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Abstract. We prove that, under the assumption of the Generalized Riemann Hypothesis, the expo-
nent of the ideal class group of a CM-field goes to infinity with its absolute discriminant. This gives a
positive answer to a question raised by Louboutin and Okazaki [4].
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1. Introduction

In a recent talk given at the University of Caen, S. Louboutin conjectured that
the exponent of the ideal class group of a CM field goes to infinity with its absolute
discriminant. Subsequently, he has also succeeded to prove a weak version of his
conjecture. Let K be a CM field, and denote by dK, �K and EK the degree, the dis-
criminant and the exponent of the ideal class group of K, respectively. Then
Louboutin and Okazaki [4] proved that, restricting to the CM fields with given
degree dK¼ d, one has

EK �d

logj�K j
log logj�K j

; ð1Þ

where the constant involved depends on d only.
In this paper we develop the methods introduced in [2] and we investigate

further the links between lower bounds for the height and the class group of CM-
fields; this will give, in particular, a complete positive answer to Louboutin’s
conjecture.

Consider first the simpler case of cyclotomic extensions. Let �m be a primitive
m-root of unity and denote by Em the exponent of the ideal class group of the
cyclotomic field Qð�mÞ. Corollary 2 of [2] gives the lower bound

Em 5
log 5

12
� �ðmÞ

log p
;



where p is a rational prime which splits completely in Qð�mÞ. It is well-known that
p splits completely in Qð�mÞ if and only if p� 1 ðmod mÞ, and therefore, by a
celebrated result of Linnik, there exists an effective and absolute constant L> 0
and a rational prime p<mL which splits completely in Qð�mÞ. Using Mertens’
inequality �ðmÞ � m

log log m
, one gets the lower bound

Em 5
log 5

12L
� �ðmÞ

log m
� m

ðlog mÞðlog log mÞ
that depends only on m.

Let now K be a complex abelian extension, and let dK, �K and EK be as above.
Then, again by Corollary 2 of [2],

EK 5
log 5

12
� dK

log p
; ð2Þ

where p is a rational prime which splits completely in K. Using the Generalized
Riemann Hypothesis, we can find (see [3]) a rational prime p � ðlogj�K jÞ2

which
splits completely in K; hence

EK � dK

log logj�K j
;

where the implicit constant in � is absolute and effectively computable. To obtain
an estimate depending only on the degree dK, or only on the discriminant �K, it is
enough to show that, if the exponent EK is small, then �K is bounded in terms of
dK. We shall use a result of Silverman (see Lemma 4.3) to prove that

EK �
max

�
d	1

K logj�K j 	 log dK ; dK

�
log logj�K j

:

Therefore, EK goes to infinity with j�K j. More precisely,

EK � max

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logj�K j

p
log logj�K j

;
dK

log dK

�
:

Now, let us consider the case when K is a CM-field, i.e. an imaginary quadratic
extension of a totally real field. As K need not to be abelian, we cannot apply
inequality (2). However, the argument of Corollary 2 in [2] works also in this case,
provided that one has some lower bound for the height of elements of K. Using the
general estimate for the height given in [1], we can prove that for any "> 0,

EK �"

max
�

d	1
K logj�K j 	 log dK ; d

1	"
K

�
log logj�K j

ð3Þ

where the implicit constant in �" depends only on " and is effectively computable.
Therefore, EK goes again to infinity with j�K j. More precisely, if "< 1=2 we have

max
�

d	1
K logj�K j 	 log dK ; d1	"

K

�
�" maxfðlogj�K jÞ1=2	"; d1	"

K g;
thus, for any "0 > 0 the exponent EK is bounded from below by a positive quantity
depending on "0 times

maxfðlogj�K jÞ1=2	"0 ; d1	"0

K g:
It is to be remarked that our result (3) includes inequality (1) as a special case.
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We shall deduce these bounds from a more general result concerning the size
of the multiplicative relations in the class group of a CM-field. Let G be a group
and let l be a positive integer. We define MGðlÞ as the least integer A such that for
all g1; . . . ; gl 2G there exists a2Zlnf0g such that ga1

1 � � � gal

l ¼ e and
P

j jajj4A.
Then we have:

Theorem 1.1. Let K=Q be a CM-field and let G be the ideal class group of K.
Let also l be a positive integer. Then, for any "> 0 and under the assumption of the
Generalized Riemann Hypothesis for the Dedekind zeta function of K, we have

MGðlÞ �"

max
�

d	1
K logj�K j 	 log dK ; d1	"

K

�
log l þ log logj�K j

:

Moreover, if K=Q is abelian, then the conclusion holds also for " ¼ 0.

This theorem gives some information on the invariants of the ideal class group
of a CM field (we recall that the positive integers 	1; 	2; . . . ; 	n are the invariants of
a finite abelian group G if G is isomorphic to the direct product of cyclic groups of
order 	1; 	2; . . . ; 	n with 	nj	n	1j � � � j	1).

Corollary 1.2. Let 	1; 	2; . . . ; 	n be the invariants of G and put 	nþ1 ¼ 1. Let
also "> 0 and j2f1; . . . ; n þ 1g. Then, again under the assumption of the Gen-
eralized Riemann Hypothesis for the Dedekind zeta function of K

	j log

�
	1 � � �	j	1

	j	1
j

logj�K j
	

�" max
�

d	1
K logj�K j 	 log dK ; d1	"

K

�
:

Moreover, if K=Q is abelian, then the above conclusions hold also for " ¼ 0.

By choosing j ¼ 1 we find the announced lower bounds for the exponent. On
the other hand, the choice j ¼ n þ 1 gives a ‘good’ lower bound for the class
number of a CM-field:

Corollary 1.3. Let "2ð0; 1=2Þ; then, still under the assumption of the General-
ized Riemann Hypothesis for the Dedekind zeta function of K,

log hK �" max
�

d	1
K logj�K j 	 log dK ; d

1	"
K

�
:

Hence

log hK �" maxfðlogj�K jÞ1=2	"; d1	"
K g:

Moreover, if K=Q is abelian, then the above conclusions hold also for " ¼ 0.

These bounds for hK must be compared with [5], Theorem 2, p. 279 and with
[8], Theorem 2, p. 136.

2. Analytic Results

Throughout the paper c1; c2; . . . will be positive absolute constants which are
effectively computable.

Let K be any number field and let x> 1. We denote by 
0
KðxÞ the number of

primes P � OK of degree 1, non-ramified over Q, and such that jNK
QPj4 x. The

following lemma is an easy corollary of a very special case of the effective version
of the �CCebotarev Density Theorem proved by Lagarias and Odlyzko (see [3]).
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Lemma 2.1. If the Generalized Riemann Hypothesis holds for the Dedekind
zeta function of K, then for every x5 c1ðlogj�K jÞ2ðlog logj�K jÞ4

,


0
KðxÞ5 c2

x

log x
:

Proof. Applying Theorem 1.1 of [3] (with L ¼ K), we get the following esti-
mate for the cardinality 
KðxÞ of the primes P � OK of norm 4 x,


KðxÞ5LiðxÞ 	 c3



ð

ffiffiffi
x

p
þ 1Þlogj�K j þ dK log x

�
:

Using the well-known lower bound logj�K j5 c4dK , the asymptotic equality
LiðxÞ � x

log x
and our assumption on x, we get


KðxÞ5 c5

x

log x
:

If p is a rational prime ramified in K, then p divides j�K j. Since in K there are at
most dK primes over p, we obtain

#fP � OK ; P ramified over Zg4 dK

logj�K j
log 2

4 c6ðlogj�K jÞ2 4 c7

x

ðlog xÞ4
:

Moreover, if P has degree > 1 and norm 4 x, then the rational prime p under P
satisfies p4

ffiffiffi
x

p
. Hence

#fP � OK ; P of degree> 1; NK
QP4 xg4 dK
ð

ffiffiffi
x

p
Þ4 c8

x

ðlog xÞ2
:

Now Lemma 2.1 easily follows. &

3. Algebraic Results

Lemma 3.1. Let K be a number field, let p be a rational prime and P be an
ideal prime above p such that eðPjpÞ ¼ eP, f ðPjpÞ ¼ fP. Let L be the normal
closure of K in Q. Then

jf�ðPOLÞj� 2 GalðL=QÞgj5 dK

ePfP

:

Proof. Let d ¼ dK and ½L : K� ¼ s, so that ½L : Q� ¼ ds. Since L=Q is normal,
the factorization into prime ideals of pOL can be written as

pOL ¼ ðQ1; . . . ;QrÞe

where all Qi have the same inertial degree f and ref¼ ds. By the multiplicativity of
the ramification index and of the inertial degree in towers, we have, possibly after
a renumbering of Q1; . . . ;Qr,

ðPOLÞep ¼ ðQ1; . . . ;QhÞe

where hef
ePfP

¼ s. The Galois group GalðL=QÞ acts transitively on the set
fQ1; . . . ;Qrg, hence the number of conjugates of P is not less that r

h
¼ d

ePfP
. &

We recall that a CM-field is an imaginary quadratic extension of a totally real
field. If K is a CM-field, we denote by Kþ the totally real field K \ R.
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Lemma 3.2. Let K be a CM-field, let p be a rational prime, and assume that P
is a prime of K above p such that eðPjpÞ ¼ f ðPjpÞ ¼ 1. Then 	PP 6¼P.

Proof. Let Q ¼ P \ Kþ. Then the factorization of QOK is of type Q ¼ PP0,
where P0 6¼P. On the other hand, P and P0 are conjugate under the Galois group
GalðK=KþÞ. Since this Galois group consists of the identity and of the complex
conjugation, we have P0 ¼ 	PP. &

CM-fields are characterized by the following property: let �2K and assume
that j�j ¼ 1; then for any �2GalðQ=QÞ we have j��j ¼ 1. This property will play
a central role in the sequel. The link between primes of small norm and algebraic
numbers of small height in CM-fields is given by the following proposition, which
generalizes Corollary 2 of [2].

Proposition 3.3. Let K be a CM-field and let P1; . . . ;Pk � OK be primes of
degree 1 and not ramified over Q. Assume that Pi 6¼Pj and Pi 6¼ 	PPj for i 6¼ j. Let
also a1; . . . ; ak be integers such that Pa1

1 � � �Pak

l ¼ ð
Þ is a principal ideal and let
� ¼ 
=	

. Then:

dKhð�Þ ¼
Xk

j¼1

jajjlog NK
QPj:

Moreover, if ða1; . . . ; alÞ 6¼ ð0; . . . ; 0Þ and if the rational primes P1 \ Z; . . . ;Pk \ Z
are all distinct, then � is a generator of K over Q.

Proof. Since Pj 6¼ 	PPj by Lemma 3.2, the prime ideals P1; . . . ;Pk; 	PP1; . . . ; 	PPk are
distinct. For j ¼ 1; . . . ; k let vj be the place relative to Pj and 	vvj be the place relative
to 	PPj. Then

j�jnvj
vj ¼ ðNK

QPjÞ	aj and j�jn	vvj

	vvj
¼ ðNK

QPjÞaj :

Hence, log maxfj�jnvj
vj ; 1g þ log maxfj�jn	vvj

	vvj
; 1g ¼ jajjlog NK

QPj. Moreover j�j ¼ 1,
hence j�jv ¼ 1 for any archimedean place v, since K is a CM-field. Therefore,

dhð�Þ ¼
X
v 2 MK

vj1

log maxfj�jnv

v ; 1gjg þ
X
v 2 MK
v j 1

log maxfj�jnv

v ; 1gjg ¼
Xk

j¼1

jajjlog NK
QPj:

We now assume that the rational primes P1 \ Z; . . . ;Pk \ Z are all distinct and
we show that � is a generator of K over Q. Since �2K, it is enough to show that
½Qð�Þ : Q�5 dK . Let L be the normal closure of K in Q and assume a1 6¼ 0;
by Lemma 3.1, P1OL has at least dK distinct conjugate ideals �1ðP1OLÞ; . . . ;
�dK

ðP1OLÞ. Assume that, for some i; j2f1; . . . ; dKg, we have �ið�Þ ¼ �jð�Þ. Then

�iðP1OLÞa1�ið	PP1OLÞ	a1 � � � �iðPkOLÞak�ið	PPkOLÞ	ak

¼ �jðP1OLÞa1�jð	PP1OLÞ	a1 � � ��jð	PPkOLÞak�jð	PPkOLÞ	ak :

Since P1 \ Z; . . . ;Pk \ Z are all distinct, we must have

�iðP1OLÞa1�ið	PP1OLÞ	a1 ¼ �jðP1OLÞa1�jð	PP1OLÞ	a1 :
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Since P1 6¼ 	PP1 by Lemma 3.2, the ideals �iðP1OLÞa1 and �ið	PP1OLÞa1 are coprime;
by unique factorization of the ideals in OL, we get �iðP1OLÞa1 ¼ �jðP1OLÞa1 ,
whence �iðP1OLÞ ¼ �jðP1OLÞ and i ¼ j. It follows that � has at least dK distinct
conjugates in Q, whence ½Qð�Þ : Q�5 dK , as claimed. This completes the proof
of the proposition. &

4. Diophantine Results

We now state three ‘‘diophantine results’’ concerning lower bounds for the
Weil absolute logarithmic height hð�Þ, that we shall need later for the proof of
our main result.

Lemma 4.3. Let K be a number field. Then, for any generator � of K we have:

hð�Þ5 d	1
K logj�K j 	 log dK

2ðdK 	 1Þ :

Proof. The lemma is a special case of Theorem 2 of [6]. It is also an easy
consequence of the inequality j�K j4 jdiscð�Þj (see [7]) and of Hadamard’s
inequality. &

The next two lower bounds for the height are respectively the main result of [2]
(Theorem at p. 261) and of [1] (Theorem 1.6, p. 148).

Theorem 4.4. Let K=Q be an abelian extension and let �2K�; � not a root of
unity. Then

hð�Þ5 log 5

12
:

Theorem 4.5. Let K=Q be any number field and let �1; . . . ; �m 2K� multi-
plicatively independent. Then


hð�1Þ � � � hð�mÞ
�1=m 5 c9ðmÞd	1=m

K logð3dKÞ	kðmÞ

where c9ðmÞ and kðmÞ are positive constant depending only on m.

5. Size of the Ideal Class Group in CM-Fields

We now prove Theorem 1.1.

I) We start by proving that

MGðlÞ5 c10

d	1
K logj�K j 	 log dK

log l þ log logj�K j
ð4Þ

for some positive absolute constant c10. We choose

x ¼ c11ldK logðldKÞ þ c1ðlogj�K jÞ2ðlog logj�K jÞ4;

where c11 is such that c2xðlog xÞ	1 5 ldK . Since there at most dK distinct primes in
K over a rational prime, by Lemma 2.1 we can find l distinct rational primes
p1; . . . ; pl 4 x and l primes ideals P1; . . . ;Pl � OK such that Pi \ Z ¼ ðpiÞ and
eðPijpiÞ ¼ f ðPijpiÞ ¼ 1 for i ¼ 1; . . . ; l. Let gi be the class of Pi in G and assume
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that there exists a non-trivial multiplicative relation

ga1

1 � � � gal

l ¼ 1

with ai integers. Let A ¼
P

i jaij; by assumption, Pa1

1 � � �Pal

l ¼ ð
Þ is a principal
ideal. Let � ¼ 
=	

; by Proposition 3.3, � is a generator of K over Q and

dKhð�Þ ¼
Xl

i¼1

jaijlog NK
QPi 4A log x:

Remark that

log x4 c12ðlog l þ log dK þ log logj�K jÞ4 c13ðlog l þ log logj�K jÞ;
since logj�K j5 c4dK . Hence, by Lemma 4.3,

d	1
K logj�K j 	 log dK

2ðdK 	 1Þ 4 c13A
log l þ log logj�K j

dK

:

We get

A5 c10

d	1
K logj�K j 	 log dK

log l þ log logj�K j
:

II) We now prove that if K=Q is abelian, then

MGðlÞ5 c14

dK

log l þ log logj�K j
ð5Þ

for some positive absolute constant c14. We choose

x ¼ c15l log l þ c1ðlogj�K jÞ2ðlog logj�K jÞ4

where c15 is such that c2xðlog xÞ	1 5 2l. By Lemma 2.1 we can find l primes ideals
P1; . . . ;Pl � OK of degree 1 and not ramified over Q, such that

Pi 6¼Pj and Pi 6¼ 	PPj

for i 6¼ j. Let gi be the class of Pi in G and assume that there exists a non-trivial
multiplicative relation

ga1

1 � � � gal

l ¼ e

with ai integers. Let A ¼
P

i jaij; by assumption, Pa1

1 � � �Pal

l ¼ ð
Þ is a principal
ideal. Let � ¼ 
=	

; by Proposition 3.3,

dKhð�Þ ¼
Xl

i¼1

jaijlog NK
QPi 4A log x4 c16Aðlog l þ log logj�K jÞ:

Hence, by Theorem 4.4,

c16Aðlog l þ log logj�K jÞ5
dK log 5

12
:

We get

A5 c14

dK

log l þ log logj�K j
:
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III) We finally prove that for any "> 0 we have

MGðlÞ5 c17ð"Þ
d1	"

K

log l þ log logj�K j
ð6Þ

for some positive constant c17ð"Þ. Let m ¼ ½1="� þ 1 and choose

x ¼ c18lm logðlmÞ þ c1ðlogj�K jÞ2ðlog logj�K jÞ4;

where c18 is such that c2xðlog xÞ	1 5 2lm. By Lemma 2.1 we can find l�m prime
ideals Pij � OKði ¼ 1; . . . ; l; j ¼ 1; . . . ;mÞ of degree 1 and not ramified over Q,
such that

Pi1j1
6¼Pi2j2

and Pi1j1 6¼ 	PPi2j2

for ði1; j1Þ 6¼ ði2; j2Þ. Let gij be the class of Pij in G and assume that for j ¼ 1; . . . ;m
there exists a non-trivial multiplicative relation

g
a1j

1j � � � g
alj

lj ¼ e

with aij integers. Let A ¼ maxj

P
i jaijj; by assumption, P

a1j

1j � � �P
alj

lj ¼ ð
jÞ is a
principal ideal. Let �j ¼ 
j=	

j; by Proposition 3.3,

dKhð�jÞ ¼
Xl

i¼1

jaijjlog NK
QPij 4A log x4 c19Aðlog l þ log m þ log logj�K jÞ:

Therefore



hð�1Þ � � � hð�mÞ

�1=m 4 c19A
log l þ log m þ log logj�K j

dK

:

Moreover, �1; . . . ; �m are multiplicatively independent (in fact, if �e1

1 � � ��e1
m ¼ 1,

then, again by Proposition 3.3, 0 ¼
P

j jejj
P

i jaijjlog NK
QPij and hence e1 ¼ � � � ¼

em ¼ 0). We can apply Theorem 4.5, obtaining

c19A
log l þ log m þ log logj�K j

dK

5 c9ðmÞd	1=m
K logð3dKÞ	kðmÞ:

By the choice of m, this yields

A5
c9ðmÞd1	1=m

K logð3dKÞ	kðmÞ

c19ðlog l þ log m þ log logj�K jÞ
5 c17ð"Þ

d1	"
K

log l þ log logj�K j
:

The conclusion of Theorem 1.1 follows from (4), (5) and (6). &

For the proof of Corollary 1.2 we need the following lemma.

Lemma 5.1. Let G be a finite group of exponent E and order m. Then

(i) MGð1Þ ¼ E;
(ii) MGðmÞ4 2;

(iii) Assume that G is abelian. If 	 divides oðGÞ then MGðoðG=G	ÞÞ4 2	,
where G	 ¼ fg2Gjg	 ¼ 1g.
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Proof. (i) is clear. As to (ii), let g1; . . . ; gm 2G. If gi ¼ 1 for some i, we have an
obvious non-trivial multiplicative relation. Otherwise there exists i; j such that i 6¼ j
and gig

	1
j ¼ 1. In any case there exists a non-trivial multiplicative relation

ga1

1 � � � gam
m ¼ 1 with

P
j jajj4 2. Finally, we have trivially

MGðoðG=G	ÞÞ4	MG=G	
ðoðG=G	ÞÞ

and hence (iii) follows from (ii). &

Proof of Corollary 1.2. We apply Lemma 5.1 (iii) by choosing 	 ¼ 	j. Since
oðG	j

Þ ¼ 	j
j	jþ1 � � �	n, we obtain:

MGð	1 � � �	j	1=	
j	1
j Þ4 2	j:

By theorem 1.1 we have

2	j 5 c20ð"Þ
max

�
d	1

K logj�K j 	 log dK ; d1	"
K

�
logð	1 � � �	j	1=	

j	1
j Þ þ log logj�K j

for some c20ð"Þ> 0 depending only on ". Therefore

	j log

�
	1 � � �	j	1

	j	1
j

logj�K j
	
5

c20ð"Þ
2

max
�

d	1
K logj�K j 	 log dK ; d1	"

K

�
:

To prove the last assertion, remark that

log

�
	1 � � �	j	1

	j	1
j

logj�K j
	
4 logð	1 � � �	j	1Þ þ log logj�K j

and apply the inequality between the arithmetic and geometric mean. &

Remark. One could also prove Corollary 1.2 directly by using the effective
version of the Cebotarev Density Theorem [3] in its full strength. We give a sketch
of the argument in the simplest case when K is abelian. Let HðKÞ be the Hilbert
class field of K and let G be its Galois group over K, which we identify with the
ideal class group of K. Let L ¼ Lj be the fixed field of G	j

; then L is an abelian
unramified extension of K with Galois group G=G	j

and j�Lj ¼ j�K j½L:K�
. As in

Lemma 2.1 we can find a prime ideal P of K such that

i) the class of P, viewed as an element of G, is in G	j

ii) P is of degree 1 and non-ramified over Q;
iii) the norm of P satisfies

jNK
QPj4 c21ðlogj�LjÞ2ðlog logj�LjÞ4:

Since the class of P is in G	j
, we have that P	j ¼ ð
Þ is a principal ideal. By

Proposition 3.3, � ¼ 
=	

 is a generator of K with height

dKhð�Þ ¼ 	j log NK
QP:

A fortiori � is not a root of unity. Also remark that

logj�Lj ¼ ½L : K�logj�K j ¼ oðG=G	j
Þlogj�K j ¼

	1 � � �	j	1

	j	1
j

logj�K j:
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Hence

dKhð�Þ4 c22	jlog

�
	1 � � �	j	1

	j	1
j

logj�K j
	
:

On the other hand, using Lemma 4.3 and Theorem 4.4,

dKhð�Þ5 c23 max
�

d	1
K logj�K j 	 log dK ; dK

�
:

Combining the upper and the lower bounds, we obtain the desired conclusion.
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