
01 January 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Real-time performance of virtualised protection and control software

Publisher:

Published version:

DOI:10.1049/icp.2023.1028

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

IET

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1949579 since 2023-12-28T17:22:48Z

 27th International Conference on Electricity Distribution Rome, 12-15 June 2023

Paper n° 10702

CIRED 2023 1/5

REAL-TIME PERFORMANCE OF VIRTUALISED PROTECTION AND CONTROL

SOFTWARE

 Sandro SCHÖNBORN Robert BIRKE David KOZHAYA

ABB Corporate Research – Switzerland University of Torino – Italy ABB Corporate Research – Switzerland

 sandro.schoenborn@ch.abb.com robert.birke@unito.it david.kozhaya@ch.abb.com

Thanikesavan SIVANTHI

ABB Corporate Research – Switzerland

thanikesavan.sivanthi@ch.abb.com

ABSTRACT

Substation automation is ever challenged by the integration

of distributed energy resources which imposes higher

deployment flexibility and adaptability for protection and

control. Although virtualization helps to run software

applications independent of the underlying platform in IT

infrastructures and cloud computing, it is still not

commonly used in the field of substation automation. This is

mainly due to the real-time performance demands of

substation automation protection and control applications.

In this article, we present an approach for running

substation automation protection and control software in

virtual environments. We contrast the real-time

performance of different virtualization technologies under

different workloads and focus on the performance

evaluation of protection and control software in container-

based solutions running on Linux with PREEMPT RT. We

also present additional results for performance achieved in

virtual machines. Our results clearly demonstrate that it is

possible to run substation automation protection and

control software in virtual environments while still

providing the necessary performance. This paves the way

for the deployment of substation protection and control

software in virtualisation environments.

INTRODUCTION

With the ubiquitous integration of Distributed Energy

Resources (DERs) in the power grid, ensuring intelligence,

adaptiveness, and resilience across the whole grid becomes

even more challenging especially given the rigidness of

deploying and adapting protection and control applications

within today’s substations. These substations are

unprepared to deal with the new dynamics and typically

operate with many different devices, some even from

multiple vendors, each running applications on their

proprietary hardware. As a result, immense maintenance

efforts and significant costs are necessary, which often do

not scale to meet the technical and business needs of the

utilities. Therefore, there is a need to shift to a more flexible

and rapid deployment of substation applications such that

different applications can simply run on the same hardware

and the update or continuous roll-out of any additional

functionality is simplified. Virtualisation is a technology in

the IT domain, e.g., cloud computing, that promises such

flexibility by enabling applications (software) to be

deployed, executed, exchanged, and migrated almost

independently of the underlying platform. The core idea

behind virtualisation is to allow applications to run in a

"virtual" environment, which is abstracted from the actual

underlying platform and isolated from other applications

running on the same platform. However, unlike cloud

platforms that have scalable compute, storage and

networking resources, substations have low to modest scale

and often require highly available operations within known

and tight timing constraints.

This article addresses the real-time capability of developing

virtualised protection and control software, demonstrating

how virtualisation techniques can be used in time-critical

systems like substation automation. We compare various

virtualisation technologies, from virtual machine to

container-based technologies. We then specifically

demonstrate how real-time protection and control

applications can be run in containers on Linux with

PREEMPT RT. While we focus on containers, which

provide virtualisation at operating system level, we also

present results of running protection and control

applications inside virtual machines. We evaluate the

performance of our virtualised software by running

multiple, isolated instances of industry standard substation

protection and control applications on the same host.

Further, we assess performance characteristics on different

host machines featuring different Intel CPUs. We show that

delays in virtual networking and poor resource isolation,

rather than scheduling issues, are the primary causes of

timing errors. Finally, we demonstrate real-time

performance of the protection and control applications

using tailored resource provisioning and selecting

appropriate virtual networking solutions. The adherence of

our virtualised control and protection applications to real-

time performance is shown on testbeds and is even

showcased in the field through a pilot deployment at a 10-

bay MV substation [1].

BRIEF BACKGROUND ON VIRTUALISATION

Virtualisation is a technology that abstracts the underlying

platform including physical hardware (such as CPU,

Robert Birke
Authors’ preprint of S. Schönborn, R. Birke, D. Kozhaya and T. Sivanthi, "Real-time performance of virtualised protection and control software," 27th International Conference on Electricity Distribution (CIRED 2023), Rome, Italy, 2023, pp. 1817-1821, doi: 10.1049/icp.2023.1028.

 27th International Conference on Electricity Distribution Rome, 12-15 June 2023

Paper n° 10702

CIRED 2023

2/5

memory), operating system, storage, network, etc. As a

result, workloads running on multiple machines can be

consolidated onto fewer machines thereby resulting in

better usage of hardware resources with lower overall costs.

Virtualised software is typically portable since it is not tied

to a specific physical hardware or custom operating system

(OS) installation. Two categories of virtualisation

technologies exist:

Hardware Virtualisation

This virtualises the hardware resources for guest OSs. The

virtualised environment, in which guest OSs run, is called

virtual machine (VM). It is realized using hypervisors

which are the software components that virtualise the

underlying hardware resources. Such hypervisors are of two

types, namely, Type-1 hypervisors that run directly on the

system hardware, and Type-2 hypervisors that run on top of

a host OS. Type-1 hypervisors are more suitable for

providing predictable performance to VMs than Type-2

hypervisors because they directly interact with the hardware

and have full control on hardware resources allocated to

VMs. Most modern CPUs provide direct hardware support

for virtualization, e.g., Intel VT-x.

OS-level Virtualisation

This virtualises OS services such as file systems, devices,

networking, and security, and provides a virtualised

operating system environment to multiple isolated user-

space instances. It imposes less overhead in comparison to

hardware virtualisation as the instances directly use the host

OS’ system call interface and do not require the additional

level of indirection through the hypervisor. But it limits all

guests to use the same underlying OS kernel.

Table 1. Examples of Virtualisation Solutions

Solution Virtualisation Type

QEMU/KVM Hardware (Type-1) General purpose

XEN Hardware (Type-1) General purpose

Jailhouse Hardware (Type-1) Real-time

ESXi Hardware (Type-1) Servers

ACRN Hardware (Type-1) IoT/Embedded

LXC/LXD OS-level General purpose

Docker OS-level General purpose

REAL-TIME EVALUATION OF

VIRTUALISATION TECHNOLGIES

In this section, we first evaluate the basic real-time

capability of OS-level virtualisation techniques, since lower

overhead is expected compared to hardware-based

virtualisation. Namely, we compare two different and

actively maintained open-source solutions Docker and

LXD/LXC. However, in our performance evaluation

section, we also include virtual machines.

The real-time operating system used is Linux PREEMPT

RT. The basic scheduling jitter evaluation is conducted

using “cyclictest” v1.50, a frequently used scheduling

benchmark for real-time systems. cyclictest measures the

difference between a periodic thread's intended wake-up

time and the time at which it effectively wakes up. As an

idle kernel running only “cyclictest” is not sufficient, we

also loaded the kernel using “hackbench” which creates

multiple pairs of threads that exchange data between

themselves either over sockets or pipes stressing the kernel's

scheduler. The experiments are conducted on two different

machines equipped with Intel Xeon Silver 4208 CPU

running Ubuntu 20.04 with Kernel 5.6.19 PREEMPT_RT,

and Xeon Gold 6248R running Ubuntu 20.04 with Kernel

5.15.65 PREEMPT_RT, both based on Cascade Lake

architecture and with 96GB of RAM.

The latency measurements (Table 2) of LXC/LXD and

Docker resulted in maximum jitter of around 40μs and 20μs

on the two systems with slightly higher values for LXD. The

actual values correspond to those obtained natively on the

OS of the same system. This shows that the real-time

performances of both LXC/LXD and Docker are stable and

bounded.

The maximal jitter values observed are acceptable to run

protection and control applications, and the values represent

the unoptimized case with high load and no resource

isolation. However, such measurements are too simple to

reliably assume good real-time performance. In the

following, we further present results from running actual

applications.

Table 2 Scheduling jitter on different systems, cyclictest running

on all CPU cores at RT priority 90.

Scheduling jitter, max (avg) µs

System Xeon Silver 4208

5.6.19-rt12

Xeon Gold 6248R

5.15.65-rt49

Native 37 (3) 16 (2)

Docker 38 (3) 17 (2)

LXD 43 (5) 25 (2)

REAL-TIME PROTECTION AND CONTROL

SOLUTION USING CONTAINERS

This section describes a container-based solution, using

Docker, to virtualise a Central Protection and Control

(CPC) application at the OS level. We present its realization

over multiple steps including host setup, docker image

preparation, container configuration and deployment. The

solution is further referenced as the Virtual Protection and

Control (VPC) application.

Host setup

Preparing the machine that hosts the docker containers

requires taking care of three main aspects: hardware

prerequisites and partition, BIOS and firmware setup, as

 27th International Conference on Electricity Distribution Rome, 12-15 June 2023

Paper n° 10702

CIRED 2023

3/5

well as OS setup. Since containers run on the host OS, we

need to configure it appropriately to support real-time

operation.

Hardware Prerequisites and Partition

We performed our experiments on different host machines.

We ensured that each host features an Intel CPU (> 2 GHz)

with at least 8 cores to host multiple VPC instances and still

provide enough resources to run the OS properly. The CPUs

provide at least 11MB of L3 cache. We rely on the

availability of Intel Resource Director Technology1 to

exclusively assign parts of this cache to VPC instances. In

terms of memory and storage, we generously reserved 4GB

per VPC plus 4GB for OS and other services, and SSD

space of 20 GB for OS plus 5 GB per VPC instance. We

provided at least 2 network ports with 1GbE or faster, with

hardware timestamping capability and some with SR-IOV

support.

BIOS and Firmware Setup

We implemented the typical recommendations for real-time

configurations such as: disabling hyper-threading, disabling

speed stepping and frequency scaling, and disabling power

management options.

OS Setup

Our setup is based on a standard Ubuntu Server 20.04 LTS

installation plus additional packages, such as Docker and

linux-ptp [2]. VPC requires the PREEMPT_RT Kernel

patch [3], hence we compiled a 5.10 series vanilla kernel

(5.10.65 in most of our experiments) with applied

PREEMPT_RT patch and activated full pre-emption mode

(CONFIG_PREEMPT_RT_FULL). The kernel is installed in

the otherwise unchanged Ubuntu system which needs to be

booted with a specific set of command line options to

prepare the system for real-time operation. These include

disabling power management, enabling huge pages,

isolating CPU cores (isolcpus, irqaffinity) and changes to

the timer (nohz, clocksource).

Time Synchronization

Substation environments rely on the IEEE 1588 Precision

Time Protocol (PTP) [4] to achieve the required high level

of time synchronization. Linux containers provide a

namespace-based abstraction of the clock but only for

CLOCK_MONOTONIC. It is therefore not possible to run

full synchronization daemons within the containers. They

would conflict on setting the system-wide shared

CLOCK_REALTIME. Therefore, synchronization needs to

be handled at the host level. In a substation, there is only a

single reference time such that host-level synchronization is

not a restriction and efficient. Host-level synchronization

can also benefit from the availability of hardware

timestamps and precision clocks on physical network cards.

This feature is only scarcely available with virtualised

network solutions, e.g., on some SRIOV-enabled network

1 Intel Resource Director Technology (Intel RDT)

cards. We synchronize the host and the high-precision

clocks using linuxptp [2]. We continuously monitor the

synchronization state of the host since awareness of possible

loss of synchronization is critical to guarantee the timely

and correct intervention and coordination of the protection

functions.

CPU Cache

CPU cache is essential to satisfy data access timing needs

of real-time applications. It prevents orders-of-magnitude

higher waiting time for data retrieval from main memory.

However, on most modern CPUs, the last level cache (LLC)

is shared among cores. Sharing such a CPU, even with core

isolation in place, can endanger deterministic timing

through unexpected waiting times introduced by cache

invalidation by other applications. Modern Intel server

CPUs provide cache allocation technology (CAT) to reserve

and exclusively allocate portions of cache to CPU cores to

improve determinism of data access. Typically, cache can

be allocated in 10% chunks and is subject to certain

hardware limitations in terms of overlapping assignments.

CAT is part of the wider Intel Resource Director (RDT)

framework which also supports memory bandwidth

restrictions and monitoring of the shared resources i.e.,

cache and memory bandwidth. Docker containers do not

support cache allocation as part of the framework. We

developed our own solution as a thin layer on the host to

allocate cache to the reserved CPU cores attached to the

launched containers. However, the Open Container

Initiative (OCI) integrated Intel RDT add this control

capability into container runtime configuration [5].

VPC Docker Image

The core of the containerized VPC is a docker image that

encapsulates the application and all required dependencies

as well as support utilities (Figure 1). The docker image is

described by a Dockerfile, which documents the required

steps for building containerized VPC and contains a base

OS image, helper applications, the VPC binaries,

management scripts and a root filesystem with the required

Figure 1. VPC Docker Container. Chevron shapes indicate

connection points to host (resources, volumes, ports, networks).

https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html

 27th International Conference on Electricity Distribution Rome, 12-15 June 2023

Paper n° 10702

CIRED 2023

4/5

utilities and libraries. The container exposes various

connection points to the host, such as cgroup configuration,

volume mounts, network ports, and network connections.

Running the Container

Containers each get their own namespace and cgroup

assignment to ensure isolation, including for example, CPU

core affinity with the --cpuset-cpus option. Care must be

taken since, contrary to LXD [6], docker does not remap

core numbers to those available in the container’s cgroup.

Further, Linux capabilities allow to control which

operations are allowed inside containers. To achieve real-

time performance, we need to equip the containers with

some extra capabilities such as SYS_NICE and IPC_LOCK

which are required for real-time scheduling and memory

locking. We explicitly drop NET_ADMIN to ensure that

VPC applications cannot change the network configuration

of the host as we specify everything during container

creation and execution. In our experiments, we managed the

containers with docker-compose.

PERFORMANCE EVALUATION

The studied VPC application performs power system

protection and control in MV substations for distribution

applications. For this evaluation, we require a threshold on

maximal task execution time of 1ms to ensure proper cyclic

operation of all control tasks. In the following, we present

evaluation results of the impact of various design choices

and different shared setups on these critical timings of the

containerized VPC in rather short experiments of a few

hours to days. The application under test is running a

practically relevant configuration which can handle

numerous advanced protection functions simultaneously for

20 IEC 61850-9-2LE SV streams, with 4800 samples per

second each (60 Hz grid). The configuration includes

demanding protection functions, e.g., multi frequency

admittance-based earth fault protection, and represents a

case of heavy protection load in the CPC application.

The VPC software is equipped with self-monitoring

capability and provides rich statistics on its various internal

measurements. The desired maximal task timings are

available in the log output, statistically aggregated over the

monitoring time interval. In most experiments, we present

the application task timings, reported either as a time series

or a boxplot of aggregated duration values. The values are

aggregated as maximal task duration over the monitoring

interval (aggregated over 20s, yielding a total of 20k timing

measurements per reported point in the series or boxplot).

Process Isolation

A lack of isolation between the application and other loads

on the host system can be detrimental to real-time

performance. We tested isolation properties of

containerized execution with respect to other system loads

which either represent non-critical OS-level tasks or another

real-time application running on the same host. We

represented loads with an additional VPC instance of a

smaller configuration (real-time load) or the hackbench tool

(non-rt load). We reserved 4 CPU cores for the VPC

application using the kernel command line argument

isolcpus and kept OS tasks, IRQs and other applications on

the remaining cores of the CPU. With exclusive core

assignment, real-time scheduling priorities (>50) and cache

allocation (CAT), the application isolation is good enough

to support real-time operation also under heavy load

conditions (Figure 2). The experiment was run for 3 hours

on two systems, a Xeon Gold 6208U CPU with 16 cores on

Linux Kernel 5.10.65 and on a less capable system based on

an Intel Xeon Silver 4208 with 8 cores, running an older

Kernel. We observed higher performance on the Xeon Gold

system, especially without real-time load due to the higher

amount of cache available in those situations (note that the

cache had to be split with second VPC under RT load

conditions).

Process isolation with cpusets was less effective. After a

clean boot and setup of isolation, we still counted some

kernel processes on each core isolated with isolcpus and

even more kernel processes with cpusets. We therefore still

applied the isolcpus option, despite it being marked as

“deprecated”.

Networking

To share the physical network interfaces and connect the

VPC instances to the process bus (and management

network) we need to rely on virtual networking. We tested

different technologies including two pure software-based

solutions (Linux bridge and MACvlan) and one hardware-

assisted solution (SR-IOV). The three technologies lead to

highly different latency especially under load which we

reported in detail [7]. While SR-IOV achieves the best

performance, it is not available for all network cards. Based

on card compatibility and latency results we used MACvlan

with optimized IRQ handling which avoids the performance

degradations shown in [7]. With this solution we were able

Figure 2 Distributions of maximal application timings are

acceptable under 3 different load conditions on 2 different CPUs

running 2 kernel versions.

 27th International Conference on Electricity Distribution Rome, 12-15 June 2023

Paper n° 10702

CIRED 2023

5/5

to bound the worst-case receiving latency at the application

level to 692µs (mean 315µs) with 20 SV streams running

two full VPC instances in parallel on the Xeon Gold

configuration over 24h.

Field Pilot Installation

To validate our solution, we extensively tested the prototype

in a laboratory with hardware-in-the-loop setup by

connecting the VPC to an RTDS system simulating

different faults and externally verifying the correctness and

timing of the different protection functions. The VPC

passed all tests even with multiple instances hosted on the

same host (Xeon Gold) with no fault test pattern triggering

any overruns and all observed timings were within the

required deadlines. However, these tests have a limited time

length of a few days. To test the VPC's long-term behaviour

in a real-world setup we collaborated with a Finnish utility

to install a prototype VPC in a MV substation in western

Finland. Here two VPC instances have been running with

flawless operation for over one year with a perfect match

between the behaviours of VPC instances and the physical

CPC controlling the substation. More details can be found

in [1].

VPC in Virtual Machines

Containers provide near-native performance and already

offer a good level of isolation between applications at low

virtualisation overhead. However, they still require the

applications to share the host OS’ kernel. To achieve

additional deployment flexibility and isolation, moving

from container-based virtualisation to hypervisors, we also

evaluated VPC inside virtual machines. To compare

performance, we collected metrics from VPCs in VMs

running on KVM (5.15.55-rt48 PREEMPT RT) and

VMware ESXi (7.0u3). The VMs run a more recent version

of the VPC application which handles even 30 SV streams

simultaneously, based on a custom Linux distribution with

PREEMPT_RT patch. The performance is evaluated on a

Xeon Gold 6208U host system with hardware virtualisation

support VT-x enabled. We also enforce resource reservation

setups as described above.

The results (Figure 3) show that the virtualisation efforts of

the VPC, such as resource reservation and networking, also

enable real-time operation of protection and control

applications inside full VMs thus offering even higher

flexibility in deployment configurations and increased

isolation.

SUMMARY AND CONCLUSION

We have demonstrated the feasibility of running protection

and control software for MV substation automation across

different virtualisation environments on different hardware

platforms. Despite the increased overhead of virtualisation,

we have been able to achieve the necessary real-time

performance in the VPC application. Through many trials,

we determined that poor resource isolation and virtual

network delays, rather than scheduling, were the primary

causes of timing failures of VPC in virtual environments.

With careful resource provisioning and virtual networking,

we keep the 1ms application task execution time limit across

a multitude of tests and even over a 1-year pilot in the field.

REFERENCES

[1] J. Valtari, A. Kulmala, S. Schönborn, D. Kozhaya, R.

Birke, J. Reikko, "Real-life Pilot of Virtual Protection

and Control – Experiences and Performance Analysis",

The 27th International Conference and Exhibition on

Electricity Distribution (CIRED), 2023

[2] Richard Cochran, et. Al. "The Linux PTP Project",

available online: https://linuxptp.sourceforge.net/

[3] Thomas Gleixner, et. Al. "The RTL Collaborative

Project”, available online:

https://wiki.linuxfoundation.org/realtime/start

[4] Precise Networked Clock Synchronization Working

Group, "IEEE Standard for a Precision Clock

Synchronization Protocol for Networked Measurement

and Control Systems", IEEE 1588v2

[5] Open Container Initiative, "Linux Container

Configuration", available online:

https://github.com/opencontainers/runtime-

spec/blob/main/config-linux.md

[6] linuxcontainers.org, "LXCFS", available online:

https://linuxcontainers.org/lxcfs/introduction/

[7] G. Albanese, R. Birke, G. Giannopoulou, S.

Schönborn, T. Sivanthi, " Evaluation of Networking

Options for Containerized Deployment of Real-Time

Applications". In IEEE International Conference on

Emerging Technologies and Factory Automation

(ETFA), 2021.

Figure 3 Maximal application task timings of VPC running inside

VMs on two different hypervisors for 70 hours.

https://linuxptp.sourceforge.net/
https://github.com/opencontainers/runtime-spec/blob/main/config-linux.md
https://github.com/opencontainers/runtime-spec/blob/main/config-linux.md
https://linuxcontainers.org/lxcfs/introduction/

