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Abstract. Since the demand for computing power increases, new ar-
chitectures emerged to obtain better performance. Reducing the power
and energy consumption of these architectures is one of the main chal-
lenges to achieving high-performance computing. Current research trends
aim at developing new software and hardware techniques to achieve
the best performance and energy trade-offs. In this work, we investi-
gate the impact of different CPU frequency scaling techniques such as
ondemand, performance, and powersave on the power and energy con-
sumption of multi-core based computer infrastructure. We apply these
techniques in PAMPAR, a parallel benchmark suite implemented in
PThreads, OpenMP, MPI-1, and MPI-2 (spawn). We measure the energy
and execution time of 10 benchmarks, varying the number of threads.
Our results show that although powersave consumes up to 43.1% less
power than performance and ondemand governors, it consumes the triple
of energy due to the high execution time. Our experiments also show
that the performance governor consumes up to 9.8% more energy than
ondemand for CPU-bound benchmarks. Finally, our results show that
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PThreads has the lowest power consumption, consuming less than the se-
quential version for memory-bound benchmarks. Regarding performance,
the performance governor achieved 3% of performance over the ondemand.

Keywords: PAMPAR · CPU Frequency Governors · Power consump-
tion.

1 Introduction

Nowadays, governments are imposing limits on the power and energy consump-
tion for supercomputing infrastructures [5]. The consequence is that different
supercomputer manufacturers are making an effort to reduce this consump-
tion [24]. The list of the world’s most energy-efficient supercomputers called
the Green500 [5] has been showing significant changes in the latest results. The
USA and some countries in Europe that led the Top500 (the 500 most power-
ful supercomputers) are not reaching good positions in the Green500. However,
that scenario has changed in the past two years. These countries have begun to
make investments in Computational Science to improve the energy efficiency of
their supercomputing infrastructures and now they lead the Green500 list [5].
Therefore, ways of reducing energy consumption without losing computational
performance are widely discussed today.

Computer performance is the amount of useful work accomplished by a com-
puter system [20]. This amount can be increased using parallel programming. To
achieve performance with parallel programming, it is necessary to use different
processing units to execute different parts of a program concurrently. However, a
program does not run 100% in parallel. At a certain part of the execution, these
parties need to communicate to exchange information. This happens at least
once at the beginning and again at the end of the program. This communica-
tion can occur either through access to shared memory addresses or through the
exchange of messages. The problem is that these communication operations can
cause extra energy expenditure. While parallelism allows for increased program
performance, the need for task-to-task communication can impact the power and
energy consumption [23]. Thus, although parallelism allows performance gains,
this can lead to higher power and energy consumption. This power and energy
consumption grows mainly according to the number of processors that are used
in parallel and the volume of communication among them. This increase may
present a significant impact on the power and energy consumption of super-
computing infrastructures. On the other hand, the reduction in execution time
allowed by the parallelization causes a decrease in the total energy consumption
in some cases.

Parallelism techniques can be implemented in a program using Parallel Pro-
gramming Interfaces (PPIs). Some PPIs are best suited for specific languages,
platforms, and architectures. Some interfaces use memory to communicate among
different parallel tasks for programs running on processors that share memory
regions. For programs that will run on a distributed architecture, some PPIs do
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the communication through the exchange of messages, such as Message Passing
Interface (MPI). In addition to these main features, several other factors and
peculiarities of each PPI can impact the performance of a parallel program. One
of these factors is the frequency of the processor, which is adjusted through
different governors. These governors can prioritize performance or energy con-
sumption. These governors can set the processor frequency at maximum (more
performance) and minimum (more power savings).

As seen, many factors can impact the performance, power and energy con-
sumption of parallel programs. It is necessary to understand better the role that
different PPIs play when used with variations in processor frequency. With this
understanding, it is possible to find the best trade-offs between performance,
power and energy consumption. Contributing to this subject, this paper evalu-
ates the power and energy consumption of different parallel programming inter-
faces using different CPU governors. We evaluate the behavior of the PPIs with
the governor’s ondemand, performance, and powersave. These governors were
chosen because they can highlight the characteristics of the parallel applications.
The goal of our work is to show the impact of different PPIs and applications
on the power and energy consumption and performance varying the governor
policies of the processor (ondemand, performance, and powersave) and find out
how it is impacted according to specific application characteristics.

To achieve the goal, in this paper, we run the PAMPAR4 suite [8] changing
the governor settings. PAMPAR consists of 13 parallel benchmarks developed
to evaluate the performance and energy consumption of PPIs. Despite the serial
code, each benchmark is implemented using well-known PPIs in the Computa-
tional Science field, such as PThreads, OpenMP, MPI-1, and MPI-2 (dynamic
process spawn). The authors of the suite ran experiments to measure the perfor-
mance and energy consumption of PAMPAR benchmarks to estimate the power
and energy consumption of the PPIs without regard to the CPU-enabled gover-
nor [9,10]. In this paper, we explore this gap.

The remainder of this work is organized as follows. In Section 2, we introduce
the governors for frequency scaling and present more details about the bench-
mark selection. Section 3 shows how our experiments were structured and bring
some information to a better understanding of the results. Section 4 discusses
the results. The related works are discussed in Section 5 and, finally, Section
section 6 draws the final considerations and future works.

2 Background

2.1 CPU Frequency Scaling Governors

The CPU frequency scaling allows the operating system to increase or decrease
the CPU frequency to save power [15]. CPU frequencies can be scaled automat-
ically depending on the system load, in response to ACPI (Advanced Configu-
ration and Power Interface) events, or manually by the user. CPU frequency

4 https://github.com/adrianomg/PAMPAR
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scaling is implemented in the Linux kernel, and the infrastructure is called
CPUFreq. Since kernel 3.4, the required modules are loaded automatically, and
the ondemand governor is activated by default. However, other governors can be
enabled, such as powersave, performance, userspace, or conservative. Each
governor has its unique behavior, purpose, and suitability in terms of work-
load [18]. In this paper, we evaluate performance, power and energy consump-
tion. In this way, we investigate the ondemand, performance, and powersave

governors.
The ondemand is a dynamic governor that uses CPU load as a metric to

select the CPU frequency. It measures the time elapsed between consecutive
invocations of its worker routine and computes the fraction of that time in which
the given CPU was not idle. This way, it can estimate the current CPU load.
The ratio of the active time (non-idle) to the total CPU time is taken as an
estimate of the load. In our work, this governor is attached to a policy shared
by multiple CPUs, so the load is estimated for all of them, and the best result
is used as the load estimate for the entire policy.

To achieve the highest possible clock frequency by the CPU, the governor
performance can be enabled. Once enabled, the highest frequency will be set
statically and will not change. It is indicated for cases in which the CPU will
deal with a heavy workload or will be rarely idle, at least. That is because this
particular governor is opposed to the power saving benefit.

Contrary to performance, the powersave governor forces the processor to
use the lowest possible clock frequency. Once activated, the operation of this
governor is similar to performance. However, in this case, the lowest frequency
will be statically adjusted and will not change. Therefore, as expected, this
particular governor offers maximum power savings, but at the cost of lower
CPU performance.

2.2 Benchmark

The objective of this work is to investigate the impact of different CPU governors
and PPIs on power and energy consumption. However, it is difficult to find a
well-known benchmark suite that offers a diverse set of benchmarks implemented
with several PPIs for general-purpose architectures. The most parallel suites do
not offer a set of benchmarks representing diverse domains and fully parallelized
in many PPIs (e.g., NPB, PARSEC, Rodinia, etc.). Most of them implement no
more than a couple of PPIs or only small subsets in different PPIs, and these
subsets do not always match the same benchmarks.

This way, we looked for any other benchmark suite that could be suitable
for our goals. Thus, we found PAMPAR. It is a new parallel benchmark suite
with 13 C/C++ benchmarks from many domains, such as physics, engineering,
chemistry, image processing, pattern recognition, biological simulation, linear
algebra, etc. The suite consists of 3 micro benchmarks, seven kernels, and three
pseudo-applications. They were developed to establish a relationship between
performance and energy consumption in embedded systems and general-purpose
architectures [9]. The main factor that makes PAMPAR suitable for our work is
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that all benchmarks on the suite are parallelized in 4 PPIs: PThreads, OpenMP,
MPI-1, and MPI-2. These PPIs are also the target of this work because they are
the most widespread in the Computational Science field. Besides this, they are
supported by most multicore based infrastructures, both embedded and general-
purpose.

3 Methodology

The experiments were carried out on a computer equipped with 2 IntelR© XeonR©

Silver 4116 processors. Each processor has 12 physical cores operating at the
standard 2.1 GHz frequency and 3 GHz turbo frequency. Its memory system
consists of three levels of cache: a 32 KB L1i and 32 KB L1d cache and a 1
MB cache L2 for each core. Level L3 has a 16.5 MB cache shared between all
cores using Smart Cache technology. The main memory (RAM) is 96 GB in
size and DDR4 technology. The operating system is Linux Debian kernel version
4.19.0-8 using GNU GCC 9.3 compiler with -O2 optimization flag, OpenMP 4.5,
and OpenMPI 3.1.3. This machine represents a node in a large supercomputing
infrastructure.

PAMPAR benchmark 1was used for the experiments. We selected the Medium
workload class. This class includes 2048×2048 input matrices for benchmarks
that use matrices, for instance. To increase the accuracy of experiments, the re-
sults presented in section 4 are the average of 10 executions of each benchmark.
The results graphs show the average energy consumption values and the 95%
confidence intervals according to the Student’s t-distribution [19]. During the
experiments, the computer remained locked to ensure that other applications
did not interfere with the results.

The benchmarks deployed with MPI-2 begin the execution with a single
process. Then, this process (parent process) invokes new child processes that
do not need to be identical to the parent. After creating a child process, it will
belong to an intra-communicator, and the communication between parent and
child will occur through this communicator.

The IntelR© Performance Counter Monitor (PCM) 2.0 toolkit was used to
measure energy consumption [13]. It has a tool to monitor the power states of
the processor and DRAM memory. This way, the total energy consumption is
the sum of the energy required by the DRAM modules and core domains (CPU
and cache memories). For the execution time, the time in the beginning and
the end of each benchmark’s main function was measured using the GNU time
library, and the difference of these values was used.

4 Results

4.1 Power and Energy consumption

In this section, we present the energy consumption results of PAMPAR bench-
marks and their PPIs impact over different governors for the CPUs. Figure 1,
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Table 1 and Figure 2 show the results for different benchmarks. The figures
are charts, where facets are different governors, and bars are the energy con-
sumption in joules for each PPI. Each chart displays the results by benchmarks
individually. These results refer to running using two, six, and twelve parallel
threads/processes for each case. Also, a dashed horizontal line represents the
sequential result of the respective benchmark.

In Figure 1 and Table 1 are presented results for the CPU-bound benchmarks.
The exception is DJ, JA, and MM benchmarks that are not fully CPU-bound,
as they do a bit more memory access, but not enough to be classified as highly
memory-bound. These results show that powersave governor consumes the triple
of energy than ondemand and performance, on average. For all the results that
present this behavior, this difference is reduced as the number of parallel tasks
increases. However, since the execution time of performance and ondemand are
low, they present higher power consumption results. Moreover, it shows that
performance governor consumes 4.8% more energy than ondemand due to its
high frequency used per core. For CPU-bound benchmarks using ondemand gov-
ernor on this infrastructure, great power and energy consumption savings are
not expected because this kind of application requires high computing power in
most of its execution time.

Moreover, looking more closely at PPI behavior, it is possible to observe that
ondemand has less impact on OpenMP and PThreads than MPI-1 and MPI-2.
For OpenMP and PThreads the performance governor consumes 1.4% and 2.2%
more energy, while for MPI-1 and MPI-2, it is 4.8% and 9.7%. The difference in
these PPIs can be explained in the context of threads and processes. Threads
are often a lighter type of process for the system, while processes are heavier.
A thread shares with other threads its code area, data, and operating system
resources. Because of this sharing, the operating system needs to deal with less
scheduling costs and thread creation, when compared to context switching by
processes—all of these factors impact performance and, consequently, on energy.
Also, in a larger infrastructure using distributed processing, it would impact
much more.

The DJ benchmark shows the highest energy savings using ondemand and
performance over the powersave governor, about three times less. Using 12
threads, performance governor consumed 12.5% more energy for OpenMP than
ondemand. We can also see that the tendency of powersave to consume triple
the energy with two threads, is not confirmed with 12 threads, where the con-
sumption does not reach double. For DFT and HA the performance energy
consumption overhead varies from 2.7% to 5.1%. The MM presents an unusual
behavior, that is, for this benchmark powersave governor consumes less than
twice the energy consumed by ondemand and performance. We hypothesize that
once this benchmark mixes computation with memory operations, which would
execute in a low frequency, the ondemand governor takes a wrong decision, de-
creasing cores frequency when the maximum frequency would be more effective.

The DP benchmark using ondemand and performance governors show a dif-
ferent PThreads behavior regarding the other PPIs with low number of parallel
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Fig. 1. Energy consumption for CPU-bound benchmarks.
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Table 1. Energy consumption for CPU-bound benchmarks (joules).

MPI-1 MPI-2 OpenMP Pthreads

Threads/Processes 6 12 6 12 6 12 6 12

DP
Ondemand 402.27 265.15 360.08 369.75 319.62 170.74 341.62 211.31
Performace 403.75 267.18 368.12 367.18 349.15 181.30 352.35 224.13
Powersave 729.65 412.03 738.71 502.54 572.84 304.51 681.68 362.36

NI
Ondemand 236.80 161.16 253.27 266.56 207.56 122.93 189.58 112.40
Performace 237.99 161.36 262.37 267.10 208.15 134.47 190.25 120.06
Powersave 447.07 260.23 474.71 356.52 417.31 222.03 380.96 202.09

PI
Ondemand 415.34 268.92 382.37 380.02 387.84 218.55 387.76 229.41
Performace 413.46 269.70 390.60 383.34 384.41 228.39 386.86 233.60
Powersave 789.08 443.19 792.24 519.20 755.86 405.23 759.45 405.47

tasks. With six and twelve threads, PThreads follows the pattern that is seen in
most CPU-Bound benchmarks. However, using two threads, this consumption
exceeds the consumption of other PPIs. The other three PPIs follow the pat-
tern by increasing the number of threads, where MPI-2 consumes less energy
than MPI-1 and OpenMP. This behavior is not the same for performance and
powersave.

Table 1 shows the results of energy consumption of DP, NI and PI bench-
marks. They are three CPU-bound micro-benchmarks that perform simple iter-
ative operations. We present the values in a table because the graphs were very
similar for differences to be noticed. In this table it can be seen that ondemand

and performance consumed almost the same amount of energy with MPI-1 and
MPI-2. But OpenMP and PThreads showed differences between these two gov-
ernors. In DP Pthreads with 6 threads, ondemenand consumed 3.2% less energy
than the performance governor. Using 12 threads, performance consumed 6.2%
more energy. Regarding NI OpenMP with 12 threads, performance consumed
9.8% more energy than ondemand. The powersave governor showed the same
behavior seen in the previous benchmarks.

MM shows similar behavior to DP in performance and ondemand, but for
both MPI PPIs. The consumption of these two PPIs grows at a higher rate
than the other PPIs as the number of threads increases. The difference in this
benchmark is that OpenMP also uses more power than both MPI PPIs. For two
threads, the rate of increase is not as high as PThreads, but for six and twelve, it
consumes the same or more. Also, using MPI-1 and MPI-2, this benchmark was
the one that most approached the consumption of the sequential version among
the CPU-Bound benchmarks.

In the memory-bound benchmarks (Figure 2), it is possible to observe that
ondemand has a high impact on Pthreads. For MPI-1, MPI-2, and OpenMP,
performance governor consumes 1.8%, 2.7%, and 2.3% less energy, respectively,
while for Pthreads, it consumes up to 14.3% less, which represents 27.8% of power
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Fig. 2. Energy consumption for memory-bound benchmarks.
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increase. The GS and JA benchmarks show the highest energy consumption
for MPI. On average, performance governor consumes 13.8% and 11.4% more
power, respectively, while for other memory-bound benchmarks, it represents
less than 7.2%. Powersave governor has almost the same behavior as for CPU-
bound benchmarks. It consumes 43.1% less power than performance governor
and 37.9% less than ondemand. It is expected, as memory-bound benchmarks
consume most of its time in-memory operations and the workloads we use to fit
into the infrastructure’s cache memory. So these benchmarks generally do not
need to access main memory, which would be more costly in terms of energy.
This way, the powersave takes advantage through the decrease in the CPU
frequencies while these memory operations are done.

The low power consumption by PThreads in memory-bound benchmarks
does not represent that the total power consumed was lower in this PPI. As
next section will show, the execution time and the energy consumption are higher
than OpenMP. A low power consumption means that the benchmark consumed
less energy over time, but that time was higher than OpenMP. It means that
PThreads has a lower overhead caused by parallelization over OpenMP. In fact,
for all memory-bound benchmarks, OpenMP uses about two and three times
more memory than PThreads [9].

On the other hand, PThreads have approximately ten times more cache
misses than other PPIs in memory-bound benchmarks [9]. In this way, the ex-
ecution of PThreads takes more time, but the use of hardware in this period is
less intense about the other PPIs, which implies in lower consumption of energy
over time. This increase in execution time can be caused by busy waiting for
PThreads.

JA and GS with OpenMP reach a high energy consumption with MPI. They
are memory-bound benchmarks, so the overhead of communication and synchro-
nization among threads begins to impact negatively. With MPI-1 and MPI-2,
the results indicates that, despite the total energy, the power consumption are
very similar to the results of CPU-bound benchmarks. The growth of power con-
sumption as the number of parallel processes increases follows the same pattern
previously observed. It is perceived that MPI-2 has a lower consumption than
MPI-1 in most cases for both CPU and memory-bound. This small difference
may be caused by dynamic process creation. This causes processes to be created
later in MPI-2.

Another observed factor is that PThreads access less the memory system dur-
ing synchronization. This means that for memory-bound programs parallelized
using PThreads, this processor we used is a good choice since it provides con-
siderable performance improvements at the same price in energy consumption.
For CPU-bound programs, the power consumption for each PPI is very similar.
The impact of particular characteristics of each communication model on the
memory system is reduced as the benchmarks use more CPU.
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4.2 Performance

Regarding performance, the benchmark showed similar behavior for the three
governors across all CPU-bound benchmarks, and the same occurred for memory-
bound benchmarks. Thus, we only present representative tests from HA, TR, and
MM using twelve parallel threads/processes for the sake of space. They represent
CPU-Bound (CPU-B), memory-bound (WMEM-B), and weakly memory-bound
(WMEM-B) benchmarks, respectively. The results are presented in Figure 3.

In CPU-bound benchmarks the governor performace achieved a maximum
performance of only 3% over the ondemand. That happens because these bench-
marks will run most of the time on the CPU. It means that the ondemand gov-
ernor can perform well because it will operate most of the time at the highest
frequency. Regarding the powersave governor, it is possible to draw a relation-
ship with the result of power and energy. The powersave consumed about three
times the energy compared to other governors. The same behavior occurs the
other way around with the execution time, which shows that powersave spends
approximately the triple of the time running CPU-bound benchmarks.

The memory-bound benchmarks are represented by TR (MEM-B on Fig-
ure 3). In this type of benchmark the ondemand governor does not perform as
closely as performance for PThreads, as seen in CPU-bound benchmarks. This
shows the impact that is switching on frequency levels causes each time a bench-
mark goes into memory operations. This pattern is seen in weakly memory-bound
benchmarks, as well. MPI-2 presents the same behavior of CPU-bound bench-
marks, with powersave spending around the triple of time to compute. What
causes this behavior is the need for communication among threads by TR. In
MPI-2, these communications go through an inter-communicator that links the
main process with the dynamically created ones. It increases the cost of each
communication operation. TR is characterized as one of the benchmarks that
do most communication operations [16]. Each process does one communication
operation for each element of the input vector. In our test case, that means 96
thousand exchange data operations using a 2048×2048 input matrix and twelve
threads. Therefore, all these characteristics together causes the ondemand to lose
performance over the performance governor. Regarding threads, it impacts more
in PThreads than OpenMP, which uses directives to improve communication. For
MPI-2, the need for an inter-communicator also impacts negatively.

For the last, MM is representing weakly memory-bound benchmarks (WMEM-
B on Figure 3). These benchmarks are weakly memory-bound because they spend
most of their time on the CPU but still make a considerable amount of memory
accesses. The other two benchmarks in this category are DJ and JA. DJ was not
much affected by the change of governors and showed similar behavior to the
CPU-bound benchmarks. That is because the DJ looks for paths between nodes
in a sparse matrix and does not have to read and write for each value. MM, on
the other hand, accesses three arrays to do read and write operations, needing
to do more accesses than DJ. Thus, the matrix access pattern in the benchmark
source code shows that MM has an access pattern that increases cache misses (by
changing the j and k indexes). The overhead presented by MPI-1 and MPI-2 in
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Fig. 3. Execution time using twelve parallel threads/processes.

this benchmark shows that the power governor did not increase execution time
over the other two in MPI-2. In other PPIs, the difference was also much smaller
compared to that seen in CPU-bound benchmarks. Therefore MM’s pattern of
memory access has had a significant impact on execution time with ondemand

and performance governors.
The performance results show that the amount of memory access and commu-

nication operations are the biggest influences on the performance using different
CPU governors. For benchmarks that do many memory-accesses, CPU gover-
nors do not define specific behavior and vary depending on how memory-bound
the benchmark is. While ondemand and performance achieved almost 70% per-
formance over powersave in CPU-bound and memory-bound benchmarks, for
the weakly memory-bound benchmarks this performance gain is around 30%.
Thus, using frequency scaling only on the CPU may not make much difference
when using highly memory-bound benchmarks. To improve the performance of
this type of benchmark through governors, it is necessary to balance the use
of frequency scaling in memory. This scenario would probably change a lot if
we used a larger supercomputing infrastructure. The MPI benchmarks would
require to communicate through the network, which is a costly operation for the
infrastructure.

5 Related Work

The impact of frequency scaling governors is widely discussed. However, few
studies evaluate the performance, power and energy consumption of parallel
benchmarks using different governors.

Dzhagaryan and Milenković [7] evaluated how the number of threads and fre-
quency scaling impact the energy consumption of multicore based infrastructure.
The authors used PThreads benchmarks from the PARSEC benchmark for the
experiments. They concluded that for an IntelR© XeonR© processor 1240 v2 a fre-
quency between 2.8 and 3.0 GHz gives the best trade-off between performance,
power and energy consumption.

Jiang C. [14] attempted to find a relationship between multicore processor
frequency levels and application performance. The author tested a couple of
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benchmarks (PI Calculation and File Compression) with different workloads.
However, he did not evaluate parallel benchmarks, which reduces the contribu-
tion of evaluating a multicore based infrastructure.

Ibrahim et al. [12] investigated the impact of dynamically scaling the fre-
quency of compute nodes on the performance and energy consumption of a
Hadoop cluster infrastructure. They ran the PUMA benchmark and another
couple of distributed programs using different governors. The paper does not
exploit parallelism.

Catalán et al. [3] evaluated the energy efficiency of dense linear algebra rou-
tines using low-power multicore processors and analyzed whether the poten-
tial energy reduction achieved when scaling the processor to operate at a low
voltage compensates the cost of integrating a fault tolerance mechanism. The
authors used matrix-vector and matrix-matrix multiplication kernels using the
BLIS framework. The authors did not exploit TLP or different PPIs.

Teng et al. [17] propose a set of algorithms that use compile-time informa-
tion to achieve energy efficiency by frequency scaling control at run-time. The
authors concluded that in a power-saving configuration, the memory-intensive
benchmarks achieved better performance over CPU-intensive.

Chadha and Gerndt [4] implemented an energy-aware tuning plugin for DVFS
based on a neural network. This neural network was trained using various OpenMP,
MPI, and hybrid benchmarks. The authors did not exploit TLP or PPIs. In our
work, we evaluate the impact of each application’s characteristics, but we also
assess the impact of different PPIs on power, energy and performance.

Oliveira et al. [2] proposed an automatic and non-intrusive framework to
optimize parallel applications implemented with OpenMP, at the static time,
by selecting the ideal number of threads and CPU frequency level to execute
each parallel region. This framework consists of an optimization algorithm based
on a genetic algorithm that optimizes the trade-off between performance and
energy consumption. For the experiments, the authors used eight benchmarks
parallelized with OpenMP, five of them from the NAS Parallel Benchmarks. The
paper does not exploit the impact of the characteristics of the benchmarks and
evaluates only OpenMP.

Almatouq et al. [1] propose an optimization technique that balances perfor-
mance and energy consumption by applying a joint control of core, resource,
and frequency scaling. The technique was validated using benchmarks from the
PARSEC benchmark. Although the benchmarks are evaluated individually, the
authors did not exploit TLP or PPI characteristics.

It is assumed that execution time and energy consumption behave in a
non-linear manner concerning frequency scaling. Based on that, Rauber and
Rünger [21] proposed a scheduling process to independent tasks assignment and
frequency scaling selection to improve efficiency. The experiments were done for
the SPEC CPU benchmarks. The authors only exploited parallelism for inde-
pendent sequential tasks.

Sheikh et al. [22] use genetic algorithms to find the best trade-offs for energy,
performance, and temperature using a DVFS-based algorithm. The experiments
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were carried over five parallel benchmarks, and the authors evaluated the appli-
cation characteristics and multiple TLP. However, they did not investigate the
PPI impact on the computing infrastructure.

Marques et al. [6] investigated how multidimensional frequency scaling (CPU,
RAM, and L2 cache) can improve Energy-Delay Product (EDP) in multicore em-
bedded systems. They used nine parallel benchmarks from different benchmark
suites, but do not mention any particular PPI.

Lorenzon et al. [16] ran the same benchmarks that make up the PAMPAR
suite to find significant trade-offs between performance and energy in different
architectures. The results showed that there is no single best case with higher
performance and lower energy consumption. However, the author evaluated di-
vided the benchmarks into CPU-bound and memory-bound and evaluated these
two groups as if all the benchmarks were one, presenting unified results for each
group. In this work, we evaluate each benchmark individually and also evaluate
the impact of CPU governors.

All of the aforementioned related work evaluates the relationship between
performance and power in multicore processors. However, the works which use
parallel applications in experiments do not necessarily focus on exploring de-
tails of parallelism, such as varying the number of parallel threads or addressing
a particular PPI. Nevertheless, none of them investigated the impact of using
different PPIs. Also, some of them do not investigate the impact of each bench-
mark characteristics properly. In our work, we do an energy consumption assess-
ment of 4 PPIs using 10 parallel benchmarks and varying the number of parallel
threads/processes. We evaluated the impact of three different governors for fre-
quency scaling and how these governors behaved according to the benchmarks
and PPI characteristics.

6 Conclusions and Future Work

In this paper, we evaluated the power and energy consumption and performance
of different CPU frequency scaling techniques such as ondemand, performance,
and powersave on multicore based computer infrastructure. We applied the
techniques in the PAMPAR parallel benchmark, a set of benchmarks to evaluate
the performance and energy consumption of PPIs. We show the power and en-
ergy consumption of 10 benchmarks written in PThreads, OpenMP, MPI-1, and
MPI-2, popular PPIs in the Computational Science area, varying the number of
threads/processes and the CPU governors.

Our experimental results showed that the power and energy consumption
has an increasing rate proportional to the number of threads/processes used in
parallel. Moreover, we demonstrated that powersave consumes the triple of en-
ergy and up to 43.1% less power than performance and ondemand governors.
The performance governor consumes 9.7% more power than ondemand for CPU-
bound and 27.8% for memory-bound benchmarks. Another important factor to
observe is that the way each benchmark communicates in MPI could make the
power and energy consumption to be higher in large computing infrastructure.
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This impact shows up on the performance, as well. Benchmarks that do many
memory-accesses or exchange data operations tend to reduce the performance
gains with the powersave governor. Although these factors impact less on the
performance and powersave governors, there is no trade-off between perfor-
mance, energy, and power by using these governors because they are too strict
for only one goal.

In the future, we intend to verify how the distribution of threads/processes to
different cores and processors affects our experiments. Experiments using more
nodes and a more extensive distributed supercomputing infrastructure would be
necessary to improve the analysis over the MPI PPI. We also consider evaluating
real-world benchmarks and other PPIs such as Intel TBB or UPC, for instance,
the NAS Benchmarks [11].
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