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Highlight 22 

This review emphasizes the importance of genetic resources, including germplasm 23 

accessions and new experimental populations, for a Green Revolution in eggplant in the 24 

context of climate change. 25 
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Abstract 26 

Eggplant (Solanum melongena) is a major vegetable crop that has yet to undergo a Green 27 

Revolution. It is closely related to over 500 species of Solanum subgenus Leptostemonum 28 

belonging to the primary, secondary, and tertiary genepools and exhibits a wide range of 29 

characteristics, including adaptive traits to climate change, that are useful for eggplant 30 

breeding. Germplasm banks worldwide hold more than 19,000 accessions of eggplant and 31 

related species, but the exploration of germplasm collections has generally been limited. 32 

Nonetheless, eggplant breeding using the cultivated S. melongena genepool has yielded 33 

significantly improved varieties. However, to overcome current breeding challenges and 34 

adaptation to climate change, a qualitative leap forward in eggplant breeding is necessary. 35 

The initial findings from introgression breeding in eggplant indicate that unleashing the 36 

diversity present in eggplant relatives from different genepools can greatly benefit the 37 

eggplant Green Revolution. The recent creation of new genetic resources, such as mutant 38 

libraries, core collections, recombinant inbred lines, and sets of introgression lines will 39 

be another crucial element of the eggplant Green Revolution, which will require the 40 

support of new genomics tools and biotechnological developments. The systematic 41 

utilization of eggplant genetic resources supported by international initiatives will be 42 

critical for the much-needed eggplant Green Revolution. 43 

 44 

Keywords: eggplant, genepools, genetic resources, germplasm banks, Green Revolution, 45 

introgression breeding, Solanum melongena, wild relatives 46 
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Introduction 51 

Eggplant (Solanum melongena L.), also known as common eggplant, brinjal or 52 

aubergine, was domesticated from its wild ancestor S. insanum L. around 9,000-10,000 53 

years ago in the region that includes the Indian subcontinent and southeast Asia (Page et 54 

al., 2019a). Eggplant is globally one of the most important vegetable crops, ranking sixth 55 

in production among vegetables after tomato, onion, watermelon, cucumber and cabbage 56 

(FAOSTAT, 2023). Its global production has increased by 24.0% in the last decade, from 57 

47.3·106 t in 2012 to 58.6·106 t in 2021 (FAOSTAT, 2023). As a warm-loving crop, it is 58 

mostly cultivated in tropical, subtropical and temperate regions of the world, with most 59 

of its production coming from East Asia, the Indian subcontinent, Southern Asia, the 60 

Middle East and the Mediterranean basin. In these regions, eggplant is a common 61 

constituent of the diet, providing significant amounts of K, P and Cu, as well as high 62 

concentrations of bioactive phenolics beneficial for human health (Plazas et al., 2013; 63 

Rosa-Martínez et al., 2021). However, agricultural production in main eggplant 64 

cultivation areas is expected to be strongly affected by climate change (del Pozo et al., 65 

2019; Habib-ur-Rahman et al., 2022). Increased spells of extreme events such as intense 66 

drought periods may have a dramatic impact on crops sensitive to water stress, such as 67 

eggplant (Plazas et al., 2022).  68 

Despite its importance as a prominent vegetable crop in many areas, research on eggplant 69 

lags behind other major vegetable crops. For instance, tomato breeding programs have 70 

made extensive use of genetic resources, including the introgression of multiple genes 71 

from crop wild relatives (CWRs) that have been incorporated into modern cultivars (Díez 72 

and Nuez, 2008; Schouten et al., 2019). Conversely, to our knowledge,  until now only a 73 

few concrete breeding programs involving introgression of useful traits have been carried 74 

out aimed at improving the resistance to the fungal wilts Fusarium oxysporum and 75 
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Verticillium dahliae by exploiting the sources residing in the two relatives S. aethiopicum 76 

(Toppino et al., 2007, 2008, 2009) and S. linnaeanum (Acciarri et al., 2007), respectively, 77 

although no eggplant cultivars carrying the introgressions have been released so far  78 

(Toppino et al., 2021). 79 

 In addition to eggplant, two other related minor crops, namely the scarlet eggplant 80 

(S. aethiopicum L.) and the gboma eggplant (S. macrocarpon L.), were domesticated in 81 

Africa (Page et al., 2019b) and are mostly grown in the sub-Saharan region (Schippers, 82 

2000). Although they have local importance, they are relevant crops, particularly S. 83 

aethiopicum, in some parts of the world such as Brazil and the Caribbean, as well as in 84 

Southern Italy, where a Protected Denomination of Origin exists for the S. aethiopicum 85 

landrace ‘Melanzana Rossa di Rotonda’ (Schippers, 2000; Sunseri et al., 2010). Little 86 

research has been performed on these two minor African eggplant species. However, 87 

given that they share many characteristics, pathogens and pests with the common 88 

eggplant and the three domesticated eggplant species are cross-compatible (Bletsos et al., 89 

2004; Oyelana and Ugborogho, 2008; Rotino et al., 2014), they are genetic resources of 90 

interest to each other.  91 

 Eggplant displays a wide morphological diversity, even within a single varietal 92 

group, particularly for fruit traits such as size, color and shape (Figure 1), as well as for 93 

agronomic traits and adaptation to different environments (Cericola et al., 2013; Taher et 94 

al., 2017; Chapman, 2020; Kouassi et al., 2020; Ro et al., 2022; Salinier et al., 2022; 95 

Toppino et al., 2022). The diversity present within the cultivated eggplant is a valuable 96 

genetic resource of great interest for eggplant breeding and has allowed the development 97 

of significantly improved modern cultivars (Daunay and Hazra, 2012). However, as 98 

occurs with many other vegetables, this high morphological diversity is mostly the 99 

consequence of genetic variation in a few major genes, particularly those related to fruit 100 
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traits (Daunay et al., 2004; Portis et al., 2015; Toppino et al., 2016; Mangino et al., 2021; 101 

Arrones et al., 2022; Guan et al., 2022), and the overall genetic variation of the crop is 102 

narrow (Acquadro et al., 2017; Barchi et al., 2019a; Liu et al., 2019). Therefore, other 103 

cultivated eggplants (S. aethiopicum and S. macrocarpon) and wild eggplant relatives 104 

represent a largely unexplored genetic resource of paramount interest to eggplant breeders 105 

(Oyelana and Ugborogho, 2008; Prohens et al., 2012; Toppino et al., 2021). 106 

  107 

Eggplant breeding challenges for the present and the future: the need for a Green 108 

Revolution 109 

Although eggplant yield increased from a global average of 10.2 t/ha in the 1961-110 

1970 decade to 28.0 t/ha in the 2012-2021 decade (FAOSTAT, 2023), the Green 111 

Revolution that occurred in other major staple and vegetable crops (Hedden, 2003; Díez 112 

and Nuez, 2008) has not taken place yet in eggplant. Breeding advances and actual 113 

exploitation of genetic resources in eggplant, particularly those from related species, are 114 

not comparable to those obtained in other major vegetable crops such as tomato (Schouten 115 

et al., 2019). Despite the narrow genetic diversity and the availability of only a few CWRs 116 

exploitable for tomato, considerable broadening of the genetic base and genetic advances 117 

contributing to the tomato Green Revolution were achieved through introgression 118 

breeding. Among the achievements made using wild relatives as donors, the introgression 119 

of multiple genes for tolerance to diseases and fruit quality traits, the development of 120 

heterotic hybrids, the improvement of shelf-life, the diversification of varietal types, the 121 

adaptation to multiple environments (Díez and Nuez, 2008), enabled the production of a 122 

large number of highly productive tomato varieties of many different typologies, resistant 123 

to the major diseases and suited to different environments.  124 



   

 

6 

 

 Several eggplant commercial varieties display undesirable traits for modern 125 

markets and distribution chains, suggesting that eggplant breeding needs a leap forward 126 

to bring itself to the level of other vegetable crops. As an example, many cultivars display 127 

prickles on the calyx of the fruit, which not only represents a nuisance for farmers, 128 

marketers, and consumers but also results in the damage of fruits due to their prickling 129 

during storage and manipulation, leading to postharvest losses (Prohens et al., 2009; 130 

Miyatake et al., 2020). 131 

Like tomato, eggplant is self-compatible and mostly autogamous (Daunay and 132 

Hazra, 2012),  Indeed, in a study involving eggplant and tomato accessions genotyped by 133 

Single Primer Enrichment Technology (SPET), the heterozygosity of eggplant and 134 

tomato was reported to be 0.67% and 0.65%, respectively (Barchi et al., 2019a), 135 

confirming the mostly autogamous reproduction of the species, which in turn impacts on 136 

the breeding methods applicable. However, high levels of cross-pollination can occur 137 

when the circumstances are favourable, such as in open field conditions with the presence 138 

of pollinators (Quamruzzaman, 2021). Avoiding cross-pollination is highly relevant for 139 

maintaining purity in the case of reproduction of landraces or germplasm accessions. 140 

Breeding in eggplant traditionally relies on selection from both within and among 141 

landraces as well as in the development of F1 hybrids, which are predominant in high-142 

value markets (EU Plant Variety Database, 2022). It is known since long ago that F1 143 

hybrids in eggplant generally display heterosis for yield (Kakizaki, 1931; Sambandam, 144 

1964) and heterobeltiosis is also common (Rodríguez-Burruezo et al., 2008; Kumar et 145 

al., 2020). Selection of parents for heterotic hybrids is possible by evaluating the parents’ 146 

combining ability, as well as by selecting parents with high genetic distance using 147 

molecular markers (Rodríguez-Burruezo et al., 2008). It is worth remembering that 148 

landraces and pure line selections with excellent yields are also available and cultivated 149 
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(Muñoz-Falcón et al., 2009; Taher et al., 2017). However, further improvement of the 150 

yield potential remains a significant challenge in eggplant breeding, which could benefit 151 

from the incorporation of new genetic diversity to allow additional genetic advances 152 

(Muñoz-Falcón et al., 2009; Daunay and Hazra, 2012).  153 

One of the major current challenges in eggplant breeding is the development of 154 

breeding lines with an improved tolerance or resistance to major pests and diseases 155 

(Toppino et al., 2021), which may cause crop losses of up to 100% (Daunay and Hazra, 156 

2012; Arafa et al., 2022). Eggplant is affected by numerous diseases, although the most 157 

relevant in terms of economic impact is the bacterial wilt caused by Ralstonia 158 

solanacearum, which is highly prevalent in tropical regions (Lebeau et al., 2013; Barik 159 

et al., 2020). In many cases, bacterial wilt prevents eggplant cultivation unless plants are 160 

grafted onto resistant rootstocks (Namisy et al., 2019). Verticillium and Fusarium wilts, 161 

as well as nematodes, are also important eggplant pathogens in many regions of the world 162 

(Arafa et al., 2022). However, unlike in tomato where the incorporation of disease-163 

resistant genes introgressed from wild relatives are crucial technical innovations for the 164 

success of modern commercial varieties (Díez and Nuez, 2008; Schouten et al., 2019), 165 

most eggplant modern commercial varieties do not carry genes for disease resistance 166 

(Srinivasan, 2009). 167 

The eggplant fruit and shoot borer (Leucinodes orbonalis), is the most damaging 168 

and difficult pest to control in the Indian subcontinent, Southern and East Asia, where 169 

multiple insecticide sprays are used to partially control it (Srinivasan, 2008). This pest is 170 

such a damaging and limiting factor in eggplant cultivation that two countries 171 

(Bangladesh and the Philippines) have authorized the use of genetically modified Bt 172 

eggplants expressing the cry1Ac gene from Bacillus thuringiensis to control the eggplant 173 

fruit and shoot borer (Shelton et al., 2018; Gonzalvo et al., 2022). Additional pests 174 
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attacking S. melongena are spider mites, whiteflies and aphids, which affect other 175 

solanaceous crops as well (Srinivasan, 2009). To this purpose, the development of 176 

eggplant hairless materials (CleanLeaf®) has improved biological pest control in 177 

greenhouse cultivation, as the pests are more accessible to their predators and parasites. 178 

Abiotic stresses are expected to increase in the areas where eggplant is cultivated 179 

due to climate change (Toppino et al., 2022; Khalid et al., 2023). Although eggplant is 180 

mildly tolerant to water and salinity stresses (Heuer et al., 1986; Díaz-Pérez and Eaton, 181 

2015; Kouassi et al., 2020; Toppino et al., 2022), developing new varieties with better 182 

resilience is needed, particularly in drought-prone areas or where water and soil salinity 183 

is a problem for eggplant cultivation. Tolerance to extreme temperatures is also an 184 

important breeding objective. Despite being a warm-loving plant, high temperatures 185 

affect pollen viability and fruit set (Toppino et al., 2022) and heat-tolerant varieties are 186 

needed for production in the warm seasons. Tolerance to cold is also important in off-187 

season production in temperate areas, as growth and development are arrested, and fruit 188 

set impaired (Toppino et al., 2022). To this purpose, some parthenocarpic materials have 189 

been developed which can set fruit even under cold conditions affecting pollen viability 190 

(Kikuchi et al., 2008). Improving water and nutrient use efficiencies is also necessary for 191 

more sustainable agriculture as well. In this context, breeding for better root systems, 192 

which is in its infancy in eggplant, can lead to more sustainable production (Chapman, 193 

2020).  194 

  Diversification and improving fruit quality (Daunay and Hazra, 2012) represent 195 

other important challenges in breeding. Eggplant displays a large diversity of fruit sizes, 196 

shapes and colours, but unlike tomato, it is slightly available to the consumers. 197 

Furthermore, the genetics of these traits is still poorly understood, and although QTLs 198 

have been identified for fruit morphological traits (Portis et al., 2015; Toppino et al., 199 
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2016, 2020; Barchi et al., 2019c; Mangino et al., 2021), few causative genes have been 200 

identified. One exception is the APRR2 gene (Arrones et al., 2022), which controls the 201 

synthesis of fruit peel chlorophyll, as well as several genes involved in anthocyanin 202 

synthesis (Florio et al., 2021; He et al., 2022; Li et al., 2022). However, the causative 203 

genes underlying other important traits for fruit appearance such as the presence of fruit 204 

stripes, fruit netting or prickliness remain to be identified. Eggplant is one of the 205 

vegetables with higher antioxidant and bioactive properties, resulting from its high 206 

content of phenolic acids (Kaushik et al., 2015), which unfortunately are indirectly 207 

associated with increased browning of the fruit flesh (Mishra et al., 2013; Docimo et al., 208 

2016; Kaushik et al., 2017). Breeders therefore directly selected genotypes with low fruit 209 

browning led to the indirect selection of genotypes with low content in phenolic acids 210 

(Prohens et al., 2007).  To improve the phenolic acid content while limiting the effects of 211 

browning, selection for low polyphenol oxidase (PPO) activity has been proposed (Plazas 212 

et al., 2013). In this way, CRISPR/Cas knocking out of PPOs expressed in the fruit has 213 

been shown to reduce fruit flesh browning (Maioli et al., 2020; Kodackattumannil et al., 214 

2023)). Parthenocarpic fruit set is also of interest for reducing fruit browning, as browning 215 

is more intense in the tissues surrounding the seeds (Sarengaowa et al., 2022). Saponins 216 

present in the fruit flesh tissues contribute to the bitterness of some materials, which is an 217 

undesirable trait (Aubert et al., 1989). However, little information is available on the 218 

genetics of bitterness in eggplant.  219 

One of the major drawbacks of the use of wild relatives in eggplant introgression 220 

breeding is represented by glycoalkaloids, since eggplant CWRs often exhibit 221 

concentrations of these metabolites above those considered safe for human consumption 222 

(Aubert et al., 1989; Rosa-Martínez et al., 2022a). Rootstocks development is an 223 

emerging field in eggplant breeding. Rootstocks with robust root systems have been 224 
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shown to improve yield and confer tolerance to soil diseases and abiotic stresses in 225 

eggplant (Gisbert et al., 2011; Barik et al., 2020). In this way, wild eggplant relatives, as 226 

well as interspecific hybrids have demonstrated a high potential as rootstocks for 227 

improving eggplant production (Sabatino et al., 2018; Toppino et al., 2021). For example, 228 

the eggplant wild relative S. torvum, which is resistant to most soil diseases and 229 

nematodes, and hybrids between eggplant and scarlet eggplant, which provide vigor and 230 

good performance under cold conditions, are used as rootstocks at the commercial level 231 

(King et al., 2010; Schwarz et al., 2010; Calvo-Asensio et al., 2014; Ranil et al., 2015). 232 

Unlike tomato and other major vegetable crops, the systematic exploitation of 233 

genetic diversity and the use of modern technologies, such as molecular markers, for 234 

introgression breeding in eggplant have not sufficiently benefited the development of 235 

highly productive and resilient varieties with traits such as disease and pest resistance, 236 

yield heterosis through genetic diversity, tolerance to abiotic stresses, including improved 237 

rootstocks, removal of undesirable traits such as prickliness, and the development of long-238 

shelf life or seedless materials (Daunay and Hazra, 2012; Chapman, 2020; Arafa et al., 239 

2022; Toppino et al., 2022). To achieve an eggplant Green Revolution, systematic efforts 240 

must be made to efficiently and rapidly utilize the high genetic diversity present in 241 

eggplant and its close wild relatives (CWRs). In particular, the large genetic diversity 242 

present in CWRs has been barely exploited and used in eggplant breeding. Moreover, 243 

speed breeding techniques, which have proven to be an efficient tool for reducing 244 

generation cycles in tomato and Capsicum pepper (Ayenan et al., 2019; Liu et al., 2022; 245 

Gimeno-Páiz et al., 2023), are currently absent in eggplant breeding and should be 246 

developed for the eggplant Green Revolution. 247 

 248 

3. The eggplant genepools and their potential for eggplant breeding enhancement 249 
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The vast number of eggplant relatives, with their diverse phenotypic (Figure 1) 250 

and physiological characteristics and environmental adaptation differences greatly 251 

expands the access to exotic and wild genetic diversity for eggplant breeding. Indeed, 252 

eggplant can be hybridized with many wild relatives from the subgenus Leptostemonum, 253 

which contains over 500 species found in all tropical and subtropical regions of the world, 254 

exhibiting specific adaptations to a wide range of environments (Vorontsova and Knapp, 255 

2016; Knapp et al., 2019). Conventional breeding methods to introgress the traits of 256 

interest in eggplant from allied species were used only sporadically, as many wild 257 

relatives displayed partial cross-compatibility with the cultivated species, thus often 258 

hampering their effective employment for the crop improvement (Ano et al., 1991; 259 

Bletsos et al., 1998).  Nevertheless, interspecific hybrids between eggplant and wild 260 

relatives have been obtained through sexual crosses using several wild and allied species 261 

(Daunay and Hazra, 2012; Rotino et al., 2014; Premabati Devi et al., 2015; Plazas et al., 262 

2016; Daunay et al., 2019); This  includes species from the Old World (Rotino et al., 263 

2014; Plazas et al., 2016; Toppino et al., 2021), as the American species such as S. 264 

elaeagnifolium, S. torvum, S. viarum and S. sisymbriifolium (Daunay and Hazra, 2012; 265 

Rotino et al., 2014; Kouassi et al., 2016; Plazas et al., 2016), which diverged from 266 

eggplant approximately 6.7, 7.7, 8.3 and 8.9 million years ago, respectively (Särkinen et 267 

al., 2013). However, most of the studies have been conducted for taxonomic purposes 268 

and preliminary breeding works and no information is available about the outcomes of 269 

possible attempts of further backcrosses with eggplant (Toppino et al., 2021).  The 270 

accessibility for breeding of the available genetic diversity of eggplant-related species 271 

depends mainly on the genepool (primary, secondary, or tertiary) they belong to (Prohens 272 

et al., 2017), although there are significant differences within the secondary and tertiary 273 
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genepools in the crossability and ease of hybridization and subsequent introgression 274 

breeding (Kouassi et al., 2016; Plazas et al., 2016).  275 

The primary genepool (GP1) of eggplant consists of the cultivated eggplant S. 276 

melongena and its ancestor S. insanum L. (Syfert et al., 2016), which was previously 277 

considered a botanical variety of S. melongena (S. melongena var. insanum) (Knapp et 278 

al., 2013; Ranil et al., 2017). Although two genetic groups, named Occidental 279 

(predominantly grown in the Middle East, Europe and Africa) and Oriental (mostly grown 280 

in the Indian subcontinent, Southeast Asia and eastern Asia), have been recognized within 281 

S. melongena (Vilanova et al., 2012; Cericola et al., 2013) no genetic barriers exist 282 

between them or with S. insanum, and hybridization within and between S. melongena 283 

groups or between S. melongena and S. insanum is equally successful (Plazas et al., 2016; 284 

Daunay et al., 2019). Solanum insanum grows as a wild or weedy species in a wide range 285 

of environments in its natural distribution (Indian subcontinent, Southeast and Eastern 286 

Asia, Madagascar and some Indian Ocean islands) (Ranil et al., 2017). In these areas, S. 287 

melongena and S. insanum form a genetic continuum with intermediate forms resulting 288 

from hybridization, and genetic flow between both species has been documented (Knapp 289 

et al., 2013; Davidar et al., 2015; Mutegi et al., 2015; Page et al., 2019a). Despite its high 290 

potential interest (Table 1), S. insanum remains unexploited for the development of 291 

improved cultivars (Ranil et al., 2017). Nonetheless, due to the natural genetic flow 292 

between S. insanum and S. melongena, it is plausible that some unknown introgressions 293 

from the former have been inadvertently incorporated and utilized in eggplant breeding. 294 

This species, therefore, represents a reservoir of potential superior untapped alleles for 295 

traits of interest, including those related to climate changes, which could be easily 296 

incorporated into the S. melongena genepool. 297 
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The secondary genepool (GP2) is very broad in terms of number of species 298 

(Eggplant clade, Anguivi grade, and Climbing clade), geographic distribution (Africa, 299 

Indian subcontinent, Southeast and Eastern Asia), and environmental adaptation (from 300 

desertic areas to wet forests; from sea level to 3,300 m) (Vorontsova and Knapp, 2016; 301 

Syfert et al., 2016; Knapp et al., 2017). The wild ancestor of eggplant (S. insanum) 302 

diverged from all GP2 species between 1.5 and 4.6 million years ago (Särkinen et al., 303 

2013). Within the GP2, eggplant hybridization and introgression are easier with Eggplant 304 

clade species, showing a higher hybridization success, hybrid seed viability and pollen 305 

fertility than in the Anguivi grade and Climbing clade (Rotino et al., 2014; Plazas et al., 306 

2016). Generally, embryo rescue is unnecessary to obtain hybrids and backcrosses with 307 

S. melongena, although hybridization with GP2 species is more challenging than with 308 

GP1 materials (Kouassi et al., 2016; Plazas et al., 2016; Daunay et al., 2019) and 309 

sometimes alternative breeding strategies of somatic hybridization were necessary to 310 

obtain fertile hybrids (Rotino et al., 1998; Särkinen et al., 2013). Several species 311 

belonging to the GP2 such as S. anguivi, S. dasyphyllum, S. incanum, S. linnaeanum and 312 

S. tomentosum (Table 1) have been identified as of great interest for eggplant breeding 313 

due to their tolerance to biotic and abiotic stresses and high contents of bioactive 314 

compounds beneficial for human health (Syfert et al., 2016; Kaushik et al., 2017; Arafa 315 

et al., 2022; Toppino et al., 2022) and for some of them, introgressed and backcrossed 316 

population have been obtained,  while many GP2 species remain unexplored.  Moreover, 317 

the two cultivated eggplants (S. aethiopicum and S. macrocarpon) are also valuable for 318 

eggplant breeding, as aside from presenting characteristics of interest for eggplant 319 

breeding, they display the typical traits associated to the domestication syndrome, which 320 

facilitates their use in breeding (Särkinen et al., 2013; Plazas et al., 2014). 321 
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Hybridization of eggplant with around 20 GP2 species has been achieved, 322 

including the Anguivi grade cultivated species S. aethiopicum and S. macrocarpon, as 323 

well as with S. linnaeanum, S. incanum and S. tomentosum (Daunay and Hazra, 2012; 324 

Särkinen et al., 2013; Rotino et al., 2014; Plazas et al., 2016; Daunay et al., 2019; 325 

Toppino et al., 2021). Different kinds of introgression materials were obtained with 326 

eggplant relatives from the GP2, mostly aimed at exploiting resistance traits to pathogens 327 

and adverse environmental conditions. The tertiary genepool (GP3) is genetically very 328 

diverse, including species found in Africa and Madagascar, as well as in Australia, Pacific 329 

Islands, Asia and in distant American species of subgenus Leptostemonum (Figure 3) 330 

(Knapp et al., 2013; Syfert et al., 2016). As expected, the success of hybridization of 331 

eggplant with GP3 species is very low, although attempts of obtaining interspecific 332 

hybrids with eggplant have been reported and achieved only in a few cases, including the 333 

Madagascar species S. pyracanthos and the American S. elaeagnifolium, S. 334 

sisymbriifolium, S. torvum, and S. viarum (Rotino et al., 2014; Kouassi et al., 2016; Plazas 335 

et al., 2016; Daunay et al., 2019). In many cases, embryo rescue was necessary, especially 336 

in crosses with American species. Although interspecific hybrids between eggplant and 337 

American species are highly sterile, some backcrosses to eggplant were obtained when 338 

the interspecific hybrid with S. elaeagnifolium was used as maternal parent, suggesting 339 

the possibility to exploit previously untapped GP3 genetic material for introgression 340 

breeding (Plazas et al., 2016; García-Fortea et al., 2019). 341 

Overall, the large genetic, phenotypic and physiological diversity present in the 342 

three genepools represents an enormous potential for eggplant breeding, which has been 343 

barely explored, particularly in the case of wild species (Daunay and Hazra, 2012; Rotino 344 

et al., 2014; Taher et al., 2017; Toppino et al., 2021, 2022; Arafa et al., 2022; Salinier et 345 

al., 2022). Unlocking this high diversity will be essential for developing new materials 346 
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with adaptation to climate change and meeting the urgent need for an eggplant Green 347 

Revolution. 348 

 349 

4. Eggplant germplasm collections 350 

Based on the recent Global Strategy for the Conservation and Use of Eggplants 351 

(Solberg et al., 2022), 19,020 accessions of cultivated eggplants and relatives are 352 

conserved in 110 germplasm banks and collections around the world (Figure 3). (FAO, 353 

2010)The largest genebank collections of eggplant are conserved at the National Bureau 354 

of Plant Genetic Resources (India; 4,236 accessions), the World Vegetable Center (an 355 

international organization with eggplant germplasm collections headquartered in Taiwan; 356 

3,036 accessions), the INRAE Genebank of France (2,388 accessions), the National 357 

Genebank for Vegetable Germplasm Resources of China (1,601 accessions) and the 358 

NARO Genebank of Japan (1,501 accessions) (Taher et al., 2017; Salinier et al., 2022; 359 

Solberg et al., 2022).  360 

When considering the Genesys and WIEWS databases, most of the conserved 361 

materials correspond to cultivated S. melongena (12,665 accessions), S. aethiopicum 362 

(1,004) and S. macrocarpon (208) while the wild species of the GP1, GP2 and GP3 363 

genepools are much less represented (2,351 accessions in total) (Solberg et al., 2022). 364 

Among the wild species, S. incanum is the most abundant (GP2; 423 accessions), 365 

followed by S. torvum (GP3; 358 accessions), S. aculeatissimum (GP3; 210 accessions), 366 

S. virginianum (GP2; 187 accessions) and S. grandiflorum (GP3; 184 accessions). 367 

However, apart from these five wild species, the number of remaining wild species 368 

accessions from GP2 and GP3 of eggplant is dramatically low, with just 14 species having 369 

more than 10 accessions conserved, while for many others no accessions are conserved 370 

at all (Solberg et al., 2022). This is particularly evident for the 14 eggplant CWRs 371 
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classified as at risk of extinction (one critically endangered, nine threatened, three near 372 

threatened, and one extinct in the wild), for which no accessions are conserved in 373 

germplasm banks for six of them (including S. ruvu, which is considered extinct in the 374 

wild), and for the remaining, up to just four accessions are conserved ex situ (Syfert et 375 

al., 2016).  376 

Relevant information for the in situ conservation, i.e. the on-site management of 377 

genetic resources, is available thanks to Syfert et al. (2016). The study identified hotspots 378 

of diversity of eggplant crop wild relatives in southern and eastern Africa and the Indian 379 

subcontinent. These hotspots, found in protected areas of Kenya, Tanzania, and Uganda, 380 

are potential areas of interest for establishing in situ conservation policies and collecting 381 

genetic resources to fill germplasm gaps in ex situ collections. However, few in situ 382 

programmes are ongoing. A total of five eggplant wild relatives (S. lidii, S. linnaeanum, 383 

S. marginatum, S. sisymbriifolium, and S. torvum) are included in the European priority 384 

CWR taxa (Rubio Teso et al., 2021), although none of them is native to continental 385 

Europe (Vorontsova et al., 2013; Vorontsova and Knapp, 2016), and two (S. 386 

sisymbriifolium and S. torvum) are invasive (Alaniz et al., 2020; Musarella, 2020). Two 387 

of these species (S. lidii and S. marginatum) are found only in one European country, and 388 

specific conservation sites exist only for S. lidii, which is an endangered endemism of the 389 

Canary Islands (Gramazio et al., 2020; Rubio Teso et al., 2021).  390 

The level of exploration of the cultivated eggplant germplasm is variable, 391 

depending on the traits. While passport data are available for most accessions conserved 392 

in germplasm banks, the availability of characterization data, generally performed using 393 

standardized descriptors such as those of Bioversity (IBPGR, 1990), UPOV (2002) or 394 

EGGNET (van der Weerden and Barendse, 2007), is much more limited. On the one hand, 395 

some phenotypic studies were performed using a large number of accessions (>150) and 396 
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aiming at evaluating the morphological diversity of cultivated eggplant (Cericola et al., 397 

2013; Kumar et al., 2013; Liu et al., 2018; Oladosu et al., 2021; Ro et al., 2022). These 398 

studies revealed a large diversity of morpho-agronomic characteristics in the cultivated 399 

eggplant genepool and provided relevant information for their utilization in breeding. 400 

Large screening for evaluation traits in germplasm collections of eggplant relatives is 401 

more limited. Field evaluation of 70 S. aethiopicum accessions, mostly belonging to gilo 402 

group, was assessed for morpho-physiological, molecular (AFLP and SSR markers) and 403 

chlorogenic acid content highlighted a wide genetic diversity (Sunseri et al., 2010).  A 404 

total of 125 accessions of S. aethiopicum and S. macrocarpon were evaluated by Taher et 405 

al. (2019) for resistance to the two-spotted spider mite (Tetranychus urticae), resulting in 406 

the identification of high levels of resistance in two accessions of S. macrocarpon. In 407 

another large evaluation study, Stommel and Whitaker (2003) studied the phenolic acid 408 

profiles of 115 accessions, mostly of cultivated S. melongena, but also including some 409 

accessions of S. aethiopicum, S. anguivi, S. incanum and S. macrocarpon. Another study 410 

on 73 accessions, most of which were of S. melongena, but also included S. aethiopicum 411 

and S. macrocarpon, also found large variations in total phenolics content (8.4-fold), and 412 

fruit flesh browning (7.3-fold), but less in ascorbic acid (2.3-fold) (Prohens et al., 2007). 413 

Overall, given the large number of species in the GP2 and GP3 of eggplant, the 414 

Focused Identification of Germplasm Strategy (FIGS), which is based on the assumption 415 

that wild accessions growing in specific environments must have adaptive genes to these 416 

conditions (Street et al., 2016), might help in identifying putative species or accessions 417 

of interest for tolerance to a certain biotic or abiotic stress (Prohens et al., 2017). 418 

However, the exploration of eggplant and relatives germplasm collections for traits 419 

relevant to adaptation to climate change has been very scarce until now. To achieve an 420 
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eggplant Green Revolution, it is essential to systematically evaluate the available 421 

variation and identify sources of variation for adaptation to climate change.  422 

 423 

5. Use of genetic resources in breeding: achievements and challenges 424 

 Selections of eggplants started very early in breeding, with accessions having 425 

improved characteristics already present in seed catalogues in the late 19th and early 20th 426 

centuries (Daunay and Janick, 2007). In addition, heterosis for yield was already reported 427 

in 1931 (Kakizaki, 1931), which opened the door for the development of hybrid varieties 428 

with improved features. Genetic improvements in eggplant have relied on the use of 429 

germplasm, and breeders have been using the eggplant germplasm (mostly of cultivated 430 

S. melongena) for breeding and developing new selections, lines and hybrids. According 431 

to a survey of germplasm banks (Solberg et al., 2022), the number of eggplant accessions 432 

distributed per year ranged between 0 and 503, revealing that some germplasm banks 433 

make a significant distribution to users, many of whom are breeders. 434 

 The genetic improvements of eggplant are evident in the characteristics of modern 435 

cultivars, which are considerably better in yield and overall quality than landraces. 436 

Indeed, as an example by considering the western market, modern F1 hybrids cultivars 437 

have no prickles, greater earliness, intense black colour and epidermis shininess, and 438 

lower fruit flesh browning (Prohens et al., 2007; Muñoz-Falcón et al., 2009) or increased 439 

yield (Sambandam, 1964; Rodríguez-Burruezo et al., 2008; Daunay and Hazra, 2012; 440 

Kaushik et al., 2018; Kumar et al., 2020).  The development of modern eggplant cultivars 441 

has been mainly carried out employing the cultivated genepool. This resulted in the 442 

reduction of the genetic base of the eggplant elite breeding lines and materials used for 443 

developing modern F1 hybrids. For instance, Muñoz-Falcón et al. (2009) evaluated the 444 

genetic diversity of black eggplants of different groups and found that modern F1 hybrids 445 
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have a narrow genetic base and share a common genepool. This situation is in contrast to 446 

tomato, where the widespread use of CWRs, especially for introgressions of biotic 447 

resistance traits increased the genetic diversity of modern varieties (Díez and Nuez, 2008; 448 

Schouten et al., 2019). The exploitation of cultivated eggplant germplasm allowed the 449 

development of new cultivars and elite materials with improved resistance or tolerance to 450 

pests and diseases. Indeed, sources of resistance to the most significant pests, including 451 

the eggplant fruit and shoot borer, leafhopper, aphids, spider mites, and whiteflies, as well 452 

as to the primary diseases such as bacterial wilt, Fusarium, and Verticillium wilts, have 453 

been identified (Taher et al., 2017; Arafa et al., 2022; Salinier et al., 2022). Many of these 454 

cultivated accessions have been transferred to researchers and breeders to incorporate 455 

them into their breeding pipelines (Taher et al., 2017). However, while some quantitative 456 

improvements have been achieved, resulting in cultivars with improved tolerance, the 457 

genetic diversity for resistance to these biotic stresses present in the primary genepool of 458 

eggplant seems to be limited (Taher et al., 2017).  459 

 Accessions of wild species of eggplant GP2 and GP3 species, as well as from the 460 

cultivated S. aethiopicum, have been employed for introgression breeding (Mennella et 461 

al., 2010; Liu et al., 2015; Gramazio et al., 2017; Plazas et al., 2020; Villanueva et al., 462 

2021). Eggplant lines fully resistant to Fusarium wilt have been obtained by introgressing 463 

the Rfo-sa1 resistance locus from S. aethiopicum (Toppino et al., 2008). Interestingly, the 464 

response mechanism to Fom inoculation triggered by this locus is also able to protect the 465 

plant from Verticillium wilt (Barbierato et al., 2016; Barchi et al., 2018) when the two 466 

fungi are used in a combined artificial inoculation. These elite Fusarium wilt-resistant 467 

lines introgressed from S. aethiopicum, along with associated molecular markers, are of 468 

great interest for the development of commercial cultivars. 469 
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Solanum linnaeanum has also been used in introgression breeeding for the development 470 

of early backcross eggplant materials with resistance to Verticillium wilt (Acciarri et al., 471 

2004; Liu et al., 2015). However, no eggplant commercial cultivars with resistance 472 

derived from S. linnaeanum have been produced until now. 473 

First backcross generations of eggplant with S. aethiopicum as a donor displayed a wide 474 

morphological variability (Prohens et al., 2012). Similarly, high morphological diversity 475 

and a wide range of values for phenolic acid contents were found in the first backcross 476 

generations using S. incanum as the donor parent (Prohens et al., 2013). However, 477 

introgression lines derived from these early S. incanum backcrosses were largely similar 478 

to the recurrent parent, although two lines with higher plant vigour were identified 479 

(Mangino et al., 2020). Some advanced backcrosses with S. elaeagnifolium exhibited a 480 

higher yield than the recurrent S. melongena parent (Villanueva et al., 2021). However, 481 

these materials are still in an early stage of development and have not been used for the 482 

development of new cultivars. In addition, several species such as S. aethiopicum, S. 483 

anguivi, S. grandiflorum, S. kurzii, S. violaceum and S. virginianum have been used for 484 

the development of aloplasmic lines of eggplant that display cytoplasmic male sterility 485 

(Khan and Isshiki, 2016). These male-sterile lines have potential interest in the production 486 

of hybrids. However, to our knowledge, aloplasmic male sterility has not been used so far 487 

in the commercial production of eggplant hybrids. 488 

Eggplant wild species and interspecific hybrids have also been explored for their 489 

use as rootstocks, mainly with the aim of obtaining resistance to diseases and enhanced 490 

vigour (King et al., 2010; Schwarz et al., 2010). In this way, apart from selections of S. 491 

torvum and interspecific hybrids between eggplant and S. aethiopicum used as 492 

commercial rootstocks, other wild species, such as S. anguivi, S. incanum, S. insanum, S. 493 

palinacanthum or S. sisymbriifolium (Gisbert et al., 2011; Rakha et al., 2020; Kumbar et 494 
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al., 2021; Murata et al., 2022) were proposed as potential new rootstocks. However, no 495 

commercial rootstocks have been developed so far from these latter species. One potential 496 

reason is that some of these species with potential interest have prickly stems (Vorontsova 497 

et al., 2013; Vorontsova and Knapp, 2016), making the grafting procedure difficult and 498 

unusable for mass-scale grafting, typical of field cultivation (Figure 4).  499 

It is worth considering that interspecific hybrids of eggplant with some wild 500 

species such as S. tomentosum or S. elaeagnifolium (Figure 4) are highly vigorous and 501 

have an extended root system (García-Fortea et al., 2019), making them exploitable as 502 

rootstocks. However, in some cases such as the hybrids between S. melongena and S. 503 

elaeagnifolium, the obtainment of hybrids is very challenging and requires embryo rescue 504 

(Kouassi et al., 2016), limiting their exploitation. Introgression breeding with wild 505 

species that display high contents of glycoalkaloids (solasonine and solamargine) might 506 

result in the inadvertent increase of these glycoalkaloids in the recurrent eggplant parents. 507 

However, studies performed by Mennella et al. (2010) with S. aethiopicum and S. 508 

linnaeanum and by Rosa-Martínez et al. (2022a) with S. incanum did not detect 509 

significantly higher levels of glycoalkaloids in introgression lines (ILs) with these species 510 

than in the recurrent parents. However, given that these ILs did not represent the whole 511 

genome of the donor parents, the evaluation of glycoalkaloids should be performed in the 512 

elite materials obtained after the introgression process with eggplant relatives that exhibit 513 

high contents in potentially harmful glycoalkaloids. Similarly, given that in Solanaceae 514 

glycoalkaloids synthesized in the roots can move up in the plant (Kodama et al., 2021), 515 

in the case of using wild species or interspecific hybrids with high contents of 516 

glycoalkaloids as rootstocks, the content in the fruit should be checked to ensure the safety 517 

of the potential new commercial varieties.  518 
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 Although considerable improvements have been made in eggplant breeding, the 519 

diversity used mostly relied on the cultivated eggplant S. melongena (Daunay and Hazra, 520 

2012; Taher et al., 2017; Kumar et al., 2020). Furthermore, breeding efforts have been 521 

made in using eggplant CWRs for breeding, even if they did not have a major impact on 522 

the modern cultivars presently grown. As in other important crops, a qualitative leap 523 

forward in genetic advances for a “Green Revolution” in eggplant will require unleashing 524 

the huge potential of CWRs, which is still largely unexploited. 525 

 526 

6. A new generation of genetic resources 527 

 Besides germplasm accessions of eggplant cultivated and CWRs, during the last 528 

years a new generation of eggplant genetic resources, consisting of core collections, 529 

recombinant inbred lines, and introgression lines have been generated (Toppino et al., 530 

2008, 2018, 2020; Gangopadhyay et al., 2010; Mennella et al., 2010; Lebeau et al., 2013; 531 

Gramazio et al., 2017; Barchi et al., 2018; Miyatake et al., 2019; Mishra et al., 2020; 532 

Arrones et al., 2022; Ro et al., 2022; Gaccione et al., 2022; Mangino et al., 2022). These 533 

materials are considered immortal since they can be regenerated by selfing for seed 534 

propagation. This is in contrast to F2 and early backcross materials, for which several 535 

populations have been obtained in eggplant (Daunay and Hazra, 2012; Prohens et al., 536 

2012, 2013; Clarke et al., 2014; Portis et al., 2014; Toppino et al., 2016; Boyaci et al., 537 

2021; Qian et al., 2022), and where each individual has a variable degree of heterozygosis 538 

and can be thus maintained only by vegetative propagation.  539 

We should also point out that a few mutant collections exist so far for eggplant (Xi-ou et 540 

al., 2017; Du et al., 2022). Two ethyl methane sulfonate (EMS) mutant libraries of 400 541 

and 790 M2 lines, which were generated and used to identify mutants for phenotypic traits, 542 
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including dwarf mutant plants (Xiao et al., 2016; Xi-ou et al., 2017; Lu et al., 2021; Du 543 

et al., 2022).  544 

Core collections allow a representation of most of the diversity of large germplasm 545 

set in a reduced number of accessions (Odong et al., 2013) exploitable for genotype to 546 

phenotype studies. The first eggplant core collection of 181 eggplant accessions was 547 

developed by Gangopadhyay et al. (2010) from an original set of 1,798 accessions by 548 

using 14 morphological descriptors. In a first attempt to apply a GWA approach in 549 

eggplant, Ge et al. (2013) were able to identify several phenotype/genotype associations 550 

related to eight fruit-related traits. Subsequently, a selected eggplant association panel of 551 

191 selected accessions (Cericola et al., 2013), comprising a mixture of breeding lines, 552 

old varieties and landrace selections originating from Asia and the Mediterranean Basin, 553 

was SNP genotyped and phenotyped. This allowed the identification and positioning of 554 

several marker/trait associations related to fruit, plant and leaf morphological traits 555 

relevant to eggplant breeding (Cericola et al., 2014; Portis et al., 2015) as well as to 556 

identify contrasting genotypes for Nitrogen Use Efficiency (Mauceri et al., 2020) and, 557 

most recently, to identify the gene networks responsible of such diversity (Mauceri et al., 558 

2021). 559 

Subsequently, Miyatake et al. (2019) genotyped 893 accessions, mostly from 560 

Asia, with 831 SNPs and 50 SSRs and established a core collection of 100 accessions 561 

(World Eggplant Core; WEC). More recently, a core collection of 288 accessions from 562 

an initial set of 587 accessions by using 52 SNP markers complemented with agro-563 

morphological traits (Ro et al., 2022). The combination of both types of data resulted in 564 

the identification of significant associations of SNPs with six traits, which allowed the 565 

identification of several candidate genes. Another core collection of 322 S. melongena 566 

accessions was obtained from an original set of over 3,600 accessions (Gaccione et al., 567 
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2022), most of which were genotyped with the 5k probes eggplant SPET platform (Barchi 568 

et al., 2019a). This core collection has been re-sequenced and phenotyped at three 569 

locations for multiple agronomic and composition traits (Gaccione et al., 2022) and has 570 

already proved useful in identifying allelic variants for the SmAPRR2 transcription factor 571 

responsible for chlorophyll pigmentation in the eggplant fruit peel (Arrones et al., 2022). 572 

Recombinant inbred lines from bi-parental or multi-parental crosses are genetic 573 

resources of great relevance, as each of them is a different genetic mosaic of the parents 574 

(Arrones et al., 2020). Therefore, new genotypes of interest for breeding combining 575 

desirable characteristics present in the set of parents may be recovered in the set of RILs. 576 

In addition, in the absence of selection, bi-parental or multi-parental RILs sets do not 577 

present genetic structure, which makes them a powerful tool for the detection of major 578 

genes and QTLs involved in traits of interest (Cockram and Mackay, 2018). Several RILs 579 

populations of eggplant, all of them have in common that they have one eggplant relative 580 

(S. aethiopicum or S. incanum) in their pedigree, have been obtained from bi-parental 581 

crosses (Lebeau et al., 2013; Toppino et al., 2020). A first RIL of 178 F6 lines was 582 

obtained by single seed descend from the F2 generation obtained after crossing an 583 

eggplant line (MM738) susceptible to bacterial wilt with a resistant breeding line (AG91-584 

25) derived from the crossing of a resistant S. melongena and an S. aethiopicum accession 585 

(Lebeau et al., 2013). Genotyping of this RIL population with AFLP, SSR and SRAP 586 

markers allowed the construction of a genetic map with 119 polymorphic markers in 587 

which a major dominant gene and several QTLs were detected. Interestingly, some RILs 588 

displayed better performance than the resistant parent (AG91-25) for some of the 589 

resistance traits evaluated (Lebeau et al., 2013). More recently, Toppino et al. (2020) 590 

developed a RIL population of 163 F7 lines derived from single seed descend of the F2 591 

from the cross between eggplant lines ‘305E40’ and ‘67/3’. The parent ‘305E40’ derived 592 
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from the repeated backcrossing of a doubled haploid of the somatic hybrid between S. 593 

melongena and S. aethiopicum to two eggplant lines and carries the Rfo-sa1 gene from S. 594 

aethiopicum, which confers resistance to F. oxysporum f. sp. melongenae (Fom), as well 595 

as tolerance to Verticillium wilt (Barbierato et al., 2016; Barchi et al., 2018; Toppino et 596 

al., 2018). This RIL population was mild sequenced and employed to anchor the genome 597 

of the male parent ‘67/3’ (Barchi et al., 2019b). More recently the same population was 598 

genotyped by GBS, resulting in over 10k polymorphic markers, which allowed the 599 

development of a high-density genetic map and the identification of a large number of 600 

QTLs, as well as candidate genes, for multiple morphological and metabolic traits 601 

(Toppino et al., 2020; Sulli et al., 2021), together with the characterization of two major 602 

QTLs for resistance to Fom (Tassone et al., 2022). Also, Mishra et al. (2020) developed 603 

a RIL population of 114 F8 RILs from the crossing between a cultivated landrace 604 

(Ramnagar Giant) and an accession of S. incanum (W-4), allowing the development of a 605 

genetic map after genotyping the population with 282 polymorphic RAPD, ISSR, SCoT 606 

and SSR markers.  607 

Following the intercrossing of eight parental lines (seven S. melongena of 608 

different origins and characteristics and one S. incanum), the only multiparental RIL 609 

population (MAGIC) of eggplant (MEGGICS3) is available, constituted of 420 S3 lines 610 

that were resequenced at an average of an average depth of 20x (Gramazio et al., 2019). 611 

The MEGGICS3 population was developed following a funnel scheme and single seed 612 

descend from the S0 quadruple hybrid recombinant generation (Mangino et al., 2022) and 613 

has been genotyped with the eggplant 5k probes SPET, resulting in 7,724 high-confidence 614 

SNPs. The phenotyping of plant and fruit anthocyanic pigmentation as well as fruit peel 615 

chlorophyll presence has allowed the identification of several major QTLs and candidate 616 

genes for the traits evaluated (Arrones et al., 2022; Mangino et al., 2022). Interestingly, 617 
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in combination with the G2P-SOL core collection, the MAGIC population has allowed 618 

identifying the gene SmAPRR2 as responsible for fruit chlorophyll pigmentation in the 619 

fruit peel. 620 

The first ILs of eggplant with related species were obtained after backcrossing two 621 

somatic hybrids or dihaploids derived from them resulting from the crossing between 622 

eggplant lines 1F5(9) and Dourga and two S. aethiopicum lines (Toppino et al., 2008). 623 

Also, introgression lines were obtained after hybridization of several eggplant lines with 624 

S. linnaeanum (Mennella et al., 2010). In total, 57 ILs derived from these programmes 625 

after 6-7 cycles of backcrossing were studied for several health-related compounds and 626 

PPO activity (Mennella et al., 2010). The results revealed that both ILs sets displayed 627 

similar levels to the recurrent parents for glycoalkaloids, indicating their safety for human 628 

consumption, while a significant number of ILs displayed better values for antioxidant 629 

compounds. Subsequently, Gramazio et al. (2017) used marker-assisted selection in the 630 

repeated backcrossings (up to BC6) and subsequent selfings between S. melongena 631 

accession ANS26 and S. incanum accession MM577. This resulted in 25 ILs with single 632 

introgressions that covered 61.7% of the S. incanum genome, which was recently 633 

increased to over 70% of the S. incanum MM577 genome (Plazas et al., 2020). A subset 634 

of these ILs have been characterized for morphological and agronomic traits (Mangino et 635 

al., 2020; Rosa-Martínez et al., 2022b), fruit shape characteristics (Mangino et al., 2021), 636 

and composition (Rosa-Martínez et al., 2022a,b), putting in evidence several stable QTLs 637 

and revealed the low levels of glycoalkaloids found in the ILs. Toppino et al. (2018) 638 

recently developed 90 ILs carrying introgressions from the wild relative S. tomentosum, 639 

which may be of great interest for breeding for resistance to several traits present in this 640 

wild relative, such as resistance to Fusarium, Verticillium or nematodes as well as to 641 

whitefly (Taher et al., 2020). New sets of ILs with S. insanum, S. dasyphyllum and S. 642 
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elaeagnifolium are in advanced stages of development (Plazas et al., 2020) and will soon 643 

increase the diversity available to eggplant breeders from so far unexplored exotic genetic 644 

resources. In this way, advanced backcrosses with S. elaeagnifolium under low N 645 

conditions have revealed a great potential of the introgressions from this species for 646 

sustainable agriculture (Villanueva et al., 2021). 647 

These new generations of genetic resources make extant eggplant genetic diversity 648 

more accessible to breeders, allowing the development of new recombinant genotypes 649 

and representing powerful tools for identifying genes/alleles and QTLs associated with 650 

traits of interest, including complex traits such as those related to climate change (Prohens 651 

et al., 2017; Chapman, 2020). The extended use of these materials, which has already 652 

started to demonstrate their potential for eggplant breeding (Lebeau et al., 2013; Barchi 653 

et al., 2018; Mangino et al., 2020, 2022; Arrones et al., 2022) will be of paramount 654 

importance in the development of the eggplant Green Revolution. 655 

 656 

7. Genomic and biotechnological tools to enhance the exploitation of genetic 657 

resources for the enhancement of genetic resources 658 

New genomic tools such as high-throughput genotyping derived from NGS 659 

technologies, reference genomes, pangenomes, resequencing projects can efficiently 660 

contribute to the enhancement of eggplant genetic resources and are essential for the 661 

eggplant Green Revolution (Gramazio et al., 2018; Lanteri and Barchi, 2019; Simko et 662 

al., 2021). Although DNA molecular markers of different types, such as RAPDs, AFLPs 663 

and SSRs have been widely used for eggplant genotyping and genetic mapping since the 664 

early 1990s (Collonnier et al., 2001; Gramazio et al., 2014, 2018), the availability of NGS 665 

technologies allowed an easier genotyping of large sets of accessions and experimental 666 

populations with hundreds to thousands of markers, contributing to the evaluation of the 667 
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eggplant and CWRs genetic diversity, the establishment of genetic relationships of 668 

germplasm sets and identification of QTLs (Barchi et al., 2019c; Liu et al., 2019; 669 

Miyatake et al., 2019; Toppino et al., 2020; Sulli et al., 2021; Mangino et al., 2022; Ro 670 

et al., 2022; Tassone et al., 2022; Gaccione et al., 2023), which is of interest in identifying 671 

materials for breeding and germplasm management (Lanteri and Barchi, 2019; Arafa et 672 

al., 2022; Toppino et al., 2022).  673 

A first draft of the eggplant genome was published in 2014 (Hirakawa et al., 674 

2014), but improved eggplant genome assemblies have not been available until recently 675 

(Wei et al., 2020; Barchi et al., 2021, 2022; Li et al., 2021) and this has delayed the 676 

application of the potential of resequencing and pangenome projects to eggplant genetic 677 

resources enhancement and management. Also, the availability of resequencing data from 678 

eight accessions (Gramazio et al., 2019) allowed the development of the eggplant 5k 679 

probes SPET platform (Barchi et al., 2019a), which is the first specific eggplant 680 

genotyping platform. The SPET genotyping platform has been used for the genotyping of 681 

germplasm of eggplant and wild relatives and the first MAGIC population (Barchi et al., 682 

2019a, 2022; Gramazio et al., 2020; Arrones et al., 2022) as well as the marker-assisted 683 

selection for the development of introgression lines (Plazas et al., 2020; Villanueva et al., 684 

2021). The first eggplant pangenome, which included the resequencing data of 23 685 

accessions of S. melongena and two of CWRs (S. incanum and S. insanum) is very recent 686 

(Barchi et al., 2021). This eggplant pangenome allowed the identification of additional 687 

genes compared to the reference genome used, as well as selective sweeps during 688 

domestication and the associated underlying candidate genes (Barchi et al., 2021).  689 

Genebank genomics can help in the management and utilization of eggplant germplasm 690 

collections (Mascher et al., 2019), but so far no studies have been performed on eggplant. 691 

Similarly, the potential of landscape genomics (Li et al., 2017) to identify materials of 692 
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eggplant with adaptive genes to specific environmental conditions has not been exploited 693 

yet. Both genomics approaches have a lot of potential for contributing to the eggplant 694 

Green Revolution. The genetic/genomic data and the phenotypic information available 695 

on the eggplant genetic resources (i.e. core collection and experimental populations) 696 

might lay the foundation to start applying genome-enable prediction methods to both 697 

accelerate eggplant breeding and increase the efficiency of the selection processes. 698 

New Plant Breeding Techniques (NPBTs) such as CRISPR/Cas genome editing 699 

represent valuable tools useful to create novel genetic variation as well as to determine 700 

the function of target genes via targeted mutagenesis. However, only two studies have 701 

been published so far on CRISPR/Cas gene editing in eggplant (Maioli et al., 2020; 702 

Kodackattumannil et al., 2023), probably as a consequence of the recalcitrance of S. 703 

melongena to in vitro regeneration (García-Fortea et al., 2020). In the study of Maioli et 704 

al. (2020), polyphenol oxidase (PPO) genes PPO4, PPO5, and PPO6 were knocked out, 705 

which resulted in reduced fruit flesh browning demonstrating how the creation of new 706 

allelic variation contributed to the improvement of an important trait. In a subsequent 707 

study, Kodackattumannil et al. (2023) found that CRISPR/Cas mutation of PPO2 resulted 708 

in the inhibition of fruit flesh browning, but also had multiple pleiotropic effects in 709 

morphological and agronomic traits.  710 

 711 

Conclusions and future perspectives 712 

The exploration of the cultivated and wild eggplant germplasm both at the 713 

phenotypic and molecular level is required for the identification of sources of variation 714 

for new traits barely explored so far, such as tolerance to new stresses caused by climate 715 

change as well as for improved sustainability, such as water and fertilizers use 716 

efficiencies. The establishment of core collections, such as the ones already existing 717 
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(Gangopadhyay et al., 2010; Miyatake et al., 2019; Gaccione et al., 2022; Ro et al., 2022), 718 

as well as the FIGS strategy of identification of potentially useful germplasm (Street et 719 

al., 2016), genebank and landscape genomics (Li et al., 2017; Mascher et al., 2019) may 720 

help in facilitating the identification accessions of interest. 721 

The eggplant Green Revolution requires a coordinated enhancement of its genetic 722 

resources. Two major international initiatives, the “Adapting Agriculture to Climate 723 

Change” (2011-2021) initiative of the Global Crop Diversity Trust (Dempewolf et al., 724 

2014), and the H2020 project G2P-SOL (2016-2021) have demonstrated the enormous 725 

potential of international collaboration in the improved conservation and utilization of 726 

eggplant genetic resources. In this way, the eggplant activities and projects performed 727 

under the “Adapting Agriculture to Climate Change” (2011-2021) initiative allowed the 728 

identification of gaps in the eggplant CWRs germplasm collections and proposed 729 

priorities for collection and in situ conservation (Syfert et al., 2016), as well as the 730 

collection of 474 new accessions of eggplant and CWRs (32 different species) for the 731 

completion of these gaps (Eastwood et al., 2022). Also, this initiative allowed the 732 

development of advanced backcrosses and ILs with four different eggplant CWRs (S. 733 

dasyphyllum, S. elaeagnifolium, S. incanum and S. insanum) (Gramazio et al., 2017; 734 

Plazas et al., 2020; Villanueva et al., 2021). Characterization of these sets of ILs for 735 

multiple traits and stress conditions is expected to result in new materials with improved 736 

adaptation to climate change (García-Fortea et al., 2019; Plazas et al., 2020). The 737 

“Adapting Agriculture to Climate Change” initiative has also contributed to the 738 

development of the Germinate platform (Raubach et al., 2021), which includes a database 739 

on eggplant (https://ics.hutton.ac.uk/cwr/eggplant) that contains 59 datasets with 740 

genotypic and phenotypic data from cultivated eggplant, wild species and pre-breeding 741 

materials.   742 
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The H2020 project G2P-SOL represents another landmark for the enhancement 743 

of genetic resources of S. melongena and the species of its genepools, in which the 5k 744 

probes SPET platform was designed (Barchi et al., 2019a) and used for the largest 745 

genotyping effort in eggplant germplasm (around 3,500 accessions), allowing the 746 

evaluation of diversity of the eggplant genepool, establishment of relationships, 747 

identification of duplicates, and in combination with historical characterization data the 748 

identification of hundreds of QTLs (Barchi et al., 2022; Gaccione et al., 2022). By using 749 

these data, a core collection of 322 eggplant accessions was created, which has been 750 

resequenced and phenotyped in multiple locations as well as evaluated for several biotic 751 

(Fusarium wilt, Verticillium wilt, Meloidogyne nematodes) and abiotic (drought tolerance 752 

and salinity tolerance) related to climate change (Gaccione et al., 2022; Salinier et al., 753 

2022). In addition, fruit metabolomic analyses of the core collection have been performed 754 

(Sulli et al., 2021). 755 

Although these two initiatives represented the starting point for the eggplant 756 

Green Revolution, new international, preferably global, actions are needed for a 757 

coordinated and systematic exploitation of the advances obtained so far. In this way, the 758 

Global Strategy for the Conservation and Use of Eggplants (Solberg et al., 2022) calls for 759 

seven priority activities: (i) establishing a global eggplant working group, (ii) developing 760 

an Eggplant Knowledge Platform; (iii) improve passport data accuracy and completeness 761 

in the collection databases; (iv) facilitate and encourage collaborative plant health-related 762 

activities; (v) support collaborative activities associated with accessions regeneration and 763 

safety duplication, (vi) characterize the global eggplant collection morphologically and 764 

genetically, and (vii) encourage collaborative efforts to involve CWR in breeding 765 

programmes. However, the implementation of this strategy, which would represent an 766 

additional boost for the eggplant Green Revolution is still in the phase of funding 767 
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acquisition for its effective fulfillment. In any case, the foundations are set for the 768 

international networks already established, together with new projects and developments 769 

in the fields of genomics and biotechnology, to bring forward the eggplant Green 770 

Revolution. As in other crops, we foresee this will result in dramatic genetic 771 

improvements in eggplant cultivars that will increase yield and quality and will allow the 772 

development of more resilient materials able to cope with the climate change challenges.  773 
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Tables 

Table 1. Solanum species from the primary (GP1), secondary (GP2) and tertiary (GP3) genepools (according to Syfert et al., 2016) for which 

introgression breeding with eggplant has been reported. 

Species Main traits of interest for eggplant 

breeding 

Most advanced type of generations 

obtained with S. melongena 

References 

Primary genepool (GP1) 

   S. insanum Drought and salinity tolerance, 

phytochemical composition  

Advanced backcrosses  Ranil et al. (2017); Brenes et al. 

(2020); Plazas et al. (2020); 

Nadeeshani et al. (2021); 

González-Orenga et al. (2023)  

Secondary genepool (GP2) 

   S. aethiopicum Resistance or tolerance to Fusarium 

and bacterial wilts and nematodes, 

vigor of F1 hybrids as rootstocks, 

spider mite resistance 

Lines with introgressed resistance to 

Fusarium and Verticillium wilt 

Collonnier et al. (2001); Toppino 

et al. (2008); Prohens et al. 

(2012); Calvo-Asensio et al. 

(2014); Barbierato et al. (2016); 

Barchi et al. (2018); Taher et al. 

(2019); Zhuang & Wang (2009) 

   S. anguivi Drought tolerance, high content of 

phenolics 

Second backcross generation Kaushik et al. (2019); Plazas et al. 

(2020); Kouassi et al. (2021) 

   S. dasyphyllum Drought tolerance, two-spotted spider 

mite and silverleaf whitefly tolerance 

Advanced backcrosses Plazas et al. (2020); Kouassi et al. 

(2021); Taher et al. (2020); 

Villanueva et al. (2023) 

   S. incanum Drought tolerance, bacterial wilt 

resistance, fruit and shoot borer 

resistance, silverleaf whitefly 

tolerance, high content of phenolics 

Introgression lines Bletsos and Olympios (2008); 

Prohens et al. (2013); Gramazio et 

al. (2017); Namisy et al. (2019); 
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Mangino et al. (2020); Taher et al. 

(2020) 

   S. lichtensteinii Drought tolerance, silverleaf whitefly 

tolerance 

Second backcross generation Vorontsova and Knapp (2016); 

Plazas et al. (2020); Taher et al. 

(2020) 

   S. lidii Unexplored so far Second backcross generation Plazas et al. (2020) 

   S. linnaeanum Salinity tolerance, Verticillium wilt 

resistance 

Lines with introgressed resistance to 

Verticillium wilt 

Mennella et al. (2010) Acciarri et 

al. 2007; Zhuang et al. (2014); Liu 

et al. (2015) 

   S. tomentosum Fusarium and Verticillium wilts and 

nematodes resistance, silverleaf 

whitefly tolerance 

Introgression lines Toppino et al. (2018); Taher et al. 

(2020) 

Tertiary genepool (GP3) 

   S. elaeagnifolium Drought tolerance, high content of 

phenolics 

Advanced backcrosses García-Fortea et al. (2019); Plazas 

et al. (2020); Villanueva et al. 

(2021) 
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Table 2. New eggplant genetic resources, consisting of mutant libraries, core collections, biparental and multiparental recombinant inbred lines and 

introgression lines sets. 

Plant material used 

Number of lines 

or accessions 

Conventional and biotechnological tools 

used for the development Reference 

Mutant libraries 

S. melongena accession E31-1 790 Ethyl methane sulfonate Xi-ou et al. (2017) 

S. melongena line 14-345 400 Ethyl methane sulfonate Du et al. (2022) 

Core collections 

1,798 accessions of S. melongena 181 14 morphological descriptors Gangopadhyay et al. 

(2010) 

392 accessions of S. melongena 191 314 SNPs, 33 morphological traits, NUE Cericola et al. (2013), 

2014, Portis et al. (2015), 

Mauceri et al. (2020); 

893 accessions of S. melongena 100 831 SNPs and 50 SSRs Miyatake et al. (2019)  

587 accessions of S. melongena 288 52 SNPs and 17 agromorphological traits Ro et al. (2022) 

3,600 accessions of S. melongena and wild 

relatives 

322 5k probes SPET platform Gaccione et al. (2022) 

Biparental recombinant inbred lines 

S. melongena lines MM378 and AG91-25 178 F6 AFLP, SSR and SRAP Lebeau et al. (2013) 

S. melongena lines 305E40 and 67/3 163 F7 GBS (10 k polymorphic markers) Toppino et al. (2020) 

S. melongena landrace Ramnagar Giant and S. 

incanum accession W-4 

114 F8 282 polymorphic RAPD, ISSR, SCoT 

and SSR  

Mishra et al. (2020) 

Multiparental recombinant inbred lines 
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Seven S. melongena accessions (MM1597, DH 

ECAVI, AN-S-26, H15, A0416, IVIA-371 and 

ASI-S-1) and one S. incanum accession (MM577)  

420 (S3 

MAGIC) 

5k probes SPET platform Mangino et al. (2022) 

Introgression lines sets 

S. melongena lines 1F5(9), Dourga, Tal 1/1 and 

CCR3, two accessions of S. aethiopicum and one 

accession of S. linnaeanum 

57 Selection for tolerance to Fusarium and 

Verticillium wilts 

Acciarri et al. (2007) 

Mennella et al. (2010) 

S. melongena AN-S-26 and S. incanum MM577 51 COSII, SSRs, SNPs (GBS and SPET) Gramazio et al. (2017), 

Plazas et al. (2020) 

S. melongena accession 67/3 and one S. 

tomentosum accession 

90 HRM Molecular markers Toppino et al. (2018) 
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Figure legends 

 

Figure 1. Diversity for fruit morphology in the cultivated (S. melongena) gene pool 

(above), within a particular cultivar type (striped eggplant) (center) and in eggplant wild 

relatives from the primary (GP1), secondary (GP2) and tertiary (GP3) genepools (below). 

 

Figure 2. Dendrogram representing relationships of the most relevant groups of the 

primary (GP1), secondary (GP2) and tertiary (GP3) genepools of S. melongena. Based on 

Whalen (1984), Vorontsova et al. (2013), Aubriot et al. (2016), and Knapp et al. (2016, 

2019). 

 

Figure 3. Map of global distribution of cultivated eggplant and its wild relatives in 

genebank holdings. Map elaborated according to data from FAO et al. (2010), Taher et 

al. (2017), Salinier et al. (2022) and Solberg et al. (2022). 

 

Figure 4. Unexploited eggplant wild relatives and interspecific hybrids as potential 

roortstocks for eggplant: highly prickly rootstocks are challenging for commercial 

rootstock utilization as prickles difficult the manual grafting process (A); interspecific 

hybrids of eggplant (S. melongena) with some wild species such as S. elaeagnifolium (B) 

and S. tomentosum (C) are highly vigorous and/or have an extended root system which is 

great interest for improving resilience. 


