

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

An application of zooms to identify archaeological avian fauna from Teotihuacan, Mexico

This is a pre print version of the following article:
Original Citation:
Availability:
This version is available http://hdl.handle.net/2318/1955531since 2024-02-12T13:39:35Z
Published version:
DOI:10.1016/j.jas.2022.105692
Terms of use:
Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

AN APPLICATION OF ZOOMS TO IDENTIFY ARCHAEOLOGICAL AVIAN

FAUNA FROM TEOTIHUACAN, MEXICO

1

4	To be submitted to Journal of Archaeological Science
5	Maria C. Codlin _{1,} Katerina Douka _{2,3} Kristine K. Richter _{3,4}
6	
7	
8	¹ Department of Anthropology, Boston University, Boston, MA 02215, USA
9	² Department of Evolutionary Anthropology, Faculty of Life Sciences,
10	University of Vienna, Vienna, Austria
11	³ Max Planck Institute for the Science of Human History, Department of
12	Archaeology, Jena, Germany
13	4 Department of Anthropology, Harvard University, Cambridge, MA 02318,
14	USA
15	
16	mcodlin@bu.edu
17	katerina.douka@univie.ac.at
18	kkrichter@palaeome.org
19	
20	Corresponding author:
21	Maria C. Codlin
22	mcodlin@bu.edu
23	675 Commonwealth Avenue, Suite 347
24	Boston, Massachusetts 02215
_	

26	DO NOT CITE IN ANY CONTEXT WITHOUT PERMISSION OF THE
27	AUTHOR
28	

29 1. Abstract

30	The remains of aquatic birds often represent the best surviving
31	evidence for prehispanic lake exploitation in highland Central Mexico, an
32	important center of urban development with vast lacustrine resources. Yet
33	unlike the sustained focus on turkey husbandry in Mesoamerican research,
34	the economic importance of ducks and other lacustrine birds has received
35	little attention. The diversity of birds in Central Mexico presents challenges to
36	species identification from skeletal remains. To overcome these challenges,
37	we present a new application of ZooMS, a collagen-based identification
38	technique, to identify archaeological avian fauna from Teotihuacan. We
39	develop the first database of avian biomarkers to include specimens across
40	multiple taxonomic groups and apply ZooMS on 295 bone fragments to
41	identify fragmentary and unidentified avian remains from the Tlajinga district
42	of Teotihuacan. Our results indicate that ZooMS has good potential to identify

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4139112

43 avian fauna to at least the family level and that the residents of Tlajinga

44 exploited a range of aquatic birds.

- 45
- 46

47 Keywords: ZooMS, Teotihuacan, aves, birds, collagen, aquatic

49 2. Introduction

50	Postclassic (900-1519 CE) communities in Central Mexico heavily
51	exploited aquatic birds, fish and insects from the expansive lacustrine system
52	in the Basin of Mexico (Figure 1, De Lucia, 2021; de Sahagún et al., 1963;
53	Hirth, 2016, p. 28; Parsons, 2010, 2008). However, there is little evidence for
54	how these lake exploitation economies developed over time, or their role in
55	supporting the large, densely settled city of Teotihuacan, which dominated
56	the region during the Classic period (ca. BCE 100 – 550/600 CE) (Sugiyama et
57	al., 2017; Valadez Azúa, 2013; Widmer and Storey, 2016). Aquatic birds
58	provide the most direct evidence for the exploitation of lake resources, as the
59	remains of small lake fish, insects and crustaceans are rarely recovered
60	archaeologically. Yet traditional zooarchaeological identification of birds in
61	Central Mexico is challenging, hindered by large groups of winter migratory
62	birds (Ayala-Pérez et al., 2013; Gamboa et al., 2017; Peterson and Navarro
63	Sigüenza, 2006) and high species diversity in this center of avian endemism

(Howell and Webb, 1995, p. 15). To address these challenges, we explore the 64 potential of palaeoproteomics, and specifically ZooMS (Zooarchaeology by 65 Mass Spectrometry), to identify archaeological birds from Teotihuacan while 66 also developing new collagen peptide biomarkers for North American 67 avifauna. 68 ZooMS is a collagen-based method for taxonomic identification of 69 animals based on amino acid substitutions, called single amino acid 70 polymorphisms (SAPs), within Type I collagen—the primary organic 71 component of bone (Buckley et al., 2009; Richter et al., 2022; Welker et al., 72 73 2015). Collagen is extracted, digested with the enzyme, trypsin, and analyzed on a matrix assisted laser desorption ionization time of flight (MALDI-TOF) 74 75 mass spectrometer. The resulting spectra are analyzed against lists of 76 reference peptide markers that vary across taxa. In comparison to aDNA analysis, ZooMS is rapid, low-cost, and requires very little bone, allowing for 77

6

78 high-throughput analysis and application to extremely small or fragmentary

- remains (Buckley et al., 2016; Richter et al., 2011; Speller et al., 2016; Wang et
- 80 al., 2021). ZooMS, therefore, provides taxonomic identification where
- 81 traditional zooarchaeological methods could be limited, especially for
- 82 fragmentary remains and morphologically similar species.

84 Figure 1. Location of Teotihuacan in the Basin of Mexico. Left: Lake system in Basin of Mexico prior to

85 European contact (after Lago de Texcoco Posclásico 2007 by Yavidaxiu, and derivative work by

- 86 historicair and Sémhur, CC BY-SA 4.0 via Wikimedia Commons). Right: Map of Teotihuacan (after
- **87** Millon 1973).

89	While diagnostic markers have been established to discriminate among
90	many types of mammals, fish and reptiles (Buckley and Kansa, 2011; Harvey
91	et al., 2019b, 2018; Janzen et al., 2021; Peters et al., 2021; Richter et al., 2020;
92	Speller et al., 2016; van der Sluis et al., 2014), the application of ZooMS for
93	avian fauna has been minimal. As Eda et. al. (2020) note, this lack of interest
94	stems largely from the slower collagen mutation rate in birds compared to
95	mammals, which limits the number of mutations available to distinguish
96	among taxonomic groupings (Buckley, 2018; Richter et al., 2022). However,
97	despite the slow mutation rate, avian collagen has potential for taxonomic
98	identification at the family (Horn et al., 2019) and sub-family levels (Eda et
99	al., 2020). As of 2022, two peptide markers (COL1 $lpha$ 2-502 and COL1 $lpha$ 2-889,
100	nomenclature after Brown et al. 2020) had been published that discriminate
101	four domesticated fowl, including mallard duck (Anas platyrhynchos) and
102	three members of the Phasianidae family: chicken (Gallus gallus), Japanese
103	quail (<i>Phasianus coturnix</i>), and turkey (<i>Meleagris gallopavo</i>) (Buckley, 2018;

104	Buckley et al., 2009). Recently, a more detailed study of peptide COL1 α 2-889
105	noted two variations useful in discriminating archaeological chicken and
106	indigenous pheasants in Japan (Eda et al., 2020), demonstrating the utility of
107	ZooMS to address specific archaeological questions. However, two genera of
108	indigenous pheasants of the Phasianidae family, Phasianus and Syrmaticus,
109	were indistinguishable based on this peptide, and the marker used to identify
110	<i>Phasianus</i> is also found in other families of birds (Eda et al., 2020). This
111	demonstrates that relying on single peptide markers can limit the usefulness
112	of ZooMS in areas with high avian diversity and highlights the need for further
113	work on characterizing the collagen sequences of avian fauna.
114	We use these findings as a starting point to examine publicly available
115	collagen sequences and reference modern samples to develop ZooMS
116	markers that discriminate among 15 families, representing nine orders of
117	birds that are frequently found in archaeological sites across the Americas
118	(Figure 2).

Passeriformes		eridae
	C	orvidae
Columbiformes	C	olumbidae
Gruiformes	Ra	allidae
Podicipediformes	Po	odicipedidae
	So	olopacidae*
Charadriiformes	La	ridae
	CI	naradriidae
Anseriformes	Aı	natidae
Galliformes	00	dontophoridae
	Pł	nasianidae
Accipitriformes	Ac	cipitridae
	Ca	athartidae
Pelecaniformes	Pe	ecanidae
	1Ar	deidae

Figure 2. Phylogenetic tree of avian orders and families represented by modern and archaeological
 specimens (from itol.embl.de, v. 6.5.2, Letunic and Bork, 2021). Individuals from families in bold were
 analyzed by LC-MS/MS. *Scolopacidae family was identified through comparison of LC-MS/MS
 sequences to collagen sequences for this family.

127 3. Site Description: Teotihuacan, Mexico

128	Teotihuacan was a large, densely populated urban center, and one of
129	the few cities in the Americas to have a population of 100,000 or more prior to
130	European arrival (Figure 1). The city rose around 100 BCE and by its height in
131	250-550 CE had consolidated a large multiethnic population and presided
132	over a network of communication corridors that connected the city to natural
133	resources, trade goods, and other Mesoamerican cultures (Carballo, 2013;
134	Hirth, 2020; Sanders et al., 1979). Parsons (2010) argued that lake
135	exploitation in the Basin of Mexico would have intensified during this period
136	to support growing urban populations and the expansion of settlements into
137	landscapes that supported maguey (<i>Agave</i>) production, but otherwise had
138	limited agricultural potential. Yet current estimates of aquatic resources at
139	Tlajinga indicate waterfowl made up no more than 4% of the animals
140	consumed in the city (Sugiyama et al., 2017, p. 66). On average, aquatic
141	species make up 33% of the birds identified in residential areas of

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4139112

142 Teotihuacan, while turkeys alone comprise 45% (Sugiyama et al., 2017, Table

- 143 ESM1).
- 144 Recent excavations at Tlajinga, on the southern periphery of the city,
- 145 provides new material to examine avian diversity and the importance of
- 146 aquatic birds to urban subsistence (Carballo et al., 2019). The faunal analysis
- 147 of these materials is described elsewhere (Codlin, in prep), but in brief, the
- 148 assemblage contained 613 fragments of bird bone, only 282 of those were
- 149 identified to a taxonomic group.

150 4. Materials and methods

151 *4.1. Modern reference samples*

Approximately 10-20 mg of bone was sampled from non-diagnostic skeletal portions, primarily ribs of 31 modern North American bird specimens (collections from Boston University and the American Museum of Natural History [AMNH]). The samples included 17 species of bird from 12 families

- 157 Central Mexico: Accipitridae, Anatidae, Ardeidae, Cathartidae, Columbidae,
- 158 Corvidae, Icteridae, Laridae, Odontophoridae, Pelecanidae, Podicipedidae,
- 159 Rallidae (Table S1). Where possible, multiple individuals from the same
- 160 species were sampled.
- 161 4.2. Archaeological samples

Two-hundred and ninety-five (n=295) archaeological specimens were 162 sampled from Tlajinga, and from a nearby neighborhood, the Oaxaca Barrio 163 (Tlailotlacan). We sampled 259 avian bones from two adjacent apartment 164 compounds at Tlajinga (17:S3E1 and 18:S3E1), including 192 unidentifiable 165 specimens and 67 specimens identified morphologically at least to taxonomic 166 order (e.g. Galliformes). An additional 36 specimens, including five identified 167 minimally to order, were collected from faunal material from salvage 168 excavations at the Oaxaca Barrio (Ortega Cabrera, 2012, 2010, 2009). 169 Approximately 25% of the samples selected from both sites were identified 170 minimally to the level of family. Material from the Oaxaca Barrio is included in 171

172	ZooMS analysis, but the archaeological implications are not considered here.
173	Faunal material from both excavations was recovered in the field using 5 mm
174	screens, meaning that small birds, including quails, are likely to be under-
175	represented in the dataset (Tellkamp, 2019). For all archaeological samples,
176	small fragments of bone, weighing 10-50 mg, were removed from non-
177	diagnostic portions of bone for analysis.
178	4.3. Bird collagen database
179	Avian collagen sequences were downloaded from UniProt and NCBI;
180	these include data from avian genome sequencing (Feng et al., 2020; Jarvis et
181	al., 2014; Zhang et al., 2014). The sequences were aligned and compared to
182	the reference chicken sequences (COL1A1 - P02457, COL1A2 - P02467)
183	using Jalview (see data at: 10.5281/zenodo.6363113) The sequence data was
184	theoretically digested with trypsin using the Bacollite R package (v. 1.0,
185	Hickinbotham et al., 2020) allowing the following post-translational

186	modifications: oxidation (+15.9949 Da) of proline and deamidation (+0.9840
187	Da) of asparagine and glutamine.
188	<i>4.4. Collagen sequencing and peptide mass fingerprinting</i>
189	Collagen was extracted and digested using established methods
190	(Brown et al., 2020b; Buckley et al., 2009; Welker et al., 2015). Briefly,
191	samples were incubated in 0.6 M hydrochloric acid (HCl) overnight, washed
192	with 50 mM ammonium bicarbonate (NH~4~HCO~3~) pH 8.0 (AmBic), and
193	incubated briefly in 0.1M of sodium hydroxide (NaOH) before gelatinization in
194	AmBic at 65° C for one hour and digestion with trypsin. Samples were then
195	diluted and spotted 1:1 with a-cyano-4-hydroxycinnamic acid and analyzed on
196	a Bruker Autoflex Speed LRF MALDI-TOF Mass Spectrometer located at the
197	Max Planck Institute for the Science of Human History, Jena, Germany.

199 4.5. Marker ID and MS/MS confirmation

200	A list of candidate marker peaks was generated from visual comparison
201	of the spectra using mMass (v 5.5.0, Strohalm et al., 2010) and differences in
202	the theoretical peptide masses generated from Bacollite. One individual from
203	each pattern of markers identified in the archaeological assemblage ($n=14$)
204	was analyzed using LC-MS/MS (Lumos Orbitrap, Mass Spectrometry Facility,
205	University of Massachusetts Medical School) to confirm the sequences of
206	candidate markers. Where possible, the matching reference specimens were
207	also analyzed (n=9).
208	LC-MS/MS data was processed using Byonic (v. 3.4, Bern et al., 2012)
209	allowing for oxidations of methionine, proline, and lysine, deamidation of
210	asparagine and glutamine, and acetylation on N-terminal glutamine and
211	glutamic acid. First, proteins present in the samples were identified using a
212	database consisting of SwissProt ($1/20/2022$), whole proteomes from 13
213	species of bird, plus available avian proteins from UniProt (Table S2).

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4139112

214	Focused databases for each sample were generated using a protein FDR of
215	2%. Second, to identify novel collagen peptides, assisted <i>de novo</i> sequencing
216	was conducted using error tolerant searching in Byonic against a database
217	containing 13 regions of interest from avian COL1 $lpha$ 2-sequences. Third,
218	marker confirmation was conducted against a database consisting of the
219	sequences from the focused databases, excluding COL1 sequences, curated
220	avian COL1 sequences, and novel collagen peptides from <i>de novo</i>
221	sequencing. Markers were considered confirmed if there were 2 or more
222	peptide spectral matches with PEP 2D scores below 0.001 with coverage of
223	the SAP locations (Table S3).
224	<i>4.6. Identification of archaeological samples and clustering</i>
225	Clustering and sample identification was conducted using R version
226	4.1.1 (R Core Team, 2021) and the package MALDI-Quant (v 1.2, Gibb and
227	Strimmer, 2012) after validation of the parameters used against mMass.
228	Spectra underwent smoothing, baseline removal, calibration, peak picking,

	18
229	and deisotoping before filtering for number of peaks between 50 and 90, as
230	peak lists outside of this range correspond to poor quality spectral data.
231	Technical replicates of the resulting spectra were then averaged and the
232	averaged spectrum for each sample was peak picked and deisotoped. A
233	binary matrix that recorded the presence or absence of markers (combining
234	masses of amidated, deamidated, and oxidized versions where possible) was
235	created from the markers confirmed by LC-MS/MS in the peak lists. The
236	matrix was used for hierarchical clustering (stats package, R Core Team,
237	2021) with 20 groups. Spectra in these groups were then visually analyzed for
238	homogeneity and taxonomic assignment. Low quality spectra which were
239	previously filtered out were then visually inspected to see if taxonomic
240	assignment was possible. The complete MALDI-quant workflow is available
241	at 10.5281/zenodo.6366234. ZooMS data was the integrated with
242	zooarchaeological data to generate Number of Identified Specimens (NISP)
243	and Minimum Number of Individuals (MNI) (Lyman, 2008; Table S5).

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4139112

244 5. Peptide biomarkers for avifauna

245 *5.1. Peptide biomarkers and their taxonomic resolution*

 LC-MS/MS, corresponding to 71 MALDI marker peaks for the identification of avian taxa (Table 1 and Table S3). These markers can successfully discriminate among 15 families based upon data from protein sequences and modern and archaeological samples (Table 2). Markers in the Anatidae, Charadriidae, Scolopacidae, Laridae, Podicipedidae, Rallidae, Phasianidae, Odontophoridae, Corvidae, and Columbidae families were confirmed using 	246	We confirmed 59 peptide sequence variations across 12 locations using
 avian taxa (Table 1 and Table S3). These markers can successfully discriminate among 15 families based upon data from protein sequences and modern and archaeological samples (Table 2). Markers in the Anatidae, Charadriidae, Scolopacidae, Laridae, Podicipedidae, Rallidae, Phasianidae, Odontophoridae, Corvidae, and Columbidae families were confirmed using 	247	LC-MS/MS, corresponding to 71 MALDI marker peaks for the identification of
 249 discriminate among 15 families based upon data from protein sequences and 250 modern and archaeological samples (Table 2). Markers in the Anatidae, 251 Charadriidae, Scolopacidae, Laridae, Podicipedidae, Rallidae, Phasianidae, 252 Odontophoridae, Corvidae, and Columbidae families were confirmed using 	248	avian taxa (Table 1 and Table S3). These markers can successfully
 modern and archaeological samples (Table 2). Markers in the Anatidae, Charadriidae, Scolopacidae, Laridae, Podicipedidae, Rallidae, Phasianidae, Odontophoridae, Corvidae, and Columbidae families were confirmed using 	249	discriminate among 15 families based upon data from protein sequences and
 251 Charadriidae, Scolopacidae, Laridae, Podicipedidae, Rallidae, Phasianidae, 252 Odontophoridae, Corvidae, and Columbidae families were confirmed using 	250	modern and archaeological samples (Table 2). Markers in the Anatidae,
252 Odontophoridae, Corvidae, and Columbidae families were confirmed using	251	Charadriidae, Scolopacidae, Laridae, Podicipedidae, Rallidae, Phasianidae,
	252	Odontophoridae, Corvidae, and Columbidae families were confirmed using

- 253 LC-MS/MS. Markers in Accipitridae, Cathartidae, Pelecanidae, Ardeidae, and
- 254 Icteridae families are only candidate markers derived from ZooMS spectra
- 255 and sequence data.
- Not all the 71 markers identified are equally useful for identification.
 As reported in other taxonomic groups, some peptide variants are poorly
 visualized in the MALDI either for only modern species or both modern and

archaeological. Other variants overlap with each other, other collagen 259 peptides, or common contaminants. For the marker peaks which overlap with 260 common contaminants (*m/z* 1193.6, *m/z* 1566.7, and *m/z* 2108), LC-MS/MS 261 analysis identified none of the contaminant peptides present in any of our 262 samples. Moreover, no highly diagnostic marker peaks overlap with common 263 264 contaminants, although care should be taken when interpreting the diagnostic peak for turkey, m/z 1622.6, which is 1 Da removed from peptide derived from 265 the self-digestion of trypsin at m/z 1623.8. In addition, we identified several 266 267 peptides which are consistently identified as deamidated in the MALDI and LC-MS/MS across all samples (e.g. $COL1\alpha^2-175$ and $COL1\alpha^2-520$). The most 268 distinct peaks that can be used for identification are highlighted in bold in 269

270 Table 1.

Tamanania ID	Sample)	4.0h	175-	292-	454-	502-	E 0() FFFb
	#	10-	-42°	192 ^ь	309 ^d	483 ^c	519	520	J-555°
Anatidae 1	MC148	3097.4	3113.4	1603.8	1609.7	2777.3	1578.8	3152.4	3168.4
Anas platyrhynchos	MC2	3097.4	3113.4	1603.8	1609.7	2804.3	1578.8	3152.4	
Anatidae 2	MC123	3097.4	3113.4	1603.8	1609.7	2804.3	1578.8	3152.4	3168.4
Anatidae 3	MC182	3097.4	3113.4	1603.8	1609.7	2804.3	1578.8	3152.4	3168.4
Oxyura jamaicensis	MC16	3097.4	3113.4	1589.8	1609.7	2804.3	1578.8	3152.4	3168.4
Anatidae 4	MC171	3097.4	3113.4	1589.8	1609.7	2804.3	1578.8	3152.4	3168.4
Podilymbus podiceps	MC37	3106.4	3122.4	1589.8	1596.8	2804.3	1578.8	3152.4	3168.4
Podicipedidae	MC187	3106.4	3122.4	1589.8	1596.8	2804.3	1578.8	3152.4	3168.4
Gallinula galeata	MC26	3097.4	3113.4	1589.8	1609.7	2804.3	1578.8	3152.4	3168.4
Fulica americana	MC30	3097.4	3113.4	1589.8	1609.7	2804.3	1578.8	3152.4	3168.4
Rallidae	MC110	3097.4	3113.4	1589.8	1609.7	2804.3	1578.8	3152.4	3168.4
Leucophaeus attricilla	MC28	3097.4	3113.4	1603.8	1609.7	2777.3	1552.8	3206.5	3222.5
Laridae	MC300	3097.4	3113.4	1603.8	1609.7	2777.3	1552.8	3206.5	
Charadrius semipalmatus	MC20		3106.4	1589.8	1609.7	2777.3	1578.8	3156.4	3172.4
Scolopacidaeª	MC232	3071.4	3087.4	1589.8	1609.7	2777.3	1608.8	3166.4	3182.4
Meleagris gallopavo	MC39	3097.4	3113.4	1603.8	1609.7	2777.3	1622.9	3192.5	3208.5
Gallus gallusª	MC114	3097.4	3113.4	1603.8	1609.7	2777.3	1594.8	3192.5	3208.5
Colinus viginianus	MC32	3097.4	3113.4	1603.8	1609.7	2777.3	1594.8	3182.4	3198.5
Colinus viginianus	MC207	3097.4	3113.4	1603.8	1609.7	2777.3	1594.8	3182.4	3198.4
Odontophoridae	MC331	3097.4	3113.4	1603.8	1609.7	2777.3	1594.8	3192.5	
Zenaida macroura	MC23	3097.4	3113.4	1596.8	1579.7	2804.3	1578.8	3150.4	
Columbidae	MC129	3097.4	3113.4	1596.8		2804.3	1578.8	3150.4	3166.4
Corvus corax	MC349	3111.4	3127.4	1603.8	1608.8	3166.5	1552.8	3166.5	3182.4
			Unconfi	rmed ma	arkers				
Accipiter cooperii	MC9	3097.4	3113.4	1603.8	1580*	2804.3	1552.8*	3152.4*	3168.4*
Buteo jamaicensis	MC18	3097.4	3113.4	1603.8	1580*	2804.3	1552.8*	3152.4*	3168.4*
Cathartes aura	MC11	3097.4	3113.4	1589.8	1609.7	2804.3			
Ardea alba	MC13	3097.4	3113.4	1589.8	1596.8*	2804.3	1578.8*	3152.4*	3168.4*
Egretta thula	MC25	3097.4	3113.4	1589.8	1596.8*	2804.3	1578.8*	3152.4*	3168.4*

271 Table 1. Peaks for COL1 α 2 peptide markers identified for birds

erythrorhynchos	101033	5051.4	5115.4	1003.0	1550.0	2004.3	1332.0	5152.4 5100.4
Pelecanus	MC35	3007 /	2112 <i>I</i>	1603.8	1506 8*	* 28U/I 3*	• 1552 8	3152 /* 3168 /*
mexicanus	NIC21	3111.4	5127.4	1003.0	1000.0	2111.5	1576.6	5100.5
Quiscalus		2111 /	2127 A	1602 0	1608.8	2777 3	1578.8	3166 5

273 The most diagnostic and least ambiguous peaks are in **bold**. Non-bolded peaks may be 274 identical to peaks from other peptide locations and should only be used to support identifications based on other markers. The unconfirmed markers are based upon MALDI and 275 sequence data, but have not been confirmed by LC-MS/MS. Labelling of peptides follows 276 277 Brown et al. (2020a). These markers are all on the COL1a2 chain. 278 279 * denotes markers not visible in the MALDI, but expected based on collagen sequences of 280 related taxa. 281 ^a Taxonomic identification is based on comparison to publicly available collagen sequences. ^b 282 Peak appears most strongly at deamidated version. ^c Flies poorly in MALDI modern 283 specimens. ^d This marker is not consistently identified in LC-MS/MS analysis. However, this 284 marker does fly in the MALDI and often present at identical masses to other markers. Peak 285 appears most strongly at deamidated version. ^e Appears inconsistently in LC-MS/MS and 286 MALDI when no proline oxidation is present but has identical masses to some other markers. 287 ^f Appears inconsistently in LC-MS/MS, however most birds in available collagen sequences 288 have the peptide sequence responsible for peak at m/z 1221.6. m/z 1225.6 is diagnostic in 289 MALDI and was confirmed in LC-MS/MS.

Table 1. *continued*

Tovonomia ID	Sample	604-	625-		658-	757	- 00	0.0064	978-
Taxonomic ID	#	618 ^f	648°	025-053	687	789	88	9-900	990 ^b
Anatidae 1	MC148	1221.6	2108	2466.2	2511.3	2985.5	1616.8	1632.8	1192.6
Anas platyrhynchos	MC2		2108	2466.2	2511.3	2969.5	1616.8	1632.8	1192.6
Anatidae 2	MC123	1221.6	2108	2466.2	2511.3	2969.5	1616.8	1632.8	1192.6
Anatidae 3	MC182	1221.6	2108	2466.2	2511.3	2984.5		1632.8	1192.6
Oxyura jamaicensis	3 MC16	1221.6	2108	2466.2	2511.3	2927.5		1660.8	1192.6
Anatidae 4	MC171	1221.6	2108	2466.2	2511.3	2927.5	1644.8	1660.8	1192.6
Podilymbus	MC37	1221 6	2108	2466.2	2/197 2	2027 5	1550.8	1566 8	1220.6
podiceps	101037	1221.0	2100	2400.2	2431.2	2321.3	100.0	1300.0	1220.0
Podicipedidae	MC187	1221.6	2108	2466.2	2497.2	2927.5	1550.8	1566.8	1220.6
Gallinula galeata	MC26	1221.6	2108	2466.2	2497.2	2985.5	1578.8	1594.8	1220.6
Fulica americana	MC30	1221.6	2108	2466.2	2497.2	2985.5	1578.8	1594.8	1220.6
Rallidae	MC110	1221.6	2108	2466.2	2497.2	2985.5	1578.8	1594.8	1220.6
Leucophaeus	MC28	1221 6	2108	2466.2	2531 2	2027 5	1550.8	1566 8	1220.6
attricilla	101020	1221.0	2100	2400.2	2331.2	2521.5	1550.0	1300.0	1220.0
Laridae	MC300	1221.6	2108		2531.2	2927.5	1550.8	1566.8	1220.6
Charadrius	MC20	1221 6	2108	2466.2	2511 3	2055 5	1550.8	1566 8	1220.6
semipalmatus	101020	1221.0	2100	2400.2	2011.0	2333.3	1000.0	1300.0	1220.0
Scolopacidae ^a	MC232	1221.6	2108	2466.2	2559.2	2985.5	1550.8	1566.8	1220.6
Meleagris	MC39	1221 6	2108	2466.2	25393	2927 5	1578.8	1594 8	1220.6
gallopavo	WICCO	1221.0	2100	2400.2	2000.0	2521.5	1070.0	1004.0	1220.0
Gallus gallusª	MC114	1221.6	2108		2539.3	2927.5	1604.8	1620.8	1220.6
Colinus viginianus	MC32	1221.6	2108	2466.2	2539.3	2927.5	1550.8	1566.8	1220.6
Colinus viginianus	MC207	1221.6	2108	2466.2	2539.3	2927.5	1550.8	1566.8	1220.6
Odontophoridae	MC331	1221.6	2108	2466.2	2539.3	2927.5	1550.8	1566.8	1220.6
Zenaida macroura	MC23		2108	2466.2	2497.2	2881.5	1592.8	1608.8	1192.6
Columbidae	MC129	1225.6	2108	2466.2	2497.2	2881.5		1608.8	1192.6
Corvus corax	MC349	1221.6	2135	2493.2	2525.3	2927.5		1580.8	1220.6
Unconfirmed markers									
Accipiter cooperii	MC9	1221.6	2108*	2466.2*	2511.3	2913	1578.8	1594.8	1220.6
Buteo jamaicensis	MC18	1221.6	2108*	2466.2*	2511.3	2913	1578.8	1594.8	1220.6
Cathartes aura	MC11	1221.6			2497.2	2913	1578.8	1594.8	1220.6

Ardea alba MC13 1221.6 2108* 2466.2* 2511.3 2939 1550.8 1566.8 1220.6 Egretta thula MC25 1221.6 2108* 2466.2* 2511.3 2939 1550.8 1566.8 1220.6 Quiscalus 2511.3 2927.5 MC21 1221.6 1220.6 mexicanus 1221.6 2108* 2466.2* 2497.2 2927.5 1578.8 1594.8 1220.6 Pelecanus MC35 erythrorhynchos

292

293 See notes on previous page

294

295 Table 2. Summary of taxa analyzed and comparison of morphological and ZooMS296 identifications

Order	Family	ID type	Morphological	ZooMS
	i unity	ib type	identification	identification
Anseriformes	Anatidae	Modern	Anas platyrhynchos	Anatidae 2
				<i>Oxyura</i> sp.
Anseriformes	Anatidae	Modern	Oxyura jamaicensis	(Anatidae 4)
Anseriformes	Anatidae	Archaeologica	IAnatidae	Anatidae 1
Anseriformes	Anatidae	Archaeologica	IAnatidae	Anatidae 3
Anseriformes	Anatidae	Archaeologica	lAnatidae	Anatidae 5*
Anseriformes	Anatidae	Archaeologica	IAnatidae	Anatidae 6*
Columbiformes	Columbidae	Modern	Zenaida macroura	Columbidae
Columbiformes	Columbidae	Modern	Columbina talpacoti	Columbidae+
Columbiformes	Columbidae	Archaeologica	IColumbidae	Columbidae
Charadriiformes	Scolopacidae	Archaeologica	ICharadriiform	Scolopacidae*
Charadriiformes	Charadriidae	Modern	Charadrius semipalmatus	<i>s</i> Charadriidae
Charadriiformes	Laridae	Modern	Leucophaeus attricilla	Laridae
Charadriiformes	Laridae	Archaeologica	lLaridae	Laridae
Passeriformes	Corvidae	Archaeologica	<i>Corvus corax</i>	Corvidae
Passeriformes	Icteridae	Modern	Quiscalus mexicanus	Icteridae ²
Podicipediformes	sPodicipedidae	Modern	Podilymbus podiceps	Podicipedidae
Podicipediformes	sPodicipedidae	Archaeologica	Podiceps nigricollis	Podicipedidae
Galliformes	Odontophoridae	eModern	Colinus virginianus	Colinus virginianus
Galliformes	Odontophoridae	eArchaeologica	lOdontophoridae	Odontophoridae
Gruiformes	Rallidae	Modern	Fulica americana	Rallidae
Gruiformes	Rallidae	Modern	Gallinula galeata	Rallidae
Galliformes	Phasianidae	Archaeologica	lPhasianidae	Gallus gallus *
				Meleagris
Galliformes	Phasianidae	Archaeologica	Meleagris gallopavo	gallopavo
Accipitriformes	Accipitridae	Modern	Accipiter cooperii	Accipitridae+
Accipitriformes	Accipitridae	Modern	Buteo jamaicensis	Accipitridae+
Accipitriformes	Cathartidae	Modern	Cathartes aura	Cathartidae+
			Pelecanus	
Pelecaniformes	Pelecanidae	Modern	erythrorhynchos	Pelecanidae+
Pelecaniformes	Ardeidae	Modern	Egretta thula	Ardeidae+

Pelecaniformes Ardeidae

Modern

Ardea alba

Ardeidae+

- 298 * Taxonomic identification is based only on sequence data and similarities to other
- 299 analyzed taxa, not MALDI reference data. + ZooMS identification is estimate as
- **300** markers are not confirmed by LC-MS/MS
- 301

302 5.1.1. Galliformes

303	Galliformes includes two families important for urban subsistence at
304	Teotihuacan, Phasianidae and Odontophoridae. Reference samples were
305	collected from <i>Colinus virginianus</i> (northern bobwhite) while <i>Meleagris</i>
306	gallopavo (turkey) and Gallus gallus (chicken) are available in collagen
307	sequence data. While no peptides can clearly discriminate the two families,
308	COL1 α 2-889, COL1 α 2-520, and COL1 α 2-502 allow us to discriminate among
309	Gallus, Meleagris, and Colinus, as well as other quails of the Odontophoridae
310	family that are present in archaeological data. COL1 $lpha$ 2-757 may have the
311	potential to further discriminate among other quail genera present in Central
312	Mexico (<i>Callipepla</i> , <i>Dendrortyx</i> and <i>Cyrtonyx</i>), but we have not been able to
313	unambiguously confirm the marker without further reference material.
314	5.1.2. Charadriiformes

315 Charadriiformes is a diverse order of aquatic birds, and many species316 are found within the five families of this order common in Central Mexico:

- 317 Laridae, Scolopacidae, Charadriidae, Recurvirostridae and Jacanidae
- 318 (Peterson and Navarro Sigüenza, 2006). Reference samples were collected for
- species from Laridae and Charadriidae, while collagen sequences are
- available for species in Charadriidae and Scolopacidae. The samples from
- 321 these three families are distinguished by variations across six peptide
- **322** locations: COL1α2-10, COL1α2-175, COL1α2-502, COL1α2-658, COL1α2-757,
- and COL1 α 2-520. Given that only one species from each group was sampled,
- 324 these peptide markers may be specific to genus or species within these
- 325 families, and there does not appear to be any peptide marker specific to this
- 326 order of birds.
- 327 5.1.3. Anseriformes
- Anatidae (duck, geese and swans) are the only family from
 Anseriformes present in Central Mexico (Howell and Webb, 1995) and we
 identified the greatest diversity of markers among this family. The most
- 331 common genera in our study region are *Anas*, *Oxyura*, *Spatula*, *Aythya*, and

Mareca, while Anser, Mergus, and Bucephala may have been more common

333	in the past (Ayala-Pérez et al., 2013; de Sahagún et al., 1963, pp. 26, 34–38,
334	57; Howell and Webb, 1995). Reference samples were acquired from Anas
335	and <i>Oxyura</i> and sequence data are available for <i>Anas, Oxyura</i> , and <i>Anser</i> .
336	Four main marker locations are important for Anatidae: COL1 α 2-658,
337	COL1 α 2-889, COL1 α 2-454, and COL1 α 2-757. We identify six archaeological
338	duck groups that are distinguishable based on various combinations of these
339	four peptides (Figure 3). Anas and Oxyura are distinguished by differences in
340	COL1 α 2-889 and COL1 α 2-757. Anser and Anas are distinguished at peptides
341	COL1α2-658 and COL1α2-889.
342	The peptides identified in Anatidae 2 closely match Anas
343	platyrhynchos. Archaeological specimens in this group likely include the
344	closely related Anas diazi (Mexican duck), which was common in the region
345	(Ayala-Pérez et al., 2013), and may also include other taxa in the Anas genus
346	or dabbling ducks of the Anatini tribe, such as Spatula and Mareca. Markers

- 347 for Anatidae 4 are identical to *Oxyura jamaicensis* (ruddy duck) which is the
- only species of its tribe found in Central Mexico (Howell and Webb, 1995, pp.
- 349 172–3). It is likely, then, that all archaeological specimens identified as
- 350 Anatidae 4 belong to *Oxyura jamaicensis*. Further reference samples are
- required to identify Anatidae groups 1, 3, 5, and 6, although the presence of
- **352** peak m/z 2497.5 for COL1 α 2-658 in Anatidae 5 and 6 suggests they could be
- 353 types of geese, based on sequence data for Anser.

Figure 3. Examples of peptide markers that distinguish four groups of Anatidae. Anatidae 1 and 3 are not identified to taxonomic group, while Anatidae 2 is identical to *Anas platyrhynchos* and Anatidae 4 is identical to *Oxyura jamaicensis*. A) the difference between the COL1 α 2-454 marker at *m/z* 2777.3 for Anatidae 1, and *m/z* 2804.3 found in the other Anatidae groups. B) unique peaks for each Anatidae group among the COL1 α 2-757 marker—Anatidae 1: *m/z* 2985.5, Anatidae 2: *m/z* 2969.5, Anatidae 3: *m/z* 2984.5, and Anatidae 4: *m/z* 2927.5. C) the difference between the COL1 α 2-889 marker at *m/z* 1660.7 in Anatidae 4 and *m/z* 1632.7 that is present in other ducks of the Anatidae family.

365	5.1.4. Gruiformes, Podicipediformes, Columbiformes, and Passeriformes
366	Gruiformes, Podicipediformes and Columbiformes are each
367	represented by two species from one family: Rallidae, Podicipedidae, and
368	Columbidae respectively (Table 2). While Podicipedidae and Columbidae are
369	the only families from these orders present in the Basin of Mexico, Rallidae is
370	the most diverse family of three Gruiformes (Peterson and Navarro Sigüenza,
371	2006). Although specimens in each order are distinguished from other birds
372	based on multiple markers, species within each family are indistinguishable
373	from each other. Based on the large numbers of markers that distinguish
374	families within other orders studied here, the samples from Rallidae are likely
375	to be distinct from other families in the order Gruiformes.
376	Passeriformes are the largest order of birds with upwards of 140
377	families. An archaeological specimen for <i>Corvus corax</i> (raven) of the Corvidae
378	family is similar to <i>Quiscalus mexicanus</i> (Mexican grackle), except for the
379	marker at COL1 α 2-658. Compared to other taxa in the study, however, <i>Corvus</i>

380 and *Quiscalus* have the highest number of unique markers and many more

381 variations among passerine families are visible in the available collagen

382 sequences.

383 5.1.5. Pelecaniformes and Accipitriformes

Pelecaniformes and Accipitriformes are represented by multiple 384 reference samples but were not submitted for LC-MS/MS analysis as the 385 peptide marker patterns were not observed in any archaeological samples. 386 MALDI peaks observed in these samples are presented in Table 1, but these 387 unconfirmed peaks are not included in the biomarker list for identification of 388 taxa. Accipitridae is the largest of three families of Accipitriformes in Central 389 Mexico, including Cathartidae and Pandionidae (Peterson and Navarro 390 Sigüenza, 2006). While *Buteo* and *Accipiter* from Accipitridae cannot be 391 separated by MALDI marker, Accipitridae and Cathartidae are distinguished 392 from each other by markers at COL1 α 2-175 and COL1 α 2-658. Similarly, 393 **394** among the Pelecaniformes, Ardeidae is the largest of three families common

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4139112

- 395 in Central Mexico, also including Pelecanidae and Threskiornithidae
- 396 (Peterson and Navarro Sigüenza, 2006). *Egretta* and *Ardea* in the Ardeidae
- 397 family are indistinguishable, while Ardeidae are distinct from Pelecanidae at
- 398 multiple markers.
- 399 5.2. Comparison to established peptide markers

The overall mutation rate of avian collagen is lower than mammals. 400 However, several peptide regions appear to have particularly high variability, 401 meaning avian taxonomic groups can be identified more effectively than 402 predicted by the slower mutation rate. Peptides COL1 α 2-520 and COL1 α 2-403 757, for example, both have at least five locations of SAPs in their respective 404 36- and 33-number amino acid sequences. These combinations of variants 405 correspond to seven unique peptide sequences for each marker location that 406 was confirmed with LC-MS/MS. While COL1 α 2-889 is a shorter peptide with 407 only 18 amino acids, SAPs occur in three locations and correspond to eight 408 unique peptide sequences. Overall, the taxonomic resolution achievable in 409

424 where biomarkers are identified in the c	ollagen sequences of mammals or
This preprint research paper has not been peer reviewed. Electron	nic copy available at: https://ssrn.com/abstract=4139112

410	birds appears to be only slightly less than that of mammals. For example, five
411	markers have been identified that distinguish taxa within the family Bovidae
412	(Janzen et al., 2021), while we identified four peptide markers that distinguish
413	taxa within the family Anatidae.
414	$COL1 \alpha 1$ 508-519 has been previously noted a useful marker to
415	discriminate broad groups of mammals (Buckley et al., 2014). This peptide
416	appears conserved across all birds in this study, present at m/z 1162.
417	However recent research suggests this marker and amino acid sequence is
418	also shared with Australian marsupials and some reptiles (Harvey et al.,
419	2019a; Peters et al., 2021).
420	As in mammals, most of the diagnostic bird biomarkers are identified
421	from COL1 α 2. Some potential markers were identified on COL1 α 1, but these
422	are not presented as they could not be consistently confirmed by LC-MS/MS.
423	Of the avian markers identified here, all but two are homologous to locations

	36
425	fish: COL1 α 2 454, COL1 α 2 502, COL1 α 2 757, and COL1 α 2 978 (Pep E, C, G
426	and A, Buckley et al., 2009); COL1 $lpha$ 2 292 (P2, Buckley et al., 2014), COL1 $lpha$ 2
427	10 (Pep 9, Buckley et al., 2016), COL1 $lpha$ 2 889 (Janzen et al., 2021, although
428	first described as a bird marker by Buckley, 2018 and Eda et al. 2020),
429	COL1 α 2-604 (Harvey et al., 2019a), COL1 α 2-625 (Harvey et al., 2018),
430	COL1 $lpha$ 2-658 (Richter et al., 2020). These locations seem to have good
431	discriminant ability across animal types. While Wang et al. (2021) noted
432	COL1 α 2 175 as a non-diagnostic marker shared by mammals, this marker
433	does discriminate among birds, although it overlaps with identical masses
434	from other markers. One novel marker presented here, COL1 $lpha$ 2-520-555, is
435	highly diagnostic for avian identification, but should be confirmed through
436	visual inspection of spectra. This marker is often missing in modern
437	specimens and as the peak is broad with a large isotope distribution, the
438	correct peak in the distribution is often not properly identified during

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4139112

439 automatic peak picking and deisotoping, resulting in being incorrectly

440 identified 1-2 Da off.

441 6. Analysis of archaeological samples

- 442 6.1. Taxonomic discrimination via clustering
- All 31 modern reference specimens produced high quality spectra and 443 the peaks picked were consistent across replicates and individuals. Modern 444 and archaeological samples were assigned to one of 20 groups based on 445 hierarchical clustering of marker peaks (Figure 4, see also Figure S1 and Table 446 S1). Two-hundred eighty-five of the 295 archaeological samples clustered 447 into groups, while 10 samples were removed by the screening process. In 448 contrast, only 5 of the 31 reference specimens passed initial screening due to 449 450 higher rates of noise in spectra for modern samples. However, these parameters were kept due to the excellent discrimination of archaeological 451 samples in the clusters. Four of the five reference specimens clustered where 452 453 expected, while one sample clustered separately from archaeological

454	samples. Identification of samples within each group was independently
455	verified by visual inspection of marker peaks and further identification of taxa
456	within clusters was possible.
457	Six of the 20 clusters contained a total of 30 archaeological samples
458	matching established mammal biomarkers, while Corvidae, Columbidae,
459	Rallidae, Podicipedidae, and Scolopacidae each clustered separately. Laridae
460	clustered apart, with the only erroneous clustering of a non-related sample
461	(MC306, identified as passeriform). Galliformes clustered together with one
462	distinct sub-grouping of <i>Meleagris</i> , and another distinct group comprising
463	both Odontophoridae and <i>Gallus</i> . Three clusters contained Anatidae. Cluster
464	1 largely contained specimens from Anatidae 1, while Cluster 9 grouped all
465	Anatidae 4 samples. Cluster 5 contained two sub-groups, which broadly
466	separated Anatidae 1 and 3.
467	Eleven samples produced high-quality spectra but were not identifiable

468 to a taxonomic group by visual inspection. Each of these samples presented

- 469 the peak at m/z 1162, common to all birds and additional avian biomarkers.
- 470 However, these 11 samples represent ten unique peak lists and group across
- 471 multiple taxonomic clusters (Figure 4). This suggests there could be ten
- 472 distinct taxa yet to be identified in this assemblage. Of the ten archaeological
- 473 samples that were excluded prior to clustering, one was identified as
- 474 *Meleagris*, and nine were too poor to identify.

Figure 4. Schematic of hierarchical clustering results for archaeological samples.
Solid lines represent assigned clusters while dashed lines indicate where additional
groupings were observed within assigned clusters. Aquatic birds are shown in blue
and terrestrial birds in red. * denotes presence of unknown taxa, while + denotes
incorrect classification at order or family level. See detailed clustering diagram in
Figure S1.

483	This clustering achieved the highest accuracy when limiting variation
484	among spectra. Averaging replicates analyzed at multiple dilutions and
485	removing poor spectra prior to clustering greatly improves assignment of
486	samples to the correct taxonomic group. Moreover, both accuracy and
487	precision is improved by matching to carefully curated peak lists and
488	combining the presence of markers with deamidated peaks and varying
489	number of proline oxidations. Our clustering demonstrates the utility of this
490	workflow to rapidly assign a large number of archaeological samples, each
491	with multiple replicates, to broad taxonomic groups.
492	6.2. Identifications and collagen preservation at Tlajinga
493	Some differences were observed between the morphological and
494	collagen-based identifications (see Table S1). Thirty specimens were
495	identified as mammals and an additional nine had avian identifications that
496	differed from their morphological identification. Given the difficulties in

497	identifying small mammals and birds from fragmented specimens, these are
498	certainly errors in morphological analysis (Driver, 2011; Wolverton, 2013).
499	Nevertheless, the archaeological sample was not selected randomly, and the
500	high number of erroneous morphological identifications is partly due to
501	sampling bias towards less confidently identified fragments. Moreover, these
502	discrepancies highlight, as others have argued, the importance of checking
503	the quality of zooarchaeological identifications using molecular methods,
504	particularly for difficult to identify taxa (Driver, 2011; Horsburgh et al., 2016;
505	Speller et al., 2016).
506	Nine carbonized bone specimens produced low quality spectra, likely
507	because collagen begins to break down around 70°C. However, at least 24
508	other samples with evidence of burning or partial carbonization produced
509	identifiable spectra, suggesting that heat exposure does not completely rule
510	out ZooMS analysis because of differential temperatures reached at different
511	parts of the bone during burning. As ZooMS requires intact peptides, but less

512	overall collagen than isotopes or radiocarbon analyses (Harvey et al., 2016;
513	Wang et al., 2021), more research is needed to establish the level of heat
514	exposure tolerance. That all non-carbonized samples (n=262) produced
515	spectra suitable for taxonomic identification suggests that the collagen
516	preservation at Tlajinga is very good and that archaeological avian bones can
517	readily produce successful spectra using ZooMS.
518	6.3. The archaeology of birds at Tlajinga
519	ZooMS identifications of elements were incorporated into the existing
520	zooarchaeological data from Tlajinga to calculate site NISP and MNI for bird
521	taxa (Figure 5, see also Table S5). Overall, 18 avian taxa were identified in the
522	total number of identified bird elements at Tlaiinga increased from 280 to
523	384. While the MNI increased from 33 to 44, 10 of these additional birds
JZ4	304. While the why increased noin 33 to 44, 10 or these additional birds

525 represent the 10 unidentified taxonomic groups. Therefore, the MNI pre and

post ZooMS analysis changed very little, highlighting that the new MNI is 526 527 more representative of taxonomic diversity rather than taxonomic abundance. The integrated results from ZooMS and morphological identifications 528 (Figure 5) confirm that waterfowl are the most common type of bird identified 529 at Tlajinga and, together with other aquatic birds, make up almost 50% of the 530 assemblage by NISP and 36% by MNI. Overall, these results are consistent 531 with elsewhere at Teotihuacan, were aquatic birds make up roughly a third of 532 the avian assemblage by MNI (Sugiyama et al., 2017). Turkeys, however make 533 534 up a much smaller proportion of the avian assemblage at Tlajinga compared to the Teotihuacan average. Together, this suggests that aquatic taxa may 535 have been more important to urban subsistence at Tlajinga than other areas 536 537 of the city, which may have placed greater reliance on terrestrial resources like turkeys. 538

539

Figure 5. Relative abundance of all avian taxa identified at Tlajinga before and after
ZooMS analysis. Call out presents relative proportions of the six Anatidae
distinguished by ZooMS. * Includes taxa identified from shaft fragments, + includes
only bones identified to element.

- 546 6.3.1. Taxonomic diversity at Tlajinga: aquatic taxa
- 547 At Tlajinga, eleven aquatic bird taxa were identified by ZooMS and
- 548 morphological analyses, including six members of the Anatidae family, two
- 549 members of the Rallidae family, *Fulica americana* (American coot) and
- 550 *Gallinula galatea* (common gallinule), as well as examples of Laridae (gulls),

551	Scolopacidae (sandpipers), and Podicipedidae (grebes). Four Anatidae groups
552	are represented by multiple specimens (Figure 5). Anatidae 2, which includes
553	taxa in the Anas genus, is the most abundant of the ducks identified by
554	ZooMS at Tlajinga (56% of Anatidae by NISP), followed by Anatidae 3 (18%),
555	Anatidae 4, identified as <i>Oxyura jamaicensis</i> (13%), and Anatidae 1 (11%).
556	Anatidae 1 and 3 make up 11% and 18% respectively of the ducks identified
557	with ZooMS. Anatidae 5 and 6 are rare, each represented by a single
558	specimen.
559	As Anatidae are typically not identified beyond family level at
560	Teotihuacan (Sugiyama et al., 2017, Table ESM1), the identification of at
561	least six Anatidae taxa provides additional information into exploitation of
562	lake resources at the city. Understanding taxonomic diversity of aquatic birds
563	in urban and rural settlements provides an opportunity to examine changes in
564	specialization or diversification of the production and distribution of lake
565	resources throughout Central Mexico. Our results demonstrate that the

566	residents of Tlajinga were exploiting a wide range of aquatic birds, including
567	multiple types of ducks whose habitats and behaviors vary across species.
568	This suggests that the production and distribution systems that contributed
569	to the faunal assemblage at Tlajinga may have employed a diversified
570	strategy, exploiting a wide range of animals, rather than specializing in the
571	acquisition of particular taxa. This also supports the argument that other lake
572	resources, such as small fish and insects, may also have played an important
573	role in urban subsistence during the Classic period (e.g., Parsons, 2010;
574	Widmer and Storey, 2016).
575	Moreover, many aquatic birds are migratory, while others, including
576	Oxyura jamaicensis and Anas diazi, breed in Central Mexico year-round.
577	Careful examination of the relative abundance of Anatidae species via ZooMS
578	alongside other paleo-proteomic techniques such as peptide-based
579	identification of eggshells (Demarchi et al., 2020; Presslee et al., 2017;
580	Stewart et al., 2014), provides new opportunities to examine the seasonality

of lake exploitation and the implication of intensive lake exploitation on avian 581 582 populations in the past. 6.3.2. Taxonomic diversity at Tlajinga: terrestrial taxa 583 Seven types of non-aquatic birds were identified at Tlajinga from the 584 combined ZooMS and morphological analysis, including Columbidae (pigeons) 585 and doves), Odontophoridae (New World quails), Colinus virginianus, 586 Meleagris gallopavo, Corvus corax, Gallus gallus, and Accipiter cooperii 587 (Cooper's hawk). Compared to morphological identifications, ZooMS provided 588 additional discrimination potential for Phasianidae and Odontophoridae 589 590 families. In addition to *Meleagris gallopavo*, we identified specimens that closely match theoretical peaks for Gallus gallus. Domestic chickens were 591 introduced to Central Mexico after European arrival and these specimens 592 derive from an area of the site with early colonial features. The discovery of 593 this taxon in deposits below these features provides additional information to 594 assess the location and extent of colonial period deposits at Tlajinga. 595

596	ZooMS also provides the ability to discriminate between <i>Colinus</i>
597	virginianus and other quails of the Odontophoridae family. While this result
598	was unexpected and deserves further analysis, the ability to discriminate
599	between these taxa presents an opportunity to investigate the exploitation of
600	quails in Central Mexico. Some Central Mexican quails prefer more open
601	woodland or grassland environments (<i>Colinus</i> and <i>Cyrtonyx</i>), while others
602	prefer denser forested environments (<i>Dendrortyx</i>) (Howell and Webb, 1995,
603	pp. 226, 229, 231). Greater taxonomic precision through ZooMS could be
604	employed to understand environmental and agricultural shifts within the
605	valley, while integration with proteomic techniques for eggshell identification
606	would provide a means to examine the hypothesis that <i>Colinus virginianus</i>
607	were raised for urban consumption at Teotihuacan (Widmer and Storey,
608	2016).
609	Finally, the ten unidentified taxa highlight that rare avian taxa are

610 underrepresented in traditional zooarchaeological analysis. Rare taxa may not

have major implications for understanding urban subsistence but can provide

additional insight into birds acquired for other reasons, such as their colorful

plumage, bird song, or symbolic meanings especially when combined with

civic-ceremonial structures in Tlajinga (Carballo et al., 2021).

pictographic or historical references such as the murals recently excavated at

To address these new avenues for research, the integration of

611

612

613

614

615

	617	zooarchaeological and ZooMS data needs to be considered carefully in
	618	project planning. Initially, we did not expect to discriminate among Anatidae,
	619	and so specimens that were identified confidently to Anatidae were not
	620	selected for ZooMS analysis. Consequently, the relative abundances of
	621	Anatidae groups shown in Figure 5 are estimates of abundance, as
	622	morphological identifications in the non-ZooMS assemblage may be biased
	623	towards one taxon or another. For larger projects that require confident
	624	assessments of relative abundance, it may be productive to choose fewer
	625	skeletal elements (i.e., the most robust limb bones) and to analyze all
This pr	eprint re	search paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4139112

- 627 on reference materials, we expect that our ability to discriminate among birds
- 628 with peptide mass fingerprinting will increase and some of the less specific

629 identifications of taxa in this study may be refined.

630 7. Conclusion

- 631 With the confirmation of a 71-MALDI-marker panel across 12 peptides,
- 632 we have demonstrated that ZooMS is suitable for identification of avian taxa
- 633 from archaeological contexts to at least the level of family. The slower
- 634 mutation rate of avian collagen appears to be offset by high variability in
- 635 particular regions, meaning that ZooMS can also identify birds to sub-family
- 636 levels. While Buckley (2018) and Eda et al. (2020) previously noted
- 637 differences that discriminate among members of the Phasianidae family, we
- 638 demonstrate that sub-family differences are also possible among
- 639 Odontophoridae and Anatidae.

640	Using ZooMS we revealed higher avian taxonomic diversity from the
641	faunal assemblage at Tlajinga, Teotihuacan during the Classic period
642	including the exploitation of a range of aquatic birds. Combining ZooMS with
643	morphology allowed for an increased recovery of rare taxa which are often
644	underrepresented in reference collections and thus less frequently identified
645	compared to commonly exploited taxa. To fully take advantage of ZooMS, the
646	ability to integrate ZooMS into traditional zooarchaeological analyses such as
647	NSIP and MNI should be considered. Going forward, the enhanced ability to
648	identify avian remains to the family and subfamily level has great potential to
649	elucidate a wide range of societal topics, from urban provisioning systems,
650	seasonality of settlements or hunting activities, and past environmental
651	changes.

653 8. Data accessibility

- 654 MALDI raw data and MS2s for confirmed biomarker sequences is
- available through Zendo at https://doi.org/10.5281/zenodo.6363114. MS/MS
- data is available through ProtoemeXchange (PXD034547) through MassIVE
- 657 (MSV000089660) at DOI: <u>https://doi.org/10.25345/C5N29PB27</u>. R code for
- 658 MALDI analysis and clustering is available through Zenodo at
- 659 <u>https://doi.org/10.5281/zenodo.6366234</u>. All other data are included in the
- 660 manuscript and/or supplemental materials.

661 9. Acknowledgements

- 662 Material in this article was based on work supported by the U.S.
- 663 National Science Foundation (NSF) under Dissertation Improvement Grant
- 664 (BCS-1916358), NSF Grant (BCS-13212447), the Max Planck Group, and
- 665 Harvard University. Permission for destructive sampling of archaeological
- 666 material was provided by the Instituto Nacional de Antropología e Historia in
- 667 Mexico City. We thank Raúl Valadez Azúa, Verónica Ortega Cabrera, David

668	Carballo, Catherine West and the American Museum of Natural History for
669	access to modern and archaeological faunal material from Tlajinga and
670	Tlailotlacan, Sandra Hebestreit for lab support and running of the MALDI at
671	the Max Planck Institute for the Science of Human History; Scott Shaffer and
672	Khaja Muneeruddin at University of Massachusetts Medical School for
673	processing the MS/MS samples; Dusan Boric, Alana Masciana, and Kevin
674	Uno at Columbia University for providing US based lab space; Christina
675	Warinner, The Proteomics Core Facility, and FAS Research Computing at
676	Harvard University for supporting infrastructure for data analysis. Many
677	thanks to Catherine West and John M. Marston for their support in
678	conceptualization of this project and feedback on early drafts of the

679 manuscript.

680 Author contributions:

- 681 M.C.: Conceptualization, Writing Original Draft, Formal Analysis, Visualization,
- 682 Investigation, Funding Acquisition
- 683 K.D.: Writing, Writing Review & Editing, Funding Acquisition
- 684 K.R.: Conceptualization, Writing Original Draft, Writing Review & Editing,
- 685 Visualization, Investigation

686

- 687 Competing Interest Statement: The authors declare that they have no
- 688 competing interests.

689 10. Bibliography

690	Ayala-Pérez, V., Arce, N., Carmona, R., 2013. Distribución espacio-temporal de aves
691	acuáticas invernantes en la ciénega de Tláhuac, planicie lacustre de Chalco,
692	México. Revista Mexicana de Biodiversidad 84, 327–337.
693	https://doi.org/10.7550/rmb.28632
694	Bern, M., Kil, Y.J., Becker, C., 2012. Byonic: advanced peptide and protein identification
695	software. Curr Protoc Bioinformatics Chapter 13, Unit13.20.
696	https://doi.org/10.1002/0471250953.bi1320s40
697	Brown, S., Douka, K., Collins, M., Richter, K.K., 2020a. On the standardization of
698	ZooMS nomenclature. Journal of Proteomics 104041.
699	https://doi.org/10.1016/j.jprot.2020.104041
700	Brown, S., Hebestreit, S., Wang, N., Boivin, N., Douka, K., Richter, K.K., 2020b.
701	Zooarchaeology by Mass Spectrometry (ZooMS) for bone material - Acid
702	insoluble protocol. protocols.io.
703	https://doi.org/dx.doi.org/10.17504/protocols.io.bf43jqyn
704	Buckley, M., 2018. Zooarchaeology by Mass Spectrometry (ZooMS) Collagen
705	Fingerprinting for the Species Identification of Archaeological Bone Fragments,
706	in: Giovas, C.M., LeFebvre, M.J. (Eds.), Zooarchaeology in Practice. Springer
707	International Publishing, pp. 227–247. https://doi.org/10.1007/978-3-319-64763-
708	0_12
709	Buckley, M., Collins, M., Thomas-Oates, J., Wilson, J.C., 2009. Species Identification by
710	Analysis of Bone Collagen Using Matrix-Assisted Laser Desorption/Ionisation
711	Time-of-Flight Mass Spectrometry. Rapid Communications in Mass Spectrometry
712	23, 3843–3854. https://doi.org/10.1002/rcm.4316
713	Buckley, M., Fraser, S., Herman, J., Melton, N.D., Mulville, J., Pálsdóttir, A.H., 2014.
714	Species identi fi cation of archaeological marine mammals using collagen fi
715	ngerprinting 41. https://doi.org/10.1016/j.jas.2013.08.021
716	Buckley, M., Gu, M., Shameer, S., Patel, S., Chamberlain, A.T., 2016. High-throughput
717	collagen fingerprinting of intact microfaunal remains; A low-cost method for
718	distinguishing between murine rodent bones. Rapid Communications in Mass
719	Spectrometry 30, 805–812. https://doi.org/10.1002/rcm.7483
720	Buckley, M., Kansa, S.W., 2011. Collagen fingerprinting of archaeological bone and
721	teeth remains from Domuztepe, South Eastern Turkey. Archaeological and
722	Anthropological Sciences 3, 271–280. https://doi.org/10.1007/s12520-011-0066-z
723	Carballo, D.M., 2013. The Social Organization of Craft Production and Interregional
724	Exchange at Teotihuacan, in: Hirth, K.G., Pillsbury, J. (Eds.), Merchants, Trade,
725	and Exchange in the Pre-Columbian World. Dumbarton Oaks and Trustees for
726	Harvard University, Washington, D.C., pp. 113–140.
727	Carballo, D.M., Barba, L., Ortíz, A., Blancas, J., Sariñana, D.H., Codlin, M., Saucedo,
728	A., Rodríguez, G.D.T., 2021. Excavations at the Southern Neighborhood Center
729	of the Tlajinga District, Teotihuacan, Mexico. Latin American Antiquity 32, 557-
730	576.

731	Carballo, D.M., Hirth, K.G., Hernández Sariñana, D., Buckley, G.M., Mejía Ramón,
732	A.G., Kennett, D.J., 2019. New Research at Teotihuacan's Tlajinga District,
733	2012–2015. Ancient Mesoamerica 30, 95–113.
734	https://doi.org/10.1017/S0956536118000159
735	Codlin, M.C., in prep. Household Subsistence and Animal Acquisition at Tlajinga,
736	Teotihuacan, Mexico. To be submitted to Ancient Mesoamerica.
737	De Lucia, K., 2021. Household lake exploitation and aquatic lifeways in postclassic
738	Xaltocan, Mexico. Journal of Anthropological Archaeology 62, 101273.
739	https://doi.org/10.1016/j.jaa.2021.101273
740	de Sahagún, B., Anderson, A.J.O., Dibble, C.E., 1963. Book 11: Earthly Things,
741	Florentine Codex. School of American Research.
742	Demarchi, B., Presslee, S., Sakalauskaite, J., Fischer, R., Best, J., 2020. The role of birds
743	at Çatalhöyük revealed by the analysis of eggshell. Quaternary International 543,
744	50-60. https://doi.org/10.1016/j.quaint.2020.02.009
745	Driver, J.C., 2011. Identification, classification and zooarchaeology. Ethnobiology
746	Letters 2, 19–39. https://doi.org/10.14237/ebl.2.2011.19-39
747	Eda, M., Morimoto, M., Mizuta, T., Inou, T., 2020. ZooMS for birds: Discrimination of
748	Japanese archaeological chickens and indigenous pheasants using collagen
749	peptide fingerprinting. Journal of Archaeological Science : Reports 34, 102635.
750	https://doi.org/10.1016/j.jasrep.2020.102635
751	Feng, S., Stiller, J., Deng, Y., Armstrong, J., Fang, Q., Reeve, A.H., Xie, D., Chen, G.,
752	Guo, C., Faircloth, B.C., Petersen, B., Wang, Z., Zhou, Q., Diekhans, M., Chen,
753	W., Andreu-Sánchez, S., Margaryan, A., Howard, J.T., Parent, C., Pacheco, G.,
754	Sinding, MH.S., Puetz, L., Cavill, E., Ribeiro, Â.M., Eckhart, L., Fjeldså, J.,
755	Hosner, P.A., Brumfield, R.T., Christidis, L., Bertelsen, M.F., Sicheritz-Ponten,
756	T., Tietze, D.T., Robertson, B.C., Song, G., Borgia, G., Claramunt, S., Lovette,
757	I.J., Cowen, S.J., Njoroge, P., Dumbacher, J.P., Ryder, O.A., Fuchs, J., Bunce,
758	M., Burt, D.W., Cracraft, J., Meng, G., Hackett, S.J., Ryan, P.G., Jønsson, K.A.,
759	Jamieson, I.G., da Fonseca, R.R., Braun, E.L., Houde, P., Mirarab, S., Suh, A.,
760	Hansson, B., Ponnikas, S., Sigeman, H., Stervander, M., Frandsen, P.B., van der
761	Zwan, H., van der Sluis, R., Visser, C., Balakrishnan, C.N., Clark, A.G.,
762	Fitzpatrick, J.W., Bowman, R., Chen, N., Cloutier, A., Sackton, T.B., Edwards,
763	S.V., Foote, D.J., Shakya, S.B., Sheldon, F.H., Vignal, A., Soares, A.E.R.,
764	Shapiro, B., González-Solís, J., Ferrer-Obiol, J., Rozas, J., Riutort, M., Tigano,
765	A., Friesen, V., Dalén, L., Urrutia, A.O., Székely, T., Liu, Y., Campana, M.G.,
766	Corvelo, A., Fleischer, R.C., Rutherford, K.M., Gemmell, N.J., Dussex, N.,
767	Mouritsen, H., Thiele, N., Delmore, K., Liedvogel, M., Franke, A., Hoeppner,
768	M.P., Krone, O., Fudickar, A.M., Milá, B., Ketterson, E.D., Fidler, A.E., Friis, G.,
769	Parody-Merino, A.M., Battley, P.F., Cox, M.P., Lima, N.C.B., Prosdocimi, F.,
770	Parchman, T.L., Schlinger, B.A., Loiselle, B.A., Blake, J.G., Lim, H.C., Day,
771	L.B., Fuxjager, M.J., Baldwin, M.W., Braun, M.J., Wirthlin, M., Dikow, R.B.,
772	Ryder, T.B., Camenisch, G., Keller, L.F., DaCosta, J.M., Hauber, M.E., Louder,
773	M.I.M., Witt, C.C., McGuire, J.A., Mudge, J., Megna, L.C., Carling, M.D., Wang,
774	B., Taylor, S.A., Del-Rio, G., Aleixo, A., Vasconcelos, A.T.R., Mello, C.V.,

775	Weir, J.T., Haussler, D., Li, Q., Yang, H., Wang, J., Lei, F., Rahbek, C., Gilbert,
776	M.T.P., Graves, G.R., Jarvis, E.D., Paten, B., Zhang, G., 2020. Dense sampling of
///	bird diversity increases power of comparative genomics. Nature 587, 252–257.
//8	https://doi.org/10.1038/s41586-020-2873-9
//9	Gamboa, A.G.M., Dreja, E.A.S., Armillas, M.O.F., Piña, I.A.P., Herrada, A.M., 2017.
/80	Lista de aves en el humedal de Tlahuac.
/81	https://doi.org/10.13140/RG.2.2.30915.50724
/82	Gibb, S., Strimmer, K., 2012. MALDIquant: a versatile R package for the analysis of
/83	mass spectrometry data. Bioinformatics 28 , $22/0-22/1$.
784	https://doi.org/10.1093/bioinformatics/bts44/
785	Harvey, V.L., Daugnora, L., Buckley, M., 2018. Species identification of ancient
/80 707	Lithuanian fish remains using collagen fingerprinting. Journal of Archaeological
/8/	University VI Example VM Chambarlain A T Manning DI Dualday M 2016
788	Collegen Fingermrinting: A new geneening technique for rediceerbon deting
769	conagen Fingerprinting. A new screening technique for radiocarbon dating
790	https://doi.org/10.1271/journal.none.0150650
791	Harvey VI Egerton VM Chamberlain AT Manning PI Sellers WI Buckley
792	M 2019a Interpreting the historical terrestrial vertebrate biodiversity of Cavman
793	Brac (Greater Antilles, Caribbean) through collagen fingerprinting. Holocene 29
795	531-542 https://doi.org/10.1177/0959683618824793
796	Harvey VI LeFebyre MI DeFrance SD Toftgaard C Droson K Kitchener
797	A C Buckley M 2019b Preserved collagen reveals species identity in
798	archaeological marine turtle bones from Caribbean and Florida sites Royal
799	Society Open Science 6, 191137, https://doi.org/10.1098/rsos.191137
800	Hickinbotham, S., Fiddyment, S., Stinson, T.L., Collins, M.J., 2020, How to get your
801	goat: automated identification of species from MALDI-ToF spectra.
802	Bioinformatics 36, 3719–3725. https://doi.org/10.1093/bioinformatics/btaa181
803	Hirth, Kenneth.G., 2020. Teotihuacan Economy from the Inside Out, in: Hirth, K., G.,
804	Carballo, D., M., Arroyo, B. (Eds.), Teotihuacan: The World beyond the City.
805	Dumbarton Oaks, Washingtn D.C., pp. 97–138.
806	Hirth, K.G., 2016. The Aztec Economic World. Cambridge University Press, Cambridge.
807	Horn, I.R., Kenens, Y., Palmblad, N.M., Van Der Plas-Duivesteijn, S.J., Langeveld,
808	B.W., Meijer, H.J.M., Dalebout, H., Marissen, R.J., Fischer, A., Florens, F.B.V.,
809	Niemann, J., Rijsdijk, K.F., Schulp, A.S., Laros, J.F.J., Gravendeel, B., 2019.
810	Palaeoproteomics of bird bones for taxonomic classification. © Zoological
811	Journal of the Linnean Society XX, 1–16.
812	https://doi.org/10.1093/zoolinnean/zlz012/5470657
813	Horsburgh, K Ann, Orton, Jayson, Klein, Richard G, Horsburgh, K A, Orton, J, Klein, R
814	G, 2016. Beware the Springbok in Sheep's Clothing: How Secure Are the Faunal
815	Identifications upon Which We Build Our Models? African Archaeological
816	Review 33, 353–361. https://doi.org/10.1007/s10437-016-9231-1
817	Howell, S.N.G., Webb, S., 1995. A guide to the birds of Mexico and northern Central
818	America. Oxford University Press, Oxford.

819	Janzen, A., Richter, K.K., Mwebi, O., Id, S.B., Onduso, V., Gatwiri, F., Ndiema, E.,
820	Katongo, M., Goldstein, T., Douka, K., Boivin, N., 2021. Distinguishing African
821	bovids using Zooarchaeology by Mass Spectrometry (ZooMS): New peptide
822	markers and insights into Iron Age economies in Zambia. Plos One 16, e0251061.
823	https://doi.org/10.1371/journal.pone.0251061
824	Jarvis, E.D., Mirarab, S., Aberer, A.J., Li, B., Houde, P., Li, C., Ho, S.Y.W., Faircloth,
825	B.C., Nabholz, B., Howard, J.T., Suh, A., Weber, C.C., Fonseca, R.R. da, Li, J.,
826	Zhang, F., Li, H., Zhou, L., Narula, N., Liu, L., Ganapathy, G., Boussau, B.,
827	Bayzid, Md.S., Zavidovych, V., Subramanian, S., Gabaldón, T., Capella-
828	Gutiérrez, S., Huerta-Cepas, J., Rekepalli, B., Munch, K., Schierup, M., Lindow,
829	B., Warren, W.C., Ray, D., Green, R.E., Bruford, M.W., Zhan, X., Dixon, A., Li,
830	S., Li, N., Huang, Y., Derryberry, E.P., Bertelsen, M.F., Sheldon, F.H.,
831	Brumfield, R.T., Mello, C.V., Lovell, P.V., Wirthlin, M., Schneider, M.P.C.,
832	Prosdocimi, F., Samaniego, J.A., Velazquez, A.M.V., Alfaro-Núñez, A., Campos,
833	P.F., Petersen, B., Sicheritz-Ponten, T., Pas, A., Bailey, T., Scofield, P., Bunce,
834	M., Lambert, D.M., Zhou, Q., Perelman, P., Driskell, A.C., Shapiro, B., Xiong,
835	Z., Zeng, Y., Liu, S., Li, Z., Liu, B., Wu, K., Xiao, J., Yinqi, X., Zheng, Q.,
836	Zhang, Y., Yang, H., Wang, J., Smeds, L., Rheindt, F.E., Braun, M., Fjeldsa, J.,
837	Orlando, L., Barker, F.K., Jønsson, K.A., Johnson, W., Koepfli, KP., O'Brien,
838	S., Haussler, D., Ryder, O.A., Rahbek, C., Willerslev, E., Graves, G.R., Glenn,
839	T.C., McCormack, J., Burt, D., Ellegren, H., Alström, P., Edwards, S.V.,
840	Stamatakis, A., Mindell, D.P., Cracraft, J., Braun, E.L., Warnow, T., Jun, W.,
841	Gilbert, M.T.P., Zhang, G., 2014. Whole-genome analyses resolve early branches
842	in the tree of life of modern birds. Science 346, 1320–1331.
843	https://doi.org/10.1126/SCIENCE.1253451
844	Letunic, I., Bork, P., 2021. Interactive Tree Of Life (iTOL) v5: an online tool for
845	phylogenetic tree display and annotation. Nucleic Acids Research 49, W293-
846	W296. https://doi.org/10.1093/nar/gkab301
847	Lyman, R.L., 2008. Quantitative Paleozoology. Cambridge University Press, Cambridge.
848	Ortega Cabrera, V., 2012. Proyecto de Investigación Arqueológica Barrio Oaxaqueño,
849	Tlailotlacan, Teotihuacán: Informe Técnico Temporada 2012. Instituto Nacional
850	de Anthropología e Historia.
851	Ortega Cabrera, V., 2010. Proyecto de Investigación Arqueológica Barrio Oaxaqueño,
852	Tlailotlacan, Teotihuacan, Temporada 2010: Informe Técnico de Excavacion y
853	Análisis de Materiales Arqueológicos. Instituto Nacional de Anthropología e
854	Historia.
855	Ortega Cabrera, V., 2009. Proyecto de Investigación Arqueológica Barrio Oaxaqueño,
856	Tlailotlacan, Teotihuacan, Temporada 2009: Informe Técnico de Excavaciones
857	Arqueológicas y Análisis de Materiales. Instituto Nacional de Anthropología e
858	Historia.
859	Parsons, J.R., 2010. The Pastoral Niche in Pre-Hispanic Mesoamerica, in: Pre-Columbian
860	Foodways: Interdisciplinary Approaches to Food, Culture, and Markets in
861	Ancient Mesoamerica. Springer, New York, pp. 109–136.
862	https://doi.org/10.1007/978-1-4419-0471-3_4

 the Prehispanic Economy of the Basin of Mexico. Journal of Anthropological Research 64, 351–366. Peters, C., Richter, K.K., Manne, T., Dortch, J., Paterson, A., Travouillon, K., Louys, J. Price, G.J., Petraglia, M., Crowther, A., Boivin, N., 2021. Species identification of Australian marsupials using collagen fingerprinting. Royal Society Open Science 8, 211229. https://doi.org/10.1098/rsos.211229 Peterson, A.T., Navarro Sigüenza, A.G., 2006. Hundred-year changes in the avifauna of the Valley of Mexico, Distrito Federal, Mexico. Huitzil 7, 4-14. Presslee, S., Wilson, J., Woolley, J., Best, J., Russell, D., Radini, A., Fischer, R., Kessle B., Boano, R., Collins, M., Demarchi, B., 2017. The identification of archaeological eggshell using peptide markers. Science and Technology of Archaeological Research 1424300. https://doi.org/10.1080/20548923.2018.1424300 R Core Team, 2021. R: A Language and Environment for Statistical Computing. Vienna Austria. URL https://www.R-project.org/. Richter, K., K., McGrath, K., Masson-MacLean, E., Hickinbotham, S., Tedder, A., Britton, K., Bottomley, Z., Dobney, K., Hulme-Beaman, A., Zona, M., Fischer, R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeological Science 116, 105116. https://doi.org/10.1016/j.jas.2020.105116 Richter, K.K., Codlin, M.C., Seabrook, M., Warinner, C., 2022. A primer for ZooMS applications in archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1073/pnas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Pars	863	Parsons, J.R., 2008. Beyond Santley and Rose (1979): The Role of Aquatic Resources in
 Research 64, 351–366. Peters, C., Richter, K.K., Manne, T., Dortch, J., Paterson, A., Travouillon, K., Louys, J. Price, G.J., Petraglia, M., Crowther, A., Boivin, N., 2021. Species identification of Australian marsupials using collagen fingerprinting. Royal Society Open Science 8, 211229. https://doi.org/10.1098/rsos.211229 Peterson, A.T., Navarro Sigdenza, A.G., 2006. Hundred-year changes in the avifauna of the Valley of Mexico, Distrito Federal, Mexico, Huitzil 7, 4–14. Presslee, S., Wilson, J., Woolley, J., Best, J., Russell, D., Radini, A., Fischer, R., Kessle B., Boano, R., Collins, M., Demarchi, B., 2017. The identification of archaeological eggshell using peptide markers. Science and Technology of Archaeological Research 1424300. https://doi.org/10.1080/20548923.2018.1424300 R Core Team, 2021. R: A Language and Environment for Statistical Computing. Vienna Austria. URL https://www.R-project.org/. Richter, K., K., McGrath, K., Masson-MacLean, E., Hickinbotham, S., Tedder, A., Britton, K., Bottomley, Z., Dobney, K., Hulme-Beaman, A., Zona, M., Fischer, R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1073/pnas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F. McGrath, K., Rowsell, K., Spindler, L.	864	the Prehispanic Economy of the Basin of Mexico. Journal of Anthropological
 Peters, C., Richter, K.K., Manne, T., Dortch, J., Paterson, A., Travouillon, K., Louys, J. Price, G.J., Petraglia, M., Crowther, A., Boivin, N., 2021. Species identification of Australiam marsupials using collagen fingerprinting. Royal Society Open Science 8, 211229. https://doi.org/10.1098/rsos.211229 Peterson, A.T., Navarro Sigtienza, A.G., 2006. Hundred-year changes in the avifauna of the Valley of Mexico, Distrito Federal , Mexico. Huitzil 7, 4–14. Presslee, S., Wilson, J., Woolley, J., Best, J., Russell, D., Radini, A., Fischer, R., Kessle B., Boano, R., Collins, M., Demarchi, B., 2017. The identification of archaeological Research 1424300. https://doi.org/10.1080/20548923.2018.1424300 R Core Team, 2021. R: A Language and Environment for Statistical Computing. Vienna Austria. URL https://www.R-project.org/. Richter, K., M., McGrath, K., Masson-MacLean, E., Hickinbotham, S., Tedder, A., Britton, K., Bottomley, Z., Dobney, K., Hulm-Beaman, A., Zona, M., Fischer, R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1073/pnas.2109323119 Richter, K.K., Wiolon, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2010.2014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F. McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing	865	Research 64, 351–366.
 Price, G.J., Petraglia, M., Crowther, A., Boivin, N., 2021. Species identification of Australian marsupials using collagen fingerprinting. Royal Society Open Science 8, 211229. https://doi.org/10.1098/rsos.211229 Peterson, A.T., Navarro Sigüenza, A.G., 2006. Hundred-year changes in the avifauna of the Valley of Mexico, Distrito Federal, Mexico. Huitzil 7, 4-14. Presslee, S., Wilson, J., Woolley, J., Best, J., Russell, D., Radini, A., Fischer, R., Kessle B., Boano, R., Collins, M., Demarchi, B., 2017. The identification of archaeological eggshell using peptide markers. Science and Technology of Archaeological Research 1424300. R Core Team, 2021. R: A Language and Environment for Statistical Computing. Vienna Austria. URL https://www.R-project.org/. Richter, K., M., Grath, K., Masson-MacLean, E., Hickinbotham, S., Tedder, A., Britton, K., Bottomley, Z., Dobney, K., Hulme-Beaman, A., Zona, M., Fischer, R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeological Science 116, 105116. https://doi.org/10.1016/j.jas.2020.105116 Richter, K.K., Codlin, M.C., Seabrook, M., Warinner, C., 2022. A primer for ZooMS applications in archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1073/pnas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K.	866	Peters, C., Richter, K.K., Manne, T., Dortch, J., Paterson, A., Travouillon, K., Louys, J.,
 of Australian marsupials using collagen fingerprinting. Royal Society Open Science 8, 211229. https://doi.org/10.1098/rsos.211229 Peterson, A.T., Navarro Sigüenza, A.G., 2006. Hundred-year changes in the avifauna of the Valley of Mexico, Distrito Federal , Mexico. Huitzil 7, 4-14. Presslee, S., Wilson, J., Woolley, J., Best, J., Russell, D., Radini, A., Fischer, R., Kessle B., Boano, R., Collins, M., Demarchi, B., 2017. The identification of archaeological eggshell using peptide markers. Science and Technology of Archaeological Research 1424300. https://doi.org/10.1080/20548923.2018.1424300 R Core Team, 2021. R: A Language and Environment for Statistical Computing. Vienna Austria. URL https://www.R-project.org/. Richter, K., K., McGrath, K., Masson-MacLean, E., Hickinbotham, S., Tedder, A., Britton, K., Bottomley, Z., Dobney, K., Hulme-Beaman, A., Zona, M., Fischer, R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeological Science 116, 105116. https://doi.org/10.1016/j.jas.2020.105116 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. h	867	Price, G.J., Petraglia, M., Crowther, A., Boivin, N., 2021. Species identification
 Science 8, 211229. https://doi.org/10.1098/rsos.211229 Peterson, A.T., Navarro Siguenza, A.G., 2006. Hundred-year changes in the avifauna of the Valley of Mexico, Distrito Federal, Mexico. Huitzil 7, 4-14. Presslee, S., Wilson, J., Woolley, J., Best, J., Russell, D., Radini, A., Fischer, R., Kessle B., Boano, R., Collins, M., Demarchi, B., 2017. The identification of archaeological gegshell using peptide markers. Science and Technology of Archaeological Research 1424300. R Core Team, 2021. R: A Language and Environment for Statistical Computing. Vienna Austria. URL https://www.R-project.org/. Richter, K. K., McGrath, K., Masson-MacLean, E., Hickinbotham, S., Tedder, A., Britton, K., Bottomley, Z., Dobney, K., Hulme-Beaman, A., Zona, M., Fischer, R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeology: Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1016/j.jas.2020.105116 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W. T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.	868	of Australian marsupials using collagen fingerprinting. Royal Society Open
 Peterson, A.T., Navarro Sigüenza, A.G., 2006. Hundred-year changes in the avifauna of the Valley of Mexico, Distrito Federal, Mexico. Huitzil 7, 4–14. Presslee, S., Wilson, J., Woolley, J., Best, J., Russell, D., Radini, A., Fischer, R., Kessle B., Boano, R., Collins, M., Demarchi, B., 2017. The identification of archaeological eggshell using peptide markers. Science and Technology of Archaeological Research 1424300. R Core Team, 2021. R: A Language and Environment for Statistical Computing. Vienna Austria. URL https://www.R-project.org/. Richter, K., K., McGrath, K., Masson-MacLean, E., Hickinbotham, S., Tedder, A., Britton, K., Bottomley, Z., Dobney, K., Hulme-Beaman, A., Zona, M., Fischer, R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeological Science 116, 105116. https://doi.org/10.1016/j.jas.2020.105116 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Mofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.109/srsb.2015.0332 https://doi.org/10.109/srsb.2015.0332 https://doi.org/10.109/srsb.2015.0332 https://doi.org/10.109/srsb.2015.0332 https://doi.org/10.109/srsb.2015.0332 https://doi.org/10.109/srsb.2015.0332 https://doi.org/10.10	869	Science 8, 211229. https://doi.org/10.1098/rsos.211229
 the Valley of Mexico, Distrito Federal, Mexico. Huitzil 7, 4–14. Presslee, S., Wilson, J., Woolley, J., Best, J., Russell, D., Radini, A., Fischer, R., Kessle B., Boano, R., Collins, M., Demarchi, B., 2017. The identification of archaeological eggshell using peptide markers. Science and Technology of Archaeological eggshell using peptide markers. Science and Technology of Archaeological gegshell using peptide markers. Science and Technology of Archaeological Research 1424300. R Core Team, 2021. R: A Language and Environment for Statistical Computing. Vienna Austria. URL https://www.R-project.org/. Richter, K., K., McGrath, K., Masson-MacLean, E., Hickinbotham, S., Tedder, A., Britton, K., Bottomley, Z., Dobney, K., Hulme-Beaman, A., Zona, M., Fischer, R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeological Science 116, 105116. Richter, K.K., Codlin, M.C., Seabrook, M., Warinner, C., 2022. A primer for ZooMS applications in archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1016/j.jas.2011.0211.023119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502–1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Socie	870	Peterson, A.T., Navarro Sigüenza, A.G., 2006. Hundred-year changes in the avifauna of
 Presslee, S., Wilson, J., Woolley, J., Best, J., Russell, D., Radini, A., Fischer, R., Kessle B., Boano, R., Collins, M., Demarchi, B., 2017. The identification of archaeological gegshell using peptide markers. Science and Technology of Archaeological Research 1424300. R Core Team, 2021. R: A Language and Environment for Statistical Computing. Vienna Austria. URL https://www.R-project.org/. Richter, K., K., McGrath, K., Masson-MacLean, E., Hickinbotham, S., Tedder, A., Britton, K., Bottomley, Z., Dobney, K., Hulme-Beaman, A., Zona, M., Fischer, R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeological Science 116, 105116. Richter, K.K., Codlin, M.C., Seabrook, M., Warinner, C., 2022. A primer for ZooMS applications in archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1017/jpas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofriter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 2015032. https://doi.org/10.1098/rstb.2015.0332 https://doi.org/10.1098/rsb.2015.0332 https://doi.org/10.1092/os 2362 	871	the Valley of Mexico, Distrito Federal, Mexico. Huitzil 7, 4–14.
 B., Boano, R., Collins, M., Demarchi, B., 2017. The identification of archaeological eggshell using peptide markers. Science and Technology of Archaeological Research 1424300. https://doi.org/10.1080/20548923.2018.1424300 R Core Team, 2021. R: A Language and Environment for Statistical Computing. Vienna Austria. URL https://www.R-project.org/. Richter, K., K., McGrath, K., Masson-MacLean, E., Hickinbotham, S., Tedder, A., Britton, K., Bottomley, Z., Dobney, K., Hulme-Beaman, A., Zona, M., Fischer, R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeological Science 116, 105116. https://doi.org/10.1016/j.jas.2020.105116 Richter, K.K., Codlin, M.C., Scabrook, M., Warinner, C., 2022. A primer for ZooMS applications in archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1073/pnas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, I McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian Yo	872	Presslee, S., Wilson, J., Woolley, J., Best, J., Russell, D., Radini, A., Fischer, R., Kessler,
 archaeological eggshell using peptide markers. Science and Technology of Archaeological Research 1424300. https://doi.org/10.1080/20548923.2018.1424300 R Core Team, 2021. R: A Language and Environment for Statistical Computing. Vienna Austria. URL https://www.R-project.org/. Richter, K., K., McGrath, K., Masson-MacLean, E., Hickinbotham, S., Tedder, A., Britton, K., Bottomley, Z., Dobney, K., Hulme-Beaman, A., Zona, M., Fischer, R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeological Science 116, 105116. https://doi.org/10.1016/j.jas.2020.105116 Richter, K.K., Codlin, M.C., Seabrook, M., Warinner, C., 2022. A primer for ZooMS applications in archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1073/pnas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.109/srbb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Id	873	B., Boano, R., Collins, M., Demarchi, B., 2017. The identification of
 Archaeological Research 1424300. https://doi.org/10.1080/20548923.2018.1424300 R Core Team, 2021. R: A Language and Environment for Statistical Computing. Vienna Austria. URL https://www.R-project.org/. Richter, K., K., McGrath, K., Masson-MacLean, E., Hickinbotham, S., Tedder, A., Britton, K., Bottomley, Z., Dobney, K., Hulme-Beaman, A., Zona, M., Fischer, R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeological Science 116, 105116. https://doi.org/10.1016/j.jas.2020.105116 Richter, K.K., Codlin, M.C., Seabrook, M., Warinner, C., 2022. A primer for ZooMS applications in archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.10173/pnas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502–1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions of the Royal Society 371, 20150332. Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. 	874	archaeological eggshell using peptide markers. Science and Technology of
 https://doi.org/10.1080/20548923.2018.1424300 R Core Team, 2021. R: A Language and Environment for Statistical Computing. Vienna Austria. URL https://www.R-project.org/. Richter, K., K., McGrath, K., Masson-MacLean, E., Hickinbotham, S., Tedder, A., Britton, K., Bottomley, Z., Dobney, K., Hulme-Beaman, A., Zona, M., Fischer, R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeological Science 116, 105116. https://doi.org/10.1016/j.jas.2020.105116 Richter, K.K., Codlin, M.C., Seabrook, M., Warinner, C., 2022. A primer for ZooMS applications in archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1073/pnas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. 	875	Archaeological Research 1424300.
 R Core Team, 2021. R: A Language and Environment for Statistical Computing. Vienna Austria. URL https://www.R-project.org/. Richter, K., K., McGrath, K., Masson-MacLean, E., Hickinbotham, S., Tedder, A., Britton, K., Bottomley, Z., Dobney, K., Hulme-Beaman, A., Zona, M., Fischer, R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeological Science 116, 105116. Richter, K.K., Codlin, M.C., Seabrook, M., Warinner, C., 2022. A primer for ZooMS applications in archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.10173/pnas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502–1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F. McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. 	876	https://doi.org/10.1080/20548923.2018.1424300
 Austria. URL https://www.R-project.org/. Richter, K., K., McGrath, K., Masson-MacLean, E., Hickinbotham, S., Tedder, A., Britton, K., Bottomley, Z., Dobney, K., Hulme-Beaman, A., Zona, M., Fischer, R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeological Science 116, 105116. https://doi.org/10.1016/j.jas.2020.105116 Richter, K.K., Codlin, M.C., Seabrook, M., Warinner, C., 2022. A primer for ZooMS applications in archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1073/pnas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate formato identify fish bone fragments. Journal of Archaeological Science 38, 1502–1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. 	877	R Core Team, 2021. R: A Language and Environment for Statistical Computing. Vienna,
 Richter, K., K., McGrath, K., Masson-MacLean, E., Hickinbotham, S., Tedder, A., Britton, K., Bottomley, Z., Dobney, K., Hulme-Beaman, A., Zona, M., Fischer, R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeological Science 116, 105116. Richter, K.K., Codlin, M.C., Seabrook, M., Warinner, C., 2022. A primer for ZooMS applications in archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1073/pnas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. 	878	Austria. URL https://www.R-project.org/.
 Britton, K., Bottomley, Z., Dobney, K., Hulme-Beaman, A., Zona, M., Fischer, R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeological Science 116, 105116. https://doi.org/10.1016/j.jas.2020.105116 Richter, K.K., Codlin, M.C., Seabrook, M., Warinner, C., 2022. A primer for ZooMS applications in archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1073/pnas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. https://doi.org/10.1002/aa 2362 	879	Richter, K., K., McGrath, K., Masson-MacLean, E., Hickinbotham, S., Tedder, A.,
 R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeological Science 116, 105116. https://doi.org/10.1016/j.jas.2020.105116 Richter, K.K., Codlin, M.C., Seabrook, M., Warinner, C., 2022. A primer for ZooMS applications in archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1073/pnas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. https://doi.org/10.1002/aa 2362 	880	Britton, K., Bottomley, Z., Dobney, K., Hulme-Beaman, A., Zona, M., Fischer,
 application of rapid collagen-based species identification for Pacific Salmon. Journal of Archaeological Science 116, 105116. https://doi.org/10.1016/j.jas.2020.105116 Richter, K.K., Codlin, M.C., Seabrook, M., Warinner, C., 2022. A primer for ZooMS applications in archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1073/pnas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate formation identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. https://doi.org/10.1002/oa.2362 	881	R., Collins, M.J., Speller, C.F., 2020. What's the catch? Archaeological
 Journal of Archaeological Science 116, 105116. https://doi.org/10.1016/j.jas.2020.105116 Richter, K.K., Codlin, M.C., Seabrook, M., Warinner, C., 2022. A primer for ZooMS applications in archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1073/pnas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. https://doi.org/10.102/oa 2362 	882	application of rapid collagen-based species identification for Pacific Salmon.
 https://doi.org/10.1016/j.jas.2020.105116 Richter, K.K., Codlin, M.C., Seabrook, M., Warinner, C., 2022. A primer for ZooMS applications in archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1073/pnas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502–1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. 	883	Journal of Archaeological Science 116, 105116.
 Richter, K.K., Codlin, M.C., Seabrook, M., Warinner, C., 2022. A primer for ZooMS applications in archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1073/pnas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. https://doi.org/10.1092/oa 2362 	884	https://doi.org/10.1016/j.jas.2020.105116
 applications in archaeology. Proceedings of the National Academy of Sciences 119, e2109323119. https://doi.org/10.1073/pnas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate formato identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. https://doi.org/10.1002/oa.2362 	885	Richter, K.K., Codlin, M.C., Seabrook, M., Warinner, C., 2022. A primer for ZooMS
 119, e2109323119. https://doi.org/10.1073/pnas.2109323119 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502–1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. 	886	applications in archaeology. Proceedings of the National Academy of Sciences
 Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J., 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate formatorial to identify fish bone fragments. Journal of Archaeological Science 38, 1502–1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. 	887	119, e2109323119. https://doi.org/10.1073/pnas.2109323119
 2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate forma to identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. 	888	Richter, K.K., Wilson, J., Jones, A.K.G., Buckley, M., van Doorn, N., Collins, M.J.,
 to identify fish bone fragments. Journal of Archaeological Science 38, 1502– 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. 	889	2011. Fish 'n chips: ZooMS peptide mass fingerprinting in a 96 well plate format
 1510. https://doi.org/10.1016/j.jas.2011.02.014 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. 	890	to identify fish bone fragments. Journal of Archaeological Science 38, 1502-
 Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. 	891	1510. https://doi.org/10.1016/j.jas.2011.02.014
 Processes in the Evolution of a Civilization. Academic Press, New York. Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, H McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. 	892	Sanders, W.T., Parsons, J.R., Santley, R.S., 1979. The Basin of Mexico: Ecological
 Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, F McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. https://doi.org/10.1002/oa.2362 	893	Processes in the Evolution of a Civilization. Academic Press, New York.
 McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016. Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. https://doi.org/10.1002/oa.2362 	894	Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, B.,
 Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. https://doi.org/10.1002/oa.2362 	895	McGrath, K., Rowsell, K., Spindler, L., Collins, M., Hofreiter, M., 2016.
 Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical Transactions of the Royal Society 371, 20150332. https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. https://doi.org/10.1002/oa.2362 	896	Barcoding the Largest Animals on Earth: Ongoing Challenges and Molecular
 898 Transactions of the Royal Society 371, 20150332. 899 https://doi.org/10.1098/rstb.2015.0332 900 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, 901 B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U 902 in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. 903 International Journal of Osteoarchaeology 24, 247–255. 904 https://doi.org/10.1002/oa.2362 	897	Solutions in the Taxonomic Identification of Ancient Cetaceans. Philosophical
 https://doi.org/10.1098/rstb.2015.0332 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. International Journal of Osteoarchaeology 24, 247–255. https://doi.org/10.1002/oa.2362 	898	Transactions of the Royal Society 371, 20150332.
 900 Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi, 901 B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg U 902 in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. 903 International Journal of Osteoarchaeology 24, 247–255. 904 https://doi.org/10.1002/oa.2362 	899	https://doi.org/10.1098/rstb.2015.0332
 901 902 902 903 903 904 904 905 904 905 906 907 908 909 909	900	Stewart, J.R.M., Allen, R.B., Jones, A.K.G., Kendall, T., Penkman, K.E.H., Demarchi,
 902 in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS. 903 International Journal of Osteoarchaeology 24, 247–255. 904 https://doi.org/10.1002/oa.2362 	901	B., O'Connor, T., Collins, M.J., 2014. Walking on Eggshells: A Study of Egg Use
903 International Journal of Osteoarchaeology 24, 247–255. 904 https://doi.org/10.1002/0a.2362	902	in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS.
904 https://doi.org/10.1002/02.2362	903	International Journal of Osteoarchaeology 24, 247–255.
nups///doi/ofg/10.1002/04.2502	904	https://doi.org/10.1002/oa.2362

905	Strohalm, M., Kavan, D., Novák, P., Volný, M., Havlíček, V., 2010. mMass 3: A Cross-
906	Platform Software Environment for Precise Analysis of Mass Spectrometric Data.
907	Anal. Chem. 82, 4648–4651. https://doi.org/10.1021/ac100818g
908	Sugiyama, N., Valadez Azúa, R., Rodríguez Galicia, B., 2017. Faunal Acquisition,
909	Maintenance, and Consumption: How the Teotihuacanos Got Their Meat.
910	Archaeological and Anthropological Sciences 9, 61–81.
911	https://doi.org/10.1007/s12520-016-0387-z
912	Tellkamp, M.P., 2019. A story told from a small-mesh screen: the importance of
913	songbirds and ground doves to the Guangala people at the El Azúcar
914	archeological site in coastal Ecuador. Archaeological and Anthropological
915	Sciences 11, 6411–6421. https://doi.org/10.1007/s12520-018-00772-6
916	Valadez Azúa, R., 2013. Una Ciudad Prehispánica Vista a través de la Fauna, in: Götz,
917	C.M., Rivas, J., Cárdenas, J., Hernández, H., Zimermann, M., Ramos, C. (Eds.),
918	Culturas Americanas y Su Ambiente: Perspectivas Desde La Zooarqueología,
919	Paleoetnobotánica y Etnobiología. Götz C, Rivas J, Cárdenas J, Hernández H,
920	Zimermann y M, Ramos C., pp. 219–237.
921	van der Sluis, L.G., Hollund, H.I., Buckley, M., De Louw, P.G.B., Rijsdijk, K.F., Kars,
922	H., 2014. Combining histology, stable isotope analysis and ZooMS collagen
923	fingerprinting to investigate the taphonomic history and dietary behaviour of
924	extinct giant tortoises from the Mare aux Songes deposit on Mauritius.
925	Palaeogeography, Palaeoclimatology, Palaeoecology 416, 80-91.
926	https://doi.org/10.1016/j.palaeo.2014.06.003
927	Wang, N., Samantha, B., Peter, D., Sandra, H., Maxim, K., Sindy, L., Oshan, W.,
928	Stefano, G., Michael, C., Kolska, H., Matthew, S., Glenn, S., Michael, S.,
929	Korzow, R., Katerina, D., 2021. Testing the efficacy and comparability of ZooMS
930	protocols on archaeological bone. Journal of Proteomics 233, 104078.
931	https://doi.org/10.1016/j.jprot.2020.104078
932	Welker, F., Soressi, M., Rendu, W., Hublin, J.J., Collins, M., 2015. Using ZooMS to
933	identify fragmentary bone from the Late Middle/Early Upper Palaeolithic
934	sequence of Les Cottés, France. Journal of Archaeological Science 54, 279–286.
935	https://doi.org/10.1016/j.jas.2014.12.010
936	Widmer, R.J., Storey, R., 2016. Skeletal Health and Patterns of Animal Food
937	Consumption at S3W1:33 (Tlajinga 33), Teotihuacan. Archaeological and
938	Anthropological Sciences 9, 51-60. https://doi.org/10.1007/s12520-016-0417-x
939	Wolverton, S., 2013. Data Quality in Zooarchaeological Faunal Identification. Journal of
940	Archaeological Method and Theory 20, 381–396. https://doi.org/10.1007/s10816-
941	012-9161-4
942	Zhang, G., Li, C., Li, Q., Li, B., Larkin, D.M., Lee, C., Storz, J.F., Antunes, A.,
943	Greenwold, M.J., Meredith, R.W., Ödeen, A., Cui, J., Zhou, Q., Xu, L., Pan, H.,
944	Wang, Z., Jin, L., Zhang, P., Hu, H., Yang, W., Hu, J., Xiao, J., Yang, Z., Liu, Y.,
945	Xie, Q., Yu, H., Lian, J., Wen, P., Zhang, F., Li, H., Zeng, Y., Xiong, Z., Liu, S.,
946	Zhou, L., Huang, Z., An, N., Wang, Jie, Zheng, Q., Xiong, Y., Wang, G., Wang,
947	B., Wang, Jingjing, Fan, Y., da Fonseca, R.R., Alfaro-Núñez, A., Schubert, M.,
948	Orlando, L., Mourier, T., Howard, J.T., Ganapathy, G., Pfenning, A., Whitney,

949	O., Rivas, M.V., Hara, E., Smith, Julia, Farré, M., Narayan, J., Slavov, G.,
950	Romanov, M.N., Borges, R., Machado, J.P., Khan, I., Springer, M.S., Gatesy, J.,
951	Hoffmann, F.G., Opazo, J.C., Håstad, O., Sawyer, R.H., Kim, H., Kim, KW.,
952	Kim, H.J., Cho, S., Li, N., Huang, Y., Bruford, M.W., Zhan, X., Dixon, A.,
953	Bertelsen, M.F., Derryberry, E., Warren, W., Wilson, R.K., Li, S., Ray, D.A.,
954	Green, R.E., O'Brien, S.J., Griffin, D., Johnson, W.E., Haussler, D., Ryder, O.A.,
955	Willerslev, E., Graves, G.R., Alström, P., Fjeldså, J., Mindell, D.P., Edwards,
956	S.V., Braun, E.L., Rahbek, C., Burt, D.W., Houde, P., Zhang, Y., Yang, H.,
957	Wang, Jian, Avian Genome Consortium, Jarvis, E.D., Gilbert, M.T.P., Wang, Jun,
958	Ye, C., Liang, S., Yan, Z., Zepeda, M.L., Campos, P.F., Velazquez, A.M.V.,
959	Samaniego, J.A., Avila-Arcos, M., Martin, M.D., Barnett, R., Ribeiro, A.M.,
960	Mello, C.V., Lovell, P.V., Almeida, D., Maldonado, E., Pereira, J., Sunagar, K.,
961	Philip, S., Dominguez-Bello, M.G., Bunce, M., Lambert, D., Brumfield, R.T.,
962	Sheldon, F.H., Holmes, E.C., Gardner, P.P., Steeves, T.E., Stadler, P.F., Burge,
963	S.W., Lyons, E., Smith, Jacqueline, McCarthy, F., Pitel, F., Rhoads, D., Froman,
964	D.P., 2014. Comparative genomics reveals insights into avian genome evolution
965	and adaptation. Science 346, 1311–1320. https://doi.org/10.1126/science.1251385
966	