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Abstract. This paper presents a new benchmark to evaluate perfor-
mance and energy consumption of different Parallel Programming Inter-
faces (PPIs). The benchmark is composed of 11 algorithms implemented
in PThreads, OpenMP, MPI-1 and MPI-2 (spawn) PPIs. Previous studies
have used some of these applications to perform this type of evaluation
in different architectures, since there is no benchmark that offers this
variety of PPIs and communication models. In this work we measure the
energy and performance of each application in a single architecture, vary-
ing the number of threads/processes. The goal is to show that this set
of applications has enough features to form a parallel benchmark. The
results show that there is no single best case that provides both bet-
ter performance and low energy consumption in the presented scenarios.
However, PThreads and OpenMP achieve the best trade-offs between
performance and energy in most cases.

Keywords: Benchmark · Performance · Energy Consumption.

1 Introduction

In recent years, the increase in the complexity of applications and data size has
demanded a great search for computational and energetic efficiency. Moreover,
many countries are limiting the use of existing supercomputers because of their
high energy consumption [1]. This shows that energy consumption is currently
a concern in many different computer systems. The popularization of Green500,
which lists computers from the TOP500 list of supercomputers in terms of energy
efficiency, shows that reducing energy consumption is one of the directions of
high-performance computing [1]. So the challenge should not only be to increase
performance, but also to consume less energy.
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The performance increase is reached with even faster multiple parallel pro-
cessors. Parallel computing aims to use multiple processors to execute different
parts of the same program simultaneously [14]. However, processors should be
able to exchange information at a certain point in execution time. While tasks
parallelism makes it possible to increase the performance, the use of more pro-
cessors and the need for communication among them can lead to an increase in
energy consumption.

The parallelism can be explored with different Parallel Programming Inter-
faces (PPIs), each one having specific peculiarities in terms of synchronization
and communication. In addition, the performance gain may vary according to
processor architecture and hierarchical memory organization, communication
model of each PPI, and also with the complexity and other characteristics of the
application.

The scenario here presented shows that, although parallelism allows per-
formance gains, this can lead to higher energy consumption. This energy con-
sumption grows mainly according to the amount of processors that are used in
parallel and the volume of communication between them. On the other hand, the
reduction in execution time allowed by the parallelization causes the decrease
in the total energy consumption in some cases. It is fundamental to use ade-
quate benchmarks to define which parallelization strategy compensates for the
increase in energy consumption in a particular architecture. However, there is
not a benchmark that offers a good set of applications, fully parallelized, using
multiple PPIs and different models of communication between tasks. The most
commonly used parallel benchmarks have only partial parallel sets using more
than one PPI.

To fill this gap, this work proposes a set of 11 applications developed with
the purpose of evaluating the performance and energy consumption in multi-core
architectures. These applications were developed and classified according to dif-
ferent criteria in previous studies [10,8,9,4]. These studies have shown that these
applications have characteristics that are distinct enough to represent different
scenarios. The objective of this work is to show the impact of these distinct char-
acteristics on the performance and energy consumption of different applications
and also the impact of the implementations using different PPIs.

To achieve this goal, applications were run on a multi-core machine. For
each application, the execution time and the total power consumption of the
processor were measured. Different numbers of threads/processes were used for
the parallelization. The data were analyzed side by side with the result obtained
by the sequential version of each application.

The remainder of this work is organized as follows. In the section 2 we present
the PPIs in which the applications are implemented. The related works are
discussed in section 3, where we compare our work with similar benchmarks. The
section 4 presents the set of applications and the techniques used to parallelize
them, bringing more details about the historic of classifications. The section 5
discusses the results and, finally, section 6 draws the final considerations and
future works.
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2 Parallel Programming Interfaces

There are several computational models used in parallel computing, such as: data
parallelism, shared memory, exchange of messages, and operations in remote
memory. These models differ in several aspects, such as whether the available
memory is locally shared or geographically distributed, and volume of commu-
nication [6]. In this work, the set of applications were implemented using two
communication models with the four PPIs: PThreads, OpenMP, MPI-1 and
MPI-2.

The OpenMP pattern consists of a series of compiler directives, function
libraries, and a set of environment variables that influence the execution of par-
allel programs [14]. These directives are inserted into the sequential code and the
parallel code is generated by the compiler from them. This interface operates on
the basis of the thread fork-join execution model.

Different from OpenMP, in POSIX Threads (PThreads) the parallelism is
explicit through library functions.That is, the programmer is responsible for
managing threads, workload distribution, and execution control [2]. PThreads
comprises some subroutines that can be classified into four main groups: thread
management, mutexes, condition and synchronization variables.

MPI-1 standard API specifies point-to-point and collective communications
operations, among other characteristics. In a program developed using MPI-1
all processes are statically created at the start of the execution So, the number
of processes remains unchanged during program execution. At the start of the
program, an initialization function of the execution environment MPI is executed
by each process. This function is MPI Init(). A process MPI is terminated by
calling the function MPI Finalize().

Traditionally, applications deployed with MPI-2 begin the execution with
a single process. The primitive MPI Comm spawn() is used for the creation of
processes dynamically. A process of an MPI application, which will be called by
the parent, invokes this primitive. This invocation causes a new process, called
child, to be created, which not need to be identical to the parent. After creating
a child process, it will belong to an intra-communicator and the communication
between parent and child will occur through this communicator. In the child
process, the execution of the function MPI Comm get parent() is responsible
for returning the intercom that links it to the parent. In the parent process,
the intercom that binds the child is returned in the execution of the function
MPI Comm spawn().

3 Related Work

There are several benchmarks developed to serve different purposes. Through a
bibliographic study, we searched for benchmarks that have similar purposes and
the same target architectures of the benchmark proposed in this work. Therefore,
we have considered benchmarks that provide a set of parallel applications for
embedded or general-purpose multi-core architectures. In this way, we identify
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the following benchmarks: ALPBench, PARSEC, ParMiBench, SPEC, Linpack,
NAS and Adept Project.

3.1 Similar Benchmarks

ALPBench consists of a set of parallelized complex media applications gathered
from various sources, and modified to expose thread-level and data-level paral-
lelism. It consists of 5 applications parallelized with PThreads. This benchmark
is focused on general-purpose processors and has open source license.

PARSEC (Princeton Application Repository for Shared-Memory Computers)
is an open source benchmark suite composed of multi-threaded programs. It
consists of 11 applications, some parallelized using OpenMP, or PThreads or Intel
TBB. The suite focuses on emerging workloads and was designed to contain a
diverse selection of applications that is representative of next-generation shared-
memory programs for chip-multiprocessors.

ParMiBench is an open source benchmark that specifically serves to measure
performance on embedded systems that have more than one processor. This
benchmark organize its applications into four categories and domains: industrial
control and automotive systems, networks, office devices and security. Its set
consists of 7 parallel applications implemented using PThreads.

SPEC is a closed source benchmark, but offers academic licenses. This bench-
mark is intended for general purpose architectures, but is subdivided into sev-
eral groups with specific target architectures, and can be used for several pur-
poses, such as: Java servers, file systems, high performance systems, CPU tests,
among others. We consider the following groups of SPEC: SPEC MPI2007, SPEC
OMP2012 and SPEC Power. SPEC MPI2007 is a set of 18 applications deployed
in MPI focused on testing high performance computers. SPEC OMP2012 uses
14 scientific applications implemented in OpenMP, offering optional power con-
sumption metrics based on SPEC Power. Finally, SPEC Power tests the power
consumption and performance of servers using CPU/Memory-Bound applica-
tions implemented in C and Fortran.

HPL consists of a software package that solves arithmetic dual floating-point
precision random linear systems in high performance architectures. It runs a
testing and timing program to quantify the accuracy of the solution obtained,
as well as the time it took to compute. HPL code is open and consist of 7
applications form a collection of subroutines in Fortran, mostly CPU-Bound.
Parallel implementations use MPI. HPL is the benchmark that makes up the
so-called High-Performance Computing Benchmark Challenge, which is a list of
the 500 fastest high performance computers in the world.

The NAS Parallel Benchmarks (NPB) is a set of open source programs gen-
erally used to evaluate the performance of parallel supercomputers. The bench-
mark is derived from physical applications of fluid dynamics and consists of four
cores and three pseudo-applications in the original ”pencil-and-paper” specifica-
tion (NPB 1). It is an open source benchmark and the main set of applications
is implemented with MPI and OpenMP.
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Table 1: Comparison of our benchmark with the similar ones

Rating criteria A
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S
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H
P
L

N
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d
e
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t

O
u
r

b
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n
ch

m
a
rk

Number of
applications

5 11 7 14-18 7 12 10-12 11

Number of PPIs 1 3 1 2 1 2 3 4

Number of
communication models

1 1 2 1 1 2 2 2

Set of applications
implemented in multiple PPIs

X X

Open source X X X X X X X

The Adept Benchmark is used to measure the performance and energy con-
sumption of parallel architectures. Its code is open and is divided into 4 sets:
Nano, Micro, Kernel and Application. The Micro suite, for example, consists of
12 sequential and parallel applications with OpenMP, focusing on specific as-
pects of the system, such as process management, caching, among others. On
the other hand, the Kernel set has 10 applications implemented sequentially and
parallel with OpenMP, MPI and one of them in UPC (Unified Parallel C).

3.2 Comparison Between the Benchmarks

The benchmark addressed in this work consist of 11 applications implemented
in C and their complexities range from O(n) to O(n3). All applications are
parallelized in 4 PPIs: PThreads, OpenMP, MPI-1 and MPI-2. These PPIs are
the target of this work because they are the most widespread in the academic
field and also because they are supported by most multi-core architectures, both
embedded and general purpose. Therefore, the purpose of this benchmark is to
provide the user a tool to evaluate the performance and power consumption of
different PPIs in embedded and general purpose multi-core architectures.

We analyze the main characteristics of the related parallel benchmarks and
compare to the benchmark we propose in this work in Table 1. In relation to the
benchmarks, some use only one PPI while others use more than one. However,
some of those who use more than one PPI do not have the whole set of applica-
tions paralleled by all PPIs. They implement parts of the set with one PPI and
other parts with another PPI. Three of these benchmarks use PThreads, five
of them use OpenMP, and four use MPI. ALPBench also uses Intel TBB and
Adept uses UPC.

Thus, even if some of these benchmarks implement three different PPIs,
none of them allow an efficient comparison between these PPIs and between
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different communication models. Also, they do not exploit the parallelism with
dynamic process creation that MPI-2 offers. In this way, we do not find any
other benchmark that use different PPIs, different communication models and
a completely parallelized set of applications. The exception is the NPB, but it
only offers two PPIs. Therefore, none of them meets the objective of comparing
parallel programming interfaces, which is the main objective of the benchmark
we are proposing in this work.

4 Benchmark Applications

This section presents the 11 applications of the benchmark. They were developed
with the purpose of establishing a relation between performance and energy
consumption in embedded systems and general purpose architectures [11]. Below
are listed the applications detailing briefly each.

– Gram-Schmidt- The Gram-Schmidt process is a method for orthonormal-
ising a set of vectors in an inner product space.

– Matrix Multiplication - This algorithm multiplies the lines of a matrix A
by the columns of a matrix B.

– Dot Product - The dot product is an algebraic operation that multiplies
two equal-length sequences of numbers.

– Odd-Even Sort - It is a comparison sort algorithm related to bubble sort.

– Dijkstra - It finds a minimal cost path between nodes in a graph with
non-negative edges.

– Discrete Fourier Transform - The discrete Fourier transform (DFT)
converts a finite sequence of equally-spaced samples of a function into an
equivalent-length sequence of equally-spaced samples of the discrete-time
Fourier transform (DTFT), which is a complex-valued function of frequency.

– Jacobi Method - The Jacobi method is an algorithm for determining the
solutions of a diagonally dominant system of linear equations.

– Harmonic Sums - The Harmonic Sums or Harmonic Series is a finite series
that calculates the sum of arbitrary precision after the decimal point.

– PI Calculation - It applies the Gregory-Leibniz formula to find π.

– Numerical Integration - This algorithm integrates an f(x) function in a
given interval, using approximation techniques to define an area.

– Turing ring - It is a space system in which predators and prey interact in
the same place. The system simulates the iteration and evolution between
preys and predators through the use of differential equations.

These algorithms are used in the most diverse computing areas. Four of
them are directly related to linear algebra. However, some other areas are also
represented, some of them are: molecular dynamics, electromagnetism, digital
signal processing, image processing, mathematical optimization, among others.
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4.1 Parallelizing the Applications

Parallelize a sequential program can be done in several ways. However, inap-
propriate techniques can negatively impact the performance of an application.
To minimize this problem, all parallel implementations in this work were based
on statements from [3,2,6,14]. [14] propose that the parallelization be done in a
systematic way, according to them, there are three fundamental steps for the par-
allelization of a sequential application, which are: computation decomposition;
assigning tasks to processes/threads; mapping processes/threads into physical
processing units.

The decomposition of the computation and assignment of tasks to pro-
cesses/threads occurred explicitly in the parallelization with PThreads and MPI
1 and 2, in order to obtain the best workload balancing. Also included were mes-
sage exchange functions between processes, as well as the dynamic creation of
processes in MPI-2. For Parallelization with OpenMP, parallel loops with thin
and coarse granularity were used. According to [3,14], this technique is most
appropriate for parallelizing applications that perform iterative calculations and
traverse contiguous data structures (eg matrix, vector, etc.). For each data struc-
ture a specific parallelization model was adopted.

4.2 Applications History

The set of applications that compose the benchmark have already been investi-
gated in previous works. The applications were used in these works to analyze
performance and energy consumption on embedded systems and general pur-
pose processors. In [8,9,11] the authors classified the applications between CPU-
Bound, Weakly Memory-Bound and Memory-Bound, according to the following
criteria:

1. Reads/writes to memory - represents the number of accesses to the
shared and private memory addresses of the processor, considering read and
write operations for each application;

2. Data dependence - means that at least one thread/ process can only start
its execution when the computation result of one or more threads/ processes
is over. This shows the existence of communication between threads/processes;

3. Synchronization points - determine that at certain times during the exe-
cution of an application, all threads/processes will need to be synchronized
before a new task starts.

4. Thread-Level Parallelism - shows how busy the processor is during ap-
plication execution;

5. Communication rate - represents the volume of communication required
by threads/processes during application execution.

In [10], the authors used the number of data exchange operations as cri-
teria for classification. In the PPI target, these operations represents barriers,
locks/unlocks and threads/processes creation or termination. Using this criteria,
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the applications were divided between High and Low Communication. The main
problem with both classifications is that they were not done uniformly with all
applications. The first classification used some applications with a specific inter-
face, while another configuration was used to do a second classification. Hence,
the four PPIs were never evaluated together. TLP, for example, was collected
only for 9 applications and using only PThreads.

Already using the first criterion (access read/write to shared memory), the
applications were classified between CPU-Bound and Memory-Bound. However,
this type of data does not indicate how much CPU was actually used by a
particular application. An application that performs many accesses to shared
memory could also have a high CPU usage. In the opposite case, an application
with few accesses to memory and previously classified as CPU-Bound, could also
make less use of CPU in relation to the other application classified as Memory-
Bound.

After that, in [5,4] the authors investigated the impact of each PPI in the use
of CPU and memory. In these studies the authors classified the applications in
such a way that all scenarios analyzed contained at least one application with:
high CPU usage and high memory usage; high CPU usage and low memory
usage; low CPU usage and high memory usage; or low CPU and memory usage.
Finally, [12] used some of these applications to verify the best performance and
energy consumption in different multi-core architectures.

Thus, gathering all these previous studies, it was concluded that this set
contained applications diverse enough to characterize a benchmark. After all,
they were already being used as a benchmark, but an effort was needed to unify
them, to analyze the whole set together and prepare them for use by others.
This is one of the main objectives of this work

5 Results

This section presents the methodology for evaluate the applications, presenting
its complexity and the result for energy consumption and performance.

5.1 Methodology

The results presented in this section are the average of 30 executions disregarding
the extreme values. This number of executions was established as indicated in
[7]. In this study the authors perform experiments that show that the minimum
number of executions is MPI in order to obtain statistically acceptable results.
Following the indications of this study, the results in MPI-1 and MPI-2 showed a
standard deviation below 0.5 in the worst cases. OpenMP and PThreads showed
a standard deviation below 0.1 in all cases. During the experiments the computer
remained locked to ensure that other applications did not interfere actively with
the results.

The toolkit IntelR© Performance Counter Monitor (PCM) 2.0 was used to
measure energy consumption. It has a tool to monitor the power states of the
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Table 2: Details about the applications

Data Structures Problem Size Acronym Application Complexity

Unstructured data

1 billion NI Numerical Integration

O(n)4 billion PI PI Calculation

15 billion DP Dot Product

Vector

100000 HA Harmonic Sums O(n ∗ d)

150000 OE Odd-Even Sort
O(n2)

32768 DFT Discrete Fourier Transf.

Matrix 2048×2048

TR Turing Ring O(m ∗ n)

DJ Dijkstra

O(n3)
JA Jacobi Method

MM Matrix Multiplication
GS Gram-Schmidt

processor and DRAM memory. For the runtime, the time at the beginning and at
the end of the main function of each application was measured and the difference
between these values was used.

One thing that is not simple to do when comparing different parallel ap-
plications is to set a workload that is equivalent to all of them. That way, we
tested applications with small, medium, and large inputs. However, we choose
to present in this work only the data referring to the medium sized inputs, since
they allowed a better visualization of the results for most cases and are the same
ones used in the previous works.

The Table 2 shows the size of the inputs used for each application, as well as
the acronym used to identify each application in the following sections.

5.2 Complexity

The last column of the Table 2 presents the algorithmic complexity by applica-
tion. Only the serial applications were used for this complexity analysis, which
is based on the arithmetic operations of the algorithm. The complexity analy-
sis for parallel applications is mainly based on execution time. However, several
factors influence the complexity of parallel applications, such as load balancing
and parallelization model, as [13] explain in their works.

The analysis of sequential complexities showed that the set of applications
range from O(n) to O(n3), with several other intermediate complexities. In this
way, it is possible to conclude that the benchmark has enough diversity in this
aspect to evaluate performance in different architectures.
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5.3 Performance and Energy Consumption

The next experiments were carried out on a computer equipped with 2 IntelR©

XeonR© E5-2650 v3 processor. Each processor has 10 physical cores and 10 virtual
cores operating at the standard 2.3 GHz frequency and turbo frequency of 3 GHz.
Its memory system consists of three levels of cache: a 32 KB cache L1 and a 256
KB cache L2 for each core. Level L3 has a 25 MB cache for each processor using
Smart Cache technology. The main memory (RAM) is 126 GB in size and DDR3
technology. The operating system is Linux version 4.4.0-128 using IntelR© ICC
18.0.1 compiler with optimization flags.

The results of energy consumption and performance are arranged in the same
graphs. Bars show the energy consumption in joules and correspond to the y-
axis values on the left. The time in seconds is represented by the marker X
and is aligned to the y-axis on the right. Each chart displays the results of
each application individually. These results refer to running using 2, 4, 8, and 16
parallel threads/processes for each PPI. In addition, the first result of each graph
represents the sequential execution of the respective application. The other sets
refer to each of the PPIs, nominated at the top of each graph.

In all the graphs in Figure 1, the scales of the two y-axes were adjusted so that
both energy consumption and performance values for the sequential application
were aligned at the same point. This allows an easier visualization of the impact
of variation on the number of threads/processes.

Our initial hypothesis was that a higher use of the processor and memory
system should cause an increase in energy consumption in proportion to the
number of parallel threads/processes. But in addition, reducing the execution
time of each application should reduce its consumption in proportion to the
performance achieved over the sequential application. However if the sequential
results were proportionally aligned in a graph, we should note that this propor-
tion does not appear in the parallel versions. This is because there are other
factors that impact on energy consumption, such as the need for communication
between tasks and increasing the complexity of the control structures that the
operating system has to deal with.

In Figure 1, the applications between (a) and (i) in general show a result
as expected in our initial hypothesis. However, the results show that the energy
consumption of MPI-1 and MPI-2 is slightly higher in most cases. In addition,
in applications that do more communication between tasks, such as GS and JA,
energy consumption and runtime were about ten times higher for both MPI PPIs
than the others. Following, the TR (Figure 1-d) application showed a different
behavior when using PThreads. Except when using 16 threads, in the other cases
this PPI had an increase in execution time in relation to the others. However,
the energy consumption did not increase in a proportional way to the time,
remaining close to the result of the other PPIs. A similar behavior, but with a
worse scalability with PThreads, can be seen in OE.

OpenMP showed that its best trade-off between performance and energy
consumption occurs using 8 threads. Observing the results of NI, TR, DP and
OE, we can see that although there is a slight reduction in execution time with



A New Parallel Benchmark 11

 0

 57.5

 115

 172.5

 230

1 2 4 816 2 4 816 2 4 816 2 4 816
 0

 1.5

 3

 4.5

 6
Seq. PthreadsOpenMP MPI−1 MPI−2

E
n
e
rg

y
 (

J
)

T
im

e
 (

s
)

Threads/Processes

(a) Numeric Integration - NI

 0

 400

 800

 1200

 1600

1 2 4 816 2 4 816 2 4 816 2 4 816
 0

 11.5

 23

 34.5

 46
Seq. PthreadsOpenMP MPI−1 MPI−2

E
n
e
rg

y
 (

J
)

T
im

e
 (

s
)

Threads/Processes

(b) Pi Calculation - PI

 0

 1200

 2400

 3600

 4800

1 2 4 816 2 4 816 2 4 816 2 4 816
 0

 34

 68

 102

 136
Seq. Pthreads OpenMP MPI−1 MPI−2

E
n
e
rg

y
 (

J
)

T
im

e
 (

s
)

Threads/Processes

(c) Harmonic Sums - HA

 0

 234

 468

 702

 936

1 2 4 816 2 4 816 2 4 816 2 4 816
 0

 6.5

 13

 19.5

 26
Seq. Pthreads OpenMP MPI−1 MPI−2

E
n
e
rg

y
 (

J
)

T
im

e
 (

s
)

Threads/Processes

(d) Turing Ring - TR

 0

 1750

 3500

 5250

 7000

1 2 4 816 2 4 816 2 4 816 2 4 816
 0

 50

 100

 150

 200
Seq. Pthreads OpenMP MPI−1 MPI−2

E
n
e
rg

y
 (

J
)

T
im

e
 (

s
)

Threads/Processes

(e) Discrete Fourier Transf. - DFT

 0

 540

 1080

 1620

 2160

1 2 4 816 2 4 816 2 4 816 2 4 816
 0

 15

 30

 45

 60
Seq. Pthreads OpenMP MPI−1 MPI−2

E
n
e
rg

y
 (

J
)

T
im

e
 (

s
)

Threads/Processes

(f) Dijkstra - DJ

 0

 94

 188

 282

 376

1 2 4 816 2 4 816 2 4 816 2 4 816
 0

 2.5

 5

 7.5

 10
Seq. Pthreads OpenMP MPI−1 MPI−2

E
n
e
rg

y
 (

J
)

T
im

e
 (

s
)

Threads/Processes

(g) Dot Product - DP

 0

 113

 226

 339

 452

1 2 4 816 2 4 816 2 4 816 2 4 816
 0

 3

 6

 9

 12
Seq. Pthreads OpenMP MPI−1 MPI−2

E
n
e
rg

y
 (

J
)

T
im

e
 (

s
)

Threads/Processes

(h) Odd-Even Sort - OE

 0

 500

 1000

 1500

 2000

1 2 4 816 2 4 816 2 4 816 2 4 816
 0

 12.5

 25

 37.5

 50
Seq. PthreadsOpenMP MPI−1 MPI−2

E
n
e
rg

y
 (

J
)

T
im

e
 (

s
)

Threads/Processes

(i) Matrix Multiplication - MM

 0

 1600

 3200

 4800

 6400

1 2 4 816 2 4 816 2 4 816 2 4 816
 0

 30

 60

 90

 120
Seq. Pthreads OpenMP MPI−1 MPI−2

E
n
e
rg

y
 (

J
)

T
im

e
 (

s
)

Threads/Processes

(j) Jacobi - JA

 0

 8000

 16000

 24000

 32000

1 2 4 816 2 4 816 2 4 816 2 4 816
 0

 215

 430

 645

 860
Seq. PthreadsOpenMP MPI−1 MPI−2

E
n
e
rg

y
 (

J
)

T
im

e
 (

s
)

Threads/Processes

(k) Gram Schmidt - GS

Fig. 1: Energy consumption and performance graphs for each application.
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Fig. 2: Percentage of energy consumed by DRAM memory in relation to con-
sumption by the CPU using 8 threads/processes.

16 threads, the energy consumption does not follow this reduction and it is the
same seen with 8 threads. If we compare the three applications that only do
iterative computation (DP, PI and NI), it can be seen that the execution time
of DP and NI is smaller than PI (which still scaling with 16 threads). Therefore,
the loss of scalability in the other two applications is certainly related to the size
of the problem that was not adequate. In addition, all OpenMP results with 8
threads were smaller than the others in almost all cases. The easy structuring
of parallelism with OpenMP ends up playing a fundamental role in these results
when compared to manual parallelism using PThreads.

Regarding Odd-Even Sort (Figure 1-h), the results show that we obtained
performance gains in all cases with both MPI-1 and MPI-2. However, with 16
OpenMP threads there was no performance gain or PThreads with 16 and 8
threads. What we have concluded, is that the average workload initially set,
is not large enough for all cases. OE is a memory-bound application, so the
overhead of communication/synchronization between threads begins to impact
negatively earlier in these cases. With MPI, performance only begins to converge
after 32 processes for this workload, but this result is not included in this work,
because we are still implementing efficient workload distribution for many tasks
in some applications.

It is expected that the more robust the architecture, the better the MPI
results can be. In this way it was possible to observe a good scalability of MPI
in the first cases. However, considering the last 3 cases, we can conclude that MPI
is the worst case overall. In these three cases MPI did not have a good scalability
and presented worse results than the sequential version. Considering only MPI-1
and MPI-2, the second one was the one with the worst results. A similar behavior
was observed by the authors in [12]. Additionally, the applications that presented
the worst results for MPI are the only ones in [4] and [5] that showed a higher
memory usage than CPU usage during execution. In this way we can conclude
that a high memory use has a strong negative impact on energy consumption.

The worst results among all the applications were obtained with GS. Not
considering OpenMP, the other PPIs did not present a superior scalability in
relation to the sequential version. It was also the application that obtained the
highest energy consumption among all, with a peak of about 30.000 joules with
16 processes in MPI-2, but with a much shorter execution time. One of the
reasons that MPI uses more energy than OpenMP accessing memory for the GS
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case is not that MPI is just inherently less efficient at accessing memory, but
that using distributed memory requires redundant memory accesses. This way,
more memory accesses are made.

Finally, we present in Figure 2 the energy consumption results divided by
CPU consumption and memory consumption. For all amounts of threads/processes
the results did not have much difference between them, therefore we only present
the graph for 8 threads/processes. In this graph we can see that DRAM energy
consumption is stable among PPIs in some cases, representing on average 10%
of total consumption. In other cases, MPI-1 and MPI-2 always have a larger
portion of energy destined for memory. In addition, the highest memory energy
consumption occurs with MPI in GS. We will have to carry out another study
to analyze the relation of this with the results obtained in Figure 1.

The difference between these PPIs can be explained in the context of threads
and processes. Threads are often referred as a lighter type of process for the sys-
tem, while processes are heavier. Thread shares with other threads its code area,
data, and operating system resources. Because of this sharing, the operating sys-
tem needs to deal with less scheduling costs and thread creation, when compared
to context switching among processes. All of these factors impact on performance
and consequently on energy consumption.

6 Conclusions and Future Work

In this paper we present a set of applications that can be used as a benchmark.
The main purpose of this benchmark is to analyze energy consumption and
performance of PPIs in multi-core architectures. We first compared our proposed
benchmark with the main parallel benchmarks that are currently used for the
same purpose. This comparison showed that there is no benchmark that meets
the proposed goal: to offer a simpler way to compare PPIs. In addition we did
a study of the history of the applications, where we showed that there were
already authors using them for the same purpose. This fact meant that there
was no other benchmark that would efficiently meet this demand, so it was
necessary to create one from scratch.

Our experimental results showed that the applications generally have a good
performance gain. In addition, the overhead caused by the energy consumption
showed a behavior proportional to the number of threads/processes used in par-
allel. The exceptions are two applications (JA and GS) that demonstrated an
unexpected behavior, but equal with MPI-1 and MPI-2. Both should be further
investigated in the course of our study to verify the relationship of these results
to the fact that they have been classified as highly memory-bound applications
in previous studies.

Some applications in our benchmark still require a few more adjustments,
as you could see in the results. However most applications showed a pattern
in relation to gain performance. In many cases we have achieved near optimal
performance, reducing runtime twice with 2 threads, 4 times with 4 threads,
and so on. In addition, energy consumption has also been reduced in the same
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proportion for this majority of cases. We conclude that after these adjustments,
the applications will already be ready to be made available to the community
for use in other studies.

As future works, we intend to verify how the distribution of threads/processes
between different cores and processors affects our experiments. We should also
repeat the experiments using another compiler, such as gcc without optimization
flags. The next step is to check the scalability of our applications, so we will
increase the number of threads/processes by varying the size of the workload
(some preliminary tests have shown that MPI gets better trade-offs in these
cases). Finally, we also consider including more PPIs such as Intel TBB, Cilk or
UPC.
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