STAR Protocols

¢? CellPress

OPEN ACCESS

Protocol for training MERGE: A federated
multi-input neural network for COVID-19

Prognosis

s ol S f &

([

X+ OPENFL Step 2

o min A 2 in I
[]
Installation . Dataset
Get Python Virtualenv ° preprocessing
and OpenFL. o Dataset(s) with a good
° input format
Step 3 ©
() ®
Concatenate [
L) L 'Y
CNN MLP L]
([]
écnemé []
[]
Image Tabular o Step 4

Centralized training
Train a multi-input
neural network on data
in a single data lake

Federated training
Train a federated multi-
input neural network

-

Federated learning is a cooperative learning approach that has emerged as an effective way to
address privacy concerns. Here, we present a protocol for training MERGE: a federated multi-
input neural network (NN) for COVID-19 prognosis. We describe steps for collecting and
preprocessing datasets. We then detail the process of training a multi-input NN. This protocol
can be adapted for use with datasets containing both image- and table-based input sources.

Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional
guidelines for laboratory safety and ethics.

Bruno Casella,
Walter Riviera,
Marco Aldinucci,
Gloria Menegaz

bruno.casella@unito.it

Highlights

Train a multi-input
neural network
exploiting different
types of input data

Steps to train in both
a typical machine
learning setting and a
federated scenario

The combined use of
different types of data
is beneficial to the
federated model

This protocol shows
how to train a
federated multi-input
neural network with
OpenFL

Casella et al., STAR Protocols
5,102812

March 15, 2024 © 2023 The
Author(s).
https://doi.org/10.1016/
j-xpro.2023.102812

Gheck for
Updaies

mailto:bruno.casella@unito.it
https://doi.org/10.1016/j.xpro.2023.102812
https://doi.org/10.1016/j.xpro.2023.102812
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2023.102812&domain=pdf

STAR Protocols ¢ CellPress

OPEN ACCESS

Protocol for training MERGE: A federated multi-input
neural network for COVID-19 prognosis

Bruno Casella,’*¢’* Walter Riviera,”* Marco Aldinucci,’> and Gloria Menegaz®®

"Computer Science Department, University of Turin, 10149 Turin, Italy

2Computer Science Department, University of Verona, 37134 Verona, Italy

3Engineering for Innovation Medicine Department, University of Verona, 37134 Verona, Italy
4These authors contributed equally

5These authors contributed equally

éTechnical contact

’Lead contact

*Correspondence: bruno.casella@unito.it
https://doi.org/10.1016/j.xpro.2023.102812

SUMMARY

Federated learning is a cooperative learning approach that has emerged as an
effective way to address privacy concerns. Here, we present a protocol for
training MERGE: a federated multi-input neural network (NN) for COVID-19
prognosis. We describe steps for collecting and preprocessing datasets. We
then detail the process of training a multi-input NN. This protocol can be adapted
for use with datasets containing both image- and table-based input sources.
For complete details on the use and execution of this protocol, please refer to
Casella et al.”

BEFORE YOU BEGIN
® Timing: 40 min

This section includes the minimal hardware and software requirements, the framework installation
procedures, and the data collection and preprocessing stages. The time required for the following
preparation steps heavily depends on the specifics of the devices. These procedures must be
executed on each available machine, except if they have a shared file system.

The protocol below describes the specific steps for training a centralized and a federated multi-input
NN for COVID-19 prognosis. The protocol can also be used with different data sources containing

both images and tabular data; indeed, we have also used this protocol for Alzheimer’s disease
detection.

Requirements
Operating System: Ubuntu Linux 18.04+.

Python version: 3.8 (>=3.6, <3.9), recommended to use with Virtualenv.
Local memory: a minimum of 15 GB is required (dataset size is around 12 GB).

Deep Learning framework: Tensorflow 2+ or PyTorch 1.3+ (install the GPU version if you have avail-
able GPUs). Users can extend the list of supported Deep Learning frameworks if needed.

)
ek o STAR Protocols 5, 102812, March 15, 2024 © 2023 The Author(s). 1
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:bruno.casella@unito.it
https://doi.org/10.1016/j.xpro.2023.102812
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2023.102812&domain=pdf
http://creativecommons.org/licenses/by/4.0/

¢ CellPress STAR Protocols

OPEN ACCESS

Installing the OpenFL framework
® Timing: 15 min

OpenFL is a framework-agnostic Python library for FL that enables organizations to collaboratively
train a model without sharing sensitive information. OpenFL is a community-supported project, but
it was originally developed by Intel Labs and Intel Internet of Things Group. Below are the required
steps for installing OpenFL.

1. Open a new terminal window and create a new Virtualenv environment for the project. The rec-
ommended version of Python is 3.8 (>= 3.6, <3.9).

>python3.x -m venv "my_env" |

2. Activate the virtual environment.

>sourcemy_env/bin/activate |

3. Install the OpenFL package from source.

>python -mpip install -Upip setuptools wheel

>cd openfl/

>python -mpip install.

a. Clone the OpenFL repository.

>git clone https://github.com/intel/openfl.git.

b. Install build tools, before installing OpenFL.
If everything was done correctly, the >fx command in the virtual environment will confirm that
OpenFL is installed.

Data collection and preprocessing
® Timing: 25 min

Note: The COVID-19 CXR dataset can be downloaded from https://aiforcovid.radiomica.it/
(Figure 1).

4. Request credentials for accessing the data by clicking the “Request Credentials” button at the
bottom left of the webpage.
a. Insert your name, surname, institutional affiliation, and email, and accept the privacy condi-
tions, the data user policy, and the Centro Diagnostico ltaliano citation.

Note: Your credentials will be sent by email in a few minutes.
5. Click on the "Access the data” button present in https://aiforcovid.radiomica.it/and insert your
credentials received.

6. After the login phase, you can finally download the data by clicking on the “Download all the
data” button at the top right of the webpage (Figures 2 and 3).

2 STAR Protocols 5, 102812, March 15, 2024

https://aiforcovid.radiomica.it/
https://aiforcovid.radiomica.it/
https://github.com/intel/openfl.git

STAR Protocols

OpenFL - Open Federated Learning

Run in terminal:
_FX_COMPLETE=bash_source fx > ~/.fx-autocomplete.sh
source ~/.fx-autocomplete.sh

If ~/.fx-autocomplete.sh has already exist:
source ~/.fx-autocomplete.sh

fx [options] [args]

-1, —log-level TEXT Logging verbosity level.
—help Show this message and exit.

Manage Federated Learning Plans.

Finalize the Data Science plan.
Initialize Data Science plan.

Print the current plan.

Remove this plan.

Save the current plan to this plan and...
Switch the current plan to this plan.

Figure 1. OpenFL working correctly

Note: If the provided link is not working, a dummy set of clinical data can be downloaded from
the Supplemental ZIP files of this Protocol. X-ray images can be in any compatible format with
PyTorch, such as .jpeg or .png.

At the end of the download process, you will have two Excel files containing the clinical parameters
(i.e., age, sex, previous disease, ...), and a zip file containing the chest X-ray scans. This dataset con-
sists of data gathered across six different Italian hospitals during the first outbreak of COVID-19, fora
total of 1589 patients, divided in 1103 for the training set, and 486 for the test set. For each subject of
the dataset are provided sixteen clinical parameters (.xIs format) and a chest X-rays image (.JPEG
format). Below are described the data preprocessing stages:

7. Install the required packages (“requirements.yml”
MERGE, see key resources table) in your virtualenv. Then, create a new Python script “preproces-

is provided in the GitHub repository of

sing.py”, and import the required libraries.:

>import numpy as np

>import pandas as pd

>import matplotlib.pyplot as plt

>import seaborn as sns

>import os

>from sklearn.preprocessing import LabelEncoder
!pip install openpyxl

Ipip install xlwt

import openpyxl

8. Putthe datasets in the same folder of the Python script and import them. Replace the blank values
with NaN. This step is necessary to make the dataset compatible with the next operations.

>dataset = pd.read_excel ("trainClinData.xls")

>dataset = dataset.replace(r’~\s*$’, np.nan, regex=True)

¢ CellP’ress

OPEN ACCESS

STAR Protocols 5, 102812, March 15, 2024 3

¢? CellPress STAR Protocols

OPEN ACCESS

CENTRODIAGNOSTICOITALIANOG

SCDI

Welcome to the AIforCOVID imaging archive

The AlforCOVID imaging archive hosts a large archive of medical images of Italian COVID-19 patients. This project was promoted by €Dl Centro
Diagnostico Italiano (Milan) with Bracco Imaging S.p.A. (Milan), and in partnership with Fondazione 1pc:cs<;a"0rmda Ospedale Magglore Pol chrico

|| 4 co . H cc
(Milan), Fondazione IR Policlinico San Matteo (Pavia), Azienda ospedaliero-universitaria C. i (Flgrence), ASST Santi Raclo e Carlo (Milan), /)AE,M
Fatebenefratelli-Sacco (Milan), ASST Ospedale San Gerardo (Monza), Ospedale C Sollievo della Sofferenza [San GiovanniiRetondo), Universita Campus

Bio-Medico (Roma), and Istituto Italiano di Tecnologia (Genova). i I

Ul .

Please cite this reference if you use our data: "Scda P, et al. AlforCOVID: Predicting the clinical outcomes in patients with COVID-19 appRipg Al to chest-
- §

X-rays. An Italian multicentre study. Med Image Anal. 2021 Aug 28;74:102216. doi: 10.1016].media.2021102216 {download here)

[© REQUEST CREDENTIALS € SHARE YCUR DATA Q ACCESS THE DATA € RUN Al PREDICTION 2\ ABOUTUS

Figure 2. AlforCOVID imaging archive homepage

9. Encode target labels (the “Prognosis” column) with 0 and 1 values.

Creating an instance of label Encoder.
>le = LabelEncoder ()
Using .fit_transform function to fit 1abel encoder and return encoded label

>label = le.fit_transform(dataset[’Prognosis’])

>dataset["Prognosis"] = label

10. Remove all the columns containing more than 500 missing values.

>del dataset["Fibrinogen"]
>del dataset ["PCT"]
>del dataset ["D_dimer"]

>del dataset["Sa02"]

>del dataset ["Obesity"]

11. Repeat the 8-10 steps for the test set.

>testdataset = pd.read_excel ("testClinData.xls")
>testdataset = testdataset.replace(r’~\s*$’, np.nan, regex=True)
>le = LabelEncoder ()

>label = le.fit_transform(testdataset[’Prognosis’])

>testdataset ["Prognosis"] = label

4 STAR Protocols 5, 102812, March 15, 2024

STAR Protocols ¢? CellP’ress

OPEN ACCESS

>del testdataset ["Fibrinogen"]
>del testdataset ["PCT"]
>del testdataset["D_dimer"]

>del testdataset ["Sa02"]

>del testdataset["Obesity"]

12. The test set contains some columns with all NaN values hidden due to a data competition on this
dataset. Indeed, these clinical parameters, i.e., the oxygen percentage, cardiovascular disease,
ischemic heart disease, atrial fibrillation, heart failure, ictus, and position, have been removed
because they are highly predictive features. The same features are present in the train set. How-
ever, they will not be considered for the NN training.

13. Save the resulting datasets.

>dataset.to_excel ('trainClinData.xls’, sheet_name='trainset’)

>testdataset.to_excel ('testClinData.xls’,sheet_name=’'testset’)

14. Open a terminal tab and navigate to the folder containing the Python script. Execute the script.

>python3 preprocessing.py

15. Merge the train and test clinical parameters in a single file named “trainANDtest.xls”. The train
data encompass patients coming from six different hospitals, labeled from A to F, while the test
data are collected from only one of those hospitals, the F one. In this way, the test set will contain
patients coming from all the six hospitals. This step is fundamental for two reasons:

a. In a centralized setting, it avoids overfitting the data coming from the hospital F.
b. In a federated setting, it allows to respect the main FL principle: data never leave the local insti-
tution. Indeed, each client will train and test the model on data coming from a single hospital.

@ C D | REQUEST CREDENTIALS SHARE YOUR DATA ACCESS THE DATA RUN Al PREDICTION ABOUT US .

Y, Add filter DOWNLOAD ALL THE DATA

Rows per page: 25 v 12501103 >

Figure 3. AlforCOVID data

STAR Protocols 5, 102812, March 15, 2024 5

¢ CellPress STAR Protocols

OPEN ACCESS

To merge the two datasets, copy and paste the rows of “trainClinData.xls” and “testClinData.xIs"
into a new file “trainANDtest.x|s".

After the clinical parameters preprocessing, we resize the images to 256 x 256.

16. In the same folder containing the clinical tabular and the zipped images, create a new Python
script “resize.py”. Unzip the zip file containing the images. Inside there are two folders, “Train-
Set” and “TestSet”.

17. Import the required libraries.

>import PIL
>from PIL import Image

>import os, sys

18. Instantiate necessary variables.

>path = "TrainSet/"

>dirs = os.listdir(path)

19. Create folders for saving the resized images.

new folder path

>path_resized = 'Resized_Trainset’ #the path where to save resized images

create new folder

>if not os.path.exists (path_resized) :

> os.makedirs (path_resized)

new folder path

>test_path_resized = 'Resized_Testset’ #the path where to save resized images
create new folder

>if not os.path.exists (test_path_resized) :

> os.makedirs(test_path_resized)

20. Define the resize function.

>def resize() :
>for itemindirs:
>if os.path.isfile (path+item) :
>im = PIL.Image.open (path+item)
>f, e = os.path.splitext (path+item)

>imResize = im.resize((256,256), Image.ANTIALIAS)

>imResize.save(’'{}{}{}’.format (path_resized,’/’,os.path.split(item) [1]))

6 STAR Protocols 5, 102812, March 15, 2024

STAR Protocols

21. Resize the train images.

¢? CellPress

OPEN ACCESS

>resize ()

22. Resize the test images.

>path = "TestSet/"
>dirs = os.listdir (path)
>path_resized = test_path_resized

>resize ()

23. Open a terminal tab and navigate to the folder containing the Python script. Execute the script.

>python3 resize.py

24. Put all the resized images from both the train and test set into a new folder "DATASET".

The preprocessing steps are finished. At the end of this process, you need to have a directory containing
the “trainANDtest.xls" file, and the “DATASET" folder containing the related chest X-rays scans.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

COVID-19 chest X-rays (AlforCOVID) Soda et al.? https://aiforcovid.radiomica.it/

Dummy COVID-19 clinical parameters https://doi.org/10.17632/ktyksxb5nr.1

Software and algorithms

OpenFL Foley et al.” https://github.com/securefederatedai/openfl/tree/develop

MERGE: a model for multi-input biomedical Casella et al.! https://github.com/CasellaJr/

federated learning Multi-Input-Neural-Networks-in-Federated-Leamning/tree/v1.0.0
https://doi.org/10.5281/zenodo.8218953

Others

CPU Intel Xeon processor (Skylake)

GPU NVIDIA Tesla T4

STEP-BY-STEP METHOD DETAILS

Herein, we describe Step-by-step methods for training MERGE, a federated multi-input NN for
COVID-19 prognosis. Before showing the steps for training a federated model, we describe the
stages for a centralized scenario in which the data are collected in a single data lake. To illustrate

these various steps, we use, as an example, the training of a multi-input NN in both a centralized

and federated version.

Centralized training

® Timing: 12 h

STAR Protocols 5, 102812, March 15, 2024 7

https://aiforcovid.radiomica.it/
https://doi.org/10.17632/ktyksxb5nr.1
https://github.com/securefederatedai/openfl/tree/develop
https://github.com/CasellaJr/Multi-Input-Neural-Networks-in-Federated-Learning/tree/v1.0.0
https://github.com/CasellaJr/Multi-Input-Neural-Networks-in-Federated-Learning/tree/v1.0.0
https://doi.org/10.5281/zenodo.8218953

¢ CellPress STAR Protocols

OPEN ACCESS

The time required for the centralized training highly depends on GPUs availability. Indicated timing
is the approximation of the time required for training on a single NVIDIA Tesla T4.

1. Create a new Python script “centralized_multi_input.py” in the same directory containing the da-
tasets. Import the required libraries.

>import torch.nn.functional as F

>import torch

>import torchvision

>frommatplotlib import pyplot as plt

>from torchvision import utils

>import numpy as np

>import torch.nn as nn

>import os

>import pandas as pd

>import PIL

>from PIL import Image

>from torch.utils.data import Dataset, DatalLoader, random_split
>from torchvision import transforms

>from sklearn.model_selection import StratifiedKFold
>from sklearn.model_selection import KFold

>from torch.utils.tensorboard import SummaryWriter

>from sklearn.metrics import accuracy_score, precision_score, >recall_ score, fl_score,

confusion_matrix
>import time

>import pickle

2. Import the tabular data and remove unnecessary columns.

Note: the “type_hospital” variable refers to the type of data we are training on (i.e., images,
tabular, or multi-input) and from which hospital they come. In this example, we consider a
multi-input NN training on data coming from all the hospitals and collected in a single data
lake. Moreover, to select only data coming from a specific hospital, uncomment the last
line and change X to 1,...,6 according to the hospital you want.

>type_hospital = ‘‘multi_ALL’’
>data_path="./"

>images = os.listdir (f"{data_path}DATASET")
>df = pd.read_excel ("trainANDtest.xls")

>del df ["Row_number"]

>del df ["Unnamed: 0"]

8 STAR Protocols 5, 102812, March 15, 2024

STAR Protocols ¢? CellP’ress

OPEN ACCESS

>#df = df [df ["Hospital"]==X] #changeXto1l,...,6 if youwant touse only data coming from one of
the six hospitals.

3. The following lines of code import the required libraries, check if GPUs are available, and, if yes,
set a deterministic seed for GPU reproducibility; otherwise, the numpy seed will be used for CPU
reproducibility.

>save_folder = "MODELS"

>myseed = 0

>torch.manual_seed (myseed)

>np.random. seed (myseed)

>generator=torch.Generator ()

>generator.manual_seed (myseed)

>%matplotlib inline

>dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
>torch.backends.cudnn.deterministic = True

>torch.backends.cudnn.benchmark = False

4. Forthis setting, a test set representative of the distribution of all the hospitals can be downloaded
at the following link: https://github.com/CasellaJr/Multi-Input-Neural-Networks-in-Federated-
Learning/blob/main/COVID/global TEST .xls.

>globalTEST = pd.read_excel ("globalTEST.xls")

>del globalTEST ["Row_number"]

>del globalTEST ["Unnamed: 0"]

>globalTEST1 = globalTEST [globalTEST ["Hospital"]==1]
>globalTEST2 = globalTEST [globalTEST ["Hospital"]==2]
>globalTEST3 = globalTEST [globalTEST["Hospital"]==3]
>globalTEST4 = globalTEST [globalTEST ["Hospital"]==4]

>globalTEST5 = globalTEST [globalTEST ["Hospital"]==5]

>globalTEST6 = globalTEST [globalTEST ["Hospital"]==6]

5. Create a PyTorch Custom Dataset class.

Note: This class will return an image, tabular, and label associated with a patient. For consid-
ering justimages or tabular separately, remove one of them from the return statement accord-
ing to which type of input source you want to use.

>class ImageDataset (Dataset) :
"""Tabular and Image dataset."""

>def __init__ (self, indices, image_dir, transform=None) :

STAR Protocols 5, 102812, March 15, 2024 9

https://github.com/CasellaJr/Multi-Input-Neural-Networks-in-Federated-Learning/blob/main/COVID/globalTEST.xls
https://github.com/CasellaJr/Multi-Input-Neural-Networks-in-Federated-Learning/blob/main/COVID/globalTEST.xls

¢ CellPress STAR Protocols

OPEN ACCESS

>self.image_dir = image_dir
>self.indices = indices
>self.transform= transform
>def __len__ (self):
>return len(self.indices)
>def _ _getitem_ _ (self, idx):
>if torch.is_tensor (idx) :
>idx = idx.tolist ()
>tabular = self.indices.iloc[idx, 0:]
>y = tabular["Prognosis"]
>image = PIL.Image.open (f" {self.image_dir}/{tabular[’'ImageFile’]}")
>image = image.convert ('L"’)
>image = np.array (image)
>#image = image[..., :3]
>image = transforms. functional.to_tensor (image)
>tabular = tabular([['Age’, 'Sex’, 'PositivityAtAdmission’,

'Temp_C’, 'DaysFever’, 'Cough’, 'DifficultyInBreathing’, '"WBC’, 'RBC’,

"CRP’, 'Glucose’, "'LDH’, "INR’, 'PaO2’, 'PaCO2’, 'pH’,
'HighBloodPressure’, '‘Diabetes’, 'Dementia’, 'BPCO’, ‘Cancer’,
‘ChronicKidneyDisease’, 'RespiratoryFailure’]]

>tabular = tabular.tolist ()
>tabular = torch.FloatTensor (tabular)
>if self.transform:

>image = self.transform(image)

>return image, tabular, y

6. Define data augmentation stages and split data in train and test. The train set will be divided into
train and validation later.

>from torchvision import transforms as T
>my_transform=T.Compose([T.Resize((256,256)),
T.RandomApply (
[T.RandomHorizontalFlip (),

T.RandomCrop (256, padding=4) 1,

>from sklearn.model_selection import train_test_split

>tv_idx, test_idx = train_test_split(np.arange(len(df["Prognosis"])), test_size=0.2,

shuffle=True, stratify=df["Prognosis"])

10 STAR Protocols 5, 102812, March 15, 2024

STAR Protocols ¢? CellP’ress

OPEN ACCESS

>train_val_df =df.iloc[tv_idx]

>train val = ImageDataset (indices=train val_df, image_dir=f"{data_path}DATASET", transform=

my_transform)
>test_df =df.iloc[test_idx]

>test_set = ImageDataset (indices=test_df, image_dir=f" {data_path}DATASET", transform=my__

transform)

7. Extract test data for each hospital from the global test set.

>global_test_set = ImageDataset(indices=globalTEST, image_dir=f"{data_path}DATASET",

transform=my_transform)

>global_test_setl = ImageDataset (indices=globalTEST1, image_dir=f"{data_path}DATASET",

transform=my_transform)

>global_test_set2 = ImageDataset (indices=globalTEST2, image_dir=f"{data_path}DATASET",

transform=my_transform)

>global_test_set3 = ImageDataset (indices=globalTEST3, image_dir=f"{data_path}DATASET",

transform=my_transform)

>global_test_set4 = ImageDataset (indices=globalTEST4, image_dir=f"{data_path}DATASET",

transform=my_transform)

>global_test_set5 = ImageDataset (indices=globalTEST5, image_dir=f"{data_path}DATASET",

transform=my_transform)

>global_test_set6 = ImageDataset (indices=globalTEST6, image_dir=f"{data_path}DATASET",

transform=my_transform)

8. Define the BasicBlock class need for our Convolutional Neural Network.

>class BasicBlock (nn.Module) :
>expansion =1
>def __init__ (self, in_planes, planes, stride=1) :
>super (BasicBlock, self).__init__ ()
>self.convl = nn.Conv2d (
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
>self.bnl = nn.BatchNorm2d (planes)
>self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=1, bias=False)
>self.bn2 = nn.BatchNorm2d (planes)
>self.shortcut = nn.Sequential ()
>if stride !=1or in_planes !=self.expansion*planes:
>self.shortcut = nn.Sequential (

nn.Conv2d(in_planes, self.expansion*planes,

kernel_size=1, stride=stride, bias=False),

STAR Protocols 5, 102812, March 15, 2024 1

¢ CellPress STAR Protocols

OPEN ACCESS

>nn.BatchNorm2d (self.expansion*planes)
)
>def forward (self, x):
>out = F.relu(self.bnl (self.convl (x)))
>out = self.bn2 (self.conv2 (out))
>out += self.shortcut (x)
>out = F.relu(out)

>return out

9. Define the “ResNet” class. It can be used to instantiate every version of ResNet (i.e., ResNet-18,
ResNet-54, ...). Our “ResNet” class allows for creating a multi-input NN, where the convolutional
part is equal to a ResNet, but it takes as input both images and tabular.

>class ResNet (nn.Module) :
>def __init__ (self, block, num_blocks, in_channels=1, num_classes=2) :
>super (ResNet, self).__init__ ()
>torch.manual_seed (myseed)
>self.in_planes = 64
>self.convl = nn.Conv2d(in_channels, 64, kernel_size=3,
stride=1, padding=1, bias=False)
>self.bnl = nn.BatchNorm2d (64)
>self.layerl = self._make_layer (block, 64, num_blocks[0], stride=1)
>self.layer2 = self._make_layer (block, 128, num_blocks[1l], stride=2)
>self.layer3 = self._make_layer (block, 256, num_blocks[2], stride=2)
>self.layerd = self._make_layer (block, 512, num_blocks[3], stride=2)
>self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
>self.linear =nn.Linear (512 * block.expansion, 10)
>self.relu =nn.ReLU()
>self.1lnl =nn.Linear (23, 50)
>self.1ln2 =nn.Linear (50, 50)
>self.1ln3 =nn.Linear (50, 10)
>self.1ln4 =nn.Linear (20, 1)
>def _make_layer (self, block, planes, num_blocks, stride) :

>strides = [stride] + [1]* (num_blocks-1)
>layers =[]
>for stride in strides:

>layers.append (block(self.in_planes, planes, stride))

>self.in_planes = planes * block.expansion

12 STAR Protocols 5, 102812, March 15, 2024

STAR Protocols

>return nn.Sequential (*layers)
>def forward(self, x, tab) :

>out = F.relu(self.bnl (self.convl(x)))

>out = self.layerl (out)

>out = self.layer2 (out)

>out = self.layer3 (out)

>out = self.layer4 (out)

>out = self.avgpool (out)

>out = out.view(out.size(0), -1)

>out = self.linear (out)

>out = self.relu(out)

>tab =self.1lnl (tab)

>tab = self.relu(tab)

>tab = self.1n2 (tab)

>tab = self.relu(tab)

>tab = self.1n3 (tab)

>tab = self.relu(tab)

>out = torch.cat ((out, tab), dim=1)

>out = self.relu(out)

>out = self.1ln4 (out)

>return out

def ResNetl18 (in_channels, num_classes) :

model = ResNet18(1,1)

print (model)

return ResNet (BasicBlock, [2, 2, 2, 2], in_channels=in_channels, num_classes=num_classes)

¢? CellPress

OPEN ACCESS

10. Define optimizer, loss function and scheduler.

Define an optimizer

import torch.optimas optim

optimizer = optim.Adam(model .parameters (), 1lr =0.0001)
Define a loss

criterion = nn.BCEWithLogitsLoss ()

scheduler = torch.optim.lr_scheduler.OneCycleLR (optimizer, max_1lr = 0.01, epochs=1, steps_per_epoch=350)

11. Define the evaluation function.

STAR Protocols 5, 102812, March 15, 2024

13

¢ CellPress STAR Protocols

OPEN ACCESS

>def eval_model (model, data_loader) :

>model = model. to (dev)

>model.eval () # Set model to eval mode

>true_preds, num_preds=0., 0.

>with torch.no_grad() : # Deactivate gradients for the following code

>for data_inputs, tabular, data_labels in data_loader:

>data_inputs = data_inputs.to (dev)
>tabular = tabular. to (dev)
>data_labels = data_labels.to(dev)
Determine prediction of model on dev set
>preds = model (data_inputs, tabular)
>preds = preds.double ()
>data_labels = data_labels.unsqueeze(1l)
>data_labels = data_labels.float ()
>pred_labels = (preds >=0) .long () # Binarize predictions to 0 and 1
Keep records of predictions for the accuracy metric (true_preds=TP+TN, num_preds=TP+TN+FP+FN)
>true_preds += (pred_labels == data_labels) .sum()
>num_preds += data_labels.shape[0]

>acc = true_preds / num_preds

>acc = acc.cpu() .numpy ()

>return acc

12. Define the training function. As it is too long, it can be downloaded from the following link:
https://pastebin.com/xpFMDE3V. It is also available on the MERGE repository.
13. Create a function for resetting weights. It will be used after the training on each stratified fold

split (5 splits in total).

>def reset_weights (m) :

>if isinstance(m, nn.Conv2d) or isinstance (m, nn.Linear) :

>m.reset_parameters ()

14. Define test data loaders.

>test_loader = DataLoader (test_set, batch_size=8, num_workers=2, drop_last=False, shuffle=

False, generator=generator)

>global_test_loader = DataLoader (global_test_set, batch_size=8, num _workers=2, drop_last=

False, shuffle=False, generator=generator)

>global_test_loaderl = DatalLoader (global_test_setl, batch_size=8, num_workers=2, drop_last=

False, shuffle=False, generator=generator)

14 STAR Protocols 5, 102812, March 15, 2024

https://pastebin.com/xpFMDE3V
https://github.com/CasellaJr/Multi-Input-Neural-Networks-in-Federated-Learning

STAR Protocols

>global_test_loader2 = DatalLoader (global_test_set2, batch_size=8, num_workers=2, drop_last=
False, shuffle=False, generator=generator)

>global_test_loader3 = DatalLoader (global_test_set3, batch_size=8, num_workers=2, drop_last=
False, shuffle=False, generator=generator)

>global_test_loader4 = DatalLoader (global_test_set4, batch_size=8, num_workers=2, drop_last=
False, shuffle=False, generator=generator)

>global_test_loader5 = DatalLoader (global_test_set5, batch_size=8, num_workers=2, drop_last=
False, shuffle=False, generator=generator)

>global_test_loader6 = DatalLoader (global_test_set6, batch_size=8, num_workers=2, drop_last=

False, shuffle=False, generator=generator)

15. Create 5 stratified folds and start training.

>skf = StratifiedKFold (n_splits=5)
>epochs=100
>for fold, (train_idx, val_idx) in enumerate (skf.split(train_val, tv_labels)) :

>writer = SummaryWriter ("runs/CON F1 PRECISION RECALL/MULTI/HOSPITAL B", filename_suf-
fix=f"_F{fold}_E{epochs}_ ")

>print (' foldno {} ' .format (fold))

>train_df =df.iloc[train_idx]

>train_set = ImageDataset (indices=train_df, image_dir=f"{data_path}DATASET", transform=

my_transform)
>val_df =df.iloc[val_idx]

>val_set = ImageDataset (indices=val_df, image_dir=f"{data_path}DATASET", transform=

my_transform)

>train_loader = DatalLoader (train_set, batch_size=8, num workers=2, drop_last=True, shuffle=

True, generator=generator)

>val_loader = DatalLoader (val_set, batch_size=8, num_workers=2, drop_last=False, shuffle=

False, generator=generator)
Define dictionary of loaders
>loaders = {"train": train_loader,
"val": val_loader,
"test": test_loader}
Start training

>acc_glob, acc_1, acc_2, acc_3, acc_4, acc_5, acc_6, preds_and_labels = train(model,

loaders, optimizer, criterion, epochs=100, dev=dev, model_name=f"{fold} multi-input")

>model .apply (reset_weights)

16. Keep trace of the results with Tensorboard.

Note: this step is not mandatory, but it is helpful for tracking metrics. Metrics tracking is also
possible thanks to the training function. Indeed, all the metrics will be reported for every single
epoch. Moreover, at the end of training, two plots tracking losses and accuracies for each
train/validation/test split will be generated.

¢? CellPress

OPEN ACCESS

STAR Protocols 5, 102812, March 15, 2024 15

¢ CellPress STAR Protocols

OPEN ACCESS

>writer.add_scalar ("Global test set accuracy", acc_glob, fold)
>writer.add_scalar ("Global test set 1 accuracy", acc_1, fold)
>writer.add_scalar ("Global test set 2 accuracy", acc_2, fold)
>writer.add_scalar ("Global test set 3 accuracy", acc_3, fold)
>writer.add_scalar ("Global test set 4 accuracy", acc_4, fold)
>writer.add_scalar ("Global test set 5 accuracy", acc_5, fold)
>writer.add_scalar ("Global test set 6 accuracy", acc_6, fold)

>writer.flush ()

writer.close()

17. Open a new terminal tab in the same directory and run “python centralized_multi_input.py”.

This section described the steps necessary for training a centralized multi-input model on the
COVID-19 chest X-rays dataset. Metrics will be saved in a “runs” directory. To analyze them, open
a new terminal tab in the same directory of the script and run “tensorboard —logdir = runs”.

Federated training
O Timing: 12 h

As for the previous scenario, the time required for the federated training highly depends on GPUs
availability.

The following steps describe how to train MERGE, a model for multi-input biomedical federated
learning. The federation will encompass six Collaborators, i.e., clients (hospitals) holding local
data, and one Aggregator, i.e., the server that aggregates the models. Each Collaborator will train
a local model on data coming only from one of the six hospitals (A to F).

18. In the same directory containing the data, create three folders respectively named “director”,
“envoy" and “workspace”.

19. Navigate to the “director”. The Director is responsible for the creation and management of an
Aggregator. Create a human-readable data serialization file (“director_config.yaml”) and a bash
script (“start_director.sh”).

a. "director_config.yaml” is a configuration file describing the listening host (localhost), the
listen port, the sample, and the target shape of the Director.

settings:
listen_host: 0.0.0.0
listen_port: 50051
sample_shape: ['1’, "256', "256"']

target_shape: ['1’, "256', '256"]

b. “start_director.sh” will help us in running the Director. The Director is a long-lived OpenFL
entity and is the central node of the federation. It accepts connections from Envoys, the
OpenFL clients. The Director coordinates the aggregation process and it is responsible for

16 STAR Protocols 5, 102812, March 15, 2024

STAR Protocols ¢? CellP’ress

OPEN ACCESS

sending tasks and data to the envoys. The code below starts a Director entity without
encrypting the communication network (by disabling Transport Layer Security. For more
information about TLS, check the official OpenFL documentation) and according to the pa-
rameters of the “director_config.yaml”. In particular, it will execute a Director service on lo-
calhost, with port 50051 and it will accept envoys compliant with the expected sample and
target shapes.

#!/bin/bash
SEE =@

fx director start --disable-tls -c director_config.yaml

20. Navigate to the “envoy” folder. Create a Python script (“covid_shard_descriptor.py”), a YAML (“en-
voy_configX.yaml”), and a bash script (“start_envoyX.sh”) for each client of the federation, where X
represents the number associated with that client. Considering that we have six clients, this direc-
tory will contain 13 files: one shard descriptor, six configuration files, and six bash scripts.

a. The “covid_shard_descriptor.py” is responsible for sharding the dataset. In particular, work-
ing in synergy with the YAML configuration files it will assign the right data to the various
clients.

i. First of all, import the required libraries.

>import logging

>import os

>from typing import List

>from torch.utils.data import Dataset, random_split

>import pandas as pd

>from sklearn.model_selection import train_test_split

>import torch

>import PIL

>from PIL import Image

>from torchvision import transforms as T

>import numpy as np

>import requests

>fromopenfl.interface.interactive_api.shard_descriptor >import ShardDataset
>fromopenfl. interface.interactive_api.shard descriptor >import ShardDescriptor

>logger = logging.getLogger (__name__)

ii. Create the CovidShardDataset Class.

>class CovidShardDataset (ShardDataset) :
> """Covid Shard dataset class."""
> def__init__ (self, img, tab, y, data_type, rank=1, worldsize=1) :

> """Initialize CovidDataset."""

> self.data_type = data_type

STAR Protocols 5, 102812, March 15, 2024 17

https://openfl.readthedocs.io/en/latest/running_the_federation.html

¢ CellPress STAR Protocols

OPEN ACCESS

> self.rank = rank

> self.worldsize = worldsize

> self.img = img[self.rank - 1::self.worldsize]
> self.tab=tab[self.rank - 1::self.worldsize]
> self.y=yl[self.rank - 1::self.worldsize]

> def getitem__ (self, index: int) :

> """Return an item by the index."""

> return self.img[index], self.tab[index], self.y[index]
> def __len__ (self):

> """Return the len of the dataset."""

> return len(self.img)

iii. Create the CovidShardDescriptor Class.

>class CovidShardDescriptor (ShardDescriptor) :

> """Covid Shard descriptor class."""

> def __init__ (

> self,

> rank_worldsize: str="'1, 1,

> hospital: str="",

> **kwargs

>)

> """Tnitialize CovidShardDescriptor."""

> self.rank, self.worldsize = tuple (int (num) for num in rank_worldsize.split(’, "))
> self.hospital = hospital

> (img_train, tab_train, y_train), (img_test, tab_test, y_test) = self.download_data ()
> self.data_by_type = {

> ‘train’: (img_train, tab_train, y_train),

> ‘val’: (img_test, tab_test, y_test)

> }

> def get_shard_dataset_types (self) -> List([str]:
> """Get available shard dataset types."""
> return list (self.data_by_type)

> def get_dataset (self, dataset_type='train’):

> """Return a shard dataset by type."""

> if dataset_type not in self.data_by_ type:

> raise Exception (f’Wrong dataset type: {dataset_type}’)
> return CovidsShardDataset (

> *self.data_by_type[dataset_typel,

18 STAR Protocols 5, 102812, March 15, 2024

STAR Protocols ¢? CellP’ress

OPEN ACCESS

> data_type=dataset_type,
> rank=self.rank,
> worldsize=self.worldsize

iv. The CovidShardDescriptor Class holds the following properties.

>@property

>def sample_shape (self) :

> return ["1’, '256’, '256']

>@property

>def target_shape (self) :

> return ['1’, '256', '256']

>@property

>def dataset_description(self) -> str:

> return (f’Images-tabular dataset, shard number {self.rank}’

> f’ out of {self.worldsize}’)

v. The CovidShardDescriptor Class implements the “download_data” function, which is
responsible for splitting and returning the data in the correct format. This function calls
the ImageDataset Class, which is the same as previous described for the centralized sce-
nario (bullet point 5)

>def download_data(self) :

> """Download prepared dataset."""
> img_train =[]

> tab_train =[]

> y_train=[]

> img_test = []

> tab_test =[]

> y_test =[]

> my_transform = T.Compose ([T.Resize((256,256)),
> T.RandomApply (

> [T.RandomHorizontalFlip (),

> T.RandomCrop (256, padding=4)1,

> p=.5

>) 1)

> image_data = ImageDataset (ospedale = self.hospital, excel file="../trainANDtest.xls",
image_dir="../DATASET", transform=my_transform)

> train_size = int (0.80 * len (image_data)

> val_size =int((len(image_data) - train_size))

STAR Protocols 5, 102812, March 15, 2024 19

¢ CellPress STAR Protocols

OPEN ACCESS

> image_data, test_image_data = random_split (image_data, (train_size, val_size))
> for item in image_data:

> img_train.append(item[0])

> tab_train.append(item[1])

> y_train.append(item[2])

>

> for item in test_image_data:

> img_ test.append(item[0])

> tab_test.append(item[1])

> y_test.append(item[2])

> return (img_train, tab_train, y_train), (img_test, tab_test, y_test)

21. The "envoy_configX.yaml” is a configuration file describing the specifics of the Envoy. Assign to
X the value of each hospital (1-6).

params :
cuda_devices: []
optional_plugin_components: {}
shard_descriptor:
template: covid_shard_descriptor.CovidShardDescriptor
params :
data_folder: covid_data

rank_worldsize: 1,1

hospital: X

22. "start_envoyX.sh” will help us in running the Envoys. For this example, we are considering a
simulated federation scenario. If you want a real federation, change “localhost” with the Fully
Qualified Domain Name (FQDN) of your devices.

#!/bin/bash

set -e

fx envoy start -nenv_X--disable-tls --envoy-config-path envoy_configX.yaml -dh localhost -dp 50051

a. To find your FQDN prompt:

>hostname --fgdn

23. Create and connect to the federation by running the bash scripts just created. Start from the di-
rector script, and only once it is active, connect the envoys.

20 STAR Protocols 5, 102812, March 15, 2024

STAR Protocols

¢? CellPress

OPEN ACCESS

24. Navigate to the "workspace” directory and create a new Python script “federated_multi_input.py”

in the same directory containing the datasets. Import the required libraries. In the following snippet

of code, the variable “myseed" is responsible for reproducibility purposes. MERGE' ran this pro-

tocol five times, changing this variable with values from 0 to 4 and averaging the results.

>import os

>import glob

>from PIL import Image

>import numpy as np

>import torch

>import torch.nn as nn

>import torch.nn.functional as F

>import torch.optim as optim

>from openfl. interface.interactive_api.federation import Federation

>from openfl.interface.interactive_api.experiment import TaskInterface,
ModelInterface, FLExperiment

>from copy import deepcopy

>import torchvision

>from torchvision import transforms as T
>from torch.utils.data import Dataset
>from torch.utils.data import DataLoader
>import tgdm

>myseed = 0

>torch.manual_seed (myseed)

>np.random. seed (myseed)

>torch.backends.cudnn.deterministic = True

>torch.backends.cudnn.benchmark = False

DataInterface,

25. Connect to the federation.

>client_id = 'api’
>cert_dir = 'cert’

>director_node_fgdn = 'localhost’

rector_port='50051’, tls=False)

>federation =Federation(client_id=client_id, director_node_fgdn=director_node_fqgdn, di-

Optional: Request info about sample and target shapes and double-check that all the clients

are connected to the federation.

STAR Protocols 5, 102812, March 15, 2024 21

¢? CellPress

OPEN ACCESS

STAR Protocols

federation.target_shape
shard_registry = federation.get_shard_registry ()

print (shard_registry)

dummy_shard_desc = federation.get_dummy_ shard descriptor(size=10)
dummy_shard_dataset = dummy_shard_desc.get_dataset (’train’)
sample, target = dummy_ shard_dataset[0]

print (sample.shape)

print (target.shape)

26. Create a Dataset PyTorch class.

>class TransformedDataset (Dataset) :

> """Initialize Dataset."""

> self.dataset = dataset

> def__len__ (self):

> """Length of dataset."""

> return len (self.dataset)

> def __getitem__ (self, index):

> img, tab, label = self.dataset[index]

> return img, tab, label

> def__init__ (self, dataset, transform=None, target_transform=None) :

27. Use the previous class to federate the COVID-19 dataset.

>class COVIDDataset (DataInterface) :

> def__init__ (self, **kwargs) :

> self.kwargs = kwargs

> @property

> def shard_descriptor (self) :

> return self._shard descriptor

> @shard_descriptor.setter

> def shard descriptor(self, shard descriptor) :

> self._shard_descriptor = shard_descriptor

>

> self.train_set = TransformedDataset (

> self._ shard _descriptor.get_dataset(’train’),
>)

> self.valid_set = TransformedDataset (

22 STAR Protocols 5, 102812, March 15, 2024

STAR Protocols ¢? CellP’ress

OPEN ACCESS

> self._shard_descriptor.get_dataset(’val’),
>)

> def get_train_loader (self, **kwargs) :

> generator=torch.Generator ()

> generator.manual_seed (myseed)

> return DataLoader (

> self.train_set, batch_size=self.kwargs|[’train_bs’], shuffle=True, generator=generator

>)

> def get_valid_loader (self, **kwargs) :

> return DataLoader (self.valid_set, batch _size=self.kwargs[’'valid_bs’])>
> def get_train_data_size(self):

> return len(self.train_set)>

> def get_valid_data_size(self):

> return len(self.valid_set)

> fed_dataset = COVIDDataset (train_bs=8, valid_bs=8)

28. Instantiate the same multi-input model described before for the centralized scenario (bullet
point 9).

>model_net = ResNet18(1,1)

29. Define the optimizer and the training criterion.

>params_to_update = []

>for param in model_net.parameters () :

> 1if param.requires_grad == True:

> params_to_update.append (param)

>optimizer = optim.Adam(params_to_update, 1r = 0.0001)
>criterion = nn.BCEWithLogitsLoss ()

>def cross_entropy (output, target) :

> criterion =nn.BCEWithLogitsLoss ()

> Jloss =criterion(output, target)

> return loss

30. Register the model for the OpenFL framework, as well as the FL tasks (local model training, local
model validation, and global model validation).

>framework_adapter =

‘openfl.plugins. frameworks_adapters.pytorch_adapter.FrameworkAdapterPlugin’

STAR Protocols 5, 102812, March 15, 2024 23

¢ CellPress STAR Protocols

OPEN ACCESS

>model_interface = ModelInterface (model=model_net, optimizer=optimizer, framework_ plugin=
framework_adapter)

>initial_model = deepcopy (model_net)
>import pickle

>from sklearn.metrics import accuracy_score, precision_score, recall_score, fl_score,

confusion_matrix

>task_interface = TaskInterface ()

>train_custom_params={’'precision_score’: precision_score,

> 'recall_score’: recall_score, 'fl_score’: fl1_score,

> }

>def function_defined_in_notebook (some_parameter) :

> print(f’Also I accept a parameter and it is {some_parameter}’)
>@task_interface.register_fl task(model='net_model’, data_loader='train_loader’, \
> device='device’, optimizer='optimizer’)

>@task_interface.add_kwargs (**train_custom_params)

>@task_interface.add_kwargs (**{’'some_parameter’: 42})

31. Define a training function.

>def train(net_model, train_loader, optimizer, device, precision_score, recall_score,

fl_score,

> loss_fn=cross_entropy, some_parameter = None) :

> torch.manual_seed (myseed)

> device='cuda’

> function_defined_in_notebook (some_parameter)

> train_loader = tgdm. tgdm(train_loader, desc="train")
> net_model.train()

> net_model.to (device)

> losses =[]

> total_acc, sum_precision, sum_recall, sum_f1=0,0,0,0
> epochs =1

> for epoch in range (epochs) :

> for img, tabular, target in train_loader:

> img, tabular, target = torch.tensor (img) .to(device), torch.tensor (tabular) .to (device),

torch. tensor (target) .to (device, dtype=torch.int64)

> optimizer.zero_grad()

> output = torch.flatten (net_model (img, tabular)) #multi input
> output = output.float ()

> loss = criterion (output, target.float())

24 STAR Protocols 5, 102812, March 15, 2024

STAR Protocols

> loss.backward ()

> optimizer.step()

> losses.append(loss.detach() .cpu() .numpy ())

> pred_labels = (output >=0) .float () # Binarize predictions to 0 and 1

> batch_accuracy = (pred_labels == target) .sum() .item() /tabular.size (0)

> total_acc += batch_accuracy

> sum_precision += precision_score (target.cpu() .numpy (), pred_labels.cpu() .numpy (),

average='binary’, zero_division=0)

> sum_recall += recall_score(target.cpu() .numpy (), pred_labels.cpu() .numpy (), average=

'‘binary’, zero_division=0)

> sum_f1 += f1_score(target.cpu() .numpy (), pred_labels.cpu () .numpy (), average='binary’,

zero_division=0)

> return {'train_loss’: np.mean (losses),

> ‘train_acc’: total_acc/len(train_loader),

> ‘train_prec’: sum_precision/len(train_loader),
> ‘train_rec’: sum_recall/len(train_loader),

> ‘train_f1': sum_fl/len(train_loader)

> }

32. Define the validation function.

>val_custom_params={ 'precision_score’: precision_score,

> ‘recall_score’: recall_score, 'fl1_score’: fl1_score,

> }

>@task_interface.register fl task(model='net_model’, data_loader='val_loader’, device='device’)
>@task_interface.add_kwargs (**val_custom_params)

>def validate (net_model, val_loader, device, precision_score, recall_ score, fl_score):
> torch.manual_seed (myseed)

> device = torch.device(’cuda’)

> net_model.eval ()

> net_model.to(device)

> losses =[]

> total_acc, sum_precision, sum_recall, sum_f1=0,0,0,0

> val_loader = tgdm. tgdm(val_loader, desc="validate")

> val_score=0

> total_samples =0

> with torch.no_grad() :

> for img, tabular, target in val_loader:

> #print ("TARGET VAL LOADER: ", target)

¢? CellPress

OPEN ACCESS

STAR Protocols 5, 102812, March 15, 2024 25

¢ CellPress STAR Protocols

OPEN ACCESS

> samples = target.shape[0]
> total_samples += samples
> img, tabular, target = torch.tensor (img) .to (device), torch.tensor (tabular).to(device),

torch. tensor (target) . to (device, dtype=torch.int64)

> output = torch.flatten (net_model (img, tabular)) #multi input

> output = (output >=0.0) .float () #binarize predictions

> loss = criterion (output, target.float())

> losses.append (loss.detach() .cpu() .numpy ())

> batch_accuracy = (output == target) .sum() .item() /tabular.size (0)

> total_acc += batch_accuracy

> sum_precision += precision_score(target.cpu() .numpy (), output.cpu() .numpy (), average='

binary’, zero_division=0)

> sum_recall +=recall_score(target.cpu () .numpy (), output.cpu() .numpy (), average='binary’,

zero_division=0)

> sum_f1l += fl_score(target.cpu().numpy (), output.cpu().numpy(), average=’'binary’,

zero_division=0)
> val_score += output.eqg(target) .sum() .cpu () .numpy ()

> return {’‘val_loss’: np.mean(losses),

> ‘acc’: val_score / total_samples,

> ‘val_prec’: sum_precision/len(val_loader),
> ‘val_rec’: sum_recall/len(val_loader),

> ‘val_f1’: sum_fl/len(val_loader)

> }

33. Start the FL experiment and stream the metrics.

>experiment_name = ' POSTREVIEWS_federated_covid MULTI_6hospitals’

>fl_experiment = FLExperiment (federation=federation, experiment_name=experiment_name)
>fl experiment.start (

> model_provider=model_interface,

> task_keeper=task_interface,

> data_loader=fed_dataset,

> rounds_to_train=100,

> opt_treatment=’'CONTINUE_GLOBAL’

>)

>fl experiment.stream_metrics (tensorboard_logs=True)

34. Run the "federated_multi_input.py” script. Terminal will show the model’s metrics, that will also
be recorded as TensorBoard events, and saved in a “runs” directory.

26 STAR Protocols 5, 102812, March 15, 2024

STAR Protocols ¢? CellP’ress

OPEN ACCESS

Server
Concatenate Concatenate Concatenate
A A A A A&
CNN MLP CNN MLP CNN MLP
Client 1 | Client 2 | Client N
Image Tabular Image Tabular Image Tabular
Data 1 Data 1 Data 2 Data 2 Data N Data N

Figure 4. Federated learning with multi-input neural networks

EXPECTED OUTCOMES

MERGE introduces an FL setting with the advantage of leveraging multiple input sources for solving
classification tasks in the bio-medical environment in a privacy-compliant way. The basic assumption
for this approach is that each federation participant has both data types, images, and tabular, locally
available and accessible (Figure 4). The goodness of this protocol has been demonstrated by
running several tests based on images combined with tabular data from the COVID-19 chest
X-rays dataset. However, this protocol has also been tested for the Alzheimer’s disease detection
by training on the ADNI study. MERGE has been compared with models trained only on images
or tabular. Results show that enabling multi-input architectures in the FL framework allows for
improving the performance regarding both accuracy and f1-score with respect to non-federated
models while complying with data protection practices. If the steps presented in this protocol are
executed successfully, the results will be the same as those of MERGE (Figures 5 and 6)."

LIMITATIONS

The main objective of MERGE' was to demonstrate the feasibility of a horizontal federated multi-
input architecture suitable for the bio-medical field. Consequently, optimizing the performance in
the non-federated conditions was not targeted, and improvements concerning state-of-the-art in
this respect could not be demonstrated. However, making a federated architecture available en-
ables the exploitation of multiple sources of unshared data that allows building on top of current
cutting-edge single-institution solutions, overcoming the low data numerosity issue while
improving the generalization ability of the overall system and naturally enabling multicentric
studies. The proposed approach does not consider the problem of missing views, which also af-
fects clinical data processing. However, we are confident that the openness and flexibility of the
proposed approach will foster research in the field, marking a step in data sharing and distributed
processing.

Input Centralized Federated Figure 8. Accuracies of MERGE
Only images 0.731 £0.06 0.558 & 0.02
Only tabular 0.740 +0.03 0.696 =+ 0.02
Multi-input 0.733+0.01 0.734 +0.01

STAR Protocols 5, 102812, March 15, 2024 27

¢? CellPress STAR Protocols

OPEN ACCESS

Fi 6. F1- f MERGE
Input Centralized Federated 9ure seorese
Only images 0.515+0.30 0.197 £ 0.14
Only tabular 0.562 4-0.28 0.623 4= 0.01
Multi-input 0.520 +0.30 0.636 + 0.05

An additional limitation of the current study is the lack of an intermediate “validated federation” setting.
This scenario would re-use the same 5-fold data split used to run the centralized experiments. Despite
not being as realistic as the federated scenario presented here, it would add more comparable results
between the centralized and federated settings and provide additional indicators to the current study.

Finally, a typical limitation of FL experiments is the need for huge amounts of memory. This problem
can be emphasized when dealing with a simulated federation (i.e., all the clients span in the same
device). Indeed, all the clients will own a copy of the neural network, and multiple copies of the
same model can be problematic to handle for a single machine.

TROUBLESHOOTING

The most common problem when running a real federation with OpenFL is the creation of the feder-
ation (protocol step 22).

Problem 1
The scripts for running the envoys do not contain the right FQDN of the director machine (Figure 7).

Potential solution

e Double-check the FQDN of the director device.

>hostname --fgdn

Problem 2
The envoy script has been executed before the director was alive (Figure 8).

Send report UpdateShardInfo

Failed to report shard info: <_InactiveRpcError of RPC that terminated with:
status = Stutus(ode UNAVAILABLE
dctaus - C

dcbug_crror str‘mg -

C 2023 10- 04T15 11 32.70119911+00:00"}"
>
Traceback (rrost recent call 1ust)
File "/home/ubuntu/ana S enfl2/11ib r r nvoy/envoy.py”, line 169, in start
is_accepted = self. d\rcctor cchnt rcport shard mfo(
File home/ubuntu/anaconda3/env 1 py e ransport/grpc/director. ient.py”, line 76, in
report_shard_info
acknowledgement = self.stub. Updatcshardlnfo(rcq.;cst)
File "/home/ubuntu/ana si packages/grg innel.py”, line 946, in __call__
return _end_| unary_rcspo'\sc block\ng(stotc call N
File "/home/ubuntu/anac Vs, 214 ython3.8/si 1ckages/gr nnel.py”, line 849, in
-end_unary_response._ blockmg
raise _InactiveRpcError(state)
grpc._channel._InactiveRpcError: <_InactiveRpcError of RPC that terminated with:
status = Smtus(.'ode UNAVAILABLE
details = "DNS resol i for t4-worker-ubuntu22:50051: (

dcbug error_: strmg =
A 1

2023 10- 041'15 11:32. 70119911+ee ee)'

Figure 7. Wrong fully qualified domain name

28 STAR Protocols 5, 102812, March 15, 2024

STAR Protocols ¢ CelPress

OPEN ACCESS

Send report UpdateShardInfo

Fatled to report shard info: <_InactiveRpcError of RPC that terminated with:
status = StatusCode.UNAVAILABLE
details =

debug_error_string = 2023-10-04T15:05:19.131141744+09:00",
children: [UNKNOWN: failed to connect to all addresses; last error: UNKNOWN: Failed to connect to remote host: Connection refused
{grpc_status:14, created_time: 1y
>
Traceback (most recent call last):
File , line 169, {n start
is_accepted = self.director_client.report_shard_info(
File , line 76, in
report_shard_info
acknowledgement = self.stub.UpdateShardInfo(request)
File , line 946, in __call__
return _end_unary_response_blocking(state, call, F e
File , line 849, in
-end_unary_response_blocking
raise _InactiveRpcError(state)
grpc._channel._InactiveRpcError: <_InactiveRpcError of RPC that terminated with:
status = StatusCode.UNAVAILABLE
details =

debug_error_string = 2023-10-04T15:05:19.131141744+09:007,
children: [UNKNOWN: failed to connect to all addresses; last error: UNKNOWN: Failed to connect to remote host: Connection refused
{grpc_status:14, created_time: 3
>

Figure 8. Envoy trying to connect to Director, before Director is alive

Potential solution

o Kill the alive envoys and restart the process paying attention to start the envoys only once the di-
rector is active.

If the connection is initialized successfully, the director will print information about the envoy, while
the envoy will idle until it receives an FL task to perform (Figures 9 and 10).

RESOURCE AVAILABILITY

Lead contact

Request for information and resources used in this article should be addressed to Bruno Casella
(bruno.casella@unito.it).

Technical contact
Technical questions on executing this protocol should be directed to and will be answered by Bruno
Casella (bruno.casella@unito.it).

Materials availability
This study did not generate new unique reagents.

© Starting the Director Service.
Sample shape: ['1°, R], target shape: ['1°,
Starting server on 0.0.0.0:50051
UpdateShardInfo request has got: node_info {
name:
}
shard_description:
sample_shape:
sample_shape:

sample_shape:
target_shape:
target_shape:
target_shape:

Request was accepted
Request WaitExperiment has got!
collaborator_name:

Figure 9. Director output when everything is set correctly

STAR Protocols 5, 102812, March 15, 2024 29

mailto:bruno.casella@unito.it
mailto:bruno.casella@unito.it

¢ CellPress

OPEN ACCESS

Send report UpdateShardInfo
Shard accepted

The health check sender is started.

Send WaitExperiment request
WaitExperiment response has received

STAR Protocols

Figure 10. Envoy output when everything is set correctly

Data and code availability
The code used for experimental evaluation is publicly available (see key resources table).

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2023.102812.

ACKNOWLEDGMENTS

This work was supported by the following two projects: the Spoke “FutureHPC & BigData" of the
ICSC — Centro Nazionale di Ricerca in “High-Performance Computing, Big Data and Quantum
Computing,” funded by European Union — NextGenerationEU and by the European Union within
the H2020 RIA “European Processor Initiative - Specific Grant Agreement 2" G.A. 826647,
https://www.european-processor-initiative.eu/; and Fondazione Cariverona (Bando Ricerca Scien-
tifica di Eccellenza 2018, EDIPO project, no. 2018.0855.2019) and MIUR D.M. 737/2021 “Al4Health:
empowering neurosciences with eXplainable Al methods.”

AUTHOR CONTRIBUTIONS
Conceptualization, B.C.; methodology, B.C. and W.R.; software, B.C. and W.R.; investigation, B.C.
and W.R.; resources, B.C. and W.R.; data curation, B.C. and W.R.; writing — original draft, B.C. and
W.R.; writing — review and editing, B.C., W.R., M.A., and G.M.; supervision, M.A. and G.M.; project
administration, W.R.

DECLARATION OF INTERESTS

W.R. is an employee and shareholder of Intel Corporation.

REFERENCES

1.

30

Casella, B., Riviera, W., Aldinucci, M., and

Menegaz, G. (2023). MERGE: A Model for Multi-

Input Biomedical Federated Learning. Cell
Patterns 4, 100856.

. Soda, P., D'Amico, N.C., Tessadori, J., Valbusa,

G., Guarrasi, V., Bortolotto, C., Akbar, M.U.,

STAR Protocols 5, 102812, March 15, 2024

Sicilia, R., Cordelli, E., Fazzini, D., et al. (2021).
AlforCOVID: Predicting the clinical outcomes in
patients with COVID-19 applying Al to chest-X-
rays. An Italian multicentre study. Med. Image
Anal. 74. https://doi.org/10.1016/j.media.2021.
102216.

3. Foley, P., Sheller, M.J., Edwards, B., Pati, S.,

Riviera, W., Sharma, M., Narayana Moorthy, P.,
Wang, S.H., Martin, J., Mirhaji, P., et al. (2022).
OpenFL: the open federated learning library.
Phys. Med. Biol. 67. https://doi.org/10.1088/
1361-6560/ac97d9.

https://doi.org/10.1016/j.xpro.2023.102812
https://www.european-processor-initiative.eu/
http://refhub.elsevier.com/S2666-1667(23)00779-7/sref1
http://refhub.elsevier.com/S2666-1667(23)00779-7/sref1
http://refhub.elsevier.com/S2666-1667(23)00779-7/sref1
http://refhub.elsevier.com/S2666-1667(23)00779-7/sref1
https://doi.org/10.1016/j.media.2021.102216
https://doi.org/10.1016/j.media.2021.102216
https://doi.org/10.1088/1361-6560/ac97d9
https://doi.org/10.1088/1361-6560/ac97d9

	XPRO102812_proof_v5i1.pdf
	Protocol for training MERGE: A federated multi-input neural network for COVID-19 prognosis
	Before you begin
	Requirements
	Installing the OpenFL framework
	Data collection and preprocessing

	Key resources table
	Step-by-step method details
	Centralized training
	Federated training

	Expected outcomes
	Limitations
	Troubleshooting
	Problem 1
	Potential solution
	Problem 2
	Potential solution

	Resource availability
	Lead contact
	Technical contact
	Materials availability
	Data and code availability

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References

