C3GN, DD, aHUS, IgA nephropathy
cFD ——{  Danicopan, ALXN2050  |——r PNH, C3GN, DDD, MPGN, IgA nephropathy
[ Oxelumab }— Allergic asthma, allergic rhinitis
[ 154916312-A (1925) —s R TR OX40) [ KHK4083, ISB-830 — Atopic dermatitis, ulcerative colitis, SLE
< Vonlerolizumab }— Solid tumors
Belatacept }— Kidney transplant rejection
l rs3769684-T (2933) }—» ‘ CD28* }_ CD80 (B7-1), CD86 (B7-2)
Abatacept }— Rheumatoid arthritis
ALPN-101 }— Inflammatory bowel disease
[ 15842638-T (2p16) —| REL (CRel) | [ 1T-603, IT-901 — Allograft rejection, GVHD
PFAVI* (CXCLAVI) | CXCR4 — Plerixafor — Hematologic malignancies pre-SCTx
l 156828610-G (4913) < { ABX-IL8, HUMAX-IL8 }— Melanoma, T1D, chronic bronchitis, COVID-19
TG A < Troxipide }— Gastritis, peptic ulcer disease
: l Clotrimazole }_ Fungal infections
CXCR1, CXCR2 —{ Reparixin, Navarixin }— T1D, asthma, COPD, ulcerative colitis
[ 152282859-C (6027) }—» \ CCR6* ‘ CCL20 —[ PF-07054894 }— Inflammatory bowel disease
l ‘ —{ Bafetinib ’— Hematologic malignancies, prostate cancer
1s75413466-A (8q12) F— LYN* ( e ki
SRC tyrosine kinases ——{ Dasatinib, Bosutinib ’— Chronic myelogenous leukaemia
TNFSF15* (TL1) TNFRSF25, TNFRSF21 —l PF-06480605, PR-200 )— Inflammatory bowel disease
1513300483-T (9932) <: = =
l TNFSF8 (CD30L) TNFRSF8 (CD30) —l Brentuximab vedotin )— Hematologic malignancies
l 1s1108618-X (6q27) }—» ‘ PPIF (CypD) } { Cyclosporine A }— Inflammatory bowel disease
‘ { Bar methyl }— IgAN, Alport’s, FSGS. ADPKD, diabetic nephropathy
1510896045-A (11q13) — RELA* (p65) <
l NRF2 _‘ Dimethyl fumarate }— AMD, non-Hodgkin's lymphoma
TNFSF12 (TWEAK) TNFRSF12A _[ BIIB-023 }— Rheumatoid arthritis, lupus nephritis
[ 1s3803800-A (17p13) }<: :
Atacicept }— Autoimmune diseases, IgAN

S
[ BION1301, VIS649 IgAN
[ 1s57382045-A (17p11) |—— [ TNFRSFI3B* (TAC) |————]  TNFSFI3B (BLYS) — Belimumab, Blisibimod SLE, lupus nephritis, IgAN
[ 151865097-A (19913) f——[  Fcart(cose) | { MDX-214 Cancer
[ 1548230748-G (22q12) }—» ‘ LIF* ’— LIFR —{ Emfilermin Infertility

Fig. 6 | Drug targets among candidate causal genes. IgAN risk alleles (green),
prioritized positional candidate genes (gray), related genes in PPI (for example,
ligands/receptors) or same pathway (yellow), targeting drugs approved or
currently in clinical trials including agonists and antagonists (blue) and diseases

targeted by these drugs (orange). High-priority targets defined in Fig. 5 are
indicated by an asterisk. GWAS loci with candidate causal genes not targeted by
existing drugs are not depicted.

with higher lifetime risk of kidney failure among 2,879 cases with
long-term follow-up (hazard ratio (HR) =1.17 per s.d.; 95% CI, 1.09-
1.24; P=3.3 x10°®). For example, individuals in the top 20% tail of the
GPS distribution had 34% increased risk of kidney failure (HR =1.34;
95% Cl,1.15-1.56; P=2.0 x107*), while individuals in the top 10% tail
had 48% increased risk of kidney failure (HR =1.48; 95% CI,1.22-1.79;
P=6.6 x107%) compared to the rest of the cohort (Fig. 7a). However,
the GPS was not a significant predictor of ESKD at the time of kidney
biopsy after accounting for age, sex and other clinical risk factors
(Supplementary Table 31b).

To explore additional clinical associations of the GPS, we
performed a meta-analysis of phenome-wide association study
(meta-PheWAS) across 590,515 participants of the UK Biobank (UKBB)
and Electronic Medical Records and Genomics-1ll (¢eMERGE-III) data-
sets (Fig. 7b). We detected positive correlation of the GPS with hema-
turia, the most common manifestation of IgAN (P =7.3 x 107%). Other
notable associations included a protective association with celiac
disease (P=4.2 x10™™8) and several risk associations, includ-
ing with rheumatoid arthritis (P=1.1x107°), hypothyroidism
(P=2.0 x10™"), epistaxis or throat hemorrhage (P=2.6 x10™°) and
asthma (P=1.5x107°). These associations remained significant after
removing the HLA region from the GPS (Fig. 7c and Supplementary
Table 32). Notably, the directions of effect were generally consist-
ent with our genome-wide genetic correlation analyses of IgSAN with
related traits, providing a validation of the shared polygenic architec-
ture for these traits.

Discussion

Our GWAS 0f10,146 cases and 28,751 controls defined 30 independently
significant risk loci and provided support for a highly polygenic archi-
tecture of IgAN. The SNP-based heritability of IgAN was estimated at
~23%, and high polygenicrisk was associated with earlier disease onset
and greater lifetime risk of kidney failure, suggesting that polygenic
background is predictive of a more aggressive disease. Future stud-
ies are needed to test whether our polygenic stratification is useful
in the diagnosis, clinical risk assessment or prediction of treatment
responsiveness.

Our results reinforce the hypothesis that the genetic regulation
of IgA production represents the key pathogenic pathway in IgAN.
Significantrisk lociwere enriched in human orthologs of mouse genes
that, when genetically modified, cause abnormal IgA levels. Moreover,
21 of 25 independent genome-wide significant non-HLA risk loci for
IgAN have aconcordant effect on serumIgAlevels, and four of these are
also genome-widesignificant in our recent GWAS for serum IgA levels'.

We observed positive genetic correlations with IgA levels, infec-
tions and tonsillectomy, indicating ageneticlink between the IgA sys-
tem, mucosalinfections and IgAN. The association with tonsillectomy
isespecially intriguing, because IgAN is often triggered by pharyngitis,
and tonsillectomy has been employed as a treatment for IgQAN".. In
contrast, the observed negative genetic correlations with inflamma-
tory bowel disease may be due to genetically increased production
of secretory IgA that has known homeostatic anti-inflammatory and
immunosuppressive effects at the level of the gut mucosa*. Moreover,
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Fig. 7| Clinical associations of the GPS for IgAN. a, Survival analysis of lifetime
risk of kidney failure for IgAN cases in the top 90th percentile of the GPS
distribution (n =2,879 cases with follow-up data). The x axis shows age starting
from 18 years, and the y axis shows survival probability without kidney failure
with the number of participants at risk at each age cut-off 0of 20, 40, 60 and 80
years depicted below. HR (95% CI) of kidney failure adjusted for sex, site and
ancestry; two-sided P value from the adjusted Cox proportional hazards model
isalso provided. b,c, PheWAS for the GPS with (b) or without (c) the HLA region,
based onjoint meta-analysis of eMERGE-III (n =102,138) and UKBB (n = 488,377)

datasets. The xaxis indicates electronic health record phenotypes (phecodes)
grouped by system and sorted by significance. The y axis indicates the level of
statistical significance expressed as —log,,(P value). All Pvalues are two-sided and
correspond to a fixed effects meta-analysis of both datasets without correction
for multiple testing. Dashed horizontal line represents the significance
threshold after Bonferroni correction for the number of phenotypes; significant
associations are labeled. An upward triangle indicates a positive association
(increased risk) and a downward triangle indicates a negative association
(decreased risk) with increasing GPS.

ouranalyses of partitioned heritability clearly supportacausal role of
extrarenal tissues, prioritizingimmune, hematopoietic and intestinal
mucosal cells. This extrarenal mapping of causal tissues is consistent
with the established observation that IgAN commonly recurs after
kidney transplantation®’.

Our GWAS lociencoded proteins that were more likely to interact
physically despite being encoded by distant genomic regions. This
included several ligand-receptor pairs that are amenable to thera-
peutic targeting. IgAN currently lacks effective targeted therapies,
and recent pharmaceutical database analyses indicate that drug
targets with genetic support are more likely to advance in the devel-
opment pipeline®. Similar to recent strategies for type 1 diabetes**
and other autoimmune conditions*, we prioritized several candi-
date genes whose products are targeted by drugs that are presently
approved or in clinical development for another condition, and
which could be repurposed for IgAN. Mechanistic studies are still
needed to confirm the candidate target genes prioritized by our in
silico annotations.

Our study has several limitations. First, we pooled data across
cohortsrecruited across diverse timeframes, clinical settings, ances-
tries and nationalities. To reduce heterogeneity and bias, we used
stringent biopsy-based diagnostic criteria, standardized covariates,
genetic matching by platform and ancestry and a uniform statistical
analysis for each cohort. Second, we note that our meta-analysis
included Immunochip and other lower-resolution platforms, result-
ing in uneven coverage (and power) across the genome. Third, our
case cohorts included only biopsy-diagnosed individuals; thus, we
are missing patients presenting with mild symptoms that are not
routinely biopsied. Our clinical correlation analyses are limited
by the retrospective nature of data and the lack of uniform histo-
pathology grading. Fourth, the use of population controls might
have led to some control misclassification, although this problem

is likely minimized by the low IgAN prevalence. Fifth, our GWAS was
performed in European (68.7%) and East Asian (31.3%) ancestries;
thus, our results may not be generalizable to other populations.
Our functional annotations are also limited by the fact that some
of the functional genomic datasets may not be well matched based
on ancestry to our study. Our meta-analysis clearly favors loci sup-
ported by all cohorts, and we were less powered for the discovery of
ancestry-specific or sex-specific effects. Finally, we were not able to
evaluate the contribution of rare variantsin this study, and sequenc-
ing studies are still needed to evaluate relative contributions of rare
and common variants to the overall disease risk.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41588-023-01422-X.
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Methods

Association analyses

Individual study cohorts are described in the Supplemental Note,
including ethics oversight, recruitment, genotyping, imputation,
and quality control analyses. We conducted genome-wide association
analysis in each of the 17 cohorts using imputed dosage data under
an additive model with adjustment for significant PCs in PLINK v1.9
(ref.46). Only high-quality (R> > 0.8) common (MAF > 0.01) SNPs were
included in GWAS. Subsequently, we performed meta-analyses using
the fixed effects inverse-variance-weighted method (METAL v.2011-
03-25)* and TransMeta random effects model (TransMeta software)*.
Genome-wide distributions of P values were examined visually using
quantile-quantile (QQ) plots for each cohort and for the combined
analysis. The meta-analysis QQ plot showed no departure from the
expected distribution of Pvalues with the genomicinflation factor (1)
estimated at1.04 (Extended Data Fig. 1). Similarly, our analyses under
dominantand recessive models had no evidence of genomic inflation
(1=1.03for dominantand A = 0.94 for recessive model; Extended Data
Fig.3).Sex-specificanalyses were conducted by cohort separately for
males and females and subsequently meta-analyzed. A total of 21,236
males and 17,661 females were used in the meta-analysis with overall
A=1.01for malesand A = 0.99 for females. A total 0f1,990,322 imputed
chromosome X markers (R*> 0.8 and MAF > 0.01) were analyzed sep-
arately by sex-encoding genotypes as (0, 2) in males and (0, 1, 2) in
females. Significant PCs for each cohort were included as covariates
in each model. Genome-wide significant loci were defined by at least
one SNPwith P<5.0 x10 8 thatis successfully typed orimputedin>50%
of cohorts. Signals with P<1.0 x 10 were considered as suggestive.

Conditional analyses

To detect independent associations at individual loci, we conducted
stepwise conditional analyses using the conditional and joint (COJO)
association analysis method*’ implemented in GCTA v.1.92.0beta*>*°.
Using the summary statistics, we conducted conditional analyses with
a threshold of P< 5.0 x 108 and the LD reference composed of 1000
Genomes Phase 3 (European and East Asian populations). Subsequent
conditional analyses were performed for makers with a conditioned
P <5.0 x10® until no residual genome-wide significant associations
were observed (Supplementary Table 6).

HLA imputation

We used the SNP2HLA v.1.0 software to impute classical HLA alleles’".
The Type 1 Diabetes Genetics Consortium reference panel of 5,225
Europeans and 8,961 markers was used for our European cohorts”,
and the Pan-Asian reference panel of 530 individuals and 8,245 mark-
ers was used for East Asian cohorts®?. Only common and high-quality
variants (MAF > 0.01, R*> 0.8) were used for association testing. For
validation, we used exome sequence data (average depth 60x or above)
available for asubset of 500 cases of European ancestry. Classical HLA
alleles were called from exome sequence using HLAscan software*?,
and the sequence-based results were compared to SNP2HLA. Using
this approach, the imputation accuracies for DRBI*1501, DRBI*0405,
DRBI1*0301, DRBI*0701 and DRBI*0101 alleles were estimated at 98.3%,
99.8%,98.8%, 96.7% and 98.0%, respectively.

HLA classical alleles analysis

We analyzed each imputed variant using logistic regression, assuming
additive dosage effects and controlling for significant PCs of ancestry. For
testing multi-allelicloci, we used the following logistic regression model:

m-1 n
log(odds) = By + . BiX;i + Y. BiPCy,
=i =]

where m indicates a total number of alleles at a multi-allelic locus,
Jindicates a specific allele and Xj; is the imputed dosage for allele

inindividual i; B, represents the intercept and ; represents the addi-
tive effect of an allele j; PC,; denotes the value for kth ancestry PC of
individual i, n is the total number of significant PCs in the dataset; 5,
is the effect size of principal component k. For statistical testing, we
compared thelog-likelihoods of the following two nested models: the
full model containing the test locus and relevant covariates with the
reduced model (null model) without the test locus, but with the same
set of covariates.

HLA peptide sequence analysis

Totest the effects ofindividual amino acid substitution sites, we applied
aconditional haplotype analysis using fully phased haplotypes across
the HLA region. We tested each single amino acid position by first
identifying the m possible amino acid residues occurring at that posi-
tion and then using m — 1 degrees of freedom test to derive P values
with a single amino acid residue arbitrarily selected as a reference.
For conditioning onindividual amino acid sites, we used the following
procedure: by adding a new amino acid position to the model, a total
of kadditional unique haplotypes were generated and tested over the
nullmodel using the likelihood ratio test with k degrees of freedom. If
the new position was independently significant, we further updated
the null model to include all unique haplotypes created by all amino
acid residues at both positions to identify another independent posi-
tion. The procedure was repeated until no significant (conditioned
P<5.0 x107®) site was observed. Toresolve relationships between HLA
alleles and individual amino acid substitutions, we performed joint
haplotype phasing of amino acid residues and classical HLA alleles
using PLINK v1.07 (ref. 54). HLA protein structure was visualized using
UCSF Chimera v1.16 (ref. 55).

Heritability and genetic correlations

SNP-based heritability was estimated using LD score regression (LDSC
software)'’ using1000 Genomes phase 3 European and East Asian pop-
ulations combined as reference®. We also estimated SNP heritability
after excluding the HLA region (Chr.6:28,000,000-33,000,000 bp). To
investigate evidence for possible shared genetic effects between IgAN
and other traits, we estimated genetic correlations using bivariate LD
score regression'. For each phenotype, we used summary statistics
from the largest available GWAS with a minimum coverage of 2 mil-
lion SNPs. We excluded traits with estimated SNP-based heritability
<1%. Genetic correlations were calculated with and without the HLA
region. Summary statistics forimmune and cardiometabolic traits
were downloaded from the LD Hub or GWAS catalog or provided by
the corresponding consortia. Summary statistics for infection-related
phenotypes were provided by 23andMe?’.

Pleiotropy maps

GWAS loci were cross-annotated against GWAS catalog (last update:
January 31, 2019). For each locus, we selected all variants in strong
LD (22 0.8) with the top SNP. We then queried the GWAS Catalog for
genome-wide significant (P < 5.0 x 10°®) associations of the selected
SNPs with other traits. We manually confirmed the direction of allelic
effects by reviewing original publications. In cases where there were
multiple GWAS for the same trait, we selected studies with the largest
samplesize. To evaluate the overlap of pleiotropic effects between sig-
nificantand suggestive IgAN loci, the traits associated with significant
lociwere queried against GWAS catalog for associations with any of the
suggestive SNPs or their proxies (2 > 0.8). The results were visualized
using Cytoscape v3.7.0 software.

Polygenicrisk models

To assess the cumulative effect of risk loci, we performed a GRS analy-
sis. We first created the following two new GRS models based on the
new meta-analysis: the 30-SNP model that comprises 30 independent
genome-wide significant SNPs, and the 77-SNP GRS model thatincludes
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the same 30 SNPs plus 47 independent suggestive loci (P< 1.0 x107).
Each GRS was standard normalized against the control distribution.
We evaluated the performance of each GRS by estimating Nagelkerke’s
pseudo R*and the area under the receiver operating characteristics
curve. GPS was calculated using the following two methods: LDpred*®
and LD-pruning and Pvalue thresholding (P + 7)***°. We used the com-
bined meta-analysis including 2,408,512 high-quality SNPs that over-
lapped across all cohorts but excluding the Immunochip cohorts. For
LDPred, the fraction of causal variants was used as a tuning parameter
(p) across the range of 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001,3.0 10,
1.0x107%,1.0 x10 and 1.0 x 107%; a GPS was calculated for each value
of pandthe best-performingscore was selected. For P+ Tmethod, we
used arange of r* (0.2, 0.4, 0.6 and 0.8) and P value thresholds (1, 0.3,
0.1,0.03,0.01,0.003,0.001,3.0x10%,1.0x10™*,3.0x10%,1.0 1073,
1.0x107%,1.0 x107,5.0 x10"8and 1.0 x 10~%), and we again selected the
best-performing model. The performance of 30-SNP GRS, 77-SNP GRS
and best GPS were compared to the previously published 15-SNP GRS*.
We additionally tested these models in the GCKD study®***°, including
314 histologically confirmed IgAN cases versus 663 disease controls
with biopsy-diagnosed kidney disease of another cause (Supplemen-
tary Note). The analyses were implemented in Rv.3.5.2 software.

Gene set and pathway-enrichment analyses

We defined each IgAN-associated locus by first selecting all proxy
SNPsinLD (r*> 0.5) with the lead SNP, and then extending the genomic
region 250 kb upstream and downstream of the first and last proxy.
Eachregionwas annotated using the BiomaRt package (Bioconductor
release 3.16), which retrieves Ensembl human gene annotations. Gene
sets were created for all significant and suggestive loci, excluding the
HLA region. For GSEA, we used the Molecular Signatures Database
(MSigDB), including GO, Kyoto Encyclopedia of Genes and Genomes
(KEGG), BioCarta, REACTOME, chemical and genetic perturbations and
transcription factor targets. Statistical significance for enrichment was
setatafalsediscoveryrate <0.05. We additionally applied genome-wide
gene setenrichment testing (excluding the HLA) using MAGMA (v.1.09)
with default parameters®. We used DEPICT vl release 194 (ref. 15) to
perform pathway/gene set enrichment and tissue/cell-type analyses.
For this analysis, we first used PLINK to identify independently asso-
ciated SNPs setting P< 5.0 x 107 and r* < 0.05 in a physical window of
500 kb. We then used DEPICT to prioritize genes and identify tissue and
cell-type annotations in which genes from the associated regions are
expressed. Specifically, for each tissue, the DEPICT method performs
a t-test comparing the tissue-specific expression of trait-associated
genes versus all other genes. Next, for each tissue, empirical enrich-
ment Pvalues are computed by repeatedly sampling random sets of loci
acrossthe genome to estimate the null distribution for the enrichment
statistic as previously described®"®2,

Prioritization of causal tissues and cell types

We estimated SNP-based heritability enrichment for functional cat-
egoriesintissue/cell-type-specific regulatory elements using stratified
LD scoreregression. This method regresses the chi-squared statistics
of SNPs from summary statistics on their LD scores' and partitions
heritability by functional annotation®. For this analysis, we used the
meta-analysis statistics without the HLA region and excluding the
Immunochip cohorts. Heritability enrichment was defined as the pro-
portion of SNP heritability in a specific category, divided by the propor-
tion of SNPs that belong to that category. We first calculated heritability
enrichment for a control model of 96 noncell-type-specific functional
categories and compared it to the enrichment in cell-type-specific
annotations from the ENCODE and Roadmap Epigenomics®*, as well
as mouse immune cell-specific functional categories from the Immu-
nological Genome Project (ImmGen)®. We also evaluated tissue/
cell-type-specific heritability enrichments based on the FUN-LDA
scores'. As an alternative, we used the GARFIELD v2 (ref. 16) method

to assess enrichment within the ENCODE and Roadmap-derived regu-
latory regions.

Analysis of relevant phenotypes in mice

We used the Mouse Genome Informatics (MGI) database to identify all
genes, the disruption of which causes relevant phenotypes in mice®®.
The mouse phenotypesin MGl are categorized based on the mamma-
lian phenotype ontology and emerge as a result of different genetic
models, including targeted knockouts and chemically induced (ENU)
and spontaneous mutations. MGlincludes a total of 17,101 mouse genes
with human orthologs®. There were 62 genes with mouse orthologs
acrossthe 24 non-HLA risk loci used for testing against MGl phenotypes
to define substantially enriched categories.

Functional annotations of individual loci

For the purpose of detailed functional annotation, we calculated 95%
credible sets for each of the significant loci using CAVIAR software®®,
We added variants that were neither typed nor imputed in our data,
butinstrong LD with the top SNP based on external reference (r* > 0.8
in1000G European and East Asian populations). These SNP sets were
annotated using ANNOVAR to first define any coding variants and their
predicted effects. Using the FUN-LDA method, we next calculated the
posterior probability of afunctional effect for each of the selected vari-
ants, as described previously™. These SNPs were interrogated against
the following datasets: (1) eQTLs for 13 humanimmune cell types from
the Database of Immune Cell eQTLs (DICE) project®’; (2) blood eQTLs
fromthe eQTLGen consortium? (31,684 individuals of European ances-
try); (3) tissue eQTLs and (4) splicing QTLs from GTEx"’; (5) glomeru-
lar and tubular eQTLs”; (6) blood mQTLs from KORA (n=2,820) and
TwinsUK (n=7,824) studies’>” and (7) blood pQTLs from three recent
well-powered multi-ancestry studies’ ¢, We additionally performed
colocalization analysis between IgAN and eQTL summary statistics for
each GWAS locus using COLOC software””. We considered PP4 > 0.5 as
supportive of ashared causal variant.

PPIs

PPIs were predicted using InWeb_InBioMap (InWeb_IM)’%, InWeb_IM
isacurated and computationally derived protein-protein network of
420,000 PPIs that has 2.8 times more interactions than other compa-
rable resources. We used only high-confidence PPIs with confidence
score >0.1. Allannotated genes within the 76 significant and suggestive
lociwere used to probe the PPl database; the final network contained 53
nodes connected by 63 edges. Enrichment Pvalue was computed using
ahypergeometrictestand corrected for multiple testing using the Ben-
jamini-Hochberg method. The GLay community clustering algorithm
was implemented for module detection and modules were visualized
in GeNets’”’. Subsequently, the clustering with overlapping neighbor-
hood expansion algorithm® was used to extract protein clusters using
the default parameters with confidence scores as edge weights. Func-
tional and pathway enrichments were identified using STRING® based
on GO, KEGG and Reactome databases. We used ToppGene Suite®? to
calculate PPlenrichment Pvalues. ABonferroni-corrected P < 0.05was
interpreted as significant.

TF-DNA binding interactions

Toidentify TF binding sites enriched across IgAN risk loci, we used the
RELIalgorithm”. RELIuses aset of genetic variants asinput, expands the
setusing LD blocks (r*> 0.8) and calculates the statistical intersection
oftheresulting loci with ChIP-seq datasets by counting the number of
loci with one or more variants intersecting the TF ChIP-seq peaks. The
LD blocks were calculated using 1000 Genomes Project East Asianand
European populations combined. The null distribution was generated
using 2,000 random repeats of the procedure and was used to calculate
z-scores and empirical P values for the observed intersections. The
final reported Pvalues were Bonferroni-corrected (P,) forthe 1,544 TF
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datasets tested, as previously published”. Asinput, we used aset of 28
independentsignificantloci (P < 5.0 x10®)and aset of 76 lociincluding
significant and suggestive variants (P<1.0 x107). P,<1.0 x 10~ was
used as asignificance cut-off for each set.

Ligand-receptor pairs

To identify the number of potential ligand-receptor pairs associated
with IgAN risk, we queried the Database of Ligand-Receptor Partners
(DLRP)®. This database includes 175 protein ligands, 131 protein recep-
torsand 451 experimentally determined ligand-receptor pairings. To
test for ligand-receptor enrichmentin our dataset, we used ahypergeo-
metric test for overlap between this dataset and the gene set defined
by our significant and suggestive GWAS loci.

Analysis of drug targets

We obtained drug-target genes and corresponding drug information
fromDrugBank®, the Therapeutic Targets Database®, the Open Targets
Platform®*** and GlobalData combined with manualliterature searches.
To search for potential drug targets, we extracted all genes in direct
PPIswithIgANrisk genes by using the In_Web_IM database. We selected
drug-target genes that had pharmacological activities and human
orthologs, and that were targeted by any of the drugs that are approved
or currently in development (experimental or in clinical trials).

Prioritization of biological candidate genes

Each of the positional candidate genes was scored adopting the fol-
lowing criteria and calculating the number of the satisfied criteria,
including: (1) genes most proximal to the top SNP; (2) genes with cod-
ing variantsin 95% credible sets and/or high LD (> > 0.8) with the index
SNP; (3) genes with promoter chromatin interaction by ABC model* or
(4) GeneHancer* involving regions intersected by top SNP and its 95%
credible sets/high LD proxies; (5) eGenes controlled by at least oneeQTL
(anytissue) tagged by the top SNPin any tissues (primary immune cells,
wholeblood, kidney, GTEXx); (6) eGenes colocalized with the risklocusin
blood or (7) primary immune cells with PP4 > 0.5; (8) pGenes controlled
by atleastoneblood pQTL tagged by the top SNP; (9) genes prioritized
by PPI network connectivity analysis at P < 0.05; (10) genes that when
knocked out in mice produce at least two phenotype labels—‘immune
system’,‘haematopoietic system’or ‘cellular phenotype’; (11) genes pri-
oritized by MAGMA, (12) DEPICT with gene-based P< 0.05 or (13) manual
review of the literature as related to IgAN, IgA production or mucosal
immunity. For each locus, the gene ranking using our scoring method
was then compared to the recently proposed V2G score ranking”.

Genotype-phenotype correlations

GRSs (15-SNP, 30-SNP, 77-SNP and GPS) were tested for clinical cor-
relations in the subset of cases with available clinical data. We tested
eachrisk score predictor for association with clinical disease features
(outcomes) at the time of diagnosis, including age at biopsy, esti-
mated glomerular filtration rate (eGFR), proteinuria, microhematuria,
hypertension and gross hematuria. The GFR was estimated using the
CKD-EPI formula in adults®® and the Schwartz formula in children®.
The GFRwas normalized using logarithmic transformation, proteinuria
was normalized with a In(P24 + 1) transformation, microhematuria
was defined as positive if 1+ or greater on a urine dipstick test; gross
hematuria was defined by self-report; hypertension was defined as
systolic pressure =140 mmHg or diastolic pressure 290 mmHg, or
anti-hypertensive medication use. The outcome of kidney failure was
defined as eGFR <15 mI min™1.73 m~orinitiation of dialysis or kidney
transplantation. All analyses were adjusted for age, gender, site and
ancestry. The analyses were implementedin R v3.5.2.

PheWAS
We performed meta-PheWAS across the eMERGE-IIl and the UKBB
datasets. The eMERGE-III dataset contains EHR information linked

to GWAS data for 102,138 individuals’**’. The UKBB is comprised of
488,377 individuals with EHR information linked to GWAS data®. For
meta-analysis, we harmonized phenotype databy converting all avail-
able ICD-10 codes to the ICD-9-CM system; the eMERGE participants
had 20,783 unique ICD-9 codes and the UKBB participants had 10,221
unique ICD-9 codes. These codes were next mapped to 1,817 unique
phecodes and tested using logistic regression adjusted for age, sex,
study site,imputation batchand threee PCs of ancestry using PheWAS
R package®”. Meta-PheWAS was performed across both datasets using
metagen under fixed effects”. For phenome-wide significance, we used
the Bonferroni-corrected P<2.75 x 10 to account for 1,817 independ-
ent phecodes tested.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Primary genotype data for previously published cohorts are avail-
able through dbGAP under accession number phs000431.v2.p1, and
the new genotype data are available under dbGAP accession number
phs000431.v3.pl. Our IRB determined that the use of the primary
genotype data is restricted to genetic studies of kidney disease.
GWAS summary statistics are available from the Kiryluk Lab website:
https://www.columbiamedicine.org/divisions/kiryluk/study_gwas_
stat_IgA_summary.php. The PAGE consortium control genotype data
are available on dbGAP under accession number phs000356.v2.pl.
The eMERGE-IIl imputed genotype and phenotype data are available
through dbGAP, accession number phs001584.v2.p2. The UKBB geno-
type and phenotype data are available through the UKBB web portal
https://www.ukbiobank.ac.uk/. The DICE datasetis available at https://
dice-database.org/; the Blood eQTL meta-analysis by eQTLGen is
available at https://www.eqtlgen.org/; the Kidney eQTL Atlas is avail-
ableat http://susztaklab.com/eqtl; NEPTUNE eQTL Browser is available
at http://nephqtl.org/; GTEx is available at https://gtexportal.org/
home/; GWAS catalog is available at https://www.ebi.ac.uk/gwas; LD
Hub is available at http://www.nealelab.is/tools-and-software; Open
Targets platform is available at https://www.targetvalidation.org;
DLRP can be accessed at https://dip.doe-mbi.ucla.edu/dip/DLRP.cgi;
DrugBank can be accessed at https://www.drugbank.ca; GlobalData
database is available at https://www.globaldata.com/industries-we-
cover/pharmaceutical; FUN-LDA scores are available at http://www.
columbia.edu/-ii2135/funlda.html; MSigDB and GSEA are available
at http://software.broadinstitute.org/gsea/msigdb/; STRING is
available at https://string-db.org; InWeb is available at http://www.
lagelab.org/resources/; the Metabolomics GWAS Server is available
athttp://metabolomics.helmholtz-muenchen.de/gwas/; and the MGl
databaseis available at http://www.informatics.jax.org.

Code availability
Only publicly available open-source software was used inthe analyses;
there was no custom software.
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Extended Data Fig. 3| Manhattan plots for East Asian GWAS subgroup
analyses. a, East Asian meta-analysis under an additive genetic model (A =1.040)
revealed a new genome-wide significant locus on chr. 6 (CCR6, green).

b, East Asian meta-analysis under a recessive model (A = 0.940) revealed a new
genome-wide significant locus on chr.1(encoding PADI3 and PADI4, green).
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Extended Data Fig. 4 | Stepwise conditional analyses of the CFHand HLA

loci. a, CFHlocus. Initial meta-analysis results without conditioning (top left);
after conditioning for the top SNP rs6677604 (top middle); and after controlling
for the two significant SNPs rs6677604 and rs12029571 (top right). b, HLA

locus. Initial meta-analysis results without conditioning (middle left); after
conditioning for the top SNP rs9268557 (middle), after controlling for rs9268557
and rs9275355 (middle right), after controlling for rs9268557, rs9275355 and
rs9272105 (bottom left), after controlling for rs9268557, rs9275355, rs9272105
and rs9275596 (bottom middle), and after controlling for rs9268557, rs9275355

Chromosome 6 Position (Mb)
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rs9272105, rs9275596 and rs3128927 (bottom right) with no additional significant
signals. The x-axis shows genomic position in Mb (hg19 coordinates) and known
genes. The left y-axis presents —log,, P-values for association statistics (two-sided
P-values for a fixed effects meta-analysis under an additive genetic model
without correction for multiple testing). The right y-axis (light-blue line) shows
the average recombination rate across the region. The dotted horizontal line
indicates agenome-wide significance threshold of 5.0 x 1078, The top SNP in each
panelis marked by ared diamond.
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Extended Data Fig. 5| Stepwise conditional analysis ofimputed polymorphic
amino-acid positions in DR, DQB, and DQa peptides in East Asian and
European cohorts. a, East Asian cohorts. b, European cohorts. Each symbol
represents a polymorphic site tested for association with IgAN along the peptide
sequence. The x-axis shows genomic position of the sequence encoding each
amino acid. The y-axis shows global statistical significance for each polymorphic
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site (two-sided multiallelic Wald test without adjustment for multiple testing).
The dashed horizontal line corresponds to agenome-wide significance
threshold of 5.0 x 1078, ¢, Physical location of independently associated amino
acid positions11 (red) and 71 (orange) in the structural model of DR3. The DR
structure was visualized using UCSF Chimera v1.16 based on Protein Data Bank
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Medical Records and Genomics-IIl (eMERGE-III) imputed genotype and phenotype data are available through dbGAP, accession number: phs001584.v2.p2. The UK
Biobank genotype and phenotype data are available through the UK Biobank web portal https://www.ukbiobank.ac.uk/. The DICE dataset is available at https://dice-
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available at http://software.broadinstitute.org/gsea/msigdb/; STRING is available at https://string-db.org; InWeb is available at http://www.lagelab.org/resources/;
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Sample size All available cases and controls consented for genetic studies with DNA or SNP array data available were included in the study to maximize
sample size for discovery. All included cases had a kidney biopsy confirmed diagnosis of IgA nephropathy.

Data exclusions  Within each cohort and across all cohorts we excluded any duplicate samples, cryptically related samples, or ancestry outliers by PCA analysis
as described in the methods. There were no exclusions based on age, sex, or self-reported race/ethnicity.

Replication This study involves a global meta-analysis of all IgAN case-control cohorts. We were unable to provide independent replication of the
discovery GWAS findings in additional cohorts, since all currently available cohorts were included in the global discovery meta-analysis. For
testing polygenic risk scores, we use a smaller independent replication cohort (GCKD study) as described in the methods. We additionally
provide independent replication in the eMERGE-IIl and UKBB biobanks by recovering associations with relevant phenotypes.

Randomization  Not applicable, this is an observational genetic study and not a randomized trial.

Blinding Not applicable, this is an observational genetic study and not a randomized trial that requires blinding.
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Population characteristics All cases included in this study had a kidney biopsy-confirmed diagnosis of primary IgA nephropathy. Detailed breakdown of
cases and controls by cohort, ancestry, and genotyping platform is provided in Supplemental Table S1. Additional cohort
descriptions are provided in Supplementary Notes.

Recruitment The subjects included in this study were recruited across multiple nephrology centers worldwide as described in
Supplementary Notes. All cases had a biopsy-confirmed diagnosis of primary IgA nephropathy. We excluded any patients with
suspected secondary causes such as those with an autoimmune disease, malignancy, or liver disease. We used ancestry-
matched population controls without any known history of kidney disease. All participants were consented for genetic
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studies. We do not suspect self-referral bias, since the cases were ascertained by nephrologists at respective clinical sites
among all biopsied patients diagnosed with IgA nephropathy. However, because of the biopsy-based case ascertainment,
milder cases of IgA nephropathy that may not be routinely biopsied were likely missed by our analysis. The use of population
controls might have led to some control misclassification, although this problem is likely minimized by the low overall disease
prevalence.

Ethics oversight All subjects provided informed consent to participate in genetic studies, and local ethics review committees at each of the
individual participating sites approved the study. This includes the following Institutional Review Boards (IRBs), Research
Ethics Boards (REBs), or Ethics Committees: Columbia University IRB; University of Brescia Ethics Committee; Gaslini Institute
Ethics Committee; University of Bari Ethics Committee; University of Parma Ethics Committee; University of Torino Ethics
Committee; University of Warsaw Ethics Committee; Poznan Medical University Ethics Committee; University of Napoli Ethics
Committee; Brotzu Hospital Ethics Committee; University Hospital of Trieste Ethics Committee; University of Modena Ethics
Committee; University of Split Ethics Committee; Ospedale San Raffaele (OSR) Ethics Committee; Istanbul University Ethics
Committee; Peking University First Hospital Ethics Committee; University of Buenos Aires Ethics Committee; University of
Skopje Ethics Committee; Bern University Ethics Committee; Amsterdam VU University Medical Center Ethics Committee;
Hospital Universitario Puerta del Hierro Majadahonda Ethics Committee; Jean Monnet University Ethics Committee; Medical
University of Innsbruck Ethics Committee; University of Pécs Ethics Committee; Pirogov Russian National Research Medical
University Ethics Committee; University of Aachen Ethics Committee; University of Toronto REB; University Hospitals in
Leuven Ethics Committee, Yale University IRB; University of Alabama IRB; Karolinska Institute Ethics Committee; INSERM
Ethics Committee; Vilnius University Ethics Committee, Seoul National University Hospital Ethics Committee; Ruijin Hospital
Ethics Committee; Juntendo University Ethics Committee; Charles University Ethics Committee; Niigata University Ethics
Committee; Zagreb Medical School Ethics Committee; The Aristotle University of Thessaloniki Ethics Committee; Indiana
University IRB; Vanderbilt University Medical Center IRB; University of California Los Angeles IRB; the University of Michigan
IRB; Nationwide Children’s Hospital IRB; Boston Children’s Hospital IRB; Le Bonheur Children's Hospital Foundation
(University of Tennessee) IRB; Texas Tech University IRB; St. Louis Children's Hospital (Wash U) IRB; University of Minnesota
IRB; Stony Brook IRB; Helen DeVos Children's Hospital (Spectrum Health) IRB; Cincinnati Children's Hospital IRB; University of
Kentucky IRB; Cornell University IRB; Connecticut Children's Medical Ctr IRB; University of Texas-San Antonio IRB; Seattle
Children's IRB; University of Miami IRB; NY Medical College IRB; Medical College of Wisconsin IRB; Driscoll Children's Hospital
IRB; Phoenix Children’s Univ. of Arizona IRB. The Institutional Review Board of Columbia University oversaw all of the human
subjects research compliance related to this study and approved the umbrella protocol (number IRB-AAAC7385).
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