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Abstract

We consider a dynamical system involving seven populations to model the presence of voles in a cultivated
orchard. The plant population is stratified by age (three groups) and by health status (being damaged
or not). The last equation models the voles with a modified logistic equation with Allee effect, where the
modification takes into account the disturbance provided by the human activity on the orchard. Both an
analytical investigation and numerical simulations on a case study are presented. The latter support the
observed differences in the literature, in terms of number of voles, between cultivated and uncultivated fields.

Keywords: population dynamics; subpopulations structured by age groups; rodents on cultivated areas;
Allee effect

1. Introduction

Fossorial and semi-fossorial rodent species are important agricultural pests worldwide [3]. Voles of the
genus Microtus can cause severe damage in European agroecosystems to crops and orchards [18, 28, 32].
During outbreaks, populations of M. arvalis and M. agrestis can reach densities of up to 2000 individuals per
hectare, which could lead to enormous damage to crops [3, 22, 24]. In Italy, the most widespread Microtus
species is the Savi’s pine vole (Microtus savii) which is responsible for extensive damage in arable lands
[4, 23].

The Savi’s pine vole feeds on annual and perennial herbaceous wild and cultivated plants, generally
within 10 m from the burrow exit hole [13, 32]. When herbaceous plants are strongly reduced in winter,
voles search for alternative food sources and could debark trunks and roots just above and below ground
level. Debarking allows the animals to reach the phloem, which is rich in nutrients. Bark-stripping reduces
the phloem flow and thus affects the plant’s productivity; if the animals remove an entire circular band of
bark, it could also cause the tree to die off [4].

The burrow system of Savi’s pine vole comprises several chambers connected by a network of corridors
with primary and secondary entrances. These nests can be occupied by multiple individuals either simul-
taneously or sequentially. Savi’s pine voles also modify and utilize pre-existing mole burrows (Talpa spp.).
Furthermore, in orchards, the tunnels of both species are often shared with white-toothed shrews ( Crocidura
spp.) and Arvicola italicus [6, 12, 33].

Despite its economic importance, Savi’s pine vole demographic studies are nearly absent [32]. Occasional
observations have suggested that population densities may show seasonal and multiannual fluctuations with-
out however extreme outbreaks [10]. The only published demographic study reported densities from 3 to 32
in/ha, with a peak in October, after reproduction, and the lowest values in February—April [11]. Studies on
the factors affecting the Savi’s pine vole dynamics and damage level in croplands and orchards are also very
limited [1, 32].
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Considering the general lack of information on the demography of the Savi’s pine vole, a mathematical
simulation could help managers to better understand the species dynamics in crop fields and orchards.
Mathematical modeling is a basic theoretical tool for understanding the dynamics of biological and ecological
systems (see, e.g., [25, 35]). It has been successful for the study of different phenomena, from the spread
of diseases and infections [7, 19] to various interactions between predators and prey [14, 15, 20, 34, 36], in
different contexts, from aquatic environments [8, 9] to cultivated areas [31]. In such situations, the study of
the dynamics of ecological systems can provide useful insights about the consequences of strategies aimed at
curbing certain phenomena, such as an outbreak of pests [2]. This paper considers a population of Savi’s pine
voles living in an orchard, digging tunnels close to the surface and damaging the trees through debarking of
the roots [5, 11]. Agricultural practices however disturb the vole population, preventing explosive outbreaks.
In Section 2, we present the model and its theoretical study, while Section 3 is devoted to the numerical
simulation of the model on a peach orchard, based on the available data in the literature. Section 5 contains
final considerations and remarks.

2. The proposed model

We consider a large monoculture orchard where a population of voles lives, digging tunnels close to the
surface and in the process damaging the roots of the trees. We need to account for the plants and the animal
populations. In order to model the trees, we use six different compartments. On one hand, we denote by
Ty, T, and T, the trees not damaged by the voles. We partition them into the three demographic groups
(“young” y, “adult” a and “old” o, respectively) that cohabit the orchard. The adult trees are the ones at
their fruit production peak. On the other hand, we similarly define three populations of damaged trees: D,,
D, and D,.

We denote by gy > 0 and g, > 0 the growth rates of the trees which respectively move from T}, to T,
and from T, to T,. Trees in the old category T, have then a mortality rate of m > 0. We model mortality
as if it is affecting only old trees. We are not considering other damaging effects than the voles, hence a
tree death in the younger classes is a rather rare event and we can interpret it as a “fast migration” into the
oldest tree class followed by quick death.

We work under the assumption that the owner of the orchard plants a new tree in 7}, as soon as an older
one dies, thereby keeping the total number of trees in the orchard constant, w > 0. We also assume that
the orchard’s owner plants the trees in a way as to avoid competition between trees for the resources of the
soil, so that the corresponding terms can be neglected in the model.

Each time the voles meet an undamaged tree in T}, T, or T, there is a chance, respectively modeled by
the parameters vy, v,, v, > 0, that the tree will migrate into the corresponding damaged class. The damage
inflicted by the voles is assumed to be permanent.

Since it is very difficult to quantify how much the voles’ damage impacts the fruit production and the
tree life, we make the following choice. We assume that, for the damaged trees, the parameters gyq, gao, M
become gyo(1 — €ya), Gao(l + €a0); M(L + €oy), respectively, for some €, € [0,1] and €40, €5y > 0. In this
way, on one hand, young damaged trees take more time to become adults, while, on the other one, damaged
adults and damaged old trees take less time to respectively age and die. Therefore, the overall population
of adult trees is reduced by the presence of the voles and, since the bulk of the fruit production is given by
adult trees, this is reflected in a reduction of the fruits produced by the orchard.

Remark 2.1. The assumption on the mortality of trees could sound inadequate, since it is not possible for
young and adult trees to die until they grow old, whether they are healthy or sick. However, this choice is
reasonable from different point of views. On one hand, no data are available for damages caused to young
tree individuals by the M. savii and for other species, the damage is dependent on too many factors (type
of trees, wvoles density, type of agricultural practices applied on the soil, type of environment surrounding
the orchard, etc.). Trying to be more accurate about this feature would make the model too complex to be
studied.

On the other hand, the assumption on the automatic replacement of dead individuals in the young class
is already taking into account the matter. If a young healthy tree dies because of the damages caused by
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the voles, it should be subtracted by the T, population but then immediately added back to it because of the
replacement assumption on the orchard trees, and the two terms would cancel out. For adult trees, instead,
we have even less evidences of deaths caused by voles damage and so, on average, we can include them in
the augmented growth rate and death rate given by the factors gao(1l + €40) and m(1 + €,y) for the damaged
adult trees class and the damaged old trees class, respectively.

Lastly, for the vole population, we start with a logistic equation with Allee effect (see, e.g., [16]), i.e,

" ()Y

where r > 0 is the reproduction rate, k the voles carrying capacity and a the critical Allee threshold, with
0 < a < k. Now, we want to model the fact that voles are heavily disturbed by agricultural practices, such
as plowing the soil (see [17]). In the scenario where no work is done on the soil we want the carrying capacity
of the voles to settle at k. When the soil is being completely cleared, instead we want the carrying capacity
to get as small as the critical point a. As a measure of the amount of work performed on the orchard, we
use the ratio of dead trees with respect to the total amount of trees in the orchard, i.e.,

TO 1 (o] DO
m + (1 + €oy) .
w

This is due to the fact that every tree that dies is immediately uprooted and a new one is planted to
replace it. We consider this operation to be the most influential one on the soil to disturb the voles. This
is consistent with the available biological information in the literature. Indeed, population models suggest
that changes in survival rates are more influential than reproductive output in determining vole population
cycles [21, 29]. Moreover, it has further been established that the type of cultivation, field management
around the orchard, and agricultural practices can significantly impact the population size of Savi’s pine
voles [1]. Specifically, the management of ground vegetation and the irrigation system may exert a strong
influence [1, 4].
The resulting equation for the vole population is then

v (K,)(, (1 (171) To+(1+eoy)Do))
7 =rV u 1)(1-V k‘Jr P m " .

Here, the additional term with respect to (2.1) can be interpreted as a spreading panic among the population
of voles that forces them to leave the orchard.
In the end, the system of differential equations associated to this model is the following:

dT,

dity = mT, + m(1+epy)Do — (gya + v,V) Ty,
dD

dty = v, VT, — gya(1l —€yq)Dy,

dT,

dt = gyaTy - (gao + l/aV)TEH

dD,

i v VTy + gya(l — €ya)Dy — Gao(l + €a0)Dq, (2.2)
dT,

dt == gaoTa - (m + VOV) Toa

dD,

i VoVTy + gao(l+ €a0)Doy — m(1+ €oy) Do,

awv 1% 1 1 1 TO+(1+eoy)Do>>
E_TV(E 1)(1 V(z*(a z)m " !
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where w represents the trees carrying capacity in the orchard, namely
T, + Dy + T, + Do + T, + D, = w. (2.3)

Remark 2.2. In (2.2) the bilinear form for the interaction terms has been chosen to model the damage
suffered by the trees. Therefore it is not subjected to the “saturation effect” that is expressed by other more
sophisticated functional responses, such as the Holling type II form. In an orchard, since the ground is
frequently managed by farmers, tunnels are constantly destroyed and new are opened, hence we can expect
the interaction not to change in behavior with respect to the number of individuals of the populations involved.
Moreover, trees are assumed to be distributed uniformly and the interaction between them and the voles occurs
underground. Therefore, without explicitly introducing a spatial model, it is natural to consider all possible
interactions between individuals of the vole population and trees as viable. Therefore, from this perspective,
the bilinear form adequately represents the actual situation.

We then have the following flow chart for the trees subpopulations:

m(1+ €oy)

In order to simply the model, we can exploit (2.3) to reduce the number of populations by one and so the
number of equations of (2.2) by one. Since, D, is the subpopulation that has the least amount of interaction
with the other ones, we can eliminate it using (2.3) and get the reduced system

dT,

d—ty = mT, +m 1+ €oy) Do — (9ya + v, V) Ty, (2.4)
daT,

dt = gyaTy - (gao + Vav) Ta7 (25)
dD,
e Gya (L —€ya) (W =Ty — T, — Dg —Tp — Do) + v VT, — Gao (1 + €40) Do, (2.6)
dT,

prai JaoTa — (M +v,V) Ty, (2.7)
dD,

i VoVTy + gao (1 + €a0) Dy — m (1 + €4y) Do, (2.8)
av. v 1 1 1 TO+(1+eoy)Do>)

TG )-vGEG-)m w : (29)



Before proceeding with the analysis of the system (2.4)—(2.9), it is worth considering two simpler models
based on the same ideas but with less classes for the age stratification of the plant population.

2.1. The bare bones model

We begin at first by considering only two major classes of trees, namely healthy T" and damaged D, in
addition to the voles population. The resulting system of differential equations associated to this model is
the following;:

dT

E:mT—Fm(l—Fe)D—VVT—mT,

dD

v {K, }{ B (1 <lil)mT+m(1+e)D>}
dtirvallvk+ak w ’

under the assumption that the total tree population does not vanish and remains at a constant level, w > 0,
namely

T+D=uw. (2.11)

Moreover, the Allee effect prescribes that
a<k. (2.12)

Eliminating D from (2.11) we obtain

dr
r =m(l+e)(w—-T)—vVT,
av 1% 1 (1 1\ mT+m1+e(w—T) (213)
GGG Gog) w )|
Note also that
0<mT+m(l4+e)D=mT+ml+e)(w—T)=m[(1+e)w— €T (2.14)

2.1.1. Feasible equilibria

System (2.10) allows only two feasible equilibria, namely the damaged trees-free one, Er = (w,0) and
the coexistence one E, = (T,,V.). To assess the latter, note that from the first equilibrium equation of
(2.13) we obtain the first nullcline

w—
V=¢(T)=m(1 2.15
o(1) =m(1+" L (215)
while annihilating the second equation of (2.13), we obtain either Vp; = a or
V= (1) = 1 (216)
P Dm0 5] '
In the former case, the coexistence equilibrium is
_ _ 1+¢)
Eo = (T, Ver) = (67" T =o' (a) = xS
1= (Te1,Ver) = (¢7 " (a), a), 1=¢"(a) aw+mt o
For the second case (2.16), note that
1 1 T4 (2 =1) [mA+e)
¥(0) = <——=k To=whb—o F : (2.17)
PG -pm+e ~ 1k (a —%)em



T establishing the location of the vertical asymptote of (7). Note also that combining (2.12) and (2.17)
we have )
$(0) > a, ¢(T)= Te{l + (1 - l) [m(1 te) - ﬂeT]} > 0. (2.18)
’ w Uk a k w
Hence 9(T) is an increasing convex hyperbola rising up from (0,(0)) to infinity at T,, and negative
for T > T, having as horizontal asymptote the T axis. The function ¢(T') is instead a decreasing convex
hyperbola with a vertical asymptote at the origin, coming down and intersecting the axis V =0at T = w

and ultimately approaching the horizontal asymptote V' = —m(1 + e)ufl < 0. On the other hand, we can
rewrite T, and obtain the estimate

+

Q=

(e —x)m

1
To =w {1 + ’“1—1
(¢ —#)em
These two curves must intersect, by continuity, in the interval (0, w). This point gives the second coexistence
equilibrium E.5. In view of the above discussion, there is also a second unfeasible intersection with a negative
value for V, V.3 < 0 and the corresponding abscissa T3 > w, which will not be considered any further.

We can also analytically specify the intersection point, as upon substitution, the nullclines system leads
to the following quadratic equation:

> w.

a ==

asT? — a1 T + ag = 0,
where, recalling (2.12)
1 1\ m w 1 1
= _— = —_ = — _— = 1
as (a k>6w>0, ap k+(a k)m( +e)w >0,

1 1 1 v
ay = {—+<———>m(1+26)+
a m

- - et

In view of these and the above considerations, by Descartes’ rule, two real non-negative solutions are always
ensured, of which the smaller one is the only one of interest, namely

2
a1 — +/ay — 4azag
Teo =

y Ve = w(TeZ) = ¢(T62) > 0.

2&2
2.1.2. Local stability
The Jacobian of (2.13) is
—-m(l+¢) —vV —T
J= ry?2 (K _ (1 _ 1) Te Joo
a a k
with
Joy =7 (K - 1) {1 —v (3 + (l - 1) T+ m(l +e)(w 7T))} (2.19)
a k a k w
vt {17‘/(1 N (1 B 1) mT+m(1+e)(w7T))}
a k a k w
Y (Kfl (1+ <171) mT+m(1+e)(w7T)>'
a k a k w

More synthetically,



Now, at Ep = (w,0) the Jacobian reduces to an upper triangular matrix from which we easily find the
eigenvalues —m(1 +¢) < 0 and —r < 0. Hence this point is unconditionally stable.
At E.; = (¢ *(a),a), we also obtain an upper triangular Jacobian with eigenvalues

—m(1l+e€) —va <0, r (1 - ¢(;e1)> ) (2.20)

from which stability is ensured by
Y(Te) < a, (2.21)

an implicit condition because 1(T.1) depends on a as well. But geometrically this condition states that the
coexistence equilibrium with fixed value of the voles a is stable if and only if it lies in the portion of the first
quadrant above the isocline ¥(7T).

For the coexistence case, the full Jacobian must be evaluated at F.o and stability is ensured by the
corresponding Routh-Hurwitz conditions. Using the two equilibrium equations, we can rewrite the relevant
diagonal elements of the Jacobian as

mw(l + € Ve 1 Ve
Ji1(Ee2) = —%7 Jao(Ee2) = —7”Ve2< a2 - 1) Ve —7“< a2 - 1)-

Indeed, the first and second terms in the sum (2.19) vanish because the coexistence equilibrium point lies
on the isocline, so that V # 0, V' # a and therefore the bracket must be annihilated, namely giving

—_
—_

The trace condition gives
1 Ve
—t1(J(Ew)) = muw(l + ) T <J _ 1) >0

and is therefore satisfied if
Veo > a. (2.22)

For the determinant, suitably collecting terms, we find

Veo B 1) {w(l +e€)
a Te2

1 1
+ VTeQT‘/fQ (a — E)

det(J(Ee2)) = rm ( e} >0

g|3

if and only if (2.22) holds.

In summary, coexistence E.s is stable if and only if its height V., lies above the horizontal line V' = a,
while the other coexistence point E.q, in view of (2.21), is stable if and only if its height lies below the same
horizontal line. In other words, the three equilibria can be arranged in a linear order corresponding to the
increasing order of their abscissae, in two alternative ways corresponding to the two alternative conditions

mentioned below:
(222) N EeZ,EelaEl; (221) . Eel,Ee27E1

with the extremal ones always stable and the middle one being a saddle.

Two important inferences can therefore be made from these considerations. When E.; and E.s cross
each other, their exchange their stability, through a transcritical bifurcation, occurring at ¥(Te1) = a = Veo.
Secondly, there is a regime of bistability, in which the separatrix goes through the saddle point, either E.;
or E.o, as discussed above.



2.1.3. Analytic determination of the transcritical bifurcation

We consider the point E.; = (¢ *(a),a) for the bifurcation and choose a as bifurcation parameter. From
(2.20) we can possibly annihilate only the second eigenvalue by setting a = t(Te1). Since (T") depends on
a itself, we first find the critical value by expanding the above inequality

i it (G g) roro-Gal.

Simplifying,

(%_%) (14— Zer —1] = o0.

to finally obtain
al =k (2.23)

Now we use Sotomayor’s theorem, [30]. The left w and right v eigenvalues of the Jacobian evaluated at
FE.1 for a = k are easily found:

w’ =(0,1), o7 = WT.,—m(1+¢€) — vk).

Let us begin by differentiating the right hand side F' of (2.13) with respect to the bifurcation parameter a:

dF 0
Fa:d—: —ﬁ{l Vv }—H"V(K 1)KmT—|—m(1+e)(w—T)
“ a? W(T) a? w
It follows
i 0
dF "
T = (1 - )
Beya=k I Y(Mle,, 0=k
_ 0 .
= 1 1 1 m =
1k {r (G2 [+ - e} o)
L T( k:+ a k m(1+e) w6 Eoy.a—k
and consequently
dF
w! — =0 (2.24)
da Eeha:k:
which prevents the occurrence of a saddle-node bifurcation [30].
To further investigate the matter, we calculate the Jacobian DF,
0 0
DF,=| 0DF, ODF,
oV oT
where
ODF, 721"‘/{7 V} ﬁ 1
ov. a? ¥(T) a* P(T)
2rV <K 3 1) mT +m(l+¢e)(w—T) +ﬂlmT+m(1+e)(w—T)
a? \a w a? a w
and

8DFa_2V3(1 1>m L‘ﬂ(K_l)ﬁ
w

T ~ a? ok EE a

a k



Hence, since (Fe1)|,_, = k7,

0 0
DFa‘Eel,a:k = [ _2l(1 —k‘2) ok imTEEI +m(l+e)(w—Tg,) 0 ] )
k L w
It follows
2 T 1 T
’U}T DF@‘Ela:k’U:VTel |:%<k2_1)+rk+%m Ee1 +m< +6)(w Eel):|
o w

and consequently, in view of (2.14) and if we assume that the carrying capacity is large enough, k > 1, we
find that this scalar does not vanish,

w” DF,|g 4o v > 0. (2.25)
We then proceed to evaluate the higher derivatives of F, D?F. In view of the entries of the eigenvalue

w we need only to differentiate the second component Fy of F. Note that being linear in 7', the second
derivative of F' with respect to T vanishes. Hence we find

2 2
wl D?Fv = {8 I Ot }Ul

ave " T2 gver ™

From (2.19), differentiating further with respect to V' we have

a k

and with respect to T’

0% F, _ (V ) (1 1>m 2r<1 1>m (V >(1 1>m
iz Oy A iy v Py R Uty A Py e

so that
oL SR —0.
V2 g | a=k k' OVOT g, 4=t
Therefore
w'D?Foly, = —270% <0, (2.26)

Combining (2.24), (2.25) and (2.26), Sotomayor’s theorem ensures the occurrence of a transcritical bi-
furcation between F.; and E., when the parameter a crosses from below the critical threshold al = k.

Remark 2.3. Although we have assumed that a < k, so that technically speaking this transcritical bifurcation
could mot possibly arise, nevertheless the result indicates that if the two relevant points, the critical Allee
threshold V' = a and the voles carrying capacity V = k, exchange their positions, in such case the nature of
the larger one after the exchange, V = a, would retain its stability, and conversely the smaller one, V =k,
its instability. Mathematically, this is due to the fact that this exchange of its roots does produce any change
in the shape of the cubic polynomial in the right hand side of the voles equation. Assessing its sign near
the origin, it was negative, for V.< a < k, before the exchange, and it remains so after the exchange, for
V <k <a.



2.2. The intermediate model

To make a step towards the full model, we consider here four classes of trees, T}, T;,, D, and D, and the
voles population. The tree classes are the same as in the full model, but the classes of old trees T, and D,,
healthy and damaged, have been clustered together with the corresponding adult ones, T, and D,. Here we
therefore have w = T}, + Dy, + T, + D,. Exploiting this fact, D, = w — (T, + T, + D), so that we obtain

the reduced system in which the equation for D, is absent:

dT,
d—ty = 77Ty + Gay(1 + €ay)Da — (gya + v V) Ty,

dT,
E = gyaTy - (gay + VaV)Ta,

dD,

dt = gya(l - 6ya)Dy + v, VI, — gay(l + 6ay)-Dm

dVv [V } { (1 <1 1) Ta+(1+eay)Da>}
oY o Z 1= - - _ =

dt v a v k + a k) 9w w ’

in which we now take rr = g4y = m, the latter being again the trees mortality:

dT
ﬁ =mT, + m(l + an)Da - (gya + VyV)Tya
dT,

i = 9Ty — (m V)T,
dD,

et ya(1 = €ya)[w — (Ty + To + Dy)] + voVTg — m(1 + €4y) D,
d 1 1 1 T, 1+ €ay)Dq
l:rV {Kfl} {17V(7+(777)m + (14 cay) )}7
dt a k a k w

(2.27)

(2.28)

Excluding the populations combinations that lead immediately to equilibrium equations that cannot be
satisfied, there are only three possible equilibria candidates in addition to coexistence. The latter will not

be analytically investigated, as we will perform this task for the larger model (2.4)-(2.9).

2.2.1. By

First of all, the healthy-trees-only point. The first and second equilibrium equations are the same,

relating the two trees classes; the third one gives a constraint on their sum, so that we have
m
Ty=—7T, Ty+T,=w
Gya

from which it follows

mw WYya
E - T bl Ta b 0’ 0 - < b b 0’ 0) b
= (Tyr,Ta1,0,0) Pl

always feasible.
2.2.2. Fy
Next, the point with no damaged adult trees, but in which the voles are present
El - (Ty,la Ta,la 07 Vl) .
Summing the first two equilibrium equations we find

— (v, T, + v, 1,)V = 0.
yly

In view of the fact that here we seek V' # 0 and all parameters and populations must be positive, this

equation is inconsistent and therefore this equilibrium does not exist.
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2.2.5. By
Finally, we examine the equilibrium with damaged trees and no voles,

Ey = (Ty2,Tu2,D42,0).
Again, summing the first two equilibrium equations, we obtain
m(1 + €qy)Dy =0
which is inconsistent, as all parameters are positive and we seek D, # 0. Hence also Fs does not exist.

2.2.4. Stability
The Jacobian of (2.28) is

—(gya +1,V) m m(l+€qy) —vyTy
J = 9ya —(m+v,V) 0 —v, Ty,
—gya(l = €ya)  —Gya(l —€ya) +vaV J33 7
0 J42 J43 J44
where
J33 = _gya(l - Gya) - m(l + an) (229)
1 1
AT 1)
a w \a k
14 m(1l 1
_ 2(X AN I
hs = e (T-1) 5 (5 7)

2 1 1 1 T, 1 D
Jug = T(*V—1>—TV<£—2>(7+(f—f)m ot (1 +€ay) a)
a a k a k w

Evaluating the Jacobian at the equilibrium Er, we observe that J(Er) has one negative eigenvalue,
—r < 0 from the last row. The remaining 3 x 3 submatrix J (3)(ET) has negative trace,

tr(JO(Br)) = —gya —m = gya(l = eya) = m(L + eay),
the sum of the minors of order two reduces to
SO (IP(Er)) = gyalgya(l = eya) +m(1+ €ay)] + gya(l = €ya)m(l + €ay) + mlgya(l — eya) +m(1 + )],
and the determinant is
det(JO(Br)) = —g5a(1 = €ya)m(l + €ay) = m*gya(l = eya) (1 + €ay) < 0.
Hence the stability condition is provided by the Routh-Hurwitz condition
tr(JO(Br)2® (JO(Er)) < det(JP (Er)). (2.30)
Explicitly, from (2.30) we obtain
—gfmm(l — €ya) — Gyam*(1 + €ay) — m29§a(1 — €ya) — M3gya(l + €ay) <0, (2.31)

which is unconditionally satisfied so that Er is always stable.
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’ H non-zero populations \ feasible \ equilibria stability

Case I Ty, Ta, T, always Er either a stable node or focus
Case 11 Ty, To, Do, Ty, D, never - -
Case III || Ty, Ty, Dy, T, Dy, V | always | E, plus either 1 or 3 more FE, is not stable

Table 1: Summary of the cases and equilibria for the system (2.4)—(2.9)

2.3. Analysis of the full model

We are now ready to discuss the full model. Searching for the equilibria of the system (2.4)—(2.9), we
need to consider only the 3 possible cases summarized in Table 1. Moreover, the Jacobian matrix of this
full system is:

—Gya — VyV 0 0 m m(l+ey) —v,T,
Gya ~Gao — VoV 0 0 0 —v, 1y

_ —Gya (1 = €ya)  —gya (1 —€ya) + vV 7o —Gya (1 = €ya)  —Gya (1 —€4a) vl

J — 0 Gao 0 —m — VOV 0 _VoTo 5 (232)

0 0 Yao (1 + an) VoV —-m (1 + Eoy) v,

0 0 0 T1 T2 T3

where
T0 = —0ya (1 - 6ya) — Yao (1 + 6ao) )
1% 1 1 \%4 1 1 1
o= —rVQ(——l)T(f—f), = —rVQ(——l) m (€oy +1) <7_7)’
a w \a k a w a k

2 1 1 1 T 1 D,
() e ) (o (L )
a a k a k w
Case I: The first case corresponds to the absence of voles and damaged trees from the orchards. With
D, =D, =V =0 the system (2.4)-(2.9) reduces to

1,

7 = mi, — gyaly,
dT,
dta = gyaly — GaoTa, (2-33)
dT,
= aoTa - Toa
a7 "

with
T, + T, + T, = w,
which is needed for D, having a vanishing time derivative. Searching for the stationary points of
(2.33) leads to a unique equilibrium:
w
JaoMm +Mgya + JaoGya

Br = C [gaom, MGy, 0, duogya,0,0]  C =

The Jacobian matrix evaluated at this point is

—Yya 0 0 m m (Eny + 1) _Cgaoml/y
9ya —Yao 0 0 0 _Cmgya Vq
J(Er) = —gya (L = €ya)  —Gya (1 — €ya) 7o —gya (L —€ya) —9ya (1 —€ya)  Cmgyava
T 0 Jao 0 —m 0 _CgaogyaVo ’
0 0 Jao (€ao + 1) 0 —m(€oy +1)  CYaoYyalo
0 0 0 0 0 -r

12



and its spectrum is

+ Gao +m £ VS
OJ(Er) — { _gya(l - Eya)a _gao(l + an)a _m(l + 6oy)a _gya Jao -r }7

2 )
with
S = gza + ggo + m2 - 2gyagao - 2gaom — 2mgya
1 =1 —1] [gye
= [gya Gao m} -1 1 —1 Jao
-1 -1 1 m
When S > 0,

_gya+gao+m— \/§
2
and so Er is a stable node. Instead, when S < 0, we have two complex conjugate eigenvalues with
negative real part. Therefore, in this case, E7 becomes a stable focus.

<0,

Remark 2.4. The vole-free equilibrium Er, where only the healthy tree populations survives, turns
out to be locally asymptotically stable for all models: the bare-bones, the intermediate and the full
one. This is due to two factors, namely the orchard constrain (2.3) and the Allee effect for the voles
population. The first one prevents the healthy trees from dying out, while the second one guarantees
the existence of a neighbor of Er where the population of voles dies out. This is enough to ensure local
asymptotic stability. The only slightly different behavior is the nature of Er that can change from a
stable node to a stable focus, depending on the choices of the parameters related to the type of plants
present in the orchard. In other words, changing the type of cultivated trees can change the nature of
Er but not its stability.

Case II: Here we do not have voles, but both populations of damaged trees do not vanish. The system
then reduces to the following one:

dr,

dtJ = mT, +m(1+€oy) Do — gyaTy,
dT,

dta = gyaTy - gaoTaa

dD,,

dt = Yya (1_611@) (w_Ty _Ta _Da _TO_DO) — Yao (1+€ao) Dcu (234)
dT,

= aoTa - Tov

at 7 m
dD,

o = Gao (1 + an) D, —m (1 + GOy) D,.

Searching for equilibria, one can show that this scenario never occurs. For example, obtaining 7}, and
T, from the second and the fourth equations and substituting them in the first one gives D, = 0 which
contradicts the assumptions of this case.

Case III: In this scenario, all populations coexist. From (2.9), we need to study when either

Vico o 1—V(1+(l—l)mT"HHe"y)D"):0.
a k a k w

13



If V = a, then we obtain

ML + €0y) Ea(5) — voaEqy(4)
gao(l + an)

Yao

—— F,(2
m+ vya ()

(gya + Vya)Ea(l) - mEa(4)
m(1+ €oy)

a

w

" vya(gaotvaa) oo | gaotave (9yatvya)(gaotvaa)(Mm+voa)—gyagaom + a(GaoVy+gyalatvavya) +1
gga(lfeya) m+av, Gya gyam(1+eoy)(m+tvoa) JaoGya(l+€ao)

Looking at (2.32), it is easy to see that the last row of J(E,) has a unique non-zero element, the
diagonal one, namely

3 =T — ra(%Jr(%f%) mEa(4)+(1;50y)Ea(5)) er <0,1f%).

Thus J(F,) has a real positive eigenvalue and E5 cannot be a stable equilibrium. If we consider instead

1_V<1+<1_l>mTo+(1+€oy)Do) -0,
k a k w

annihilating also equations (2.4), (2.5), (2.7) and (2.8), we can express all the tree populations with
respect to the vole population as follows:

T o— wa(k —=V)

v V(k —a)(gya +1,V)’
T - gyawa(k —V)

¢ V(k_a)(gya+yyv)(gao+yav)’

wa(k - V) { 9yaYao }
D, = — , 2.35
V(= a)gao(1 + €a0) L (Gya & V) (G0 + vaV) (2.85)

T = gyagaowa(k - V)

’ V(k - a)(gya + Vyv) (gao + Vav)(m + VOV)7
D _ wa(k - V) |: i 9yaGaom :|

o V(k —a)m(1+ EOy) (gya + VyV)(gao +vaV)(m+v,V)

In doing so, from (2.6), we are left with finding the roots of a fourth degree polynomial in V. In
particular,

4
Y ¢ vi=o, (2.36)
j=0

14



with

Co = —akgaom(l + €ao)(1 + €oy)(gyagao + Gya™m + gaom) < 0,
ao 1 + ao
Ci = —akm(l+eyy) <M + 1) (Gaomuy + gyamvyg)
gya(1l — €ya)

- akgao(l + an)(gaomyy + gyaml/a + gyagaoyo)

+ gaom(]- + 6ao)(]- + GDy) (a (gyagao + Gya™ + Gao™m

€yaMVq

)) + (k- a)gyagaom> ,

Cy = ((k - a)m(l + €oy) + a)gao(l + €a0)(gaoml/y + GyamVg + gyagaoVo)

—k (gyaVo + JaoVo — 1_ €ya

Gao(1 + €q0)

+1) JaoV +g aVa)
gya(l = €ya) (geoy + 9y

+ am?(1 + €4y) (

— aak‘(muyva + GaoVyVo + gyal/ayo)

€ya(kVaVo — mya)>

+ agaom(1 + €40) (1 + €0y) <gyavo + GaoVo + .
~ e

Cs = (k—a)gaom(l+ €ao)(1+ €oy)(GyaVaVo + GaoVyVo + Miyly)
+ a(gyaVaVo + JaoVyVo + Miyly — kVylals)

€ya(l + €a0) (1 + €oy)
1—e€yq

Cy = ((k = a)gaom(l + €ao) (1 + €0y) + @) vyrave > 0,

— QGaoM

a®”o»

where

a =a (g,w(l + €a0) + M1 + €0oy) (M + 1)) > 0.
gya(l = €ya)
Since Cp < 0 and Cy4 > 0, the existence of a positive solution for (2.36) is always guaranteed. Moreover,
we either have one or three positive solutions for (2.36) and thus one or three coexistence equilibria in
addition to E,. Unfortunately, this is all we can say analytically about this case and thus we proceed
studying a specific scenario numerically.

Remark 2.5. The coefficients of (2.36) and the expression in (2.35) do not depend on the parameter
r. This is curious but not surprising since the starting point for voles’ equation is a logistic equation
with Allee effect for which the three roots do not depend on .

3. Simulations on a peach orchard

Due to the lack of data about voles in orchards, in order to use data of [11], we consider the case of an
ideal one-hectare peach orchard. The chosen time unit is the year. For the parameters regarding the tree
populations we refer to [26, 27]. There, the optimal number of trees for a one-hectare orchard is w = 1000.
Peach trees have an average life span of 20 years and can be partitioned into three classes as follows: young
up to 6 year old, adult from 6 to 15 year old, old from 15 to 20 years old. Therefore, we can choose

9ya = m =

Gao =
15

1 1 1
6’ 9’ 5



Hence, the vole-free equilibrium in this case is the following;:
Er = [ 300, 450, 0, 250, 0, O ] .

For the voles, on one hand, we choose a € {1,2,3}: a =1 is the lowest possible threshold from a biological
point of view (a single vole is necessary to have a positive net increase of the population either via recruitment
or via childbirth, if female and already pregnant), while 2 and 3 are chosen to show how a impacts on the
equilibria of the system. On the other hand, we set the reproduction rate at

2.5 x 4.5 1
=20 = 5125
" 2 2 ’
since females (which we assume to be roughly half of the total population), give birth to 2.5 voles, on average

4.5 times a year, while having a life expectancy of 2 years [5].

Remark 3.1. While 2.5 voles per litter has been found to be true both in the wild and in laboratory, the
data concerning the average number of litters per year reported in [5], 11.8, is true only in a controlled
environment. We then decided to use here a more realistic number for a cultivated environment, i.e., 4.5.
The equilibria of the system are not affected by this change due to Remark 2.5.

For the carrying capacity, we actually consider the maximum available data in a generic one-hectare
territory not subjected to human intervention (see [10]) namely k & 1000. This value is very different from
the one assessed for peach orchards in [11], where the average number of voles per hectare is estimated at
a value about 18.5. In order to further simplify the sensitivity analysis, we add two constrains. Since the
voles damage the trees primarily by creating tunnels in the orchard, which are around the same depth as
the root of young peach trees, we can assume that they damage in the same way all tree populations, i.e.
there exists a unique v > 0 such that

Vy = Vg = Vp = L.

Moreover, since there is no evidence of an increase mortality of trees due to the presence of voles, we can
assume the same expected average lifespan for a hypothetical tree that is born already damaged, i.e.,

1 n 1 n 1 1 n 1 n 1
9ya Yao m gya(l - eya) gao(l + 6ao) m(l + eoy)’
which leads to

Gao€oy (1 + €40) + Meqo(1 + €0y)
ve gaom(]- + 6ao)(]- + 6oy) + gyamfao(l + 6oy) + gyagaoeoy(]- + 6ao)

€ya = G

_ 14eg0€0y + Yeqo + Doy e [0,1).
20€40€0y + 15640 + 1leoy + 6

We are then left with three parameters, namely v, €40, €oy. For v, from the negative term of (2.4), (2.5) and
(2.7), we can expect

. 1—gya 1= Gao 1—m} 1 — max{ gya, Jao, M } 2
0 <wv< { = , < Y = - =04.
S G v ooV o a 5
In our numerical tests, we then consider v = 1077 for j € {=5,...,0}. For €, and €,,, we take 100 equally

spaced values in [0, 1]: the upper bound of 1 corresponds to doubling the exit rate of damaged trees from
the adult/old class with respect to the non-damaged ones. In all considered cases, the polynomial equation
(2.36) has a unique positive root, whose corresponding Jacobian matrix is negative definite, meaning that
there are two basins of attraction: one leads to the vole-free equilibrium, while the other one leads to the
unique stable equilibrium of coexistence. The results of these simulations are presented in Figure 1-6, where
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the amount of voles at equilibrium (i.e., the unique positive root of (2.36)) and the percentage of adult trees
with respect to the total number of trees at equilibrium, i.e.,

Ta(t) + Da(t)

?

lim
t—o00 w
are shown. We observe that, counterintuitively, raising the critical point a has the effect of raising the
population of voles at the equilibrium, since the latter must always belongs to [a, k].

4. Discussion

In this paper we have presented three models of various complexity. However, all share the same prop-
erties, namely they possess an unconditionally feasible and stable equilibrium in which the voles disappear.
This represents the optimal state of the orchard. However, due to the assumption that the voles experi-
ence the Allee effect, bistability is produced by the presence of the Allee threshold. Indeed, in the bare
bones model, coexistence is found to be unconditionally stable. We have not investigated the coexistence
equilibrium in the intermediate model, but reserved this task for the most complex one. In it, although a
full analytic investigation is not possible, multiple coexistence points are found to possibly arise, thereby
making a sizeable difference with the simplest situation. In addition, the incorporation of a stratified tree
population by age groups in the most complex model allows more refined simulations that contribute to give
some insights that might help in the fight against these agricultural nuisances. The numerical simulations
indeed show that at least one of them is feasible and stable. Further, they also allow to assess the sensitivity
of its population values with respect to some relevant model parameters.

5. Conclusions

We have presented a rather refined model, together with two simpler ones, for the description and
understanding of the underground interactions between cultivated trees in orchards and voles. The model
takes into account the fact that the voles are responsible for damages of root trees, ultimately leading to a
reduced fruit production and a noticeable loss for the farmer profits.

First of all, from the simulations results of the age-stratified model, we see that, independently from the
choice of the parameters, the vole population has an equilibrium of a few dozen individuals in the orchard in
contrast to the thousand found in an uncultivated territory. This is coherent with the observation of [5, 11].
Therefore (2.2) can be a good starting point for modeling the human activities-induced disturbance to voles
and similar rodents in a field. More precisely, the scenario with @ = 1 and v ~ 10! is the one that is closest
to the average of 18.5 for the vole population found in [11].

Second and most notably, we see that the peak for the vole population, which always appears at ¢,, =
€0y = 0, does not correspond to the highest damage to the fruit production, which occurs for €, = 0 and
€oy = L.

The model hopefully gives insights into the dynamics of Microtus populations in orchards, the level
of damage they could produce and could ultimately turn out to be useful for their control. Savi’s pine
vole populations exhibit less significant numerical fluctuations and low-density values than other Microtus
species [1, 4]. In orchards, Savi’s pine vole densities are notably lower than in more natural environments
[32]. While this implies the presence of damage in orchards, it is generally not as severe as with other
vole species. As a result, economic damage has often not justified substantial investments in vole control
measures. Consequently, there has been limited research into potential management interventions, such as
chemical or physical control of voles in their burrows, periodic soil flooding, or selecting resistant rootstock
trees, which could help limit vole populations and mitigate damage [1].

The findings of our models, which indicate the presence of equilibrium points, support the idea that
without specific interventions, Savi’s pine vole populations may persist in orchards over an extended period,
resulting in limited annual damage. However, this damage could accumulate and become significant in the
long term. The damage may become apparent in voles-affected plants: they die, requiring these plants to be

17



19628 4502

8528 04501

£
&
£ El
ERHN E
2 S o
& g
ERCEN ©
° D oases.
® e
o 1002, £
S 3
] ERYTN
v = 0.00001 5 oo z
. 5 5
B @ oaser
2 @ 04t
£ ro0t0., g
5 =
H
. 8 oum.,
1 3
[N
10612 oasss
e e
' “
g
—, 08 :
o6
061, oas2.
3
RN
H]
=
ERTR
g
k]
§ o419
=
>
3 ous.
v = 0.0001 g
. 5
@ oaar
)
g
H
8 o
3
&
oats
17N
'
TN 0a.
£
106, 5 oae.
€ H
£ 10 20
RN goss.
= =
g H
BAEN g
s g
- £
g z
]
3
v = 0.001 5 :
. 5 pu
3
K )
E g
5 £
. 8
S
&

Figure 1: The results of the simulations described in Section 3 for ¢ = 1 and v € {0.00001,0.0001,0.001} (row-wise). The
two columns show, respectively, the number of voles at equilibrium and the percentage of adult trees at equilibrium, varying
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replaced. Additionally, there may be reduced production in plants affected by voles, as some branches may
wither without causing the entire plant to die. Research on the extent of damage and the loss of production
due to the presence of voles is currently lacking for Savi’s pine vole, and it should become a priority.

In addition, note that the three models with enriching age structure allow more refined considerations.
For the coexistence of all the populations these can only be inferred by the numerical simulations. However,
the results for the intermediate, 4 populations in the reduced form, and for the full model indicate that the
equilibria in which either the voles only, or the damaged trees classes vanish cannot exist. This shows that
neither the tree damages can occur without a cause, nor the voles thrive without damaging the trees. This
conclusion is much less apparent in the bare-bones model. Further, the enlarged models allow to describe
more and more precisely the trees age groups compositions. When the voles are absent and therefore trees
are not damaged, while their level is just w in the bare-bones model, it becomes

muw GyaW

Ty=———, 1Tp=—""——
Gya + M

in the intermediate one, and

gaow T _ gyaw T _ gaogya

T, = ) - 3 -
Y Gao™ + Gya™ + GaoJya “ Jao™ + Gya™ + GaoJya ¢ Jao™ + Gya™ + GaoJya

in the full model. This is relevant, as fruit production of trees in different ages is different, being low for
young not fully developed trees, and reduced for older trees. Being able to tune the parameters so as to
maximize production, favoring the adult class, would allow better profits for the farmer. However, in case
of the voles’ presence, this task must be performed numerically.
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