
16 January 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

On Evaluating Rust as a Programming Language for the Future of Massive Agent-Based
Simulations

Publisher:

Published version:

DOI:10.1007/978-981-15-1078-6_2

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1949576 since 2023-12-28T17:09:12Z

On Evaluating Rust as a Programming Language for the
Future of Massive Agent-Based Simulations

Alessia Antelmi1, Gennaro Cordasco2, Matteo D’Auria1,
Daniele De Vinco1, Alberto Negro1, and Carmine Spagnuolo1

1 ISISLab, Dipartimento di Informatica, Università degli Studi di Salerno
aantelmi@unisa.it, matdauria@unisa.it,

d.devinco@studenti.unisa.it, alberto@unisa.it, cspagnuolo@unisa.it
2 Dipartimento di Psicologia, Università degli Studi della Campania “Luigi Vanvitelli”

gennaro.cordasco@unicampania.it

Abstract. The analysis of real systems and the development of predictive mod-
els to describe the evolution of real phenomena are challenging tasks that can
improve the design of methodologies in many research fields. In this context,
Agent-Based Model (ABM) can be seen as an innovative tool for modelling real-
world complex simulations. This paper presents Rust-AB, an open-source library
for developing ABM simulation on sequential and/or parallel computing plat-
forms, exploiting Rust as programming language. The Rust-AB architecture as
well as an investigation on the ability of Rust to develop ABM simulations are
discussed. An ABM simulation written in Rust-AB, and a performance compari-
son against the well-adopted Java ABM toolkit MASON is also presented.

Keywords: Rust Language · Agent-Based Model · Simulation · Framework

1 Introduction
Identifying fundamental rules that govern complex systems and developing predictive
models to describe the evolution of real phenomena are challenging tasks that can im-
prove the design of approaches and methodologies in many research fields [18]. The
analysis of real systems has revealed several interesting emergent behaviours both in
terms of structural features [10] and dynamic behaviours [17]. However, a full under-
standing of the dynamic behaviour generated by complex systems is extremely hard and
requires innovative study methodologies. Recently, computational scientists have pro-
posed the analysis of these phenomena through the exploitation of simulations based on
Agent-Based Model (ABM). ABM simulations denote a class of models that, simulat-
ing the behaviour of multiple agents, aim to emulate and/or predict complex phenom-
ena. An ABM consists of three components: agents, relations, and rules. The agents
model a population; the relations define potential interactions among agents; the rules
describe the behaviour of an agent as a result of an interaction.

Motivation. The success of computational sciences has led to increasing demand for
computation-intensive software implementations. Hence, the need to improve the per-
formance of ABMs simulations - successfully adopted in many sciences [8] - in terms of
both size (number of agents) and quality (complexity of interactions). Complex ABMs

very often require the continuous computation of global data during the simulation [11].
In such cases, the problem consists in ensuring good performance and a high-level of
effectiveness in simulation modelling. However, frameworks for distributed simulations
are not able to compute global information efficiently (for instance, the total number of
agents that satisfy a given property) [6]. The computation of a global parameter rep-
resents a bottleneck for distributed simulations, which jeopardise the performance due
to the communication overhead. In such cases, the use of a parallel and/or sequential
simulation framework provides better performances [7]. Moreover, to achieve perfor-
mance, distributed simulations often require expensive hardware that is usable only by
distributed computing experts. Providing efficient and effective software for developing
ABM simulations in sequential computing allows the user to effortlessly execute simu-
lations. This makes simulations more suitable for a “what-if” scenario, where the user
needs to frequently change the simulation parameters and rapidly observe the results.

High-performance ABM simulations are built upon performance-critical operation,
and interactions exhibit multiple levels of concurrency. Implementing an efficient frame-
work for the development of ABM simulations is extremely challenging, and the choice
of the implementation language is a crucial aspect to consider. It is common to use a
language like C to gain performance, as it enables the programmer to exploit low-level
memory operations (e.g. deallocating memory) thanks to its low level of abstraction
(e.g. no object-oriented support). On the other hand, the usage of such languages turns
out to be quite difficult, especially for domain experts with limited knowledge of com-
puter programming and systems. In this work, we exploit Rust as programming lan-
guage for the next generation of ABM simulation. Rust is a multi-paradigm system
programming language with performance comparable to C. Its main feature lies in its
memory model, designed to be both memory and thread safe. This aspect can be recog-
nised as the core advantage of using Rust over languages as C++ and Java as it allows
the user to write correct code, particularly in the presence of concurrency and paral-
lelism. We will describe Rust key concepts in Section 3.

Outline and paper contributions. We present an overview of the current state-of-art of
the ABM frameworks/libraries for developing simulation (see Section 2). In Section 3,
we analyse Rust features with a focus on its peculiarity for writing ABM simulation.
The main contribution of this work is the description of a novel library, Rust-AB, for
writing ABM simulations. The Alpha 1.0 version of the library is released on a public
GitHub repository [3] and is presented in Section 4. In Section 5, we present a case
study: we developed an ABM simulation using Rust-AB, and we present a performance
comparison with the same model on MASON.

2 Related work
This Section outlines some existing tools - commonly, designed either as a framework
or a library (or both) - for developing and running ABM simulations with a particular
emphasis on their peculiarities, as described by Abar et al. [1].

ABM software tools can be easily classified into two categories according to the
underlying architecture: software for sequential computing architectures and software
for distributed computing architectures. Table 1 describes the most important frame-
works and libraries for ABM simulations according to the simulation engine program-

ming language, user programming language, computing platform, application domain,
and release license. First six rows of Table 1 summarise as many frameworks suitable
for sequential computing simulations and that are fully described by Abar et al. [1].
Several frameworks are designed to develop large-scale simulations and provide good
performance exploiting parallel/distributed computing architectures. The bottom part of
Table 1 presents three frameworks for developing ABM simulations in distributed and
parallel computing architecture.

This work focuses on improving the simulation performance, when the computation
of global data is required, on sequential or parallel architectures, avoiding the complex-
ity and the limitations introduced by distributed computing. We will further focus on
the effectiveness and the expressiveness of the produced software in developing ABM.

ABM
tool

Source
Language

Applications
Language

Computing
Platform

Application
Domain License

SWARM [12]
Java,

Objective-C

Objective-C,
Swarm code,

Java

Personal computer,
Workstation,

Large-scale scientific
computing clusters and

HP supercomputers

Simulation of complex
adaptive systems in

social or biological sciences

Open source, GPL,
Free

StarLogo [14] Java / YoYo StarLogo scripting Desktop computer
Simulation in social
and natural sciences,

education

Closed source,
Clearthought Software

License version 1.0,
Free

NetLogo [20] Scala NetLogo language Desktop computer

2D/3D simulation
in social and

natural science,
teaching/research

Open source,
GPL, Free

REPAST [13] Java / C#
Java; C#, C++, Lisp, Prolog

Visual Basic.Net,
Python scripting

Desktop and vast-scale
distributed computing

clusters

Simulation of social networks
and integrates support for GIS,

genetic algorithms

Open source,
BSD, Free

MASON [19] Java Java
Desktop computer,

Workstation
General multi-purpose

2D/3D simulation

Open source,
Academic Free

License version 3.0

FLAME [9] C
Graphical user interface,

visualiser and
validation tools

Laptop,
Workstation,

HPC
supercomputers

General multi-pupose
simulation

Open source,
GNU Lesser General

Public License,
Free

REPAST-HPC [4]
C++ with

MPI
Standard or Logo-style

C++

Large-scale distributed
clusters and HP
supercomputer

Simulations in computational
social sciences,

cellular automata,
complex adaptive system

Open source,
BSD, Free

D-MASON [5] Java Java

Desktop computer,
Workstation,

Clusters,
Cloud architectures

General multi-purpose
2D/3D simulation

Open souce,
Apache License

version 2.0

FLAME-GPU [16]
C for CUDA

OpenGL
C-based scripting and
optimized CUDA code

Laptop,
Workstation,

HPC

3D simulation for emergent
complex behaviours in

biology/medical domains
with multi-massive amount

of agent on GPU

Open source,
FLAME GPU Licens

Agreement,
Free

Table 1: ABM frameworks/software comparison.

3 Rust Background
Rust is a multi-paradigm system programming language, originally designed at Mozilla
Research in 2009. Rust first stable release was launched in 2015, and since 2016 it fig-
ures as the most loved programming language in the yearly Stack Overflow Developer

Survey. The Rust compiler is a free and open-source software dual-licensed under the
MIT License and Apache License 2.0. The reasons why Rust is so widely used must be
sought in its design principles. Rust, in fact, guarantees both memory and thread safety,
thanks to its rich type system and its ownership model.

Ownership. Ownership is Rust’s central feature: memory is managed through a system
of ownership that the compiler checks at compile time. This means that there is no need
for a garbage collector that constantly looks for no longer used memory. In addition,
Rust programmers do not have to explicitly allocate and free the memory. Ownership
is translated into practice with the following concept: each value in Rust has a vari-
able called its owner. The owner is unique and when it goes out of scope, the value is
dropped.

References and Borrowing. These two concepts are strictly related to Rust’s ownership
model. As in other programming languages, a given variable x can be passed either by
value or by reference. When a value is passed by reference, it can be passed either by
immutable reference using &x or by mutable reference using &mut x. The &x syntax
creates a reference that refers to the value of x, but does not own it. For this reason, the
value it points to will not be dropped when the reference goes out of scope. Similarly,
the signature of the function uses & to indicate that the type of the parameter x is a
reference. Using references as function parameters is known as borrowing. References,
as Rust variables, are immutable by default. If a reference to a variable x needs to be
modified, it has to be declared as mutable using &mut x. The benefit of having this
restriction is that Rust can prevent data races at compilation time.

Furthermore, the Rust compiler guarantees that dangling references, i.e. a pointer
that references a location in memory that may have been given to someone else, will
never happen. Every reference in Rust has a lifetime, which is the scope for which that
reference is valid. Most of the time, lifetimes are implicit and inferred, but they must
be annotated when the lifetimes of references could be related in a different way. The
main aim of lifetimes is to prevent dangling references.

Rust Object-Oriented Programming Rust is a programming language influenced by
many programming paradigms, including object-oriented (OO) programming (OOP).
Therefore it shares certain common characteristics with OO languages:

– Rust Objects. Rust enables the definition of objects using structures, enums and
impl blocks. A struct is a custom data type that packs together multiple related
values that make up a meaningful group. As it happens with structs, enums
can be defined to hold generic data types in their variants. The impl keyword is
primarily used to define implementations on types.

– Encapsulation means that the implementation details of an object are not accessible
to code using that object. Rust defines the pub keyword to let the programmer
decide which modules, types, functions, and methods should be public. By default,
anything else is private.

– Inheritance is a mechanism whereby an object can inherit from another objects
definition, thus gaining the parent objects data and behaviour without having to
define them again. Rust does not allow the user to define a struct that inherits the
parent structs fields and method implementations.

– Polymorphism means that your multiple objects can be substituted for each other
at running time if they share certain characteristics. In Rust, this feature is enabled
through traits. A trait tells the Rust compiler about functionalities a particular
type has and can share with other types. Traits can be used to define shared be-
haviours in an abstract way, in which a type’s behaviour is defined by the methods
we can call on that type.

4 Rust-AB: Programming Agent-based Models in Rust
Rust-AB is a discrete events simulation engine designed to be a ready-to-use ABM
simulation library, suitable for the ABM community. To reduce the learning curve and
simplify its usage, we adopted the same modular and standard architectural layout of
the Java library MASON, based on the Model-View-Controller design pattern. More
in detail, a MASON simulation is made up by three fundamental players: i) the sim-
ulation agents, specified by the Java interface Steppable; ii) the simulation sched-
uler, defined by the Scheduler object; iii) the simulation state, represented by the
SimState object. The implementation of a MASON simulation has to extend the
SimState object, while its agents are represented through a Java class, which imple-
ments the Steppable interface.

Even though Rust-AB resembles MASON in its architecture, we have re-engineered
the simulation engine to exploit Rust’s peculiarities. Furthermore, Rust-AB has been
designed to provide the programmers an easy and standard simulation framework for
developing ABM, thus enabling an easier adoption of a new language as Rust. The Al-
pha 1.0 version of the Rust-AB simulation engine library is fully developed and released
under MIT license on a public GitHub repository [3]. Section 4.1 describes Rust-AB
architectural concepts and functionalities.

4.1 Rust-AB Architecture

Agent. An Agent is the most important concept of Rust-AB. According to the OO
model of Rust, an agent is a trait of a Rust struct, which means that every Rust
struct implementing the trait Agent is considered a simulation agent. Similarly to the
MASON toolkit, the Agent implementation must provide a step method where the
agent logic should be placed.

Schedule. Being Rust-AB a discrete event simulation engine, the Schedule is its
core object as it provides all functionalities to manage a simulation according to event-
based scheduling. It provides the same interface defined by MASON. The simulation
proceeds by scheduling the agents time-by-time. A schedulable agent is a Rust struct
that implements the Rust-AB trait Agent and the Rust trait Clone. To obey to the
Rust programming model, the scheduler has to mandatory clone the agents before each
simulation step. The scheduler works as a priority queue (FIFO), where the agents are
sorted according to their scheduled time and a priority value - an integer. The simulation
time - a real value - starts from the scheduling time of the first agent. At each discrete
simulation step, all agents scheduled in the current simulation time perform a simulation
step according to their scheduling priority. In the Alpha 1.0 version of Rust-AB, the
scheduler provides two scheduling options:

– schedule once inserts an agent in the schedule for a specific simulation step.
The scheduling time and the priority are given as parameters. The priority is used
to sort all agents within the same simulation time.

– schedule repeating acts like schedule once, with the difference that the agent
will be scheduled for all subsequent simulation steps.

The schedule provides the step method which allows executing one simulation step.
In this way, the programmer can easily design his/her simulation by looping for a certain
number of step or for a given amount of CPU time.

Location2D. Location2D is a Rust-AB trait, defining a Rust struct exposing a
position in a 2-D space. An agent can be placed in a field struct, thus enabling the
programmer to easily model agents neighbourhood interactions. Every Rust struct that
implements this trait can be placed in a Rust-AB field. A position in a 2-D space is
modelled as a Rust-AB struct Real2D. A given Location2D implementation must
provide two functionalities: i) get location, that provides the current position in
the space - a Real2D, and ii) set location, which allows to move an object.

Field2D. Field2D is a sparse matrix structure modelling agent interactions on a
2-D space. The Field2D structure is parameterized on a given type implementing:
Location2D Rust-AB trait, and Rust Clone, Hash, and Eq (equivalence relation)
traits. Location2D defines the structure on which the field operates, while the re-
maining traits allow a more efficient implementation of the field functionalities. It is
worth mentioning that the field structure is useful not only for the agents, but for any
kind of Rust type that implements the described traits. This designing aspect allows the
programmer to easily model interactions with any kind of simulation environment. The
Field2D structure provides the following methods:

– set object location inserts/updates an object in a field in a given position.
– get neighbors within distance, returns a vector of objects contained in

the circle centered at a given position with a radius equal to the distance parameter.
An optimized radial searching method is used to compute the neighborhood.

– get object location, returns the position of a Location2D object.
– get objects at location, returns a vector of objects stored in a given posi-

tion.
– num objects, returns the total number of objects stored in the field.
– num objects at location, returns the number of objects at a given Real2D

object position.

Simulation State. Simulation State is the state of a Rust-AB simulation. A Rust-
AB simulation is composed by an agent definition (i.e., a Rust struct that implements the
trait Agent), a Rust-AB scheduler instance (declared for the agent implementation), and
a set of fields and variables. The simulation logic is implemented in the step function of
the agent. For this reason, the programming environment must provide a mechanism to
access the simulation state from the agent’s step function.

The simulation state is defined using a Rust struct, containing all fields and vari-
ables. To access this struct, the programmer has to declare the struct itself as a static
reference and initialise it at running time. Moreover, to ensure the Rust memory model

accesses to this struct must be done using a lock (or mutex), which secure safe memory
access in the agent step function. This procedure is better described in Section 5.

Limitations. The main design limitations of Rust-AB are due to the basic Rust OOP
model and its memory model. The first limitation concerns the multi-agents capabilities
of Rust-AB: the current version Rust-AB does not support multiple definitions of an
agent. Nevertheless, it is still possible to implement a multi-agents model by defining
different behaviours in the same agent definition. The second limitation lies in the fact
that the field environment can only accommodate objects of the same type. To model
interactions between objects of a different type, it is necessary to use multiple field
environment instances (one for each type).

5 A case study: the Boids simulation
To analyse the effectiveness and efficiency of Rust-AB, we implemented a well-known
ABM on which we performed several benchmarks varying the model scale parameters.
The performance of Rust-AB have been compared against the MASON toolkit running
the same ABM. We developed the Boids model [15] by C. Raynolds (1986), which is
a steering behaviour ABM for autonomous agents simulating the flocking behaviour of
birds. The agent behaviour is derived by a linear combination of three independent rules:
1) Separation: steer in order to avoid crowding local flock-mates; 2) Alignment: steer
towards the average heading of local flock-mates; 3) Cohesion: steer to move towards
the average position (centre of mass) of local flock-mates.

We developed the Rust-AB Boids model following the same strategy adopted for
the Flocker MASON simulation, which implements the same model. First, we defined
the agent code and its logic by implementing the Agent trait. Then, we defined the
simulation state by providing the simulation parameters and the environment defini-
tions. Finally, the main simulation function is defined, where the scheduling policy for
agents and the fields initialisation are provided.

5.1 Agent definition

A Rust-AB agent is a struct containing all the local agent data. For our purposes, we
defined a new struct named Bird that emulates the concept of a bird in a flock. As stated
in Section 4.1, a Rust-AB agent has to implement the traits Agent, Eq and Hash. Ac-
cording to the model specification, at each simulation step, every agent has to compute
three steering rules according to the position of its neighbouring agents. For this rea-
son, all the agents are placed in a Rust-AB Field2D environment. As a consequence, the
agent definition must implement the trait Location2D, as well as the traits Clone and
Copy (that can be automatically computed using the Rust macro #derive[()]).
The steering behaviour model can be implemented by storing the position of the agent
in the previous and current simulation steps. The agent position can be modelled using a
Real2D Rust-AB struct. To easily develop the trait Hash, an unique identifier is stored
in the agent. Listing 1.1 shows the Rust-AB agent struct definition.

Rust Code 1.1: Rust-AB Agent Struct.

1 #[derive(Clone, Copy)]
2 pub struct Bird{

3 pub id: u128,
4 pub pos: Real2D,
5 pub last_d: Real2D,
6 }

The agent logic is defined in the step function. We designed the agent logic using
three sub-functions defined in the agent implementation. Listing 1.2 shows the agent
implementation code. Lines 1 − 8 define the object Bird by providing a constructor
and three functions: avoidance, cohesion, and consistency, which implement
the steering model rules. Each function takes as input parameter a reference to a vector
of agents (the current agent neighbourhood) and returns a new Real2D, which is the
force computed according to the position of flock-mates. Lines 9− 12 show the imple-
mentation of the Location2D trait, which enables to place the agent in the Field2D
environment. Lines 13−20 define the implementation of the traits Hash and Eq. Lines
21−39 implement the agent step function describing the agent logic, which simulates
the steering behaviour of the model. The agent computes its neighbourhood (line 23)
and, using the sub-functions, evaluates its new position. The computed position is then
used to update the status of the environment (line 37), exploiting a lock mechanism.

Rust Code 1.2: Rust-AB Agent Implementation.

1 impl Bird {
2 pub fn new(id: u128, pos: Real2D, last_d: Real2D) -> Self {
3 Bird {id, pos, last_d}
4 }
5 pub fn avoidance (self, vec: &Vec<Bird>) -> Real2D {..}
6 pub fn cohesion (self, vec: &Vec<Bird>) -> Real2D {..}
7 pub fn consistency (self, vec: &Vec<Bird>) -> Real2D {..}
8 }
9 impl Location2D for Bird {

10 fn get_location(self) -> Real2D { self.pos }
11 fn set_location(&mut self, loc: Real2D) { self.pos = loc; }
12 }
13 impl Hash for Bird {
14 fn hash<H>(&self, state: &mut H) where H: Hasher,
15 { state.write_u128(self.id); state.finish();}
16 }
17 impl Eq for Bird {}
18 impl PartialEq for Bird {
19 fn eq(&self, other: &Bird) -> bool {self.id == other.id}
20 }
21 impl Agent for Bird {
22 fn step(&mut self) {
23 let vec = GLOBAL_STATE.lock().unwrap().field1. c

get_neighbors_within_distance(self.pos,10.0);↪→
24 let avoid = self.avoidance(&vec);
25 let cohe = self.cohesion(&vec);
26 let rand = self.randomness();
27 let cons = self.consistency(&vec);
28 let mom = self.last_d;
29 let mut dx = COHESION*cohe.x + AVOIDANCE*avoid.x + CONSISTENCY*cons.x +

RANDOMNESS*rand.x + MOMENTUM*mom.x;↪→
30 let mut dy = COHESION*cohe.y + AVOIDANCE*avoid.y + CONSISTENCY*cons.y +

RANDOMNESS*rand.y + MOMENTUM*mom.y;↪→
31 let dis = (dx*dx + dy*dy).sqrt();
32 if dis > 0.0 { dx = dx/dis*JUMP; dy = dy/dis*JUMP;}
33 let _lastd = Real2D {x: dx, y:dy};
34 let loc_x = toroidal_transform(self.pos.x + dx, WIDTH);

35 let loc_y = toroidal_transform(self.pos.y + dy, HEIGHT);
36 self.pos = Real2D{x: loc_x, y: loc_y};
37 GLOBAL_STATE.lock().unwrap().field1.set_object_location(*self, Real2D{x:

loc_x, y: loc_y});↪→
38 }
39 }

5.2 Model definition

We define the Boids simulation state by declaring a new struct State. Listing 1.3
shows the code of the State struct (lines 1 − 6). According to the model and the agent
definitions, we defined the agents’ interactions through the Field2D environment.
For this reason, the state struct contains only a Field2D declaration. As described in
Section 3, the memory model of Rust does not allow data sharing across several function
invocations. Thus, to access the simulation state inside the agent step function, the
State instance has to be a global variable, accessed though a lock (or a mutex) to
safely read it. The State struct has to be initialised at running time using the macro
lazy static! (lines 8− 10).

Rust Code 1.3: Rust-AB Simulation State.

1 pub struct State{
2 pub field1: Field2D<Bird>,
3 }
4 impl State {
5 pub fn new(w: f64, h: f64, d: f64, t: bool) -> State { State {field1:

Field2D::new(w, h, d, t),}}↪→
6 }
7 //Global variables definition
8 lazy_static! {
9 static ref GLOBAL_STATE: Mutex<State> = Mutex::new(State::new(WIDTH, HEIGHT,

DISCRETIZATION, TOROIDAL));↪→
10 }

The main simulation function is shown in Listing 1.4. At line 2, a new Rust-AB Schedule
is defined, while from line 3 to 11 a given number of agents are randomly initialised,
placed in the Field2D (line 9), and scheduled using the schedule repeating
method (line 10). At line 12 the schedule step is called for a given number of times.

Rust Code 1.4: Rust-AB Main Simulation Function

1 fn main() {
2 let mut schedule: Schedule<Bird> = Schedule::new();
3 let mut rng = rand::thread_rng();
4 for bird_id in 0..NUM_AGENT{
5 let r1: f64 = rng.gen();
6 let r2: f64 = rng.gen();
7 let last_d = Real2D {x: 0.0, y: 0.0};
8 let bird = Bird::new(bird_id, Real2D{x: WIDTH*r1, y: HEIGHT*r2},last_d);
9 GLOBAL_STATE.lock().unwrap().field1.set_object_location(bird,bird.pos);

10 schedule.schedule_repeating(bird,0.0,0);
11 }
12 for _ in 1..STEP{ schedule.step(); }
13 }

5.3 Results

We performed several tests to assess Rust-AB ability to run simulations with different
model scale properties. As benchmark simulation, we used Rust-AB Boids compared
with MASON and NetLogo Flockers. Both simulations implement the same model.
All experiments have been performed on a desktop machine equipped as follow: 1 ×
CPU i-7-8700T 12 × 2.40 MHz; 16 GB of RAM; Ubuntu Linux 18.04 LTS; Oracle
Java Virtual Machine 1.7; Rust 1.31. We evaluated several simulation configurations
by changing the simulation environment and the number of agents. The experiments
were conducted in different settings: i) constant agent density, varying both number of
agents and the dimensions of the simulation field; ii) constant field size, chancing only
the number of agents; iii) constant number of agents, varying only the dimensions of
the simulation field. The agent density of a simulation field can be easily computed by
w×h
A , where w and h denotes respectively the width and the height of the simulation

field and A denotes the number of agents.

Constant Agent Density. In these experiments, we tested the simulation engine’s ability
to simulate an increasing number of agents, while maintaining the same scaling pro-
prieties. Results are depicted in Figure 1(a). The x-axis shows the number of agents -
ranging from 100 to 1638400 - while the y-axis shows the performance in terms of aver-
age simulation step per second (log scale), during a 10 minutes of simulation. As shown
in the plot on the left, Rust-AB and MASON obtain almost the same performance when
the agent density is constant. On the other hand, the performance of NetLogo is always
significantly smaller than the other simulators. It is worth highlighting that NetLogo
was not able to execute the last three experiments due to memory requirements.

Constant field size. We evaluated the simulation engine’s ability to simulate an increas-
ing number of agents laying on a field of fixed size (200× 200). Increasing the number
of agents implies increasing the agent density and, consequently, the computational cost
of computing the neighbourhood and the new position of each agent. Figure 1(b) shows
how Rust-AB simulation scales much better than MASON and NetLogo simulations.
In particular, MASON achieves the same performance of Rust-AB when the number of
agents is low. However, at the increasing of the number of agents, and consequently of
the total computational load, Rust-AB performs better. This behaviour may be due to
Rust’s ability to efficiently manage a high computational workload, mainly thanks to its
memory system. Further analysis are needed to asses this hypothesis. On the contrary,
NetLogo initially provides the worst results, while at the end, its performance is com-
parable to MASON. Again it is worth mentioning that neither MASON and NetLogo
were able to execute the last two simulation configurations.

Constant Number of Agents. With these tests, we evaluated the simulation engine’s
ability to simulate a constant number of agents (102400) varying the field dimension.
Figure 2 presents the results. The x-axis describes the field size - ranging from 200 ×
200 to 20298× 20298 - while the y-axis represents the performance obtained in terms
of average simulation step per second. As shown in the plot, Rust-AB outperforms
the MASON until the density of the field become small enough to decrease the total
computation load. When the density of the simulation field is small, the performance
of the two libraries does not differ significantly. These results can be motivated by the

same explanation given in the previous paragraph. For this experiment, we do not show
the results of NetLogo as it was not able to run the simulation using the experiment
configurations.

6 Conclusion and Future works
This work introduces the library Rust-AB, a discrete events simulation engine for ABM
simulations written in Rust. Rust-AB is designed to be a ready-to-use tool for the ABM
community and, for this reason, the architectural concepts of the well-adopted MASON
library were re-engineered. We then described an example of Rust-AB simulation, im-
plementing the Boids model, to investigate the performance of Rust-AB in compari-
son with MASON. Results, exploiting Rust-AB Alpha 1.0 release, are promising and
exhibits a performance-enhancing compared to the MASON toolkit; in particular, for
simulations with a high agent density. We consider this outcome as an important step
ahead at disclosing the power of the Rust language to develop ABM simulations.

102 103 104 105 106
10−1

100

101

102

103

104

Number of agents

St
ep

/s
ec

on
d

MASON
Rust-AB
Netlogo

(a) Constant Agents Density

102 103 104 105 106
10−3

10−1

101

103

Number of agents

St
ep

/s
ec

on
d

MASON
Rust-AB
Netlogo

(b) Constant Field Size

Fig. 1: Rust-AB performance comparison.

20
0x

20
0

28
3x

28
3

40
0x

40
0

56
6x

56
6

80
0x

80
0

11
31

x1
13

1

16
00

x1
60

0

22
62

x2
26

2

32
00

x3
20

0

45
26

x4
52

6

64
00

x6
40

0

90
51

x9
05

1

12
80

0x
12

80
0

16
54

9x
16

54
9

20
29

8x
20

29
8

0

2

4

6

8

10

Field Dimension (Width × Height)

St
ep

/s
ec

on
d

MASON
Rust-AB

Fig. 2: Rust-AB vs MASON: Constant Number of Agents.

We plan to continue the development of the library to improve the simulation per-
formance, through better exploitation of Rust peculiarities, such as safe concurrency
capabilities. Moreover, we will experiment Rust-AB by developing more computing-
intensive simulations, using models where the agent interactions are not only local but
also exploits network-based interactions, as presented in [2].

References
1. Abar, S., Theodoropoulos, G., Lemarinier, P., O’Hare, G.: Agent Based Modelling and Sim-

ulation tools: A review of the state-of-art software. Computer Science Review (2017)
2. Antelmi, A., Cordasco, G., Spagnuolo, C., Vicidomini, L.: On Evaluating Graph Partitioning

Algorithms for Distributed Agent Based Models on Networks. In: Euro-Par 2015: Parallel
Processing Workshops (2015)

3. Carmine, S.: Rust–AB: An Agent Based Simulation engine in Rust. https://github.com/
spagnuolocarmine/abm (2018)

4. Collier, N., North, M.: Parallel agent-based simulation with Repast for High Performance
Computing. SIMULATION (2013)

5. Cordasco, G., Spagnuolo, C., Scarano, V.: Toward the New Version of D-MASON: Effi-
ciency, Effectiveness and Correctness in Parallel and Distributed Agent-Based Simulations.
In: IEEE International Parallel and Distributed Processing Symposium Workshops (2016)

6. Cordasco, G., De Chiara, R., Raia, F., Scarano, V., Spagnuolo, C., Vicidomini, L.: Designing
Computational Steering Facilities for Distributed Agent Based Simulations. In: Proceedings
of the 1st ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (2013)

7. Cordasco, G., Mancuso, A., Milone, F., Spagnuolo, C.: Communication Strategies in Dis-
tributed Agent-Based Simulations: The Experience with D-Mason (2014)

8. Heath, B., Hill, R., Ciarallo, F.: A survey of agent-based modeling practices (January 1998
to July 2008). Journal of Artificial Societies and Social Simulation (2009)

9. Holcombe, M., Coakley, S., Smallwood, R.: A general framework for agent-based modelling
of complex systems. In: Proceedings of the European conference on complex systems (2006)

10. Kleinberg, J.: The small-world phenomenon: An algorithmic perspective (2000)
11. Macal, C., North, M.: Tutorial on agent-based modeling and simulation part 2: How to model

with agents (2006)
12. Mah, F., Rognes, T., Quince, C., de Vargas, C., Dunthorn, M.: Swarm: robust and fast clus-

tering method for amplicon-based studies. PeerJ (2014)
13. North, M.J., Collier, N.T., Ozik, J., Tatara, E.R., Macal, C.M., Bragen, M., Sydelko, P.:

Complex adaptive systems modeling with Repast Simphony. Compl. Adap. Syst. Modeling
(2013)

14. Resnick, M.: StarLogo: An Environment for Decentralized Modeling and Decentralized
Thinking. In: Conference Companion on Human Factors in Computing Systems (1996)

15. Reynolds, C.W.: Flocks, Herds, and Schools: A Distributed Behavioral Model. Computer
Graphics (ACM) (1987)

16. Richmond, P., Chimeh, M.K.: FLAME GPU: Complex System Simulation Framework. In:
2017 International Conference on High Performance Computing Simulation (2017)

17. Tejaswi, V., Bindu, P., Thilagam, P.: Diffusion models and approaches for influence maxi-
mization in social networks (2016)

18. Thurner, S., Klimek, P., Hanel, R.: Introduction to the theory of complex systems. Oxford
University Press (2018)

19. Wang, H., Wei, E., Simon, R., Luke, S., Crooks, A., Freelan, D., Spagnuolo, C.: Scalability
in the MASON Multi-Agent Simulation System (2019)

20. Wilensky, U.: NetLogo 3.1. 3 (2006)

https://github.com/spagnuolocarmine/abm
https://github.com/spagnuolocarmine/abm

	On Evaluating Rust as a Programming Language for the Future of Massive Agent-Based Simulations

