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ABSTRACT
Federated Learning (FL) has emerged as a promising solution to
address privacy concerns by collaboratively training Deep Learn-
ing (DL) models across distributed parties. This work proposes
an architecture-based aggregation strategy in Vertical FL, where
parties hold data with different attributes but shared instances.
Our approach leverages the identical architectural parts, i.e. neu-
ral network layers, of different models to selectively aggregate
weights, which is particularly relevant when collaborating with
institutions holding different types of datasets, i.e., image, text, or
tabular datasets. In a scenario where two entities train DL models,
such as a Convolutional Neural Network (CNN) and a Multi-Layer
Perceptron (MLP), our strategy computes the average only for archi-
tecturally identical segments. This preserves data-specific features
learned from demographic and clinical data. We tested our ap-
proach on two clinical datasets, i.e., the COVID-CXR dataset and
the ADNI study. Results show that our method achieves compa-
rable results with the centralized scenario, in which all the data
are collected in a single data lake, and benefits from FL generaliz-
ability. In particular, compared to the non-federated models, our
proposed proof-of-concept model exhibits a slight performance loss
on the COVID-CXR dataset (less than 8%), but outperforms ADNI
models by up to 12%. Moreover, communication costs between
training rounds are minimized by exchanging only the dense layer
parameters.

CCS CONCEPTS
•Computingmethodologies→Multi-task learning;Distributed
artificial intelligence; • Applied computing → Life and medi-
cal sciences; • Security and privacy → Human and societal
aspects of security and privacy.
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1 INTRODUCTION
Nowadays, Artificial Intelligence (AI) is increasingly being utilized
in various domains. AI techniques require training on data available
in a single data lake. However, data are often distributed among
different institutions, and aggregating them is not always feasible
due to privacy and security concerns. The data’s distributed loca-
tion makes the training model’s deployment local, with specific
concerns on the heterogeneity of hardware capacities, connections
and, in our case, data privacy. In this sense, FL has emerged as a
promising solution for collaborative machine learning across dis-
tributed parties while preserving data privacy, and it represents an
interesting challenge for Computing Continuum [18]. In particu-
lar, FL leverages the computing continuum to enable collaborative,
distributed model training across a range of connected devices,
ensuring seamless and continuous intelligent learning. The key
innovation brought by FL is to benefit from data that usually are
only used locally. FL is typically divided into two categories:

• Horizontal (HFL) [13] Federated Learning, where the feder-
ation participants (clients) hold data with the same features
or attributes but different instances or examples.

• Vertical (VFL) [12] Federated Learning, where the differ-
ent clients hold data with the same instance but different
features.

HFL and VFL adopt very different training techniques. Indeed,
in HFL, the most well-known and most used aggregation algorithm
is FederatedAveraging (FedAvg), where each client of the federation
trains a local model and exchanges its parameters with a central
server, which aggregates them and sends the resulting global model
back to each client. Besides FedAvg, other FL algorithms have been
proposed, such as FedCurv [20], and SCAFFOLD [7], in order to
deal with non-IID data, which has been shown to represent a chal-
lenge for FL systems [2]. On the other hand, in VFL both data and
models are kept local while intermediate results are exchanged
among clients. These intermediate messages consist of learning
representations of local data and their gradients [22, 24].

Our work aims to explore an innovative aggregation strategy
for VFL that leverages model architecture as a key criterion for
weight aggregation. We propose to average the network parameters
only for the parts of the models that share the same architectural
structure, thus preserving the specificity of features learned from
demographic and clinical data. Basically, this results in applying the
HFL principles only for the shared identical architectural layers.

This strategy offers several potential advantages. Firstly, it en-
ables collaboration among parties that do not hold the same type
of data, i.e., one client holding images and another holding tabular
data, increasing the model’s generalizability. Secondly, it reduces
cost communication among parties by lowering the data size to
be shared during the aggregation process. Indeed, a reduction in
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communication costs during the training of our federated model is
achieved by transferring only a smaller subset of layers of the local
models, while typical HFL systems exchange all the layers.

VFL is often used in scenarios where different organizations or
entities want to collaborate to train a model on data with differ-
ent attributes without violating the privacy of the data itself. A
typical example is the medical application. In healthcare, patient
data can be highly heterogeneous. Different institutions may collect
patient data with different attributes, such as age, gender, medical
history, and test results. For this reason, in our experiments, we
employed two medical datasets containing both images and clinical
parameters, namely the COVID-CXR dataset [21] and the ADNI
study [23].

The main contributions of our work are:
• we extend the principles of HFL to VFL by applying FedAvg
only for the parts of the models that share the same archi-
tectural structure.

• We perform extensive experiments to provide a systematic
study of FedAvg in a VFL setting, analyzing the performance
from a learning and computational point of view.

• As a result of experimentation, we show that our proposed
framework aligns with the centralized results achieved by
relying only on a single input data type and allows for exploit-
ing FL generalizability even when institutions have different
input sources.

• We release the code to replicate our experiments.
The rest of the paper is organized as follows. Section 2 reviews

the most recent related works. Section 3 presents our proposed
method. Section 4 describes the experimental settings and discusses
the results. In Section 5, conclusions are drawn.

2 RELATEDWORKS
VFL has gained attention in the last few years, tackling the problem
of decentralization both for examples and for the feature space. The
goal is to create an aggregated architecture efficient on different data
without the possibility of considering all of the examples together
at training time.

The developed research has become very effective for cases in
which privacy concerns are particularly challenging, and data can
be very heterogeneous. For example, the healthcare domain can
benefit consistently from this setting.

However, in the first place, privacy concerns have not been taken
into account, enabling the development of centralized multi-modal
architectures for data with heterogeneous feature space (for exam-
ple, images and tabular data). In particular, the need for multi-modal
architectures in the healthcare domain has brought many advance-
ments in designing methods to accomplish specific tasks. In a recent
work [9], the authors used the representations extracted by a CNN
for training a second linear model that fits tabular data. This method
has been outperformed by single architecture methods, which solve
the problem of redundant representations. In fact, approaches in-
volving a singular architecture connect the latent representation
of image and tabular information before the last layer, overcoming
the problem of redundant information [5, 8, 16, 17]. However, they
exploit only linear relations between image representation and
tabular data. This limitation was overcome using an MLP, which

takes into consideration the non-linearities between different data
involving the same patient, as done in some recent works [4, 11, 14].

All these approaches present architectures to accomplish a cer-
tain medical task with different types of data without considering
possible privacy restrictions. Our approach aims at providing a
framework where data are owned by institutions sensible to data
privacy, which makes the task harder to complete. Indeed, few
works have addressed this problem concerning the FL setting. Some
FL works in the Internet of Things (IoT), and healthcare sectors are
present in the literature. Most of these works design multi-modal
architectures for solving specific tasks [1, 19, 25]. Moreover, the
increasing proliferation of IoT applications requires a seamless in-
terconnection of resources of edge and cloud devices, leading to
the ecosystem of Computing Continuum. FL is a Computing Con-
tinuum strategy of Machine Learning applications relying on data
coming from IoT and edge devices [15].

Another recent work [3] in themedical domain proposesMERGE,
a multi-input NN leveraging multiple input sources, i.e., images and
tabular data. The basic assumption of MERGE is that each federa-
tion participant has both data types, locally available and accessible.
However, in a real federation, each client can hold various types of
datasets, such as images, tabular features, or text reports. Our pro-
posed method aims to overcome this FL limitation by aggregating
only the identical architectural parts of the DL models. In addi-
tion, we focus on the interpretation of the aggregation, shedding
light on the interpretation of the extracted features by different
architectures on different data and the combination of the two.

3 METHOD
In this section, we present our approach for VFL with Architecture-
Based Aggregation. Our method aims to address the unique chal-
lenges of collaborating onmachine learning taskswhen data sources
possess heterogeneous attributes that refer to the same instance (e.g.
an institution owning scans of a patient, while another institution
owns his clinical parameters).

We consider a typical VFL scenario where two distinct insti-
tutions hold data related to the same set of instances but with
different attributes. In particular, in our experiments, the first insti-
tution trains a CNN on image data, while the second party trains an
MLP on tabular data. We selectively aggregate the weights of these
models based on their architectural similarity. By design, and in
order to be aggregated, the dense layers of the CNN adopted by the
first organization are the same as the MLP of the second institution.
Figure 1 shows how our proposed method works.

We introduce several aggregation strategies to explore the bene-
fits of selective aggregation:

• Full: in this scenario, we perform weight aggregation across
all the dense layers of the models.

• Half: in this scenario, we performweight aggregation across
half of the dense layers of the models. According to the layers
we choose to combine, we can have different cases:
– Aggregating the first half: we aggregate the weights of the
first layers. This strategy focuses on capturing the models’
initial feature extraction and processing stages.
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Figure 1: A generic representation of our architecture-based
FedAvg for VFL.

– Aggregating the second half: we aggregate the weights of
the last layers. This strategy focuses on capturing the last
processing stages and the final output decision-making.

In our experiments, we tested only the second case, i.e., we per-
formed weight aggregation of only the last model layers. So, it is
possible further to distinguish several subcases within the Half Ag-
gregation approach to refine our aggregation strategy. Specifically,
when averaging the last layers, the question arises regarding the
weights of the first layers. We investigated three different possibili-
ties:

• Random initialization: the first layers of the models are
randomly initialized. This approach allows for exploring
the relationship between random weights and the features
extracted in the initial layers. Moreover, it allows to study
the influence and interaction among random weights and
subsequent layers.

• Alignment with CNN dense layers: the weights of the
first layers are set to the corresponding values in the CNN.
This strategy allows for emphasizing the feature extraction
and initial processing stages of the CNN.

• Alignment with MLP dense layers: the weights of the
first layers are set to the corresponding values in the MLP.
This approach allows for emphasizing the feature extraction
and initial processing stages of the MLP.

4 EXPERIMENTS AND RESULTS
Federation setup: the entities of our simulated federation are a
server and two clients. For each federation round, each client ex-
ecutes one training, one validation, and one testing stage. Then,
aggregation is performed according to one of the previously dis-
cussed strategies, and the resulting models are validated on the
test data. All experiments are executed on a simulated federation
deployed on a dedicated server with an Intel Xeon CPU (8 cores
per CPU) and one Tesla T4 GPU. We release the code required to
reproduce our experiments at the following link: OMITTED FOR
ANONYMOUS SUBMISSION.

4.1 Datasets
We tested our aggregation strategy on two tasks:

• Prognosis of COVID-19 disease from chest X-rays (CXR)
data, using the COVID-CXR dataset [21]

• Detection of Alzheimer’s disease from neuroimaging data,
using the ADNI study [23].

More details about the datasets are provided below.
COVID-CXR dataset. This dataset consists of both CXR and

clinical parameters. Data were collected from six hospitals (A, B, ...,
F) in emergency conditions during the first COVID-19 outbreak in
Northern Italy in collaboration with Centro Diagnostico Italiano
and Bracco Imaging. A sample from each hospital is shown in Fig.
2

Hospital A Hospital B Hospital C

Hospital D Hospital E Hospital F

Figure 2: One sample coming from each of the six hospitals.

As clearly shown in Fig. 2, this dataset exhibits a clear feature
distribution skew due to the different data collection procedures
of the six hospitals. This leads to the well-known problem of non-
iidness in FL [2, 10]. Each patient of the dataset is provided a CXR
and some clinical parameters (namely age, sex, positivity at ad-
mission, temperature, days of fever, cough, difficulty in breathing,
WBC, RBC, CRP, glucose, LDH, INR, PaO2, PaCO2, pH, high blood
pressure, diabetes, dementia, BPCO, cancer, CKD and respiratory
failure). The statistics of the dataset are summarized in Table 1.

Table 1: Statistics of the CoViD-19 CXR dataset with class-
balance percentages.

Hospital Samples Positives (%) Negatives (%)

A 120 85 (70.83%) 35 (29.17%)
B 104 59 (56.73%) 45 (43.27%)
C 151 81 (53.64%) 70 (46.36%)
D 139 76 (54.68%) 63 (45.32%)
E 101 55 (54.46%) 46 (45.54%)
F 974 546(56.06%) 428 (43.94%)
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As it can be noted from Table 1, this dataset also exhibits the
quantity skew non-iidness, that according to a recent work[2] does
not represent a difficult challenge for FL algorithms adopting a
weighted averaging of the parameters.

ADNI. The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
is an ongoing and multicenter study, representing the main bench-
mark dataset for Alzheimer’s Disease (AD). It comprises a set of clin-
ical and neuroimaging (3D T1-weighted MRI scans) data collected
over the years in different cohorts (ADNI1, ADNI2, and ADNI3).
Each cohort contains patients from two classes: control subjects
(CN) showing no signs of depression, mild cognitive impairment,
or dementia, and AD participants. As for the COVID-CXR dataset,
the ADNI database has clinical indicators. For our study, we consid-
ered the age, gender, and APOE4 (𝜖4 of Apolipoprotein E, the most
important known risk factor for AD). APOE4 can assume three
different values, 0, 1, or 2, according to the number of Y4 alleles of
the APOE gene. Patients with missing values were removed. The
statistics of the dataset are reported in Table 2.

The ADNI preprocessing consisted of the following steps: re-
orientation, bias-field correction, non-linear registration to the
MNI152-2mm standard space with dimensions of 91x109x91, and
normalization.

ADNI1 ADNI2 ADNI3

Figure 3: Samples coming from each of the three ADNI
datasets.

A sample from each of the three ADNI cohorts is shown in Fig.
3.

Models. We have reproduced the experiments of MERGE [3],
a multi-input neural network for FL leveraging both images and
tabular data, and tested on the COVID-CXR and ADNI datasets,
by adopting the same models and hyperparameters. For the first
institution of our federation, the CNN adopted is a modified version
of a ResNet-18 [6] (2D version for the COVID-CXR dataset, while
a 3D version for the ADNI study), where the dense layer is, by
design, exactly the same as the MLP trained on the data of the
second institution. The MLP comprises four layers: an input layer,
two hidden layers (respectively containing 64 and 32 neurons), and
an output layer. The activation function used is the ReLU function.
Models were trained by minimizing the binary cross-entropy loss
function using the Adam optimizer with learning rate 1e-4 and
OneCycleLR as the scheduler. The local batch size was set to 8. For
the task of prognosis of COVID-19, the models were trained for 100
rounds, while for the detection of AD, they were trained for 200
rounds.

4.2 Results and Discussion
As a baseline, we considered the performance of MERGE. Results
are shown in Table 3.

Table 3: Accuracy in the centralized setting (all data are gath-
ered in a single data lake). Results (mean ± standard devia-
tion) are obtained with five-fold cross-validation. For each ex-
periment setting is highlighted the best-performing model.

Input COVID ADNI

Only images 0.731 ± 0.06 0.777 ± 0.01
Only tabular 0.740 ± 0.03 0.638 ± 0.02
Multi-input 0.733 ± 0.01 0.811 ± 0.03

We tested our aggregation-based method on two tasks: the prog-
nosis of COVID-19 disease from the COVID-CXR dataset and the
AD detection from the ADNI database. The simulated federation en-
compasses two clients: the first trains a CNN on image data, while
the second trains an MLP on tabular data. The CNN is a modified
version of ResNet-18 where the dense layers are identical to the
MLP of the second client. Results are reported in Table 4.

Results show that our method suffers from a low loss in perfor-
mance with respect to the best models of MERGE, that, in the case
of COVID-19, is the MLP leveraging only tabular data, while ADNI
is the multi-input NN, but it allows for exploiting the FL benefits,
such as generalizability, even when organizations hold different
types of input data.
Surprisingly, Half strategies overcome the FULL technique in all
three cases considered: Half with random initialization of the first
two layers (HALF RANDOM), alignment with CNN dense layers
(HALF IMAGES), and alignment with MLP dense layers (HALF
TABULAR). Although counterintuitive, this can happen for several
reasons:

• Extracted features. If the features extracted from images
are completely different from the tabular features, thenHALF
could better combine and process these features during the
decision-making stages. This case seems particularly true for
the COVID-CXR dataset. Indeed, as shown in Table 3, when
combining image and tabular features in a multi-input NN,
performance is lower than using only the clinical parameters.
Conversely, in the ADNI study, a multi-input NN benefits
from combining both inputs.

• Model complexity. The FULL aggregation strategy could
lead to a complex model trying to learn from both image and
tabular features. This can lead to the well-known problem
of overfitting, especially if the two input features are really
different.

The only exception is in the COVID-19 dataset, where the FULL
aggregation achieves better results than HALF RANDOM.

When dealing with images, our method overcomes the baseline
for the ADNI case but not for the COVID-CXR dataset. However, it
can be noted that for all the aggregation strategies, the accuracy is
always the same. This is probably due to the high-skewed datasets.
In particular, for the COVID-CXR dataset, our method seems to
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Table 2: Main demographic and clinical data for the three ADNI study cohorts. Age is reported as mean ± standard deviation
values, gender as the number of males/females, while APOE4 refers to the number of Y4 alleles (0, 1, or 2, respectively).

Gender APOE4

ADNI Samples AD (%) CN (%) Age (avg ± std) F M type0 type1 type2

1 411 184 (44.77%) 227 (55.23%) 75.58±6.21 198 213 229 143 39
2 288 143 (49.65%) 145 (50.35%) 73.69±7.35 130 158 149 107 32
3 262 51 (19.47%) 211 (80.53%) 72.01±6.44 136 126 169 75 18

Table 4: Accuracy in the federated setting (one client trains a CNN on images, while the other one trains an MLP on tabular
data). Results (mean ± standard deviation) are obtained with five averaged runs. For each experiment setting is highlighted the
best-performing model.

COVID-19

FULL HALF RANDOM HALF TABULAR HALF IMAGES

Client 1 (CNN trained on images) 0.630 ± 0.00 0.630 ± 0.00 0.630 ± 0.00 0.630 ± 0.00
Client 2 (MLP trained on tabular) 0.719 ± 0.01 0.700 ± 0.02 0.726 ± 0.00 0.714 ± 0.01

ADNI

FULL HALF RANDOM HALF TABULAR HALF IMAGES

Client 1 (CNN trained on images) 0.805 ± 0.00 0.805 ± 0.00 0.805 ± 0.00 0.805 ± 0.00
Client 2 (MLP trained on tabular) 0.699 ± 0.00 0.758 ± 0.07 0.750 ± 0.05 0.731 ± 0.06

overfit data coming from hospital F, while for the ADNI study, our
method seems to overfit the first two ADNI cohorts.

Finally, our method allows for lowering the amount of data
to be exchanged among clients without hurting the model’s per-
formance, thus decreasing the overall communication time and
requiring fewer computational resources. The model’s statistics are
summarized in Table 5.

Table 5: Statistics of the models.

CNN (2D) CNN (3D) MLP (exchanged)

Parameters 11.183.750 33.168.068 6.529
Size (MB) 42.70 253.13 0.025

As highlighted in Table 5, only the MLP weights are exchanged
during the training of our federated model, thus reducing commu-
nication costs.

Our method, although a little loss in the model’s performance,
allows for exploiting the FL benefits by only aggregating a subset
of architectural parts, thus resulting in a decreased quantity of ex-
changed data (parameters). In particular, in our experiments, we
aggregated only the dense layers of a CNN and an MLP without
exchanging the convolutional parameters which account for the
majority of the memory usage. However, our method, if generalized
to include the aggregation of convolutional parameters, would in-
creasingly offer cost-effective solutions in terms of communication.

5 CONCLUSIONS
In this work, we proposed an architecture-based method for Verti-
cal FL. We leveraged the architectural similarity of different types
of NNs to extend the HFL strategies to the VFL scenario. A thor-
ough comparison of our proposed aggregation strategies is carried
out. Results spanning two medical datasets, i.e., COVID-CXR and
ADNI, show that our method is efficient for integrating FedAvg
into VFL when clients hold different types of input sources without
performance loss. Moreover, by sharing only a subset of NN layers,
our method allows for reducing the communication costs of typical
FL systems. In future work, we plan to:

• Increasing the federation’s participants. In this proof-
of-concept VFL approach, we considered only two clients.
However, in a real-world scenario, it is supposed that more
organizations contribute to training a federated model. For
future work, we aim to increase the number of federation
participants. This can be achieved by:

(1) collecting new datasets, either belonging to the healthcare
domain or to other scenarios.

(2) sharding the datasets considered in this paper, COVID-
CXR and ADNI, in more parts. For example, the COVID-
CXR dataset lends itself to a natural split into six shards,
as its data comes from six different hospitals.

• Testing state-of-the-art models. A possible direction is
to evaluate how our method performs when trained with
SOTA models.
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• Proposing new aggregation techniques. Our method
presents the same typical limitations of the HFL setting,
i.e., layers must be identical to be aggregated. Further inves-
tigation of aggregation strategies is required. For example, a
possible way to merge different architectures could be the
concatenation of convolutions and dense layers trained on
different datasets.

• Testing other types of input data. We tested our strategy
on images and tabular data. Extending this framework to
consider alternative types of data and models, such as text
classification datasets and RNNs, is a possible direction.
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