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Abstract

This paper empirically documents that expected growth volatility is a key driver of

the equity term structure dynamics. A general equilibrium model jointly explains four

important patterns: (i) a potentially negative unconditional equity term premium, (ii)

countercyclical equity term premia, (iii) procyclical equity yields, and (iv) premia to

value and growth claims respectively increasing and flat with the horizon. The eco-

nomic mechanism hinges on the interaction between heteroscedastic long-run growth—

which leads to countercyclical risk premia—and homoscedastic short-term shocks under

limited market participation—which produce sizable risk premia to short-term cash

flows. The equity slope dynamics hold irrespective of the sign of its unconditional

average.
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I Introduction

Over the last decade, there has been a significant interest in the term structure of equity,

which is a powerful tool to understand equity markets and their connection with economic

fundamentals. Pioneering this literature, van Binsbergen, Brandt, and Koijen (2012, hence-

forth BBK12) show that short-term claims to equity payouts have a higher risk premium

than long-term claims, which is at odds with leading asset pricing models. Whereas recent

contributions provide a number of potential explanations for this pattern, van Binsbergen,

Hueskes, Koijen, and Vrugt (2013) and Gormsen (2021) document rich conditional dynamics

of the equity term structure, which are still unexplained. These dynamics and their link with

economic fundamentals are important because they help understand which risks drive asset

price fluctuations. Moreover, the conditional equity term structure is informative about the

economic outlook and discount rates and, thus, has implications for real decisions.1

This paper documents that expected growth volatility is a key driver of the equity term

structure dynamics and proposes a general equilibrium model that explains the most impor-

tant properties of the equity term structure, including (i) a potentially negative unconditional

equity term premium, (ii) procyclical equity yields, (iii) countercyclical equity term premium,

(iv) premia to claims of value (respectively, growth) payouts that are increasing (flat) with

the horizon, and (v) a countercyclical value premium. Our model links the dynamics of

the equity term structure to the timing of risk of economic fundamentals and, specifically,

sheds light on the pivotal effect played by expected growth volatility. We provide supportive

empirical evidence of the model assumptions and predictions.

The model mechanism hinges on the interaction of two risk factors steering economic

fundamentals. The first one is permanent and is driven by time-varying expected growth. It

gives rise to a stochastic trend, and induces upward-sloping risk with the horizon. The second

1For instance, Gormsen and Koijen (2020) investigate the impact of Covid-19 pandemic on economic
growth expectations. Breugem, Marfè, and Zucchi (2021) study the effect of heterogeneity in the pricing
and firm’s exposure to risks of various persistence on corporate policies and their horizon. Callen and Lyle
(2020) estimate the term structure of implied costs of equity capital at the firm level and link it to firm
characteristics and performance.
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Figure 1: Equity Slope Dynamics. This figure displays the model-implied dynamics
of the forward equity yields and the dividend strip risk premium. The short-term and the
long-term assets represent the average value of the above quantities respectively over the
first five years and the residual infinite-horizon. The state refers to the level of expected
growth volatility and, endogenously, to the price level.

one is transitory and produces stationary (short-term) fluctuations, then inducing downward-

sloping risk with the horizon. The upward-sloping risk component is heteroscedastic, whereas

the downward-sloping one is homoscedastic, as suggested by the data. In equilibrium, the

relative weight of these two risks determines the slope of equity compensation across the

horizon. To generate a counter-cyclical equity term premium, the weight of the two risk

factors needs to be time-varying, with most of the variation driven by the upward-sloping

risk factor. Thus, when expected growth volatility (henceforth, EGV) rises, prices decline

and become more volatile, short-term equity yields rise relative to long-term ones, and long-

term equity risk premia rise relative to short-term ones. Figure 1 summarizes the model

predictions about these dynamics. Thus, the model jointly explains the cyclical patterns of

the equity term structure in light of macroeconomic risk—endogenizing the findings of van

Binsbergen et al. (2013) and Gormsen (2021)—and finds support in our empirical analysis.

We also study the cross-sectional predictions of the model. Heterogeneous loadings on

EGV lead to a cross section of equities, whose valuation ratios and risk premia can either

decrease or increase with EGV. The model generates a positive and countercyclical value

premium (Guo, Savickas, Wang, and Yang, 2009). This result arises jointly with the higher
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payout cyclicality of value firms relative to growth firms (Koijen, Lustig, and Van Nieuwer-

burgh, 2017) and risk premia to claims of value-payouts being steeper with the horizon than

those of growth-payouts (Hansen, Heaton, and Li, 2008; Giglio, Kelly, and Kozak, 2021,

henceforth GKK21).

Notably, the equilibrium dynamics of our model are robust to the unconditional properties

of the term structure of equity. Namely, two features of our model are noteworthy. First, the

model mechanism driving the cyclicality of equity yields and term premia holds irrespective

of the sign of their unconditional slope. Second, our model reconciles standard asset pricing

moments with sizable short-term risk premia independently of the sign of the unconditional

equity term premium—the main challenge posed by BBK12 to leading models. Thus, our

economic mechanism is not affected by the empirical concern posed by Bansal, Miller, Song,

and Yaron (2021) that short samples may lead to biased estimates of the unconditional

slope by not properly capturing the alternation of good and bad economic conditions and

the ensuing term premium.2

Our empirical analysis provides tight support to the model mechanism and its predictions.

We estimate a simple measure of EGV from survey forecasts of economic growth, which is

an observable and genuine measure of investors’ expectations. We document that EGV rises

during economic downturns, as in Bansal, Kiku, Shaliastovich, and Yaron (2014)—a stylized

pattern that we feed into our model.

Then, we document four stylized facts that arise as endogenous outcomes in our equilib-

rium model, supporting its economic mechanism. First, as predicted by the model, we pro-

vide evidence that the market price-dividend ratio decreases with EGV, whereas its volatility

increases with EGV. This result allows us to link macroeconomic fundamentals with the cycli-

cality of the equity term premium, estimated instead through the price-dividend ratio by

Gormsen (2021). Second, the slope of the equity yields is strongly negatively correlated with

2We also show that the model mechanism and predictions are robust to a heteroscedastic specification
of downward-sloping risk. Data suggests that a small fraction of transitory shocks’ conditional variance
comoves with our EGV. A model extension accomodates for such a pattern and still is able to explain the
dynamics of the equity term structure.
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EGV, consistently with the model and with the procyclical dynamics of the equity yields

slope documented by van Binsbergen et al. (2013). Third, EGV predicts the realized slope

of equity returns with a positive coefficient. Thus, EGV is a good candidate to drive the

countercyclical dynamics of the equity term premium, in accord with the model and with

the empirical findings of Gormsen (2021). Fourth, EGV predicts the value firms’ return and

the value-minus-growth return with a positive coefficient, whereas it does not predict the

growth firms’ return. Thus, EGV credibly drives the countercyclical dynamics of the value

premium, consistent with our model. Moreover, EGV strongly predicts the value firms’ re-

turn at long horizons, in accord with the model mechanism that produces upward-sloping

compensations to the claims of value payouts—as documented by GKK21. Therefore, we

empirically and theoretically connect the dynamics of both equity yields and equity term

premia to macroeconomic fundamentals.3

Given our focus on the term structure of equity, our assumptions aim at correctly describ-

ing the timing of fundamentals’ risk and how this transmits to the equilibrium state-price

density. Peculiarly, our economy assumes consumption and payouts cointegration and lim-

ited market participation (Greenwald, Lettau, and Ludvigson, 2014; Marfè, 2017). These

assumptions are empirically motivated and play a relevant role in shaping fundamentals’

risk across the horizon. Cointegration implies that payout risk is downward-sloping with the

horizon (Belo, Collin-Dufresne, and Goldstein, 2015; Marfè, 2016), whereas limited market

participation implies that market participants’ consumption is much more correlated with

payouts than aggregate consumption (Berk and Walden, 2013).4 Thus, by affecting the tim-

ing of fundamentals’ risk, these assumptions can help understand the properties of the term

structure of equity in equilibrium. Indeed, we verify that our model calibration matches

3The results of the empirical analysis are robust to many alternative specifications of EGV. Moreover,
EGV subsumes alternative components of growth in explaining the slope of the equity term structure.

4Berk and Walden (2013) show that limited market participation arises endogenously because labor
markets provide risk-sharing to workers. Consistently, a major fraction of workers does not invest in the
financial markets and the consumption of market participants is more correlated with corporate payouts and
equity returns than aggregate consumption (Mankiw and Zeldes, 1991; Guvenen, Schulhofer-Wohl, Song,
and Yogo, 2017). However, market participants’ consumption is subject to aggregate consumption long-run
risk (Malloy, Moskowitz, and Vissing-Jørgensen, 2009), in accord with cointegration.
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both the downward-slope of payout risk as well as the predictability of payout growth by

the payout-to-consumption ratio across the horizons. Instead, many models disregard such

empirical patterns and strongly overestimate payout risk at long horizons—further amplified

under preferences for the early resolution of uncertainty. Moreover, we should avoid that the

model explains sizable short-term risk premia because of a misspecified state-price density

that weighs too much on short-term risk. Therefore, we exploit the state-price density de-

composition of Alvarez and Jermann (2005) and Hansen and Scheinkman (2009): We verify

that under our calibration, the fraction of state-price density volatility due to its perma-

nent component does not violate the high lower bound estimated by Alvarez and Jermann

(2005). This supports the way the timing of fundamentals’ risk gets priced in equilibrium.

Consistently, the model quantitatively endogenizes the decay rate of equity yields’ sensitiv-

ity to EGV across the horizon, which generates the conditional dynamics of the equity term

structure, that is the core of our analysis.

Several works study the term structure of equity in light of macroeconomic risk. Economic

channels that have been investigated are beliefs formation (Croce, Lettau, and Ludvigson,

2015), financial leverage (Belo et al., 2015), disaster recovery (Hasler and Marfè, 2016),

labor costs rigidity (Marfè, 2017), production with learning (Ai, Croce, Diercks, and Li,

2018), alternative preferences (Andries, Eisenbach, and Schmalz, 2019), irrational beliefs

(Cassella, Golez, Gulen, and Kelly, 2022), and reinvestment risk (Gonçalves, 2021). We

complement this literature by providing a parsimonious equilibrium framework that explains

the rich conditional dynamics of equity slope. We share with Ai et al. (2018) the idea

that EGV drives the equity term structure: We complement their evidence by using survey

data and by documenting a robust link over a much longer sample (and more economic

cycles), by exploiting the GKK21 synthetic equity yields.5 Moreover, while they investigate

a production economy with learning, we consider a more parsimonious framework and study

5Ulrich, Florig, and Seehuber (2022) make use of I/B/E/S survey data for firm dividend growth and build
a model-free measure of the short-term dividend risk premium on the sample 2004-2021, which moves with
economic conditions. Differently from our work they do not investigate the role of expected growth volatility.
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limited market participation. While Ai et al. (2018) focus on the procyclical slope of equity

yields, we also explain the more recent evidence about the countercylical dynamics of the

equity term premium. Indeed, our paper then relates to Gormsen (2021), who proposes that

two priced factors are needed to capture the negative average slope and the countercyclical

variation of the equity term premium. Whereas his model is based on an exogenous state

price density, our paper both endogenizes these dynamics in a general equilibrium setting

and connects them to documented macroeconomic risk.

Our paper is also related to works about the cross-section of equity returns and the value

premium. Among others, Berk, Green, and Naik (1999), Gomes, Yaron, and Zhang (2003),

Carlson, Fisher, and Giammarino (2004), and Zhang (2005) propose equilibrium models

with heterogeneity either in growth options risk or in adjustment costs. We complement

this literature by explaining the pricing of value and growth payouts across the horizon

(GKK21)—further corroborating the model mechanism.6

The paper is organized as follows. The empirical analysis of Section II supports the

main model assumption and predictions. Sections III, IV, and V describe the model and

investigate its predictions. Section VI concludes. Proofs, further empirical tests, robustness

exercises, and model extensions are in Appendices A, B, C, and D, respectively.

II Empirical Evidence

In this section, we first provide empirical support for the main model assumption about EGV

and economic growth. Then, we generate a set of key stylized facts about the dynamics of

the equity term structure and EGV, which can be jointly rationalized within our model.

6We complement Marfè (2015) and Ai et al. (2018), who also study the term structure of equity and the
value premium through labor rigidity and investment, respectively. In a recent study, Hasler, Khapko, and
Marfè (2020) show that rational learning helps understand the unconditional term structures of value and
growth risk premia: we complement their approach and focus on dynamics.

6
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Data. To build our baseline EGV measure, we obtain US mean growth forecasts from the

Survey of Professional Forecasters (SPF) by the Federal Reserve Bank of Philadelphia about

real gross domestic product (GDP). Survey data more genuinely capture market participants’

actual expectations about the economy’s fundamentals relative to inferring them from re-

alized variables, and provide important insights into asset price dynamics (e.g., Barberis,

Greenwood, Jin, and Shleifer, 2015; Greenwood and Shleifer, 2014). We lever on survey ex-

pectations to investigate the drivers of the equity term structure dynamics over the business

cycle. Building on SPF data, we also construct alternative EGV measures from personal

consumption expenditures (PCE), industrial production (IP), and corporate profits (CP)

growth forecast, as well as a measure exploiting cross-sectional dispersion of GDP growth

forecasts. The time series of SPF forecasts are the longest available, covering the period

1968-2019 at quarterly frequency, with the exception of PCE starting in 1981.

Information on actual macroeconomic conditions (e.g., realized growth rates, inflation,

recessions) is from Federal Reserve Economic Data (FRED) by the Federal Reserve Bank of

St. Louis. Information on aggregate stock market and equity term structure is from a variety

of sources. As stock market index, we either rely on the value-weighted index from Center for

Research in Security Prices (CRSP) or on the S&P 500 index from Robert Shiller’s webpage.

Monthly data on both indices are available throughout the period 1968-2019. We obtain

information about equity yields at monthly frequency over different investment horizons

from GKK21 and BBK12 for the period 1974-2019 and 1996-2009, respectively. Monthly

data on value and growth portfolio value-weighted returns over 1968-2019 are from Kenneth

French’s website. All returns and monetary variables are expressed in real terms. Monthly

observations are converted to quarterly frequency by summing them (for returns, which

are logarithmic) or by taking the average (for other variables) over the quarter. Detailed

information on data sources and main variables definitions is in Appendix Table C1.
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Expected Growth Volatility (EGV). The main assumption of our model is that ex-

pected economic growth is heteroscedastic, so that its conditional volatility (EGV) is time-

varying and, in particular, higher when the economic outlook deteriorates. To substantiate

this assumption, we construct our baseline EGV measure by first filtering the conditional

mean out of GDP growth forecasts ft,t+1 with an AR(1) model and, then, by computing a

moving average of the absolute residuals so obtained. We first estimate an AR(1) model:

ft,t+1 = θ0 + θ1ft−1,t + vt. (1)

Residuals from this regression, vt, are not serially correlated, but their absolute values are.

Thus, we build a simple measure of EGV (or conditional volatility):

σt,t+1 =
1

n

∑n−1

i=0
|vt−i|. (2)

A moving average of four lags produces a good fit of residuals. The inferred time series of

conditional volatility σt,t+1 is our main EGV measure and explanatory variable.7

Importantly, EGV is negatively and significantly correlated with expected growth, at

−18% (p-value of 0.012). When investors have low expectations about future growth, fore-

casts are more volatile. This evidence supports the assumption of our general equilibrium

model that expected growth is decreasing in its conditional volatility. Another approach to

detect the negative relation between EGV and expected growth is to observe the relation

between EGV and economic variables that capture the economic outlook and are informative

about economic prospects (e.g., Colacito and Croce, 2011). The negative correlation between

EGV and expected growth suggests that EGV is a countercyclical measure of the state of the

economy. We confirm this intuition in Table 1 through contemporaneous regressions of EGV

on macroeconomic and financial measures, as we know from previous research that business

and financial cycles interact (e.g., Adrian, Boyarchenko, and Giannone, 2019). EGV exhibits

a positive and significant relation with an indicator for recessions as dated by the National

7Appendix Table C2 documents that the EGV specification of Eq. (2) provides a better fit than many
alternatives, including (G)ARCH models as well as EGV measures built from IP, CP, and PCE growth
forecasts instead of GDP ones. However, all these measures are highly correlated and we show below that
our results are robust with respect to the EGV specification.
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Table 1: The Cyclicality of EGV

σ

(1) (2) (3) (4) (5)

Constant 0.219∗∗∗ 0.235∗∗∗ -0.000 0.240∗∗∗ 1.132∗∗∗

(9.74) (10.93) (-0.01) (12.99) (6.04)
NBER Recession 0.162∗∗∗

(4.46)
Detrended Labor Share 1.583∗∗∗

(3.45)
Default Spread 0.226∗∗∗

(5.70)
NFCI 0.099∗∗∗

(7.02)
ln(P/D) -0.245∗∗∗

(-4.85)

Observations 205 205 205 196 205
Adj. R2 0.10 0.08 0.29 0.29 0.28

Note. This table reports estimates from contemporaneous regressions at quarterly fre-
quency of EGV (σ) on selected measures of macroeconomic (an indicator for NBER re-
cessions and the detrended labor share) and financial conditions (the default spread, the
NFCI, and the logarithm of the price-dividend ratio of the CRSP value-weighted index)
over the period 1968-2019. Coefficient estimates are multiplied by 100 to favor readability.
The t-statistics are reported in parentheses and are based on Newey-West standard errors
with a number of lags equal to the integer part of T 0.25, where T is the number of obser-
vations. Significance at the 10%, 5%, and 1% levels is indicated by ∗, ∗∗, ∗∗∗, respectively.
Detailed variable definitions are provided in Appendix Table C1.

Bureau of Economic Research (NBER), the detrended labor share, the Chicago Fed’s Na-

tional Financial Conditions Index (NFCI)—capturing the tightness of financial conditions on

capital markets—and the default spread. It also exhibits a negative and significant relation

with the logarithm of the price-dividend ratio of the CRSP value-weighted index.

EGV and Expected Growth. We are now interested in linking our EGV measure to the

short- and long-run components of economic growth. In particular, consider the following

representation of growth rates:

gt+1 = ∆permanentt+1 + ∆transitoryt+1, (3)

where the process permanentt+1 ∼ I(1) is integrated and captures the long-run trend, and

the process transitoryt+1 ∼ I(0) is stationary and induces transitory fluctuations. Similarly,

9
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growth rates can be written in terms of conditional expected growth and innovations:

gt+1 = Et[gt+1] + εg,t+1 = ft,t+1 + εg,t+1. (4)

To make the decomposition in Eq. (4) operational, we use the SPF forecast εg,t+1 as a proxy

for conditional expected growth ft,t+1, thus finding as the difference between the actual

growth rate gt+1 and its forecast.

Building on the documented negative relation between EGV and expected growth, we

estimate a linear regression:

ft,t+1 = a+ b σt,t+1 + εf,t ⇒

 f̂t,t+1 = â+ b̂ σt,t+1,

ef,t = ft,t+1 − f̂t,t+1.
(5)

Parameter b̂ is negative and significant. Then, actual growth rates can be rewritten as

gt+1 = f̂t,t+1 + ef,t + εg,t+1. (6)

This representation is useful to understand the link between EGV and the short- and long-

run components of economic growth. Indeed, in Appendix B we find that∑
t
f̂t,t+1 ∼ I(1) ⇒ ∆permanentt+1 ≈ f̂t,t+1, (7)∑

t
ef,t +

∑
t
εg,t+1 ∼ I(0) ⇒ ∆transitoryt+1 ≈ ef,t + εg,t+1. (8)

Notice that the process
∑

t f̂t,t+1 in Eq. (7) is integrated by construction. By contrast, the

stationarity of the process Eq. (8) is less straightforward to determine. The term
∑

t εg,t+1

alone is integrated by construction, whereas the cumulated sum of ef,t + εg,t+1 is stationary

(Appendix Table B1). The interpretation is that EGV alone captures the long-run com-

ponent of expected growth, whereas the residual ef,t from Eq. (5) captures its short-run

component Et[∆transitoryt+1]:

Et[gt+1] = ft,t+1 = f long
t,t+1︸ ︷︷ ︸
≡ f̂t,t+1

+ f short
t,t+1︸ ︷︷ ︸
≡ ef,t

. (9)

EGV alone allows to identify the long-run component f long
t,t+1 of expected growth: any potential

missing term should be negligible, otherwise the process in Eq. (8) would not be stationary.

10
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This interpretation is further supported by the fact that ∆transitoryt+1, constructed as in

Eq. (8), is strongly correlated (95.7%) with changes in output gap—a well known proxy for

the stationary component of growth (e.g., Kamber, Morley, and Wong, 2018). Consistently,

we also document that transitoryt+1 is procyclical (Appendix Figure B1 and Table B2).

After establishing that EGV is an important component of long-run expected growth,

we turn to conditional variation of the long- and short-run components of economic growth.

Based on Eq. (7)-(8), the conditional volatility of the long-run component ∆permanentt+1

is captured by EGV. Consistently, we provide evidence pointing to quantitatively negligible

heteroscedasticity of the short-run component ∆transitoryt+1 (Appendix Figure B2).

We specify the assumptions of the general equilibrium model in Section III starting

from the stylized facts presented so far. In summary, (i) economic growth is driven by a

heteroscedastic integrated component (i.e., permanentt+1) and a homoscedastic stationary

component (i.e., transitoryt+1) and (ii) the long-run component of expected growth (i.e.,

f long
t,t+1) is negatively related with the conditional variance of the integrated component (i.e.,

σt,t+1), that is our EGV measure. We next document four empirical facts concerning the

relation between EGV and (i) prices and price volatility, (ii) the equity yield slope, (iii) the

equity term premium, and (iv) dividends and returns of value and growth firms. All these

patterns endogenously arise from our general equilibrium model.

EGV, Prices, and Price Volatility. Based on the evidence of Table 1, we examine

the relation between EGV and the logarithm of the price-dividend ratio in more depth.

Theoretical models predict that the price-dividend ratio is driven by the latent factors that

affect the distribution of aggregate cash flows. We consider the following regression:

ln(Pt/Dt) = α + βσt,t+1 + εt.

11

Electronic copy available at: https://ssrn.com/abstract=3764505



0.000 0.005 0.010

3.0

3.5

4.0

4.5

EGV

Log P/D

0.000 0.005 0.010

0.00

0.05

0.10

EGV

σP/D

Figure 2: EGV and the Price-Dividend Ratio. This figure shows the scatter plots
of either the log price-dividend ratio (left graph) or log price-dividend ratio volatility (right
graph) of the CRSP value-weighted stock market index (σP/D) against the EGV estimated
from GDP growth forecasts (σ) for the period 1968-2019.

In the left panel of Figure 2, we observe that EGV decreases with the logarithm of the

price-dividend ratio (correlation of -54%, statistically significant at the 1% level).8 We then

study the correlation between EGV and the conditional volatility of the logarithm of the

price-dividend ratio, which we obtain following the same approach as in Eq. (2). In the right

panel of Figure 2, we estimate the regression:

σ
ln(P/D)
t,t+1 = α + βσt,t+1 + εt.

We observe a positive correlation of 45% between EGV and the conditional volatility of the

price-dividend ratio, significant at the 1% level. These results conform with the literature on

macroeconomic volatility and uncertainty (Bansal et al., 2014; Boguth and Kuehn, 2013).

EGV and the Equity Yield Slope. The second empirical pattern regards the relation

between EGV and the slope of equity yields, which is defined as the difference between the

long- and the short-maturity equity yield at each point in time. van Binsbergen et al. (2013)

illustrate that such a slope is procyclical: Short-maturity equity yields are lower than long-

maturity ones during economic expansions, whereas they exceed long-maturity ones during

8This negative correlation can arise in a model where investors feature an elasticity of intertemporal
substitution above one—i.e., the substitution effect dominates the wealth effect (Bansal and Yaron, 2004).
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Table 2: Equity Yield Slope and EGV

Panel A

Equity Yield Slope (GKK21)

(1) (2) (3) (4)
10Y-2Y 25Y-2Y 100Y-2Y MKT-2Y

Constant 0.042∗∗∗ 0.068∗∗∗ 0.093∗∗∗ 0.065∗∗∗

(4.84) (6.44) (7.68) (5.20)
σ -10.062∗∗∗ -15.556∗∗∗ -20.303∗∗∗ -21.809∗∗∗

(-3.50) (-4.35) (-4.88) (-4.98)

Observations 180 180 180 180
Adj. R2 0.15 0.20 0.24 0.25

Panel B

Equity Yield Slope (BBK12)

(1) (2) (3) (4)
MKT-0.5Y MKT-1Y MKT-1.5Y MKT-2Y

Constant 0.141∗∗ 0.071∗∗ 0.045∗∗ 0.036∗∗

(2.45) (2.34) (2.09) (2.12)
σ -47.448∗∗∗ -32.920∗∗∗ -24.242∗∗∗ -19.323∗∗∗

(-3.16) (-4.14) (-4.09) (-4.19)

Observations 55 55 55 55
Adj. R2 0.06 0.11 0.13 0.14

Note. This table reports estimates from contemporaneous regressions at quarterly frequency
of the equity yield slope on EGV (σ). Panel A uses measures of the equity yield slope based
on data by GKK21 for the period 1974-2019. Panel B uses measures of the equity yield slope
based on data by BBK12 for the period 1996-2009. The maturities of the long and short legs
considered to compute the equity yield slope are indicated at the top of each column. The
t-statistics are reported in parentheses and are based on Newey-West standard errors with
a number of lags equal to the integer part of T 0.25, where T is the number of observations.
Significance at the 10%, 5%, and 1% levels is indicated by ∗, ∗∗, ∗∗∗, respectively. Detailed
variable definitions are provided in Appendix Table C1.

recessions. Bansal et al. (2021), Gormsen (2021) and GKK21 document similar patterns.

We verify if the procyclical nature of the equity yield slope is—at least partially—channeled

through EGV, which we have shown to be countercyclical.

Because of the hard-to-observe nature of the equity yield slope, we measure it in several

ways. First, we use the model-implied equity yields made available by GKK21, which allow

us to compute the equity slope at various maturities up to 100 years (ey(t, long)) relative

to the two-year yield (ey(t, short)). For consistency with the second set of proxies based

on BBK12 and described below, we also compute it using the dividend yield of the CRSP

value-weighted index as ey(t, long). By spanning the period 1974-2019, the equity yields
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Figure 3: EGV and the Equity Yield Slope. The left of the figure shows the stan-
dardized time-series of the equity yield slope based (solid line) and the EGV (dashed line).
The right panel shows the scatter plot of the standardized equity yield slope against the
EGV. The equity yield slope is computed as the difference between the dividend yield of the
CRSP value-weighted index and the model-implied two-year equity yield of GKK21 for the
period 1974-2019.

by GKK21 are informative about the slope dynamics across different economic conditions.

Second, we use data by BBK12, who extract information on short-maturity equity yields

from option prices on the S&P 500 index. We then proxy for the slope by taking the

difference between the S&P 500 dividend yield (ey(t, long)) and short-maturity equity yields

(ey(t, short)), whose maturity ranges between 0.5 and two years.9

Table 2 reports the estimates from the regressions of these measures of the equity yield

slope—based on data by GKK21 in Panel A, and by BBK12 in Panel B— on EGV:

ey(t, long)− ey(t, short) = α + βσt,t+1 + εt.

We observe a negative correlation between EGV and the slope of equity yields. The slope

coefficients are negative and significant at the 1% confidence level across all the horizons.

The R2 from the regressions lies in the 6-25% range, pointing to a substantial explanatory

ability of EGV as to the cyclical dynamics of the equity yield slope.10

9For both sets of proxies for the equity yield slope, results are not sensitive to using the S&P 500 or the
CRSP value-weighted index dividend yield.

10To limit measurement error, we use spot equity yields (ey(t, τ)) rather than forward ones (fey(t, τ)) to
compute the slope. Because fey(t, τ) = ey(t, τ) − by(t, τ), using forward yields would require subtracting
risk-free yields (by(t, τ)) of the appropriate maturity τ from each leg of the slope. This would be problematic
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Consistently, the left panel of Figure 3, which focuses on a slope measure based on

GKK21, documents a strong negative relation between EGV and the slope of equity yields.

We observe a sharp mirror effect: the slope strongly decreases when EGV increases. The

right panel of Figure 3 shows the corresponding scatter plot and linear fit. These results

confirm that EGV is a major driver of the procyclical dynamics of the equity yield slope.11

This evidence corroborates and extends the results in Ai et al. (2018): while they consider

the equity yields in van Binsbergen et al. (2013) on the sample 2002-2010, we exploit the

more recent GKK21’s equity yields on the sample 1974-2020; moreover, we measure EGV

from survey data about economic growth, whereas they build productivity volatility with a

predictive approach.

EGV and the Equity Term Premium. Third, we study the relation between EGV

and the equity term premium—that is, the compensation of long-term equity claims over

the compensation of short-term equity claims. Gormsen (2021) finds that the equity term

premium is time-varying and countercyclical. Namely, long-term equity premia are more

sensitive to price levels than short-term equity premia. This implies that the equity term

premium increases in bad times and decreases in good times. We test if EGV helps explain

time-variation of the equity term premium in light of macroeconomic risk.

In the spirit of Gormsen (2021), we proxy for the equity term premium by taking the

difference between the CRSP value-weighted index return and the return on the two-year

dividend strip based on the corresponding equity yield by GKK21. Then, we compute the

one- to ten-year ahead cumulative equity term premium. Finally, we perform regressions of

in our case, because we also use the 100-year equity yield and the market dividend yield as the long maturity
leg, and it is not obvious to find information on risk-free rates for maturities above 30 years. Nonetheless,
using spot equity yields from GKK21, in untabulated tests we compute the equity yield slope with forward
yields for the 5-, 10-, and 20-year horizons (i.e., the maturities for which an appropriate risk-free rate is
easily available). In each case, the correlation with the slope based on spot equity yields is above 99%.

11Appendix Table C3 further investigates the relation between the equity yield slope and expected growth.
We estimate quantile regressions and document that the equity yield slope is informative about the tails of
expected growth with more explanatory power for the left tail (Panel A). A very similar pattern is produced
using EGV as explanatory variable (Panel B). These results corroborate the representation of Eq. (3)-(9),
which motivates the assumptions of our equilibrium model in Section III.
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Figure 4: EGV and the Equity Term Premium. The figure shows the slope point
estimates as well as 90% confidence intervals from predictive regressions of long-minus-short
equity returns (equity term premium) on EGV across the horizons from one quarter up
to ten years. In our measure of the equity term premium, the long leg is the CRSP value-
weighted index return and the short one is the return on the two-year dividend strip obtained
from model-implied yields by GKK21 for the period 1974-2019. The confidence intervals
are based on Newey-West standard errors with a number of lags equal to the integer part
of T 0.25, where T is the number of observations.

the future cumulative equity term premium on the current EGV. Figure 4 points to a strong

positive relation. The predictive slope for the current EGV is positive and statistically dif-

ferent from zero for predictive horizons beyond five years. This evidence suggests that EGV

is a credible channel through which the equity term structure incorporates macroeconomic

risk. Gormsen (2021) highlights the cyclicality of the equity term premium as measured by

its correlation with the price-dividend ratio. We go a step further and show that EGV is a

plausible link among the state of the economy, prices, and the term structure of equity. As

we show below, this pattern is endogenized in our general equilibrium framework.

In Appendix Table C4, we use two different approaches—besides the baseline one—to

measuring the equity term premium at the ten-year horizon. First, we resort to the GKK21

100-year strip return for the the long leg, keeping the two-year strip return as the short one.

Second, we use the BBK12 short-term option-based strip returns to measure the short leg of

the equity term premium (keeping the market return as the long one). In each case, we find

evidence supportive of a positive and economically important relation between the equity
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Figure 5: EGV and Value vs. Growth Firms. The figure shows the slope point
estimates as well as 90% confidence intervals from the predictive regressions of dividend
growth (left graphs) and returns (right graphs) for the value portfolio (top graphs), the
growth portfolio (middle graphs), and the value-minus-growth portfolio (bottom graphs) on
EGV across the horizons from one quarter up to ten years. The value (growth) portfolio
corresponds to the top (bottom) decile of stocks sorted on the book-to-market ratio for the
period 1968-2019. The confidence intervals are based on Newey-West standard errors with
a number of lags equal to the integer part of T 0.25, where T is the number of observations.

term premium and EGV, but the result is statistically insignificant at conventional levels

when using strip returns by GKK21 alone (p-value of 0.101).

EGV and the Cross-Section of Returns. Fourth, we look at the relation between the

EGV and the dividend growth rates as well as the returns of value firms vs. growth firms

(Fama and French, 1992). In Figure 5, we estimate predictive regressions of cumulative
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dividend growth rates (left graphs) and returns (right graphs) from one quarter up to ten

years ahead from either value firms, growth firms, or the value-minus-growth portfolio on

EGV. We find a rather strong positive relation between EGV and both future dividend

growth and future returns for value firms. The relation is instead negative but almost

invariably insignificant for growth firms. EGV loads positively and in general significantly

on future dividend growth and returns of the value-minus-growth portfolio.

All in all, we uncover that the value premium is related to the dynamics of the equity

term structure through EGV. Value firms load more than growth firms on EGV. Since EGV

drives long-term compensation, our results are consistent with the steeper term structure of

value portfolios relative to growth portfolios estimated by GKK21. In turn, the value-minus-

growth return is positively predicted by EGV and inherits its countercyclical behavior, in

accord with the literature on the value premium (Guo et al., 2009).

The Cyclicality of the Term Structure of Equity. We now study the cyclical prop-

erties of the equity term structure dynamics in light of the recent findings in the literature

(van Binsbergen et al., 2013; Bansal et al., 2021; Gormsen, 2021). In Appendix Table C5,

we estimate univariate specifications of the equity yield slope and of the equity term pre-

mium on business-cycle proxies. Our estimates support the procyclicality of the equity yield

slope, both when looking at business- and at financial-cycle measures. The picture becomes

more nuanced for the equity term premium. It appears to correlate negatively with current

macroeconomic conditions, but results are statistically insignificant at conventional levels.

At the same time, the countercyclicality of the equity term premium stands out again when

looking at financial-cycle variables.

We further explore the equity term structure dynamics in Appendix Table C6 by looking

at the correlation of the equity yield slope and the equity term premium with EGV together

with other possible drivers of growth, expected growth, and growth volatility (all orthogo-

nalized with respect to EGV). Whereas only a few additional factors load significantly, our
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results point to EGV’s first-order ability to satisfactorily capture the cyclicality of the equity

yield slope and equity term premium. Thus, Appendix Table C6 highlights EGV as a key

macroeconomic driver of the equity term structure and further corroborates the specification

of Eq. (3)-(9), which we implement in the model of Section III.12

It is worth drawing a comparison between these findings and those in the literature. On

the one hand, the EGV confirms the procyclical behavior of equity yields documented by

van Binsbergen et al. (2013) and Bansal et al. (2021) by means of dividend strip prices,

which are available only from the early 2000s. On the other hand, the lack of clear evidence

with regards to the correlation of the equity term premium with “pure” macroeconomic

variables, coupled with its positive (negative) correlation with EGV (price-dividend ratio),

corroborates the analysis of Gormsen (2021) and highlights the role of EGV. Overall, the

long time series of equity yields (1974:2019) from GKK21 points to the countercyclicality of

the equity term premium, which incorporates macroeconomic risk as measured by EGV.

Alternative EGV Specifications. In Appendix Table C8, we test the robustness of our

results to using nine alternative EGV measures. First, we look at four different AR(MA)(1,1)-

(G)ARCH(1,1) specifications of EGV of GDP. Second, we rely on a non-generated measure,

namely the cross-sectional dispersion of GDP growth forecasts. Third, we obtain the EGV of

GDP growth forecasts computed after filtering out a short-term business cycle component by

means of the (de-trended) labor share of the nonfinancial corporate sector. Finally, we build

the EGVs of PCE, IP, and CP growth forecasts by applying the approach of Eq. (1)-(2).

Like the baseline EGV, all these measures are strongly countercyclical as highlighted by

the negative and significant relation with the logarithm of the price-dividend ratio and the

positive and significant relation with its volatility (columns 1 and 2). Similarly, columns 3

12We also investigate the relation between the term structure of equity, EGV, and the conditional covari-
ance between innovations in expected growth (defined as the residuals v̂ from Eq. (1)) and the corresponding
forecast errors. A decomposition of such a covariance shows that it directly depends on the conditional stan-
dard deviation of v̂, which is akin to our main EGV measure. We want to verify if also the other components
of the covariance have explanatory power with respect to the term structure of equity. Appendix Table C7
shows that, generally, these components are neither statistically nor economically significant, reinforcing the
interpretation of EGV as a crucial driver of equity term structure dynamics over the business cycle.
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and 4 confirm that these alternative EGV measures capture the procyclicality of the equity

yield slope too. At the same time, the positive relation of the different EGV measures with

the equity term premium (column 5) remains economically and statistically significant. We

also qualitatively reproduce the result about future dividend growth rates and returns of

the value-minus-growth portfolio (columns 6 and 7). Although some of the alternative EGV

measures have insignificant predictive power with respect to value-minus-growth returns, the

sign and magnitude of the coefficients are largely unchanged.

Summary. Overall, the analysis of this section supports the idea that EGV is a ma-

jor driver of the term structure of equity. When investors experience a higher conditional

volatility of expected growth, (i) economic conditions deteriorate, (ii) prices decline, (iii) the

slope of equity yields drops, (iv) the equity term premium increases, and (v) the slope of

value claims becomes steeper relative to the slope of growth claims, leading to an increase in

the value premium. The next section illustrates a parsimonious general equilibrium model

that jointly endogenizes all these effects by building on the stylized evidence of Eq. (3)-(9).

III The Model

This section describes a general equilibrium model that captures the main properties of the

equity term structure in light of macroeconomic risk, as documented in Section II.

The Economy. A representative firm produces a cash-flow stream, C, which constitutes

the revenues from production distributed to workers and shareholders. Workers receive

wages, W , and shareholders receive payouts, D, such that C = W +D. In the spirit of Berk

and Walden (2013), we assume limited market participation.13 That is, workers do not access

13Recent asset pricing models assuming limited market participation are Greenwald et al. (2014), Marfè
(2017), and Lettau, Ludvigson, and Ma (2019). Although unnecessary for the qualitative predictions of the
model about the equity term structure dynamics, the assumption of limited market participation helps gen-
erate sizable short-term risk premia. Moreover, it allows for tractability and comparability with endowment
economy asset pricing models. Section V.C illustrates the alternative case of full market participation.
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financial markets and consume their wages, whereas shareholders act as the representative

agent in the stock market and consume payouts. Shareholders feature recursive preferences

(Kreps and Porteus, 1979; Epstein and Zin, 1989; Weil, 1989; Duffie and Epstein, 1992):

Ut ≡
[
(1− βdt)Ĉ

1−γ
θ

t + βdtEt
(
U1−γ
t+dt

) 1
θ

] θ
1−γ

, (10)

where Ĉ is a consumption process, β is the time discount factor, γ is the coefficient of risk

aversion, ψ is the elasticity of intertemporal substitution, and we define θ = 1−γ
1− 1

ψ

.

Aggregate consumption dynamics depend on two components. The first is a permanent

shock driven by time-varying expected growth. It gives rise to a stochastic trend and in-

duces upward-sloping risk with the horizon—i.e., the variance of growth rates increases with

the horizon. The second component is a transitory (short-term) shock zt, which produces

stationary fluctuations and induces downward-sloping risk with the horizon. The two shocks

jointly allow for flexible term structures of risk. Consistent with the empirical evidence in

Section II, the permanent shock is heteroscedastic, with a conditional variance negatively

related with expected growth. Aggregate consumption dynamics follow:

d logCt = (µ+ x̄− xt)dt+ dzt, (11)

where the permanent and the transitory components are governed by:

dxt =λx(x̄− xt)dt+ σx
√
xtdBx,t, (12)

dzt = − λzztdt+ σzdBz,t. (13)

Brownian shocks Bx,t and Bz,t are independent, in line with the data (see Appendix B).14

Aggregate consumption, wages, and payouts are all subject to the permanent shock and,

thus, are cointegrated (Lettau and Ludvigson, 2005). Moreover, the rigidity of labor costs

(Menzio, 2005; Marfè, 2017) with respect to short-term fluctuations lead to income insurance

from shareholders to workers, which induces a leverage effect on payouts. We parsimoniously

14The simple and tractable dynamics of Eq. (11)-(13) well capture the stylized evidence documented in
Section II (see also Appendix B) and closely correspond to Eq. (3)-(9).
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capture these effects by assuming that wages and payouts respectively satisfy:

Wt = ω(zt)Ct and Dt = (1− ω(zt))Ct,

where the wage share ω(zt) is a function of the transitory (short-term) shock zt:
15

ω(zt) = 1− δe(φ−1)zt .

Leverage φ ≥ 1 makes payouts (respectively, wages) more (less) exposed to short-term shocks

than the firm’s total cash flow. Consistently, payouts evolve as follows:

d logDt = (µ+ x̄− xt)dt+ φ dzt. (14)

Although parsimonious, these dynamics account for many empirical stylized facts, such as:

(i) cointegration among consumption, wages, and payouts (Lettau and Ludvigson, 2005),

(ii) excess volatility of payouts over consumption at short horizons (Belo et al., 2015), (iii)

variance ratios of payout and wage growth rates lying respectively below and above those

of consumption (Marfè, 2017), (iv) countercyclical wage share (Rı́os-Rull and Santaeulàlia-

Llopis, 2010), and (v) countercyclical expected growth volatility (see Section II).

The shock xt—the key variable of the model—drives the conditional variance of growth:

σ2
Y (t, τ) =

1

τ
log

Et[Y 2
t+τ ]

Et[Yt+τ ]2
= sY,0(τ) + sY,x(τ)xt, Y = {C,D},

where sY,x(τ) > 0 increases with the horizon τ . Both xt and zt drive expected growth:

µY (t, τ) =
1

τ
log

Et[Yt+τ ]
Et[Yt]

= mY,0(τ) +mY,x(τ)xt +mY,z(τ)zt, Y = {C,D},

where mY,x(τ) < 0,mY,z(τ) < 0 decrease with the horizon τ . In turn, in line with the

empirical evidence, the following relations hold:

−1 < corr(σ2
Y (t, τ), µY (t, τ)) < 0, Y = {C,D},

0 < corr(µC(t, τ), µD(t, τ)) < 1.

In the following, we show that the shock xt—the model counterpart of EGV—is key to

rationalize the main empirical properties of the equity term structure in general equilibrium.

15The function ω(zt) belongs to (0, 1) with probability very close to one because δ ≈ 10% is small in the
data. A complementary channel for short-term levered payouts is sticky financial leverage (Belo et al., 2015).
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State-Price Density and Equity Returns. Recursive preferences lead to a non-affine

state-price density. To solve for prices and preserve tractability, we follow the methodology

of Eraker and Shaliastovich (2008), which is based on the Campbell and Shiller (1988)’s log-

linearization.16 The continuous time (continuously compounded) log-return on equity—the

claim on the shareholders’ consumption Dt—follows

d logRt = k0dt+ k1d(pdt)− (1− k1)pdtdt+ d logDt,

where pdt = log(Pt/Dt) and the endogenous constants k0 and k1 satisfy

k0 = − log
(
(1− k1)1−k1kk11

)
and k1 = eE(pdt)/

(
1 + eE(pdt)

)
.

The following Euler equation characterizes the equilibrium state-price density, Mt:

Et
[
exp

(
log

Mt+τ

Mt

+

∫ t+τ

t

d logRs

)]
= 1. (15)

In turn, the state-price density satisfies

d logMt = θ log βdt− θ

ψ
d logDt − (1− θ)d logRt. (16)

To solve for the return on equity and, in turn, the state-price density, we conjecture that pdt

is affine in the vector of state variables. Then, the Euler equation is used to solve for the

coefficients. In turn, the state-price density has dynamics:

dMt

Mt

= −rtdt− Ωx(xt)dBx,t − ΩzdBz,t. (17)

In this equation, the risk-free rate is affine in the shocks xt and zt, as follows:

rt = r0 + rxxt + rzzt,

where the coefficients rx and rz satisfy:

rx = −γ − Ax(γψ − 1)(1− k1(1− λx))
ψ − 1

− A2
xk

2
1σ

2
x(γψ − 1)2

2(ψ − 1)2
and rz = −λzφ

ψ
.

Moreover, the two equilibrium prices of risk are given by

Ωx(xt) =σx
√
xt
k1Ax(γ − 1/ψ)

1− 1/ψ
and Ωz = σz

k1Az(γ − 1/ψ)

1− 1/ψ
+ σz γφ,

16Campbell, Lo, and MacKinlay (1997), Bansal, Kiku, and Yaron (2012), and Hasler and Marfè (2016)
show the high accuracy of the return log-linearization, which we assume exact hereafter.
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where the price elasticities Ax and Az are defined below. The equity price is given by

Pt =

∫ ∞
0

Et
[
Mt+τ

Mt

Dt+τ

]
dτ = Dt exp (A0 + Axxt + Azzt) , (18)

where

Ax = − 2(1− 1/ψ)

1− k1(1− λx) + Ξ
and Az = − φλz(1− 1/ψ)

1− k1(1− λz)
,

with Ξ =
√

1− k1 (2(1− λx) + k1(2(γ − 1)σ2
x − (1− λx)2)). Under plausible assumptions

about preferences (γ > 1/ψ, ψ > 1), we have that the market prices of permanent and

transitory risk satisfy Ωx < 0, Ωz < 0, Ax < 0, and −φ < Az < 0. Thus, prices relative to

payouts decrease with both expected growth volatility and short-term shocks.

An application of Itô’s Lemma provides the return variance:

σ2
R(xt) =xtσ

2
xA

2
x + σ2

z(φ+ Az)
2,

and the equity premium:

RP(xt) =xtσ
2
x

(
γ − 1/ψ

1− 1/ψ
A2
xk1

)
+ σ2

z (φ+ Az)

(
γφ+

γ − 1/ψ

1− 1/ψ
Azk1

)
.

Under plausible preferences, the equity premium increases with expected growth volatility, as

in long-run risk models (Bansal and Yaron, 2004), and the return variance moves negatively

with prices, in accord with the volatility feedback (Campbell and Hentschel, 1992).

Term Structures of Equity and Bond. The price of the dividend strip with maturity

τ has exponential affine solution:

Pt,τ = Et
[
Mt+τ

Mt

Dt+τ

]
= Dt exp (a0(τ) + ax(τ)xt + (az(τ)− φ)zt) . (19)

The deterministic functions a0(τ), ax(τ), and az(τ) solve a system of ordinary differential

equations. Closed-forms for the price elasticities ax(τ) and az(τ) are in Appendix A.

Using the dividend strip price, we can compute the term structure of the dividend strip

risk premium, RPDS(xt, τ), which is a function of only xt and the maturity τ :

RPDS(xt, τ) = xtσ
2
xax(τ)

(
k1Ax(γ − 1/ψ)

1− 1/ψ

)
+ σ2

zaz(τ)

(
k1Az(γ − 1/ψ)

1− 1/ψ
+ γφ

)
. (20)

The dividend strip risk premium increases with expected growth volatility xt. For γ > ψ > 1,
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the first and the second term of Eq. (20) respectively imply that the permanent shock (and,

thus, expected growth volatility) induces an upward-sloping effect and the short-term shocks

induce a downward-sloping effect on the term structure. When xt is large, the upward sloping

effect dominates and the price-payout ratio declines. When xt is small, the downward-sloping

effect dominates and the price-payout ratio rises. In turn, the equity term premium—that

is, the slope of the dividend strip risk premium—is countercyclical as in Gormsen (2021).

Similarly, we compute the term structure of the forward equity yields. The forward equity

yield with maturity τ is the difference between the equity yield and the riskless bond yield:

fey(t, τ) = ey(t, τ)− by(t, τ), (21)

where

ey(t, τ) = − 1

τ
log(P (t, τ)/Dt), and by(t, τ) = −1

τ
logB(t, τ).

The price of the riskless bond with maturity τ is given by

B(t, τ) = Et
[
Mt+τ

Mt

]
= exp (b0(τ) + bx(τ)xt + bz(τ)zt) . (22)

The deterministic functions b0(τ), bx(τ), and bz(τ) solve a system of ordinary differential

equations. Closed-forms for the price elasticities bx(τ) and bz(τ) are in Appendix A.

Cross-Sectional Equity Returns. We introduce a cross-section of payout streams, to

be interpreted as the payout of either firms or portfolios of stocks. Specifically, the cross-

sectional payout, Dϕ
t , has dynamics:

d logDϕ
t = d logDt + ϕ(x̄− xt)dt+ σϕdBϕ,t. (23)

The loading ϕ captures the heterogeneous additional exposure to xt in the cross-section.17

Furthermore, the volatility parameter σϕ 6= 0 allows for idiosyncratic risk. Following Eraker

and Shaliastovich (2008), the log return on the stock paying out Dϕ
t evolves as

d logRϕ
t = kϕ0 dt+ kϕ1 d(pdϕt )− (1− kϕ1 )pdϕt dt+ d logDϕ

t ,

17For the sake of simplicity and exposition, we do not assume other forms of heterogeneity.
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where kϕ0 and kϕ1 are endogenous constants. The price of this stock then can be written as

Pϕ
t =

∫ ∞
0

Et
[
Mt+τ

Mt

Dϕ
t+τ

]
dτ = Dϕ

t exp (Aϕ0 + Aϕxxt + Aϕz zt) , (24)

where coefficients Aϕ0 , A
ϕ
x , and Aϕz are derived in Appendix A. The price elasticity Aϕx with

respect to xt is larger (smaller) in magnitude than the market price elasticity Ax if ϕ is larger

(smaller) than zero. Thus, the larger the payout loading on expected growth volatility, the

more pro-cyclical the valuation ratio and, hence, the more counter-cyclical the risk premium.

Applying Itô’s Lemma to Eq. (24), the corresponding risk premium is given by

RPϕ(xt) = xtσ
2
xA

ϕ
x

(
k1Ax(γ − 1/ψ)

1− 1/ψ

)
+ σ2

z(A
ϕ
z + φ)

(
k1Az(γ − 1/ψ)

1− 1/ψ
+ γφ

)
. (25)

The risk premium is increasing in the conditional volatility of expected growth.

Consider the payout streams associated with two loadings ϕV > ϕG. The valuation ratio

associated to the payout with the higher exposure to xt (i.e., ϕV ) is lower and more cyclical

than the valuation ratio associated to the payout with the lower exposure (i.e., ϕG). Thus,

for ϕV � ϕG, we can interpret the former and the latter as the payout streams of value and

growth firms, respectively. Therefore, the model-implied value premium is given by

V P (xt) = RPϕV (xt) − RPϕG(xt) > 0.

Since the coefficient of xt in Eq. (25) is positive and increasing in ϕ, then the value premium

is positive and counter-cyclical, in accord with the empirical evidence. In particular, xt is a

driver of the value premium consistently with the predictive regressions in Section II.

To better connect this prediction with the model predictions about the term structure of

equity, we look at the term structures of risk premia in the cross-section. The price of the

claim that pays out Dϕ
t+τ at maturity τ is given by

Pϕ
t,τ = Et

[
Mt+τ

Mt

Dϕ
t+τ

]
= Dϕ

t exp (aϕ0 (τ) + aϕx(τ)xt + (aϕz (τ)− φ)zt) . (26)

The deterministic functions aϕ0 (τ), aϕx(τ), and aϕz (τ) solve a system of ordinary differential

equations. Closed-forms for the price elasticities aϕx(τ) and aϕz (τ) are in Appendix A.

Applying Itô’s Lemma to this strip price, we compute the term structure of the strip risk
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premium, which depends on xt and the maturity:

RPϕ
DS(xt, τ) = xtσ

2
xa

ϕ
x(τ)

(
k1Ax(γ − 1/ψ)

1− 1/ψ

)
+ σ2

za
ϕ
z (τ)

(
k1Az(γ − 1/ψ)

1− 1/ψ
+ γφ

)
.

The strip risk premium increases with expected growth volatility. The larger the payout

loading ϕ on xt, the steeper the strip risk premium. In turn, the unconditional slope of the

strip risk premium is larger for value firms than growth firms, as in GKK21.

IV Model Analysis

The next proposition summarizes the main model predictions, which are consistent with the

empirical analysis of Section II. We study the dynamics of several equilibrium outcomes as

a function of xt, which is the model counterpart of EGV.

Proposition. Under plausible parameters, the model predicts that:

1. The price-payout ratio decreases with EGV: ∂
∂x

logPt/Dt < 0.

2. The slope of the equity yields decreases with EGV: ∂2

∂x∂τ
ey(t, τ) < 0.

3. The slope of the dividend strip risk premium increases with EGV: ∂2

∂x∂τ
RPDS(xt, τ) > 0.

4. The value premium increases with EGV: ∂
∂x

(RPϕV (xt)−RPϕG(xt)) > 0.

In the following, we analyze these predictions in detail. We present the model calibration

and the predictions about standard moments and price dynamics. Then, we discuss the

term structure of equity and its dynamics, which is our main focus. We also explore the

predictions about cross-sectional returns and the value premium. Finally, we show that the

dynamics of equity slope hold irrespective of the sign of the unconditional average and the

degree of market participation.18

IV.A Calibration and Standard Moments

Table 3 provides our baseline setting. Economic fundamentals are described by long-run

growth (µ), expected growth volatility (x̄, σx, and λx), short-run shocks (σz and λz), and the

18We also illustrate a model extension with heteroscedastic transitory risk, which preserves our results.
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Table 3: Model Parameters

Fundamentals Symbol Value

Long-run expected growth µ 0.025

Expected growth volatility
shift x̄ 0.08
scale σx 0.04
reversion λx 0.15

Short-run shock
scale σz 0.025
reversion λz 0.15

Payout leverage φ 7.5

Preferences Symbol Value

Time discount factor β 0.96
Risk aversion γ 7.5
Elasticity of intertemporal substitution ψ 1.5

leverage effect on payouts (φ). Parameters are set to match a wide array of moments from

the time-series of fundamentals and financial returns. We assume standard values for the

time discount factor (β), risk aversion (γ), and elasticity of intertemporal substitution (ψ).

Table 4 displays moments about consumption, payout, and financial returns from both

the data and the model. The model is simulated at monthly frequency, and each simulation

covers a time period comparable to the postwar experience. Simulated time-series are then

aggregated at yearly frequency and, for each moment, we report selected percentiles.

Notably, the model matches quite well standard moments considered in the literature.

Consumption and corporate payouts are cointegrated and, thus, their growth rates have

similar sample averages (about 2.5%) close to their empirical counterparts. Consumption

growth volatility is modest (about 3% vs. 1.8% in the data). The model captures the 1-

year excess volatility of payout growth (about 18% vs. 15% in the data),19 and the decline

in payout growth volatility at long horizons (20-year volatility is about 10.5% vs. 8.5% in

the data). Cointegration implies the stationarity of the payout-to-consumption ratio, whose

19In addition to corporate profits, Table 4 also reports an alternative measure of shareholders remuneration,
dividends plus net repurchases, featuring a larger volatility (Belo et al., 2015). These two measures can be
viewed as bounds, with respect to which the model performs well (see also Figure 6).
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Table 4: Standard Moments

Moment Data Model

2.5% 5% 50% 95% 97.5%

Avg. consumption growth 0.021 0.007 0.010 0.025 0.038 0.040
Std. consumption growth 0.018 0.024 0.025 0.030 0.036 0.037

Avg. payout growth 0.030 0.005 0.008 0.025 0.041 0.043
Std. payout growth
- Corporate profits
- Dividends plus net repurchases

0.148
0.266

0.152 0.157 0.182 0.208 0.212

20-year std. payout growth
- Corporate profits
- Dividends plus net repurchases

0.083
0.118

0.019 0.028 0.105 0.222 0.249

Std. log payout-consumption ratio 0.228 0.177 0.186 0.255 0.355 0.378

Corr. consumption and payout exp. growth 0.822 0.244 0.316 0.663 0.849 0.874
Corr. payout exp. growth and exp. growth volatility -0.331 -0.748 -0.701 -0.383 0.068 0.155

Avg. risk-free rate 0.007 -0.022 -0.017 0.008 0.032 0.037
Std. risk-free rate 0.025 0.021 0.022 0.031 0.045 0.048

Avg. excess equity return 0.068 0.025 0.031 0.057 0.085 0.090
Std. excess equity return 0.175 0.116 0.120 0.139 0.159 0.163
Avg. Sharpe ratio 0.388 0.178 0.216 0.409 0.625 0.666

Avg. log price-dividend ratio 3.435 3.121 3.135 3.204 3.271 3.284
Std. log price-dividend ratio 0.443 0.061 0.065 0.090 0.125 0.134

Avg. excess high-minus-low return 0.035 0.001 0.007 0.035 0.065 0.072
Std. excess high-minus-low return 0.129 0.106 0.109 0.126 0.144 0.147

Note. This table reports moment statistics from both data and model simulations. Model-implied statistics
are moment quantiles from short-sample (75 years) simulations. The model is simulated at monthly frequency.
Statistics are yearly moments if not stated otherwise. Consumption and payout (corporate profits) data are from
the National Income and Product Accounts (NIPA). Returns are from K. French webpage. The price-dividend
ratio is from R. Shiller webpage. Dividends plus net repurchases are from Belo et al. (2015).

volatility is captured quite well by the model (about 25% vs. 23% in the data). The model

also captures the strongly positive correlation between expected growth of consumption and

payouts (about 66% vs. 82% in the data) and the moderately negative correlation bewteen

expected growth volatility and payout expected growth (about -38% vs. -33% in the data).

Consistent with the data, the risk-free rate implied by the model is low (about 0.8% vs.

0.7% in the data) and smooth (about 3% volatility vs. 2.5% in the data). Moreover, the
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model predicts a sizable equity premium that compares well with its empirical estimates

(about 6% vs. 7% in the data). The excess return volatility in the model is somewhat

smaller than in the actual data (about 14% vs. 17.5% in the data). However, the model

Sharpe ratio is quite in line with the data (about 41% vs. 39% in the data). The model

predicts a realistic value for the average log price-payout ratio (3.2 vs. 3.4 in the data) but its

volatility is smaller than in the data (9% vs. 44% in the data). The model also generates a

positive and sizable value premium that compares well with the historical average return on

the high-minus-low (HML) portfolio (3.5% in both the model and the data) and its volatility

(12.6% vs. 12.9% in the data).20 Overall, whereas our focus is the term structure of equity

and its dynamics, Table 4 suggests that the model performs well in describing the main

properties of financial markets—then proposing a potential solution to the challenge posed

by BBK12 to leading models in the literature.

The quantitative analysis of the model predictions, especially those regarding the term

structure of equity, crucially depends on the balance between long-term shocks and short-

term shocks. We devise three exercises to verify that this balance and its equilibrium impli-

cations are consistent with the data.

First, we compare the model term structure of payout volatility with that in the data.

The left panel of Figure 6 displays the model-implied term structure up to 20 years. Volatility

monotonically decreases from about 20% to 10%. The plot also shows the empirical volatil-

ity computed from either corporate profits or dividend plus net repurchases. The former

decreases from about 14.8% to 8.3%, and the latter decreases from about 26.6% to 11.8%.

Thus, the model volatility matches well the level and the timing of fundamental risk.

Second, we exploit cointegration and consider the model predictability of payout growth

by the logarithm of the payout-consumption ratio:

(logDt+τ − logDt)/τ = α + β logDt/Ct + εt, τ ∈ (0.25, 10).

The middle panel of Figure 6 shows the median as well as the 2.5% and 97.5% percentiles

20We comment in Section IV.C about the setting of cross-sectional heterogeneity.
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Figure 6: Cointegration and the Timing of Payout Risk. The left graph displays
payout growth volatility as a function of the horizon in the model and in the data (corporate
profits and net dividends). The middle and the right graph show the predictive coefficient
from the regression of cumulative payout growth on the payout to consumption ratio across
the horizon in the model and in the data, respectively.

of the predictive slope at any horizon between 1-quarter and 10 years. Slopes are negative

and significant. This pattern arises because the model assumes that the ratio is positively

driven by the stationary short-run shock zt of consumption and payout. The right panel of

Figure 6 displays the same regression estimates from actual data. Slopes are negative, and

the Hansen-Hodrick 95% confidence interval documents that they are significant. The model

well matches the sign and magnitude across the horizons of payout growth predictability.

Third, we exploit the lower bound on the fraction of state-price density volatility due

to its permament component, introduced by Alvarez and Jermann (2005). The empirical

estimates of the bound are close to and bounded above by one. Following Hansen and

Scheinkman (2009), we compute the volatility ratio in our model and find values between

1.03 and 1.05 depending on the horizon. Thus, the bound is satisfied. The way our model

transmits permanent and transitory risks from fundamentals to the endogenous state-price

density is consistent with the empirical evidence: Sizable short-term compensations are not

due to overweighing short-term risk.

Overall, the model captures well the timing of fundamental risk and how it gets priced in
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Figure 7: Price Dynamics. The figure reports the model log price to payout ratio
(left graph) and its instantaneous volatility (right graph) as a function of EGV (xt). The
(standardized) unconditional density of EGV is superimposed.

equilibrium. Therefore, we believe that, although simple and parsimonious, our model rep-

resents a well-suited laboratory to understand the term structure of equity in equilibrium.21

Finally, Figure 7 shows that prices decline when EGV (xt) increases, whereas their volatil-

ity rises. These model results (claim 1 of our Proposition) are consistent with the empirical

evidence in Figure 2. In the following, we study the dynamics of the equity slope and refer to

countercyclical behavior in terms of either a positive correlation with EGV or, equivalently,

a negative correlation with the price-payout ratio—endogenizing Gormsen (2021)’s findings.

IV.B The Term Structure of Equity

The equity term structure and its dynamics are the key focus of our paper. We analyze

the slope dynamics of equity yields and dividend strip risk premia (claims 2 and 3 of our

Proposition), which have attracted substantial attention among researchers (BBK12, van

Binsbergen et al. (2013), Gormsen (2021)). Our framework jointly rationalizes these empir-

ical patterns in light of documented macroeconomic risk.

21In contrast, many models in the literature disregard cointegration and markedly overestimate long-
horizon payout risk. Such a bias becomes even more relevant in combination with the preferences for the early
resolution of uncertainty, which amplify the impact of long-horizon payout risk on asset prices. In Section
V.C, we also discuss the assumption of limited market participation and its qualitative and quantitative
impact on the model predictions.
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Before investigating in detail the model predictions about the dynamics of the equity

term structure and inspecting the model mechanism, we provide a quantitative assessment

that the model-implied equity yields react to EGV, across the entire term structure, in a

similar fashion to what we observe in actual data. Indeed, this is the key relation in this

research. To this end, we estimate the loadings of EGV on the GKK21’s equity yields across

the maturity τ , which ranges from one to 100 years:

ey(t, τ) = aτ + bτσt,t+1 + eτ,t, ∀τ.

Coefficients bτ are positive and statistically significant at all maturities. In order to generate

an equity yield slope that decreases with EGV—a key stylized fact documented in Section

II—we need that the loading bτ decreases with the maturity τ . Actually, we observe that

the long-maturity loading is about one order of magnitude smaller than the short-maturity

loading.

0 20 40 60 80 100
0.00

0.50

1.00

Horizon

Conditional Equity Yields and EGV

data

model

Figure 8: Conditional Equity Yields. The figure reports the slopes of univariate
regressions of the GKK21’s equity yield on EGV, standardized for the short-maturity level,
as a function of the maturity and their model-implied counterparts.

We also build the model counterpart of the loadings bτ . Using Eq. (19), the loading for

maturity τ is simply given by

bmodel
τ = −1

τ
ax(τ) > 0, ∀τ.

We then compare the loadings estimated from the data and the model-implied ones in Figure
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8. The figure plots the loadings, standardized for the short-maturity level, as a function of

the maturity. In this way, we can compare the decay rate of the equity yields sensitivity to

EGV across the entire term structure. We observe that both the loadings estimated from the

data and the model-implied ones provide a very similar shape, decreasing with the maturity.

In particular, both quantities converge to a long-maturity level that is about 10% of the

short-maturity one. Thus, the model captures well the heterogeneous response of the equity

yields to EGV across the maturity, leading to a meaningful measure of the conditional equity

yield slope—the core of our analysis.

Note that our calibration does not target any of the coefficients in Figure 8. The result

is instead an endogenous equilibrium outcome and a consequence of a realistic weighting

of short-term and long-term risks that we have set referring only to macroeconomic fun-

damentals, as documented in Figure 6 and Table 4. Armed with this result, we are going

to investigate in detail the model-implied dynamics of the equity term structure and their

underlying model mechanism.

In our model, permanent shocks induce upward-sloping risk, which inherits the time-

varying and countercyclical properties of EGV. Conversely, transitory (short-term) shocks

induce constant downward-sloping risk, because they are homoscedastic. As a result, the

equity term premium is positive in bad times (in which EGV is high) and negative in good

times (in which EGV is low)—i.e., the countercyclical dynamics of the equity term premium

depend on the heteroscedastic nature of the main source of risk affecting long-term payouts.

The upper panels of Figure 9 display the forward equity yields and the dividend strip

risk premia in expansions, recessions, and in the steady state. In the steady state (xt = x̄),

forward equity yields are about flat across the horizon. When economic conditions deteriorate

(EGV rises), short-term forward equity yields rise more than long-term ones. As a result, the

slope of forward equity yields becomes negative in recessions. Conversely, when economic

conditions improve (EGV falls), short-term forward equity yields decrease (and become

negative) more than long-term ones. Thus, the slope becomes positive during expansions.
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Figure 9: Equity Slope Dynamics. The upper panels of the figure report the model
forward equity yield (left) and the model dividend strip risk premium (right) as a function
of the horizon for several values of EGV (xt). The lower panels of the figure show the model
forward equity yield spread (left) and the model equity term premium (right) as a function
of EGV (xt). The (standardized) unconditional density of EGV (xt) is superimposed.

Overall, the slope of forward equity yields is procyclical, as in van Binsbergen et al. (2013).

Consider now the dividend-strip risk premia. In the steady-state (xt = x̄), the risk

premium is slightly downward-sloping (BBK12). When economic conditions deteriorate

(EGV rises), long-term risk premia rise more than short-term ones. In turn, the slope of

risk premia is positive during recessions. Conversely, when economic conditions improve

(EGV falls), long-term risk premia decrease more than short-term ones. Thus, the slope is

negative during booms. Overall, the equity term premium dynamics are countercyclical as

in Gormsen (2021). The slope dynamics of the forward equity yield and the dividend strip

premium can also be inspected through their infinite-horizon spreads:

lim
τ→∞

fey(t, τ) − lim
τ→0

fey(t, τ) and lim
τ→∞

RPDS(xt, τ) − lim
τ→0

RPDS(xt, τ).

The lower panels of Figure 9 report these spreads. The forward equity yield spread is
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decreasing with EGV, positive in expansions, and negative in recessions. Conversely, the

spread of the dividend strip risk premium is increasing with EGV, negative in expansions

and positive in recessions. Thus, the forward equity yield and dividend strip risk premium

spreads move procyclically and countercyclically respectively and switch sign over time.
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Figure 10: Equity Yield Decomposition. The panels report the model equity yield
(upper, left), the model payout expected growth (upper, right), the model bond yield (lower,
left), and the model equity yield premium (lower, right) as a function of the horizon for
several values of EGV (xt).

To better inspect the model mechanism, we exploit that the equity yield is the difference

between the risk-free bond yield, by(t, τ), and expected payout growth, gD(t, τ), plus the

equity yield premium, ϑ(t, τ):

ey(t, τ) = by(t, τ)− gD(t, τ) + ϑ(t, τ).

Figure 10 reports the equity yield and its three components in expansions, recessions, and

the steady state. First, the premium component features countercyclical level and slope,
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because it represents a time-varying compensation for the exposure to EGV—affecting long-

term payouts more heavily than short-term ones. Second, the bond is a hedge instrument

against equity risk and, thus, the risk-free bond yield is procyclical in level. In turn, the

slope of bond yields inherits the countercyclical dynamics of the risk premium slope. Third,

expected payout growth is procyclical in level and has countercyclical slope because of the

mean-reverting dynamics of both EGV and short-run shocks. As a result of these three forces,

the equity yield is countercyclical in level—because the joint effect of expected growth and

risk premium dominates the effect of the bond yield—but features procyclical slope—because

the effect of expected growth dominates the joint effect of the bond yield and risk premium.22

IV.C Cross-Sectional Returns and Value Premium

We now study the model predictions for the cross-section of equity returns. We set ϕV =

1, ϕG = −0.05, and idiosyncratic risk σϕ = 8%, see Eq. (23) and Table 4.

The upper left panel of Figure 11 shows valuation ratios for both value and growth firms.

The price of value firms is lower in level and more sensitive to EGV. The upper right panel of

the figure displays the premium of the high-minus-low portfolio—that is, the value premium.

The value premium is positive, sizable (about 3.5%), and countercyclical. These three results

are consistent with the empirical literature and with our results in Section II: EGV is a driver

of the value premium dynamics (claim 4 of our Proposition).

To better inspect the model mechanism, we consider the premium on the claim of value

and growth payouts across the horizons. The long-run impact of EGV on payouts suggests

that long-term claims to value-type payouts should feature a larger and more volatile pre-

mium than short-term claims. Instead, the lower loading of growth-type payouts to EGV

suggests that both long-term claims and short-term claims should command a similar risk

22The forward equity yield can be written either as the difference between the equity yield and the risk-free
bond yield or as the difference between the equity yield premium and expected payout growth: fey(t, τ) =
ey(t, τ)− by(t, τ) = ϑ(t, τ)− gD(t, τ). In turn, the forward equity yield shows slightly sharper cyclicality of
both level and slope than the equity yield, because it does not account for the opposite bond yield cyclicality
of both level and slope. Consistently, Section II documents that forward equity yields and equity yields are
very similar and their relation with EGV is indistinguishable.
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Figure 11: Value and Growth Price Dynamics and Term Structures. The upper
panels of the figure report the model log price-payout ratio of value and growth firms (left),
the model value premium (right) as a function of EGV (xt). The lower panels of the figure
show the model dividend strip risk premium for value (left) and growth firms (right) as a
function of the horizon for several values of EGV (xt).

premium and feature little sensitivity to EGV. The lower panels of Figure 11 display such

heterogeneity in the dynamics of the premia to claims of value-type and growth-type payouts

across the horizons. This result is consistent with the long-run predictability of value returns

by EGV and the lack of predictability of growth returns, as documented in Section II.

The model mechanism of the value premium dynamics is interesting for three reasons.

First, GKK21 document that the risk premia to claims of value- and growth-type payouts

respectively increase and are flat or slighlty decrease with the horizon. Recently, Hasler et al.

(2020) show that rational learning helps understand these unconditional slopes but they

do not investigate dynamics. Our framework provides an alternative explanation for this

stylized fact and reconciles it with the countercyclical dynamics of both the value premium
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and equity term premium. Second, we share with Bansal, Dittmar, and Lundblad (2005)

the idea that the value premium arises from the excess loading of value firms on long-term

fundamental risk over growth firms. However, their approach leads to negligible short-

term risk premia, which are in contrast with the empirical evidence. Instead, our general

equilibrium explains sizable short-term risk premia, similar to the partial equilibrium model

of Lettau and Wachter (2007). Nevertheless, differently from their framework but consistent

with recent empirical findings, our model does not predict downward-sloping (resp., upward-

sloping) compensations to value (growth) firms. Third, the close connection between the

model predictions about cross-sections and term structures with their empirical counterparts

strongly corroborates the main model mechanism for the equity term premium dynamics.

V Robustness of the Model Mechanism

V.A Unconditional Equity Term Premium

BKK12 and Gormsen (2021) provide evidence that unconditional equity premia are downward-

sloping. However, Bansal et al. (2021) call into question this result on the grounds that small

samples can over-represent economic conditions in which the slope is negative (e.g., reces-

sions) and, thus, lead to a wrong assessment about the unconditional slope.

While we are agnostic about the resolution of this empirical issue, we verify whether our

economic mechanism is robust to the sign of the unconditional slope. In particular, we verify

whether: (i) the model dynamics of equity slope are affected by the sign of the unconditional

slope, and (ii) the model can reconcile standard asset pricing moments with the dynamics

of the equity term structure under either positive or negative unconditional term premium.

In our model, the equity slope dynamics are robust to the sign of the unconditional slope.

The dividend strip risk premium in Eq. (20) has two components: a permanent and het-

eroscedastic component driven by EGV (and commanding upward-sloping compensations)

and a transitory and homoscedastic component due to short-run shocks (and commanding
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Figure 12: Unconditional Equity Term Premium. The figure reports the dividend
strip risk premium as a function of the horizon for several values of EGV (xt) under our
alternative calibration. The shaded area denote the difference with respect to the baseline
calibration in the steady-state.

downward-sloping compensations). The unconditional slope depends on the relative strength

of the two components. However, the conditional slope moves with EGV and, so, features

countercyclical dynamics and can switch sign over time.

We therefore consider an alternative calibration where we increase the persistence of

EGV, xt and decrease the persistence of the short-run shock, zt. Namely, we change λx

from 0.15 to 0.10 and λz from 0.15 to 0.20. We keep all the other parameters unchanged.

Under this alternative calibration, standard asset pricing moments are still reasonable and

similar to those under our baseline calibration. Appendix Table C9 reports several moment

statistics from our model simulations. We observe a slightly higher equity premium and a

lower risk-free rate as a result of preferences for the early resolution of uncertainty. Impor-

tantly, the change in the relative strength of the two shocks affects the risk premium across

the horizon. Figure 12 shows the dividend strip risk premium at the average state under

both the alternative and the baseline calibrations. Under this alternative calibration, the

unconditional equity term premium shifts from negative to positive. Figure 12 also shows

the dividend strip risk premium in good and bad states. As under the baseline calibration

(see Figure 9) and in accord with the empirical evidence, compensations increase with the
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horizon in bad states and decrease with the horizon in good states. In turn, the equity term

premium has countercyclical dynamics as documented by Gormsen (2021).

Overall, the economic mechanism of our model is robust to the sign of the unconditional

equity term premium. Moreover, in accord with the empirical evidence, short-term assets

command a high compensation even if the unconditional term premium is positive, as shown

in Figure 12. Thus, our model addresses the challenge posed by the empirical findings in

BBK12 to leading models, such as Campbell and Cochrane (1999), Bansal and Yaron (2004),

and Wachter (2013)—which cannot explain sizable short-term risk premia, independently of

the sign of the unconditional slope.

V.B Heteroscedastic Transitory Risk

A key ingredient of the baseline model is that expected growth volatility drives long-term

premia. This is supported by our empirical analysis of Section II and implemented in the

model through the assumption of heteroscedasticity and homoscedasticity of xt and zt, re-

spectively. Although parsimonious, this assumption finds empirical support (see Appendix

B) and is particularly convenient to illustrate the main model mechanism.

At the same time, we acknowledge that a limited fraction of transitory risk actually

comoves with our EGV measure (see Appendix B). In this section, we show that including

such a pattern in the model does not alter the predictions about the equity term structure

and its dynamics. To this end, we simply replace the homoscedastic dynamics of zt in Eq.

(13) with a conditional variance that is affine in xt:

dzt = −λzztdt+
√
σ2
z0 + σ2

zx xt dBz,t. (27)

where, in accord with the data, the term σ2
zx × E[xt] is a small fraction of the average

conditional variance of zt. Appendix D provides the model derivation, which is still obtained

with the approach of Eraker and Shaliastovich (2008).

To illustrate the model predictions, we keep the parameters from the baseline calibration
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Figure 13: Main Model Predictions with Heteroscedastic Transitory Risk. The
upper left panel reports the model log price to payout ratio as a function of EGV (xt). The
(standardized) unconditional density of EGV is superimposed. The upper right panel, the
lower left panel, and the lower right panel report the volatility of payout growth rates, the
forward equity yields and the dividend strip risk premium respectively, as a function of the
horizon for several values of EGV (xt).

of Table 3, with the exception of σz, which is replaced by the parameters σz0 = 0.023 and

σzx = 0.036. The model predicts a log price-payout ratio of 3.20, a risk-free rate of 0.9%,

an equity premium of 7.4%, and a return volatility of 14.2%. These numbers compare quite

well with both the data and the baseline model predictions. Figure 13 displays the log price-

payout ratio as a function of xt, the volatility of payout growth rates, the forward equity

yields, and the dividend strip risk premium as a function of the horizon for several values of

xt. Consistent with the data and with the predictions of the baseline model, payout volatility

markedly decreases with the horizon, the forward equity yields increase (decrease) with the

horizon in good (bad) states, and the dividend strip risk premium decreases (increases) with

the horizon in good (bad) states. Therefore, the model still leads to a procyclical equity yield
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slope and a countercyclical equity term premium. The state of the economy is measured by

either expected growth volatility—in accord with our empirical findings—or the equilibrium

price-payout ratio—endogenizing the findings of Gormsen (2021).

V.C Full Market Participation

While the baseline model assumes limited market participation, in this Section we discuss

the implications of alternatively assuming full market participation. Under full market par-

ticipation (FMP), the equilibrium can still be derived using a standard methodology (Eraker

and Shaliastovich, 2008). Appendix D provides the model derivation. The main difference

with respect to the baseline model is that the return on wealth, which enters the state-

price density, should be computed for a representative agent that consumes total resources

(C = W +D). Thus, the wealth of market participants W differs from equity and is instead

a claim on the stream C:

WFMP
t = Et

∫ ∞
0

MFMP
t+τ

MFMP
t

Ct+τdτ 6= Pt =WLMP
t ,

where the state-price density satisfies

d logMFMP
t = θ log βdt− θ

ψ
d logCt − (1− θ)d logRc,t,

and Rc,t is the return on wealth. Since total resources C weigh on short-term risk less than

payouts D, the equilibrium state-price density implies a lower price of risk for short-run

shocks, relative to that for EGV, than under limited market participation (LMP):

ΩFMP
z =

γψ + k1(1− γψ
1− k1(1− λz)

σz < ΩLMP
z .

While the assumption about market participation affects the level of the term structure and

the unconditional equity term premium, the model dynamics are not affected. When EGV

rises, prices decline, equity yields drop, and the equity term premium increases.

Figure 14 displays the dynamics of the term structure of equity under full market par-

ticipation. We observe that the model predictions about the equity term structure dynam-

43

Electronic copy available at: https://ssrn.com/abstract=3764505



0 5 10 15 20

−0.10

−0.05

0.00

0.05

Horizon

Forward Equity Yield

bad state
average state
good state

0 5 10 15 20
0

0.01

0.02

0.03

Horizon

Dividend Strip Risk Premium

0.00 0.05 0.10 0.15 0.20

0.00

0.10

xt

Forward Equity Yield Spread

model

PDF(xt)

0.00 0.05 0.10 0.15 0.20

0.00

0.02

0.04

xt

Equity Term Premium

Figure 14: Equity Slope Dynamics under Full Market Participation. The top
graphs of the figure report the model forward equity yield (left) and the model dividend
strip risk premium (right) as a function of the horizon for several values of EGV (xt). The
bottom graphs of the figure show the model forward equity yield spread (left) and the model
equity term premium (right) as a function of EGV (xt). The (standardized) unconditional
density of EGV (xt) is superimposed.

ics—the core of our analysis—do not depend on the assumption about limited or full market

participation. Indeed, the model still predicts a procyclical equity yield slope and a coun-

tercyclical equity term premium. However, full market participation affects the quantitiave

model predictions. As discussed in Section IV, under limited market participation, the model

reconciles (i) the timing of fundamental risk, (ii) standard moments (e.g., equity premium

and risk-free rate puzzles), (iii) sizable short-term risk premia, and (iv) the dynamics of

the term structure of equity. Instead, under full market participation and the same param-

eter setting, the model continues to describe well the timing of fundamental risk and the

equity term structure cyclicality, but it does not predict sizable equity compensations at

any horizon. Alternative parameter settings under full market participation predict either
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a high equity premium or downward-sloping payout risk and sizable short-term compensa-

tions. These results suggest that the empirical observation of limited market participation

is an important ingredient to study the term structure of equity.23

VI Conclusion

A parsimonious general equilibrium framework provides a comprehensive understanding of

the recent empirical findings regarding the term structure of equity, its dynamics, its impli-

cations for the cross section of returns, and in particular its link with macroeconomic risk.

The economic mechanism relies on the interaction between two risks affecting economic fun-

damentals: permanent shocks driven by expected growth volatility—which induce upward-

sloping risk with the horizon—and transitory shocks capturing stationary fluctuations—

which induce downward-sloping risk. In equilibrium, the interaction and the relative mag-

nitude of these two risks determine the slope dynamics of equity compensations. Extensive

empirical evidence supports the model assumptions, economic mechanism, and predictions.

Our model jointly generates the observed features of the term structure of equity, in-

cluding a potentially negative unconditional slope of term premia, countercyclical variation

of term premia, and procyclical variation of equity yields. The model also explains premia

to value (respectively, growth) stocks, which are increasing (flat or slighlty decreasing) with

the horizon. At the same time, our model performs well in capturing standard asset pricing

moments under realistic assumptions about the economic environment (e.g., consumption

and payouts cointegration and limited market participation) and standard preferences.

23While endogenous participation goes beyond the scope of the paper, our analysis points to it as an
unexplored economic channel to reconcile equity risk premia across the horizons.
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A Model Derivation and Proofs

Affine Notation

The vector Xt = (yt, xt, zt, wt)
ᵀ collects the two state variables of our model xt and zt as

well as accumulated expected growth yt = µt +
∫ t

0
(x̄− xs)ds and the specific component of

cross-sectional payouts wt = ϕ
∫ t

0
(x̄− xs)ds+ σϕBϕ,t. The vector belongs to the affine class

and has dynamics:

dXt =µ(Xt)dt+ Σ(Xt)dBt,
µ(Xt) =M+KXt,

Σ(Xt)Σ(Xt)
ᵀ =h+

∑
i∈{y,x,z,w}

HiXi,t,

with Brownian motions Bt = (By,t, Bx,t, Bz,t, Bw,t)
ᵀ and the following coefficients:

M =


µ+ x̄
λxx̄
0
ϕx̄

 , K =


0 −1 0 0
0 −λx 0 0
0 0 −λz 0
0 −ϕ 0 0

 ,

h =


0 0 0 0
0 0 0 0
0 0 σ2

z 0
0 0 0 σ2

ϕ

 , Hy = Hz = Hw =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Hx =


0 0 0 0
0 σ2

x 0 0
0 0 0 0
0 0 0 0

 .

The following selection vectors allow to recover consumption, aggregate payouts, and cross-
sectional payouts:

vC = (1, 0, 1, 0)ᵀ ⇒ vᵀCXt = logCt,

vD = (1, 0, φ, 0)ᵀ ⇒ vᵀDXt = logDt,

vϕ = (1, 0, φ, 1)ᵀ ⇒ vᵀϕXt = logDϕ
t .

Moment Generating Function

The following conditional expectation allows to compute the moment generating function
for the logarithm of C,D, and Dϕ at any future horizon τ :

Et[exp(uᵀXt+τ )] = exp(b̄0(τ) + b̄(τ)ᵀXt). (A1)

As shown in Duffie, Pan, and Singleton (2000), the functions b̄0(τ) and b̄(τ) =
(
b̄y(τ), b̄x(τ),

b̄z(τ), b̄w(τ)
)ᵀ

solve the following system of ODE’s:

b̄′0(τ) =Mᵀb̄(τ) +
1

2
b̄(τ)ᵀhb̄(τ),

b̄′(τ) =Kᵀb̄(τ) +
1

2
b̄(τ)ᵀHb̄(τ).
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By setting the initial conditions b̄0(0) = 0 and either b̄(0) = uvC , b̄(0) = uvD, or b̄(0) = uvϕ,
Eq. (A1) computes the time-t conditional expectation of either Ct+τ , Dt+τ , or Dϕ

t+τ with
power u respectively. These expectations can be used to build the term structure of growth
rates volatility.

Equity and State-Price Density

We follow Eraker and Shaliastovich (2008) and the state-price density based on recursive
preferences of Epstein and Zin (1989) type. To do so, we use the Campbell and Shiller
(1988) approximation to log-linearize the return Rt on the wealth of market participants
(that in our economy corresponds to the equity market and pays-out Dt):

d logRt = k0dt+ k1dpdt − (1− k1)pdtdt+ d logDt, (A2)

Where k0 and k1 are endogenous constants to be determined. We conjecture that the log
price-payout ratio (which is also the log wealth-consumption ratio of market participants) is
an affine function of Xt: pdt = A0 + AᵀXt.

We use Eq. (A2) to rewrite the state-price density dynamics as follows:

d logMt = θ log βdt− θ

ψ
d logDt − (1− θ)d logRt

= (θ log β − (θ − 1) log k1 + (θ − 1) (k1 − 1)Aᵀ (Xt − µX)) dt− λᵀdXt, (A3)

where λ = γvD +(1− θ) k1A and µX = (0, x̄, 0, 0)ᵀ. Then, the Euler equation can be written
as:

1 = Et
[
Mt+τ

Mt

e
∫ τ
0 d logRt+s

]
, ∀τ.

Since the term in the conditional expectation has to be a martingale, we apply Itô’s lemma
to compute its drift that we set equal to zero:

0 = θ log β + χᵀ (M+KXt) + θk0 − θ(1− k1)(A0 + AᵀXt) +
1

2
χΣ(Xt)

ᵀΣ(Xt)χ
ᵀXt, (A4)

where χ = θ
((

1− 1
ψ

)
vD + k1A

)
. Since Eq. (A4) holds for all Xt and we set the coefficients

on Xt and the residual constant equal to zero. The endogenous coefficients k1, A0 and
A = (Ay, Ax, Az, Aw)ᵀ are obtained by solving the following system:

0 =Kᵀχ− θ (1− k1)A+
1

2
χᵀHχ,

0 = θ (log β + k0 − (1− k1)A0) +Mᵀχ+
1

2
χᵀhχ,

θ log k1 = θ (log β + (1− k1)AᵀµX) +Mᵀχ+
1

2
χᵀhχ.

The solution coefficients should be inserted into (A3) to obtain the equilibrium state price
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density.24 The equity price is then given by Pt = Dt exp(A0 + AᵀXt), where Ay = Aw = 0.
Applying Itô’s Lemma to (A3) yields:

dMt

Mt

= (θ log β − (θ − 1) log k1 + (θ − 1) (k1 − 1)Aᵀ (Xt − µX) + µ(Xt)
ᵀλ) dt

+
1

2
λᵀΣ(Xt)λdt− λᵀΣ(Xt)dBt

= − (r0 + r̄ᵀXt) dt− λᵀΣ(Xt)dBt, (A5)

where the coefficients r0 and r̄ = (ry, rx, rz, rw)ᵀ are:

r0 = −θ log β + (θ − 1) (log k1 + (k1 − 1)AᵀµX) +Mᵀλ− 1

2
λᵀhλ,

r̄ = (1− θ) (k1 − 1)A+Kᵀλ− 1

2
λᵀHλ.

Therefore, the risk-free rate is given by rt = r0 + r̄ᵀXt and the vector of risk prices is given by
Ω(Xt) = (Ωy,Ωx,Ωz,Ωw)ᵀ = Σ(Xt)

ᵀλ, where it turns out that ry = rw = 0 and Ωy = Ωw = 0.
Consequently, the risk premium on equity is equal to RP (xt) = ((A + vD)ᵀΣ(Xt))Ω(Xt),
which is an affine function of xt only.

Term Structures

Following Duffie et al. (2000), the risk-neutral dynamics of Xt are given by:

dXt =
(
MQ +KQXt

)
dt+ Σ(Xt)dBQt ,

MQ =M− hλ,
KQ =K −Hλ,
dBQt = dBt + Σ(Xt)

ᵀλ dt.

Then, we can compute the discounted value of several payouts, such as Dt+τ , D
ϕ
t+τ , and the

unitary payout of a risk-less bond:

Et
[
Mt+τ

Mt

exp(vᵀXt+τ )

]
= EQ

[
exp(−

∫ τ

0

rt+sds+ vᵀXt+τ )

]
= exp(q0(τ) + q(τ)ᵀXt),

where v ∈ {vD, vϕ, (0, 0, 0, 0)ᵀ}. The deterministic function qo(τ) and q(τ) = (qy(τ), qx(τ),
qz(τ), qw(τ)) solve the following system of ODE’s:

q′0(τ) = − r0 +
(
MQ)ᵀq(τ) +

1

2
q(τ)ᵀh q(τ),

q′(τ) = −r̄ +
(
KQ
)ᵀ
q(τ) +

1

2
q(τ)ᵀHq(τ),

24Note that the above system of equations could yields multiple solutions. Tauchen (2011) proposes
to select the root which ensures the non-explosiveness of the system. Alternatively, one could select an
economically reasonable solution.
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with initial conditions q0(0) = 0 and q(0) = v.
Therefore, the strip price of the aggregate payout, the risk-less bond price, and the strip

price of the cross-sectional payout are given by

Pt,τ = exp(q0(τ) + q(τ)ᵀXt), with v = vD,

Bt,τ = exp(q0(τ) + q(τ)ᵀXt), with v = (0, 0, 0, 0)ᵀ,

Pϕ
t,τ = exp(q0(τ) + q(τ)ᵀXt), with v = vϕ.

For the strip price of the aggregate payout in Eq. (19), the price elasticities to the permanent
and short-run shocks satisfy:

ax(τ) =
2Ψ0√

Ψ2
1 − 4Ψ0Ψ2 coth

(
τ
2

√
Ψ2

1 − 4Ψ0Ψ2

)
−Ψ1

,

az(τ) =
φ

ψ
+ φ(1− 1/ψ)e−λzτ ,

where

Ψ0 = γ − 1 + Ax(1− k1(1− λx))
γ − 1/ψ

1− 1/ψ
+ A2

x

k2
1σ

2
x(γ − 1/ψ)2

2(1− 1/ψ)2
,

Ψ1 = − k1σ
2
xAx

γ − 1/ψ

1− 1/ψ
− λx,

Ψ2 =
σ2
x

2
.

For the risk-less bond price in Eq. (22), the price elasticities to the permanent and short-run
shocks satisfy:

bx(τ) =
2Φ0√

Φ2
1 − 4Φ0Φ2 coth

(
τ
2

√
Φ2

1 − 4Φ0Φ2

)
− Φ1

,

bz(τ) =
φ

ψ

(
1− e−λzτ

)
.

where Φ0 = Ψ0 + 1, Φ1 = Ψ1, and Φ2 = Ψ2. For the strip price of the cross-sectional payout
in Eq. (26), the price elasticities to the permanent and short-run shocks satisfy:

aϕx(τ) =
2Θ0√

Θ2
1 − 4Θ0Θ2 coth

(
τ
2

√
Θ2

1 − 4Θ0Θ2

)
−Θ1

,

aϕz (τ) =
φ

ψ
+ φ(1− 1/ψ)e−λzτ ,

where Θ0 = Ψ0 − ϕ, Θ1 = Ψ1, and Θ2 = Ψ2.
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Cross-Sectional Equity

The price of the stock paying out the stream Dϕ
t can be computed either as the time integral

of the corresponding strip price over any maturity or via an exponential affine approximation.
Such exponential affine approximation is given by

Pϕ
t = Dϕ

t exp(Aϕ0 + (Aϕ)ᵀXt).

The coefficients Aϕ0 , A
ϕ = (Aϕy , A

ϕ
x , A

ϕ
z , A

ϕ
w)ᵀ, and the endogenous constant kϕ1 solve the

following system:

0 = (θ − 1)(k1 − 1)A+ (kϕ1 − 1)Aϕ +Kᵀχϕ + (1/2)χᵀ
ϕHχϕ,

0 = θ log β − (θ − 1)(log k1 + (k1 − 1)AᵀµX)− (log kϕ1 + (kϕ1 − 1)(Aϕ)ᵀµX) +Mᵀχϕ

+ (1/2)χᵀ
ϕhχϕ,

0 =Aϕ0 + (Aϕ)ᵀµX − log kϕ1 + log(1− kϕ1 ),

where χϕ = vϕ + kϕ1A
ϕ− λ. It turns out that Aϕy = Aϕw = 0. Therefore, the risk premium on

the cross-sectional stock is equal to RPϕ(xt) = ((Aϕ + vϕ)ᵀΣ(Xt))Ω(Xt), which is an affine
function of xt only.

State-Price Density Decomposition

We follow Alvarez and Jermann (2005) and Hansen and Scheinkman (2009) and decom-
pose the equilibrium state-price density in its permanent (martingale) component and its
transitory component. The logarithm of the state-price density equals:

logMt = −
∫ t

0

(rs +
1

2
(Ω2

x(xs) + Ω2
z))ds−

∫ t

0

Ωx(xs)dBx,s − ΩzBz,t,

with logM0 = 0.
Example 6.2 in Hansen and Scheinkman (2009) nests the above functional form. The

permanent (martingale) component M̂t of the state-price density is given by

log M̂t = − 1

2
(cxσx − Ωx)

2

∫ t

0

xsds −
1

2
(czσz − Ωz)

2t

− (cxσx − Ωx)

∫ t

0

√
xsdBx,s − (czσz − Ωz)Bz,t,

where

cx =
λx + σxΩx −

√
2rxσ2

x + (λx + σxΩx)
2

σ2
x

,

cz = − rz
λz
,

with Ωx = Ωx(xt)/
√
xt. This decomposition allows us to verify that the state-price density
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satisfies the bound introduced by Alvarez and Jermann (2005), as reported in Section IV.A.

Proposition Proof

Our results are valid under the parametric restriction σ2
x < σ2

x, where

σ2
x =

ψλx (2γψ + k1 (−2γψ + (γψ + ψ − 2)λx + 2)− 2)

2k1(γψ − 1)2
. (A6)

In the steady-state, the equity premium equals 9.5% at the upper boundary σ2
x = σ2

x in
our baseline calibration. Since the equity premium is much lower in the data, the above
constraint is never binding in our analysis. Other parameter restrictions we impose are
0 < k1 < 1, 0 < λx < 1, γ > ψ > 1.

Lemma 1. Ψ0 < 0.

Proof. Note that Ψ0 is strictly increasing in σ2
x:

∂Ψ0

∂σ2
x

=
2k2

1(ψ − 1)(γψ − 1) (k1λx − k1 + 1)

Ξψ2 (k1 (λx − 1) + Ξ + 1) 2
> 0. (A7)

Furthermore, setting σ2
x = σ2

x (i.e., to its highest value given our constraint) yields Ψ0 < 0.
Since Ψ0 is strictly increasing in σ2

x, this implies that for σ2
x < σ2

x, Ψ0 is negative.

Lemma 2. Ψ1 < 0.

Proof. Note that Ψ1 is strictly increasing in σ2
x:

∂Ψ1

∂σ2
x

=
k1(γψ − 1)

Ξψ
> 0. (A8)

Furthermore, setting σ2
x = σ2

x (i.e., to its highest value given our constraint) yields Ψ1 = 0.
Since Ψ1 is strictly increasing in σ2

x, this implies that for σ2
x < σ2

x, Ψ1 is negative.

Lemma 3. Ax < 0.

Proof. Since Ax = − 2(1−1/ψ)
1−k1(1−λx)+Ξ

and ψ > 1, we simply need to verify that:

1− k1(1− λx) + Ξ > 0. (A9)

Since Ξ is a square root term and non-negative and since 0 < k1 < 1 and 0 < λx < 1, this
condition is satisfied.
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Part 1: Valuation ratios decrease with EGV:

We compute the derivative term:

∂

∂xt
log

Pt
Dt

=
Ax
Dt

exp (A0 + Axxt + Azzt) .

The above term is negative since Ax is negative as shown in Lemma 3.

Part 2: The slope of equity yields decreases with EGV:

We compute the cross-derivative term:

∂2

∂τ∂x
ey(t, τ) =

ax(τ)

τ 2
−

∂ax(τ)
∂τ

τ
= −

2Ψ0 (ω cosechω2 − cothω)
(√

Ψ2
1 − 4Ψ0Ψ2 + Ψ1

)
τ 2
(

Ψ1 − cothω
√

Ψ2
1 − 4Ψ0Ψ2

)2 .

(A10)
To determine the sign of (A10), note that the denominator contains a squared (real) term,
ans is therefore positive. We therefore focus on determining the sign of the numerator. The
term ω = τ

2

√
Ψ2

1 − 4Ψ0Ψ2 is strictly positive since Ψ0 < 0, Ψ1 < 0, Ψ2 > 0, and τ > 0,
Consequently, the trigonometric expressions satisfy ωcosechω2− cothω < 0 and cothω > 1.
Additionally considering Ψ0 < 0 and the minus sign in front of the expression, it suffices to
show that the following term is positive:√

Ψ2
1 − 4Ψ0Ψ2 + Ψ1.

Since Ψ0 < 0 and Ψ2 > 0, this condition is satisfied.

Part 3: The slope of the dividend strip risk premium increases with EGV:

We compute the cross-derivative term:

∂2

∂τ∂x
RPDS(xt, τ) =

Axk1σ
2
x

(
γ − 1

ψ

)
1− 1

ψ

∂

∂τ
ax(τ). (A11)

Given 0 < k1 < 1, γ > ψ > 1 and Ax < 0, a sufficient condition for showing that (A11) is
negative is that ∂ax(τ)/∂τ is negative, where

∂

∂τ
ax(τ) =

Ψ0 (Ψ2
1 − 4Ψ0Ψ2) (cosechω)2(

Ψ1 − cothω
√

Ψ2
1 − 4Ψ0Ψ2

)2 .

Considering that the expression contains two squared and hence positive terms, it suffices
to show that the following term is negative:

Ψ0

(
Ψ2

1 − 4Ψ0Ψ2

)
.
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Since, Ψ0 < 0 and Ψ2 > 0, this condition is satisfied.

Part 4: The value premium increases with EGV:

The coefficients Aϕx and Aϕz are derived using Eraker and Shaliastovich (2008):

Aϕx = Γ0 + Γ1

√
Γ2 −

2(ψ − 1)2ϕ

Γ1

and Aϕz = − φλz(1− 1/ψ)

1− kϕ1 (1− λz)
,

where Γ0, Γ1, and Γ2 are quantities that are a function of σx, k1, ψ, kϕ1 , γ, Ξ, and λx, are
independent of ϕ or xt. Specifically:

Γ0 =
(γ − 1)k1(ψ − 1)ψ2 − kϕ1 (ψ − 1)ψ(γψ + k1(λx − 1)(ψ − 1)− 1) + kϕ1 Ξ(γψ − 1)

(γ − 1)k1(kϕ1 )2σ2
x(ψ − 1)ψ2

,

Γ1 = − 1

(kϕ1 )2σ2
x(ψ − 1)2

,

Γ2 =
(ψ − 1)3

(
k21(ψ − 1)ψ

(
(γ − 1)ψ − (γ − 1)(kϕ1 )2ψ

(
2(γ − 1)σ2

x − (λx − 1)2
)

+ 2kϕ1 (λx(1− ψ) + ψ − 1)
))

(γ − 1)k21ψ
2

+
2k1k

ϕ
1 (γψ − 1)((ψ − 1)ψ(kϕ1 (λx − 1)− 1) + Ξ)− 2(kϕ1 )2(γψ − 1)

(
Ξ− ψ2 + ψ

)
(γ − 1)k21ψ

2
.

It is now sufficient to show the following cross-derivative of (25) is positive:

∂2

∂ϕ∂x
RPϕ(xt) = σ2

x

(
k1Ax (γ − 1/ψ)

1− 1/ψ

)
∂Aϕx
∂ϕ

= σ2
x

(
k1Ax (γ − 1/ψ)

1− 1/ψ

)
−(ψ − 1)2√
Γ2 − 2ϕ(ψ−1)2

Γ1

.

Since for σ2
x > 0, γ > ψ > 1, k1 > 0, this condition is satisfied if:

Ax√
Γ2 − 2ϕ(ψ−1)2

Γ1

< 0.

Since Ax < 0 from Lemma (3), and since we assume our model is well-defined (no imaginary
quantities), the denominator is positive and hence the above condition is satisfied.
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B Empirical Properties of the Transitory Component

of Economic Growth

Construction of the Transitory Process

The representation of Eq. (3)-(9) for the long- and short-run components of economic growth
naturally links to the model dynamics in Eq. (11)-(13). In this section, we compute and
analyze the properties of the process “transitoryt+1”, which corresponds to zt in the model.

First, we recover the empirical counterpart to the shock σzdBz,t in Eq. (13) by taking
the forecast error, defined as the difference between actual GDP growth and the SPF mean
forecast, i.e., εg,t+1 = gt+1 − ft,t+1 (see Eq. (3)). Second, we obtain a proxy for the drift
term of aggregate resources (corresponding to expected growth), namely Et[d logCt] = (µ+
x̄ − xt − λzzt)dt. To this end, we filter the permanent component out of expected growth,
as measured by the SPF mean forecast, by implementing the regression in Eq. (5) where
ft,t+1 is regressed on σt,t+1. The residual ef,t from such a specification captures the expected
transitory component of growth Et[dzt] = −λzztdt. Following Eq. (8), we can then compute
the transitory shock to growth at time t + 1 by summing εg,t+1 and ef,t, thus proxying for
dzt. By the same token, we build our model-based proxy for the zt process as:

transitoryt+1 =
∑
s≤t+1

∆transitorys =
∑
s≤t

(εg,s+1 + ef,s). (B1)

The above construction then derives the transitory component under the assumption
that our EGV measure drives the permanent component of expected growth (see Eq. (5)).
An immediate validity check boils down to comparing the transitory component against the
output gap —a well known proxy of the transitory component of economic growth. Appendix
Figure B1 shows that transitory shocks and changes in output gap strongly comove over the
entire sample 1968-2019 (with a correlation of 95.7%).

1970 1980 1990 2000 2010 2020

−0.02

0.00

0.02

∆transitory
∆output gap

Figure B1: Transitory Shocks and Output Gap. This figure plots the changes of the
transitory process from Eq. (B1) and the changes of output gap.

The Brownian shocks in Eq. (12)-(13) are independent. This assumption finds support in
the data. We build the empirical counterparts of the Brownian shocks dBx,t and dBz,t as the
innovations to the processes σt,t+1 and “transitoryt+1”, respectively (for which we assume,
in accord with the model, a square-root and a linear autoregressive dynamics discretized at
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quarterly frequency). We find that the correlation between these innovations is not statis-
tically different from zero. The same result obtains when replacing “transitoryt+1” by the
output gap. Below, we further analyze the properties of the transitory component.

Stationarity, Heteroscedasticity, and Cyclicality

In Appendix Table B1, we test for the stationarity of transitoryt+1 by means of Augmented
Dickey-Fuller (ADF) tests. The objective is to verify if the unit root of economic growth
is indeed driven by the permanent component in Eq. (7) alone. Due to uncertainty as to
the specification of ADF tests, we define the underlying model in a less restrictive way by
including a drift term (Dolado, Jenkinson, and Sosvilla-Rivero, 1990). In column 1, we allow
for the presence of a lag in the specification, whereas in column 2 we select the optimal
number of lags by means of the Akaike information criterion. In each case, we are able
to reject the null hypothesis of the presence of a unit root in the transitory component of
economic growth. This is reassuring for our modeling assumptions, especially in the light of
the well-known low statistical power issues of ADF tests.

Table B1: Stationarity of the Transitory Process

(1) (2)

ADF lags 1 12
ADF stat -2.29 -2.64
p-value 0.01 0.00
Observations 205 205

Note. This table reports results from tests of stationarity of the transi-
tory process in Eq. (B1). ADF tests with a drift in the underlying model
are presented. The number of lags included in the ADF specification is
equal to one in column 1, whereas it is optimally selected according to
the Akaike information criterion in column 2.

The process in Eq. (13) assumes a constant volatility σz for zt, whereas the volatility
of xt in Eq. (12) is time-varying and defined as σx

√
xt. In other words, we assume zt

and xt to be homoscedastic and heteroscedastic, respectively. To test such assumptions, in
Appendix Figure B2 we plot the residuals against the fitted values from AR(1) models for
the transitory process—which proxies for zt—and EGV (σ)—which proxies for xt. In line
with the assumption of homoscedasticity of zt, the left graph displays no clear pattern, with
the residuals pretty evenly scattered over the plot. By contrast, the right graph for EGV
clearly shows that the dispersion of residuals increases with the fitted values, pointing to the
heteroscedasticity of xt.

To further investigate our assumption of homoscedasticity of zt, we compute the condi-
tional volatility of “transitoryt+1” as the four-quarter moving average of |εg,t+1| and verify
its dependence on the permanent growth process as proxied by EGV by means of a linear
regression (untabulated). We find that EGV loads positively and significantly, pointing to
some degree of heteroscedasticity in “transitoryt+1”, which is nonetheless of modest eco-
nomic magnitude. Whereas this result corroborates the homoscedastacity of zt, in Section
V.B we present a model extension allowing for this form of heteroscedasticity. The main
model mechanism is not affected and the model predictions remain essentially unchanged.

59

Electronic copy available at: https://ssrn.com/abstract=3764505



Finally, in Appendix Table B2 we assess the cyclicality of “transitoryt+1” by estimating
the same specifications seen for EGV in Table 1. As we would expect, “transitoryt+1” appears
to be strongly procyclical irrespective of the business or financial cycle measure we consider.
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Figure B2: Heteroscedasticity in the Transitory and Permanent Component
of Growth. This figure plots residuals against fitted values from AR(1) models for our
measure of the transitory process (Eq. (B1), left graph) and for EGV (σ, right graph). All
variables are standardized.

Table B2: The Cyclicality of the Transitory Process

Transitory Process

(1) (2) (3) (4) (5)

Constant 0.193∗∗∗ 0.187∗∗∗ 0.244∗∗∗ 0.194∗∗∗ -0.445∗∗∗

(15.85) (16.12) (7.76) (19.53) (-7.45)
NBER Recession -0.063∗

(-1.93)
Detrended Labor Share -0.629∗∗

(-2.03)
Default Spread -0.056∗∗

(-2.08)
NFCI -0.043∗∗∗

(-5.80)
ln(P/D) 0.174∗∗∗

(11.40)

Observations 205 205 205 196 205
Adj. R2 0.06 0.05 0.06 0.26 0.54

Note. This table reports estimates from contemporaneous regressions at quarterly fre-
quency of the transitory process in Eq. (B1) on selected measures of macroeconomic (NBER
recessions and the detrended labor share) and financial conditions (the default spread, the
NFCI, and the logarithm of the price-dividend ratio of the CRSP value-weighted index)
over the period 1968-2019. The t-statistics are reported in parentheses and are based on
Newey-West standard errors with a number of lags equal to the integer part of T 0.25, where
T is the number of observations. Significance at the 10%, 5%, and 1% levels is indicated
by ∗, ∗∗, ∗∗∗, respectively. Detailed variable definitions are provided in Appendix Table C1.
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C Other Results
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Table C1: Definition of Main Variables

Variable Sources Definition

Realized and Expected Growth (Volatility)
g FRED Actual quarterly growth rates for real GDP, PCE, IP, and CP. For consistency with SPF mean growth forecest

about CP, the latter time series is adjusted for inventory valuation and capital consumption adjustments around
2006.

f SPF Quarterly mean growth forecasts for real GDP, PCE, IP, and CP.
σ SPF EGV of growth based on mean growth forecasts of real GDP, PCE, IP, and CP for the next quarter and on equations

(1)-(2).
σ (AR(MA)(1,1)-(G)ARCH(1,1)) SPF EGV based on mean growth forecasts of real GDP, PCE, IP, and CP for the next quarter and on a AR(MA)(1,(1))-

(G)ARCH((1),1) model for conditional volatility.
σCond. SPF, FRED EGV of GDP growth based on filtered forecasts of GDP, i.e., residuals from a regression of mean growth forecasts

of GDP for the next quarter on the (de-trended) labor share of the nonfinancial corporate sector. The econometric
approach is the same as in equations (1)-(2).

σDisp. SPF The difference between the 75th and the 25th percentile of real GDP growth forecasts for the next quarter.

Stock Market
ln(P/D) CRSP, Robert Shiller’s

Webpage
Natural logarithm of the quarterly price-dividend ratio of the CRSP value-weighted index or of the S&P 500 index.
The baseline analysis relies on the CRSP index, except when using data on equity yields from BBK12: because those
yields are extracted from options on the S&P 500 index, in that case we use information on the S&P 500 index. To
extract information on dividends on the CRSP index, we exploit differences between total and ex-dividend returns
as in Eaton and Paye (2017). As in Eaton and Paye (2017), we then compute dividends in a given month as the
moving average over the previous year to mitigate seasonal patterns. Available data both for the CRSP and the
S&P 500 index are monthly and are converted to quarterly frequency by taking the average of the ratio over the
previous three months in each quarter.

Equity Yield Slope (GKK21) GKK21 Difference between a long-maturity yield (ey(t, long)) and the two-year equity yield (ey(t, short)), where yields are
model-implied measures. The maturity of the long-maturity yield ranges between ten and 100 years. A measure
relying on the dividend yield of the CRSP value-weighted index as ey(t, long) is also computed. Available data are
monthly and are converted to quarterly frequency by taking the average of the yields over the previous three months
in each quarter.

Equity Yield Slope (BBK12) BBK12 Difference between the S&P 500 dividend yield (ey(t, long)) and short-maturity equity yields (ey(t, short)), whose
maturity ranges between 0.5 and two years. Short-maturity equity yields are extracted from data on dividend prices

and current dividends by BBK12 by means of the formula ey(t, short) = − 1
n

ln
(
Pn,t

nDt

)
, where Pn,t denotes the price

of dividends up to maturity n at time t, Dt is the current annual dividend at time t, and n = 0.5, 1, 2 years. Note
that, differently from the standard formula to extract equity yields from dividend futures (e.g., Bansal et al., 2021),
Pn,t is obtained from option prices and needs to be divided by n. Indeed, Pn,t in BBK12 is the price of a claim on
all dividends paid up to maturity n (i.e., not on the single dividend paid at date n). Available data are monthly
and are converted to quarterly frequency by taking the average of the yields over the previous three months in each
quarter.

(Continued)
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Table C1: – Continued

Equity Term Premium CRSP, GKK20, FRED Difference between the CRSP value-weighted index logarithmic real return (long-maturity claim) and the logarithmic
real return on the two-year dividend strip based on the corresponding model-implied equity yield by GKK20. CRSP
index returns are monthly and are converted to quarterly frequency by summing them over the previous three
months in each quarter. The quarterly return on two-year dividend strip at time t is computed as −1.75ey1.75,t +

2ey2,t−0.25 + ln
(

Dt
Dt−0.25

)
, where the 1.75-year equity yield is obtained by interpolating the one- and the two-year

yields. Finally, the one-quarter to ten-year ahead cumulative equity term premia are computed.
Value, Growth, Value – Growth Kenneth French’s

Website
Real dividend growth rates and returns on the value (growth) returns correspond to the top (bottom) decile of
stocks sorted on the book-to-market ratio and their difference (value–growth), where portfolio construction follows
Fama and French (1992). Portfolio dividend growth rates and returns are monthly and are converted to quarterly
frequency by summing them over the previous three months in each quarter. Finally, the one to ten-year ahead
cumulative dividend growth rates and returns for each of the three portfolio strategies are computed. To extract
information on dividend growth rates on the top and bottom decile portfolio of stocks sorted on the book-to-market
ratio, we exploit differences between total and ex-dividend returns as in Eaton and Paye (2017). As in Eaton and
Paye (2017), we then compute dividends in a given month as the moving average over the previous year to mitigate
seasonal patterns. Available data both for the CRSP and the S&P 500 index are monthly and are converted to
quarterly frequency by taking the average of the ratio over the previous three months in each quarter.

Other macrofinance variables
Inflation FRED Quarterly logarithmic inflation rate computed from the seasonally adjusted Consumer Price Index for All Urban

Consumers (CPI). The conversion of other variables in real terms is based on this CPI measure.
NBER Recession FRED Indicator equal to one if at least one month in a given quarter is classified as a recession by the NBER. Each

observation corresponds to the first month of the quarter.
Detrended Labor Share FRED Resisuals from a regression of the labor share for employees of the nonfinancial corporate sector on a time trend.
CFNAI FRED The three-month moving average of the CFNAI as of the end of the first month of each quarter.
NFCI SPF Chicago Fed’s NFCI at quarterly frequency.
Default Spread FRED The difference between the yield to maturity of Aaa- and Baa-rated corporate bonds. Available data are monthly

and are converted to quarterly frequency by taking the average of the spread over the previous three months in each
quarter.
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Table C2: Goodness of Fit of Alternative EGV Specifications

RMSE Correlation with baseline

Specification (1) (2)

Panel A

σ – Eq. (1)-(2) 0.0021 1.0000
σ (AR(1)-ARCH(1)) 0.0029 0.6451
σ (AR(1)-GARCH(1,1)) 0.0030 0.8904
σ (ARMA(1,1)-ARCH(1)) 0.0030 0.6568
σ (ARMA(1,1)-GARCH(1,1)) 0.0030 0.8841

Panel B

σCond. – Eq. (1)-(2) 0.0020 0.9966
σCond. (AR(1)-ARCH(1)) 0.0028 0.6463
σCond. (AR(1)-GARCH(1,1)) 0.0029 0.8788
σCond. (ARMA(1,1)-ARCH(1)) 0.0029 0.6590
σCond. (ARMA(1,1)-GARCH(1,1)) 0.0030 0.8729

Panel C

σPCE – Eq. (1)-(2) 0.0015 0.6811
σPCE (AR(1)-ARCH(1)) 0.0022 0.4156
σPCE (AR(1)-GARCH(1,1)) 0.0023 0.6440
σPCE (ARMA(1,1)-ARCH(1)) 0.0021 0.4375
σPCE (ARMA(1,1)-GARCH(1,1)) 0.0023 0.6731

Panel D

σIP – Eq. (1)-(2) 0.0051 0.8905
σIP (AR(1)-ARCH(1)) 0.0069 0.6170
σIP (AR(1)-GARCH(1,1)) 0.0068 0.8160
σIP (ARMA(1,1)-ARCH(1)) 0.0071 0.6261
σIP (ARMA(1,1)-GARCH(1,1)) 0.0068 0.8127

Panel E

σCP – Eq. (1)-(2) 0.0129 0.6910
σCP (AR(1)-ARCH(1)) 0.0185 0.4230
σCP (AR(1)-GARCH(1,1)) 0.0191 0.6760
σCP (ARMA(1,1)-ARCH(1)) 0.0180 0.4523
σCP (ARMA(1,1)-GARCH(1,1)) 0.0187 0.6672

Note. This table, in column 1, reports the root-mean-square error (RMSE)

RMSE =
(

(1/T )
∑T−1

t=0

(
|vt+1| − σt,t+1

)2)1/2

from several specifications at quarterly frequency of conditional and volatility
models as well as the correlation of the EGV measure they generate with the
baseline EGV measure (i.e., based on Eq. (1)-(2)) in column 2 for the period
1968-2019. In Panel A, the EGV measures are estimated from GDP growth
forecasts. In Panel B, the EGV measures are estimated after conditioning
growth forecasts on the (de-trended) labor share of the corporate sector. In
Panel C, D, and E, the EGV measures are estimated from PCE, IP, and CP
growth forecasts, respectively. Detailed variable definitions are provided in
Appendix Table C1.
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Table C3: Equity Yield Slope, EGV, and Expected Growth Tails

Panel A

nth quantile of g

(1) (2) (3) (4) (5) (6)
5th 10th 25th 75th 90th 95th

Constant -0.004∗∗ -0.000 0.003∗∗∗ 0.008∗∗∗ 0.011∗∗∗ 0.013∗∗∗

(-2.46) (-0.18) (6.06) (13.83) (17.16) (18.38)
Equity Yield Slope 0.048∗∗ 0.050∗∗∗ 0.029∗∗∗ 0.002 -0.017∗∗ -0.023∗∗∗

(MKT-2Y, GKK21) (2.15) (3.31) (5.72) (0.59) (-2.19) (-2.79)

Observations 180 180 180 180 180 180
Pseudo R2 0.23 0.22 0.11 0.00 0.05 0.09

Panel B

nth quantile of g

(1) (2) (3) (4) (5) (6)
5th 10th 25th 75th 90th 95th

Constant 0.007∗∗∗ 0.007∗∗∗ 0.007∗∗∗ 0.007∗∗∗ 0.007∗∗∗ 0.006∗∗∗

(14.67) (16.45) (14.55) (16.61) (13.29) (7.25)
σ -3.198∗∗∗ -3.044∗∗∗ -1.743∗∗∗ 0.810∗∗∗ 1.675∗∗∗ 2.694∗∗∗

(-10.65) (-10.35) (-4.08) (3.18) (3.35) (7.73)

Observations 205 205 205 205 205 205
Pseudo R2 0.47 0.39 0.15 0.07 0.15 0.16

Note. This table reports estimates from contemporaneous quantile regressions at quarterly
frequency of expected GDP growth (g) on either the equity yield slope in Panel A or EGV (σ)
in Panel B. The dependent variable is the nth quantile of the mean GDP forecast from SPF
(g),. The relevant quantile is indicated at the top of each column. Panel A uses the equity yield
slope computed as the difference between the dividend yield of the CRSP value-weighted index
and the model-implied two-year equity yield of GKK21 for the period 1974-2019. Panel B uses
our baseline EGV for the period 1968-2019. The t-statistics are reported in parentheses and
are based on robust standard errors. Significance at the 10%, 5%, and 1% levels is indicated
by ∗, ∗∗, ∗∗∗, respectively. Detailed variable definitions are provided in Appendix Table C1.
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Table C4: Alternative Equity Term Premium Measures and
EGV

10Y-Ahead Equity Term Premium

MKT-2Y (GKK21) 100Y-2Y (GKK21) MKT-ST (BBK12)

(1) (2) (3)

Constant 0.640∗ 0.120 -5.231∗∗∗

(1.87) (0.26) (-9.74)
σ 416.383∗∗∗ 273.158 1485.352∗∗∗

(3.47) (1.65) (4.40)

Observations 137 137 11
Adj. R2 0.21 0.08 0.61
No. lags (Newey-West) 3 3 1

Note. This table reports estimates from regressions at quarterly fre-
quency of alternative measure of the equity term premium on EGV
(σ). The equity term premium is the ten-year ahead cumulative
long-minus-short equity return. In column 1, the long leg is the
CRSP index return and the short one is the two-year dividend strip
return. In column 2, the long leg is the 100-year dividend strip re-
turn and the short one is the two-year dividend strip return. The
strip returns are obtained from data by GKK21 on model-implied
equity yields for the period 1974-2019. In column 3, the long leg is
the S&P 500 index return and the short one is the return on the
BBK12 long strategy in the short-term asset over the period 1996-
2009. The t-statistics are reported in parentheses and are based
on Newey-West standard errors with a number of lags equal to the
integer part of T 0.25, where T is the number of observations. Sig-
nificance at the 10%, 5%, and 1% levels is indicated by ∗, ∗∗, ∗∗∗,
respectively. Detailed variable definitions are provided in Appendix
Table C1.
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Table C5: The Cyclicality of the Equity Term Structure

Panel A

Equity Yield Slope (MKT-2Y, GKK21)

(1) (2) (3) (4) (5)

Constant 0.026∗∗∗ 0.017∗ 0.126∗∗∗ 0.012 -0.524∗∗∗

(2.65) (1.77) (7.29) (1.46) (-19.58)
NBER Recession -0.076∗∗∗

(-2.73)
Detrended Labor Share -0.262

(-0.82)
Default Spread -0.100∗∗∗

(-9.01)
NFCI -0.047∗∗∗

(-8.12)
ln(P/D) 0.148∗∗∗

(18.49)

Observations 180 180 180 180 180
Adj. R2 0.11 0.01 0.38 0.33 0.70

Panel B

Equity Yield Slope (MKT-2Y, BBK12)

(1) (2) (3) (4) (5)

Constant 0.012 0.011 0.049∗ -0.016 0.562
(0.84) (0.85) (1.73) (-0.98) (1.22)

NBER Recession -0.090∗∗∗

(-2.83)
Detrended Labor Sshare -1.339∗∗∗

(-2.88)
Default Spread -0.052∗∗∗

(-3.41)
NFCI -0.048∗∗∗

(-3.14)
ln(P/D) -0.139

(-1.23)

Observations 55 55 55 55 55
Adj. R2 0.17 0.31 0.09 0.15 0.14
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Panel C

10Y-Ahead Equity Term Premium (MKT-2Y, GKK21)

(1) (2) (3) (4) (5)

Constant 1.567∗∗∗ 1.852∗∗∗ -0.308 1.689∗∗∗ 12.767∗∗∗

(6.21) (7.16) (-0.71) (8.21) (22.89)
NBER Recession 0.825

(1.44)
Detrended Labor Share -8.900

(-0.81)
Default Spread 1.819∗∗∗

(6.48)
NFCI 0.813∗∗∗

(7.72)
ln(P/D) -3.090∗∗∗

(-19.71)

Observations 137 137 137 137 137
Adj. R2 0.03 0.01 0.27 0.29 0.90

Note. This table reports estimates from regressions at quarterly frequency
of the equity yield slope and the equity term premium on several measures
proxying for the state of the economy. Such measures comprise an indicator
for NBER recessions, the detrended labor share, the default spread, the
NFCI, and the logarithm of the price-dividend ratio of the CRSP value-
weighted index. In Panel A, the dependent variable is a measure of the
equity yield slope based on data by GKK21 for the period 1974-2019. In
Panel B, the dependent variable is a measure of the equity yield slope based
on data by BBK12 for the period 1996-2009. In Panel C, the dependent
variable is the ten-year ahead equity term premium. The maturities of the
long and short legs considered to compute the equity yield slope and the
equity term premium are indicated in table headers. The t-statistics are
reported in parentheses and are based on Newey-West standard errors with
a number of lags equal to the integer part of T 0.25, where T is the number of
observations. Significance at the 10%, 5%, and 1% levels is indicated by ∗,
∗∗, ∗∗∗, respectively. Detailed variable definitions are provided in Appendix
Table C1.
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Table C6: Equity Term Structure, EGV, and Other Factors

Panel A

Equity Yield Slope (MKT-2Y, GKK21)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Constant 0.065∗∗∗ 0.064∗∗∗ 0.065∗∗∗ 0.072∗∗∗ 0.072∗∗∗ 0.072∗∗∗ 0.064∗∗∗ 0.065∗∗∗ 0.064∗∗∗ 0.065∗∗∗ 0.065∗∗∗ 0.066∗∗∗

(5.20) (5.45) (5.05) (5.72) (5.56) (5.41) (5.36) (5.28) (5.12) (5.25) (5.23) (5.12)
σ -21.809∗∗∗ -21.067∗∗∗ -21.589∗∗∗ -22.507∗∗∗ -22.507∗∗∗ -22.507∗∗∗ -21.233∗∗∗ -21.659∗∗∗ -21.280∗∗∗ -21.666∗∗∗ -21.922∗∗∗ -22.326∗∗∗

(-4.98) (-5.67) (-5.24) (-3.84) (-3.82) (-3.69) (-5.42) (-5.04) (-4.91) (-5.49) (-4.98) (-4.92)
f ⊥ σ 2.941∗∗

(2.08)
σg−f ⊥ σ -3.478

(-1.04)
fPCE ⊥ σ 3.709

(1.36)
σPCE ⊥ σ -20.352∗∗∗

(-3.50)
σgPCE−fPCE

⊥ σ -0.914
(-0.15)

fIP ⊥ σ 1.200∗

(1.81)
σIP ⊥ σ -2.668

(-0.84)
σgIP−fIP ⊥ σ -4.301∗∗∗

(-2.74)
fCP ⊥ σ 0.425∗∗

(2.03)
σCP ⊥ σ 0.442

(0.58)
σgCP−fCP

⊥ σ 0.395
(1.06)

Observations 180 180 180 154 154 154 180 180 180 180 180 180
Adj. R2 0.25 0.29 0.26 0.20 0.25 0.17 0.28 0.26 0.29 0.28 0.25 0.26
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Panel B

Equity Yield Slope (MKT-2Y, BKK12)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Constant 0.036∗∗ 0.026 0.047∗∗∗ 0.033∗ 0.034∗ 0.036∗ 0.026 0.037∗∗ 0.029∗ 0.032∗∗ 0.026 0.031∗

(2.12) (1.53) (3.82) (1.95) (1.79) (1.77) (1.55) (2.06) (1.68) (2.07) (1.53) (1.75)
σ -19.323∗∗∗ -12.998∗∗∗ -25.289∗∗∗ -17.483∗∗∗ -18.605∗∗∗ -19.389∗∗∗ -11.198∗∗∗ -20.096∗∗∗ -13.948∗∗∗ -20.122∗∗∗ -15.632∗∗∗ -14.537∗∗

(-4.19) (-3.93) (-7.59) (-4.00) (-3.68) (-3.97) (-2.92) (-2.73) (-2.72) (-4.93) (-3.09) (-2.16)
f ⊥ σ 7.617∗∗∗

(2.89)
σg−f ⊥ σ -21.056∗∗∗

(-3.56)
fPCE ⊥ σ 3.383

(1.26)
σPCE ⊥ σ 9.610

(0.41)
σgPCE−fPCE

⊥ σ -0.331
(-0.02)

fIP ⊥ σ 4.851∗∗∗

(3.17)
σIP ⊥ σ -1.730

(-0.17)
σgIP−fIP ⊥ σ -4.859∗∗∗

(-2.73)
fCP ⊥ σ 1.448∗∗∗

(2.81)
σCP ⊥ σ 2.107∗∗∗

(3.14)
σgCP−fCP

⊥ σ -0.414
(-0.94)

Observations 55 55 55 55 55 55 55 55 55 55 55 55
Adj. R2 0.14 0.26 0.29 0.14 0.13 0.12 0.32 0.12 0.18 0.32 0.20 0.13
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Panel C

10Y-Ahead Equity Term Premium (MKT-2Y, GKK21)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Constant 0.640∗ 0.649∗ 0.630∗ 0.284 0.149 0.229 0.640∗ 0.650∗∗ 0.634∗ 0.664∗ 0.640∗ 0.722∗∗

(1.87) (1.92) (1.91) (0.72) (0.40) (0.56) (1.86) (2.01) (1.86) (1.97) (1.88) (2.06)
σ 416.383∗∗∗ 412.407∗∗∗ 408.560∗∗∗ 498.512∗∗ 524.977∗∗ 508.823∗∗ 416.193∗∗∗ 403.665∗∗∗ 433.568∗∗∗ 407.713∗∗∗ 415.087∗∗∗ 380.093∗∗∗

(3.47) (3.50) (4.05) (2.43) (2.58) (2.38) (3.46) (3.62) (3.50) (3.56) (3.53) (3.08)
f ⊥ σ -10.311

(-0.32)
σg−f ⊥ σ 160.711∗∗

(2.47)
fPCE ⊥ σ 2.728

(0.06)
σPCE ⊥ σ 381.210∗∗∗

(2.74)
σgPCE−fPCE

⊥ σ 101.203
(0.94)

fIP ⊥ σ -0.344
(-0.02)

σIP ⊥ σ 98.441
(1.47)

σgIP−fIP ⊥ σ 103.991∗∗

(2.01)
fCP ⊥ σ -5.458

(-1.14)
σCP ⊥ σ 1.944

(0.12)
σgCP−fCP

⊥ σ -15.422
(-1.15)

Observations 137 137 137 110 110 110 137 137 137 137 137 137
Adj. R2 0.21 0.20 0.25 0.15 0.23 0.16 0.20 0.23 0.25 0.22 0.20 0.23

Note. This table reports estimates from regressions at quarterly frequency of the equity yield slope and the equity term premium on EGV
and other orthogonal measures of growth. In Panel A, the dependent variable is a measure of the equity yield slope based on data by
GKK21 for the period 1974-2019. In Panel B, the dependent variable is a measure of the equity yield slope based on data by BBK12 for the
period 1996-2009. In Panel C, the dependent variable is the ten-year ahead equity term premium. The maturities of the long and short legs
considered to compute the equity yield slope and the equity term premium are indicated in table headers. In each panel, column 1 regresses
the dependent variable on baseline EGV (σ) alone. Each of columns 2-12 augments such a specification with a measure of growth orthogonal
to EGV. The considered measures—all orthogonalized with respect to baseline EGV—are the GDP growth forecast (f ⊥ σ), the conditional
volatility of residual GDP growth (σg−f ⊥ σ), the EGV of PCE (fPCE ⊥ σ), the PCE growth forecast (σPCE ⊥ σ), the conditional volatility
of residual PCE growth (σgPCE−fPCE

⊥ σ), EGV of IP (fIP ⊥ σ), the IP growth forecast (σIP ⊥ σ), the conditional volatility of residual IP
growth (σgIP−fIP ⊥ σ), the EGV of CP growth (fCP ⊥ σ), the CP growth forecast (σCP ⊥ σ), and the conditional volatility of residual CP
growth (σgCP−fCP

⊥ σ). The t-statistics are reported in parentheses and are based on Newey-West standard errors with a number of lags
equal to the integer part of T 0.25, where T is the number of observations. Significance at the 10%, 5%, and 1% levels is indicated by ∗, ∗∗,
∗∗∗, respectively. Detailed variable definitions are provided in Appendix Table C1.
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Table C7: Equity Term Structure, EGV, and the Covariance of Expected
Growth Innovations with Residual Growth

Equity Yield Slope 10Y-Ahead Equity Term Premium

MKT-2Y (GKK21) MKT-2Y (BBK12) MKT-2Y (GKK21)

(1) (2) (3) (4) (5) (6)

Constant 0.717∗∗∗ 0.913∗∗∗ 0.390 0.510∗∗ 0.520∗∗ 0.416∗

(3.46) (5.37) (1.36) (2.56) (2.12) (1.84)
σRW -0.374∗∗∗ -0.294 0.442∗∗∗

(-3.29) (-1.45) (3.51)
CovRW (v, g − f) ⊥ σRW -0.199∗ -0.508∗ 0.083

(-1.67) (-2.00) (0.65)
σ -0.549∗∗∗ -0.430∗∗∗ 0.517∗∗∗

(-5.60) (-3.34) (4.01)
CovRW (v, g − f) ⊥ σ -0.068 -0.380 0.050

(-0.68) (-1.58) (0.43)

Observations 180 180 55 55 137 137
Adj. R2 0.12 0.25 0.18 0.20 0.15 0.21

Note. This table reports estimates from regressions at quarterly frequency of the
equity yield slope and the equity term premium on EGV and other measures of
growth. In columns 1-2, the dependent variable is a measure of the equity yield slope
based on data by GKK21 for the period 1974-2019. In columns 3-4, the dependent
variable is a measure of the equity yield slope based on data by BBK12 for the period
1996-2009. In columns 5-6, the dependent variable is the ten-year ahead equity term
premium. The maturities of the long and short legs considered to compute the equity
yield slope and the equity term premium are indicated in the table header. Odd
columns regress the dependent variable on: (i) σRW , namely the standard deviation
of residuals v from an AR(1) model for GDP growth forecast as in Eq. (1), computed
over a rolling window of five observations, and (ii) CovRW (v, g− f) ⊥ σRW , namely
the covariance between v and residual GDP growth, computed over a rolling window
of five observations and orthogonalized with respect to σRW . Even columns regress
the dependent variable on: (i) σ, namely baseline EGV, and (ii) CovRW (v, g−f) ⊥ σ,
namely the covariance between v and residual GDP growth, computed over a rolling
window of five observations and orthogonalized with respect to σ. Both dependent
and explanatory variables are standardized to favor readibility. The t-statistics are
reported in parentheses and are based on Newey-West standard errors with a number
of lags equal to the integer part of T 0.25, where T is the number of observations.
Significance at the 10%, 5%, and 1% levels is indicated by ∗, ∗∗, ∗∗∗, respectively.
Detailed variable definitions are provided in Appendix Table C1.
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Table C8: Alternative EGV Measures and Asset Prices

Price Dynamics Equity Yield Slope (MKT-2Y) Equity Term Premium (MKT-2Y) 10Y-Ahead Value-Growth Premium

(1) (2) (3) (4) (5) (6) (7)
ln(P/D) σln(P/D) BBK12 GKK21 10Y-Ahead (GKK21) Div. growth Return

σ (AR(1)-ARCH(1)) -102.657∗∗∗ 4.274∗∗ -24.293∗∗∗ -29.603∗∗∗ 325.252∗∗∗ 108.009∗ 66.518
(-4.367) (2.315) (-4.247) (-3.59)5 (2.864) (1.667) (1.273)

σ (AR(1)-GARCH(1,1)) -100.499∗∗∗ 3.860∗∗∗ -17.450∗∗∗ -14.730∗∗∗ 380.074∗∗∗ 138.191∗∗ 85.912∗∗

(-5.984) (3.321) (-4.954) (-3.168) (3.898) (2.438) (2.098)
σ (ARMA(1,1)-ARCH(1)) -89.392∗∗∗ 3.855∗∗ -20.024∗∗∗ -24.713∗∗∗ 274.454∗∗∗ 93.616∗ 55.768

(-4.687) (2.562) (-4.150) (-3.407) (2.841) (1.664) (1.192)
σ (ARMA(1,1)-GARCH(1,1)) -98.950∗∗∗ 3.993∗∗∗ -16.470∗∗∗ -14.720∗∗∗ 359.289∗∗∗ 135.407∗∗ 84.247∗∗

(-6.166) (3.589) (-4.678) (-3.060) (3.780) (2.482) (2.079)
σDisp. -112.004∗∗∗ 1.713 -19.739∗∗∗ -35.546∗∗∗ 397.434∗∗∗ 106.136∗∗ 105.808∗∗∗

(-9.981) (1.292) (-7.245) (-4.616) (6.098) (2.289) (3.321)
σCond. -118.676∗∗∗ 4.777∗∗∗ -21.908∗∗∗ -19.230∗∗∗ 424.917∗∗∗ 120.845∗ 81.090

(-5.841) (3.302) (-4.877) (-3.976) (3.451) (1.736) (1.490)
σPCE -123.709∗∗∗ 4.736∗∗∗ -26.527∗∗∗ -20.684∗∗ 519.726∗∗∗ -201.925∗∗ -145.289∗∗

(-3.706) (3.015) (-4.661) (-2.257) (3.252) -2.527 -2.152
σIP -49.803∗∗∗ 1.654∗∗ -8.084∗∗∗ -9.677∗∗∗ 158.241∗∗∗ 38.170 31.709∗

(-7.841) (2.212) (-6.428) (-2.952) (4.900) (1.515) (1.747)
σCP -14.153∗∗∗ 0.638∗∗∗ -1.996∗∗ 0.880 40.832∗∗ 4.400 -1.332

(-3.211) (2.996) (-2.498) (0.875) (2.370) (0.411) (-0.156)

Note. This table reports slope estimates from regressions at quarterly frequency of several of asset pricing quantities on
alternatives measures of the EGV of GDP (and of other macroeconomic aggregates). The dependent variables are the logarithm
of the price-dividend ratio of the CRSP value-weighted index, its conditional volatility computed following Eq. (2), the equity
yield slope based either on GKK21 or BBK12 data, the ten-year ahead cumulative equity term premium based on GKK21 data,
and the ten-year ahead cumulative dividend growth and return on value (firms belonging to the top decide of the book-to-market
ratio), growth (firms belonging to the bottom decide of the book-to-market ratio) and value-minus-growth portfolios. The EGV
measures include AR(MA)(1,1)-(G)ARCH(1,1) specifications, the cross-sectional dispersion of GDP growth forecasts (σDisp.) as
well EGV based on Eq. (1)-(2) applied to growth forecasts for: GDP after removing the cyclical component as captured by the
detrended labor share of the corporate sector (σCond.), PCE (σPCE), IP (σIP), and CP (σCP). The t-statistics are reported in
parentheses and are based on Newey-West standard errors with a number of lags equal to the integer part of T 0.25, where T is
the number of observations. Significance at the 10%, 5%, and 1% levels is indicated by ∗, ∗∗, ∗∗∗, respectively. Detailed variable
definitions are provided in Appendix Table C1.
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Table C9: Alternative Calibration: Standard Moments

Moment Data Model

2.5% 5% 50% 95% 97.5%

Avg. consumption growth 0.021 -0.001 0.004 0.026 0.043 0.046
Std. consumption growth 0.018 0.025 0.026 0.031 0.040 0.042

Avg. payout growth 0.030 -0.002 0.003 0.026 0.044 0.047
Std. payout growth
- Corporate profits
- Dividends plus net repurchases

0.148
0.266

0.151 0.156 0.181 0.207 0.212

20-year std. payout growth
- Corporate profits
- Dividends plus net repurchases

0.083
0.118

0.019 0.028 0.101 0.216 0.240

Std. log payout-consumption ratio 0.228 0.163 0.172 0.230 0.309 0.327

Corr. consumption and payout exp. growth 0.822 0.246 0.3122 0.660 0.849 0.872
Corr. payout exp. growth and exp. growth volatility -0.331 -0.737 -0.697 -0.363 0.079 0.157

Avg. risk-free rate 0.007 -0.034 -0.028 0.001 0.028 0.033
Std. risk-free rate 0.025 0.026 0.027 0.038 0.053 0.057

Avg. excess equity return 0.068 0.042 0.047 0.074 0.100 0.106
Std. excess equity return 0.175 0.119 0.123 0.142 0.162 0.166
Avg. Sharpe ratio 0.388 0.292 0.326 0.519 0.725 0.772

Avg. log price-dividend ratio 3.435 2.884 2.902 2.994 3.073 3.087
Std. log price-dividend ratio 0.443 0.071 0.075 0.104 0.150 0.161

Avg. excess high-minus-low return 0.035 0.011 0.018 0.058 0.105 0.115
Std. excess high-minus-low return 0.129 0.112 0.116 0.135 0.156 0.160

Note. This table reports moment statistics from both data and model simulations. Model-implied statistics
are moment quantiles from short-sample (75 years) simulations. The model is simulated at monthly frequency.
Statistics are yearly moments if not stated otherwise. Consumption and payout (corporate profits) data are from
the National Income and Product Accounts (NIPA). Returns are from K. French webpage. The price-dividend
ratio is from R. Shiller webpage. Dividends plus net repurchases are from Belo et al. (2015).
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D Model Extensions

Heteroscedastic Transitory Risk: Model Derivation

Setup

In this model extension, we consider a less simplistic assumption about volatility in funda-
mentals. Whereas the baseline model assumes that the transitory shock zt is homoscedastic,
we here relax this assumption by assuming that zt is heteroscedastic. In particular, a small
fraction of the conditional variance of zt is driven by the conditional variance of the per-
manent shock xt, consistent with empirical evidence (see Appendix B). Specifically, in our
extended framework, the permanent and the transitory components follow:

dxt =λx(x̄− xt)dt+ σx
√
xt dBx,t, (D1)

dzt = − λzztdt+
√
σ2
z0

+ σ2
zx xt dBz,t. (D2)

The Brownian shocks Bx,t and Bz,t are assumed to be independent. Heteroscedasticity of zt
is governed by the loading σzx and setting σzx to zero yields the baseline setup. Section V.B
shows that the model mechanism and equity term structure dynamics of the baseline model
are robust to the specification of Eq. (D1)-(D2), as long as σzx × E[xt] represents a modest
fraction of the average conditional variance of zt, in accord with the data.

Affine Notation

The vector Xt = (yt, xt, zt, w,t)
ᵀ collects the two state variables of our model xt and zt as

well as accumulated expected growth yt = µt +
∫ t

0
(x̄ − xs)ds and the component of cross-

sectional payouts wt = ϕ
∫ t

0
(x̄ − xs)ds + σϕBϕ,t. The vector belongs to the affine class and

has dynamics:

dXt =µ(Xt)dt+ Σ(Xt)dBt,
µ(Xt) =M+KXt,

Σ(Xt)Σ(Xt)
ᵀ =h+

∑
i∈{y,x,z,w}

HiXi,t,

with Brownian motions Bt = (By,t, Bx,t, Bz,t, Bw,t)
ᵀ and the following coefficients:

M =


µ+ x̄
λxx̄
0
ϕx̄

 , K =


0 −1 0 0
0 −λx 0 0
0 0 −λz 0
0 −ϕ 0 0

 , h =


0 0 0 0
0 0 0 0
0 0 σ2

z0 0
0 0 0 σ2

ϕ

 ,

Hy = Hz = Hw =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Hx =


0 0 0 0
0 σ2

x 0 0
0 0 σ2

zx 0
0 0 0 0

 .
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The following selection vectors allow to recover consumption, aggregate payouts, and cross-
sectional payouts:

vC = (1, 0, 1, 0)ᵀ ⇒ vᵀCXt = logCt,

vD = (1, 0, φ, 0)ᵀ ⇒ vᵀDXt = logDt,

vϕ = (1, 0, φ, 1)ᵀ ⇒ vᵀϕXt = logDϕ
t .

Moment Generating Function

The following conditional expectation allows to compute the moment generating function
for the logarithm of C,D ,and Dϕ at any horizon τ :

Et[exp(uᵀXt+τ )] = exp(b̄0(τ) + b̄(τ)ᵀXt). (D3)

Following Duffie et al. (2000), the functions b̄0(τ) and b̄(τ) =
(
b̄y(τ), b̄x(τ), b̄z(τ), b̄w(τ))ᵀ

solve the following system of ODE’s:

b̄′0(τ) =Mᵀb̄(τ) +
1

2
b̄(τ)ᵀhb̄(τ),

b̄′(τ) =Kᵀb̄(τ) +
1

2
b̄(τ)ᵀHb̄(τ).

By setting the initial conditions b̄0(0) = 0 and either b̄(0) = uvC , b̄(0) = uvD, or b̄(0) = uvϕ,
Eq. (D3) computes the time-t conditional expectation of either Ct+τ , Dt+τ , or Dϕ

t+τ with
power u respectively. These expectations can be used to build the term structure of growth
rates volatility.

Equity and State-Price Density

We follow Eraker and Shaliastovich (2008) and the state-price density based on recursive
preferences of Epstein and Zin (1989) type. To do so, we use the Campbell and Shiller
(1988) approximation to log-linearize the return Rt on the wealth of market participants
(that in our economy corresponds to the equity market and pays-out Dt):

d logRt = k0dt+ k1dpdt − (1− k1)pdtdt+ d logDt, (D4)

Where k0 and k1 are endogenous constants to be determined. We conjecture that the log
price-payout ratio (which is also the log wealth-consumption ratio of market participants)
is an affine function of Xt: pdt = A0 + AᵀXt. We use Eq. (D4) to rewrite the state-price
density dynamics as follows:

d logMt = θ log βdt− θ

ψ
d logDt − (1− θ)d logRt

= (θ log β − (θ − 1) log k1 + (θ − 1) (k1 − 1)Aᵀ (Xt − µX)) dt− λᵀdXt, (D5)
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where λ = γvD + (1− θ) k1A and µX = (0, x̄, 0, 0, 0)ᵀ. Then, the Euler equation can be
written as:

1 = Et
[
Mt+τ

Mt

e
∫ τ
0 d logRt+s

]
, ∀τ.

Since the term in the conditional expectation has to be a martingale, we apply Itô’s lemma
to compute its drift that we set equal to zero:

0 = θ log β + χᵀ (M+KXt) + θk0 − θ(1− k1)(A0 + AᵀXt) +
1

2
χΣ(Xt)

ᵀΣ(Xt)χ
ᵀXt, (D6)

where χ = θ
((

1− 1
ψ

)
vD + k1A

)
. Since Eq. (D6) holds for all Xt and we set the coefficients

on Xt and the residual constant equal to zero. The endogenous coefficients k1, A0 and
A = (Ay, Ax, Az, Aw)ᵀ are obtained by solving the following system:

0 =Kᵀχ− θ (1− k1)A+
1

2
χᵀHχ,

0 = θ (log β + k0 − (1− k1)A0) +Mᵀχ+
1

2
χᵀhχ,

θ log k1 = θ (log β + (1− k1)AᵀµX) +Mᵀχ+
1

2
χᵀhχ.

The solution coefficients should be inserted into Eq. (D5) to obtain the equilibrium state
price density.25 The equity price is then given by Pt = Dt exp(A0 +AᵀXt), where Ay = Aw =
0. Applying Itô’s Lemma to Eq. (D5) yields:

dMt

Mt

= (θ log β − (θ − 1) log k1 + (θ − 1) (k1 − 1)Aᵀ (Xt − µX) + µ(Xt)
ᵀλ) dt

+
1

2
λᵀΣ(Xt)λdt− λᵀΣ(Xt)dBt

= − (r0 + r̄ᵀXt) dt− λᵀΣ(Xt)dBt, (D7)

where the coefficients r0 and r̄ = (ry, rx, rz, rw)ᵀ are:

r0 = −θ log β + (θ − 1) (log k1 + (k1 − 1)AᵀµX) +Mᵀλ− 1

2
λᵀhλ,

r̄ = (1− θ) (k1 − 1)A+Kᵀλ− 1

2
λᵀHλ.

Therefore, the risk-free rate is given by rt = r0 + r̄ᵀXt and the vector of risk prices is given by
Ω(Xt) = (Ωy,Ωx,Ωz,Ωw)ᵀ = Σ(Xt)

ᵀλ, where it turns out that ry = rw = 0 and Ωy = Ωw = 0.
Consequently, the risk premium on equity is equal to RP (xt) = ((A + vD)ᵀΣ(Xt))Ω(Xt),
which is an affine function of xt only.

25Note that the above system of equations could yields multiple solutions. Tauchen (2011) proposes
to select the root which ensures the non-explosiveness of the system. Alternatively, one could select an
economically reasonable solution.
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Term Structures

Following Duffie et al. (2000), the risk-neutral dynamics of Xt are given by:

dXt =
(
MQ +KQXt

)
dt+ Σ(Xt)dBQt ,

MQ =M− hλ,
KQ =K −Hλ,
dBQt = dBt + Σ(Xt)

ᵀλ dt.

Then, we can compute the discounted value of several payouts, such as Dt+τ , D
ϕ
t+τ and the

unitary payout of a risk-less bond:

Et
[
Mt+τ

Mt

exp(vᵀXt+τ )

]
= EQ

[
exp(−

∫ τ

0

rt+sds+ vᵀXt+τ )

]
= exp(q0(τ) + q(τ)ᵀXt),

where v ∈ {vD, vϕ, (0, 0, 0, 0)ᵀ}. The deterministic function qo(τ) and q(τ) = (qy(τ), qx(τ),
qz(τ), qw(τ)) solve the following system of ODEs:

q′0(τ) = − r0 +
(
MQ)ᵀq(τ) +

1

2
q(τ)ᵀh q(τ),

q′(τ) = −r̄ +
(
KQ
)ᵀ
q(τ) +

1

2
q(τ)ᵀHq(τ),

with initial conditions q0(0) = 0 and q(0) = v.
Therefore, the risk-less bond price, the strip price of the aggregate payout and the strip

price of the cross-sectional payout are given by

Bt,τ = exp(q0(τ) + q(τ)ᵀXt), with v = (0, 0, 0, 0)ᵀ,

Pt,τ = exp(q0(τ) + q(τ)ᵀXt), with v = vD,

Pϕ
t,τ = exp(q0(τ) + q(τ)ᵀXt), with v = vϕ.

Cross-Sectional Equity

The price of the stock paying out the stream Dϕ
t can be computed either as the time integral

of the corresponding strip price over any maturity or via an exponential affine approximation.
Such exponential affine approximation is given by

Pϕ
t = Dϕ

t exp(Aϕ0 + (Aϕ)ᵀXt),

where the coefficients Aϕ0 , A
ϕ = (Aϕy , A

ϕ
x , A

ϕ
z , A

ϕ
w)ᵀ, and the endogenous constant kϕ1 solve

the following system:

0 = (θ − 1)(k1 − 1)A+ (kϕ1 − 1)Aϕ +Kᵀχϕ + (1/2)χᵀ
ϕHχϕ,

0 = θ log β − (θ − 1)(log k1 + (k1 − 1)AᵀµX)− (log kϕ1 + (kϕ1 − 1)(Aϕ)ᵀµX) +Mᵀχϕ

+ (1/2)χᵀ
ϕhχϕ,
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0 =Aϕ0 + (Aϕ)ᵀµX − log kϕ1 + log(1− kϕ1 ),

where χϕ = vϕ + kϕ1A
ϕ− λ. It turns out that Aϕy = Aϕw = 0. Therefore, the risk premium on

the cross-sectional stock is equal to RPϕ(xt) = ((Aϕ + vϕ)ᵀΣ(Xt))Ω(Xt), which is an affine
function of xt only.

Full Market Participation: Model Derivation

Setup

In this model extension, we consider the case of full market participation. Whereas the
baseline model assumes that only shareholders participate on the equity market, here we
assume that both workers and shareholders participate. In particular, we make the standard
assumption that a representative agent with recursive preferences of Epstein and Zin (1989)
type exsists and in equilibrium consumes total resources (C = W +D).

Affine Notation

The vector Xt = (yt, xt, zt, w,t)
ᵀ collects the two state variables of our model xt and zt as

well as accumulated expected growth yt = µt +
∫ t

0
(x̄ − xs)ds and the component of cross-

sectional payouts wt = ϕ
∫ t

0
(x̄ − xs)ds + σϕBϕ,t. The vector belongs to the affine class and

has dynamics:

dXt =µ(Xt)dt+ Σ(Xt)dBt,
µ(Xt) =M+KXt,

Σ(Xt)Σ(Xt)
ᵀ =h+

∑
i∈{y,x,z,w}

HiXi,t,

with Brownian motions Bt = (By,t, Bx,t, Bz,t, Bw,t)
ᵀ and the following coefficients:

M =


µ+ x̄
λxx̄
0
ϕx̄

 , K =


0 −1 0 0
0 −λx 0 0
0 0 −λz 0
0 −ϕ 0 0

 , h =


0 0 0 0
0 0 0 0
0 0 σ2

z 0
0 0 0 σ2

ϕ

 ,

Hy = Hz = Hw =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Hx =


0 0 0 0
0 σ2

x 0 0
0 0 0 0
0 0 0 0

 .

The following selection vectors allow to recover consumption, aggregate payouts, and cross-
sectional payouts:

vC = (1, 0, 1, 0)ᵀ ⇒ vᵀCXt = logCt,

vD = (1, 0, φ, 0)ᵀ ⇒ vᵀDXt = logDt,

vϕ = (1, 0, φ, 1)ᵀ ⇒ vᵀϕXt = logDϕ
t .
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Moment Generating Function

The following conditional expectation allows to compute the moment generating function
for the logarithm of C,D ,and Dϕ at any horizon τ :

Et[exp(uᵀXt+τ )] = exp(b̄0(τ) + b̄(τ)ᵀXt). (D8)

Following Duffie et al. (2000), the functions b̄0(τ) and b̄(τ) =
(
b̄y(τ), b̄x(τ), b̄z(τ), b̄w(τ))ᵀ

solve the following system of ODE’s:

b̄′0(τ) =Mᵀb̄(τ) +
1

2
b̄(τ)ᵀhb̄(τ),

b̄′(τ) =Kᵀb̄(τ) +
1

2
b̄(τ)ᵀHb̄(τ).

By setting the initial conditions b̄0(0) = 0 and either b̄(0) = uvC , b̄(0) = uvD, or b̄(0) = uvϕ,
Eq. (D8) computes the time-t conditional expectation of either Ct+τ , Dt+τ , or Dϕ

t+τ with
power u respectively. These expectations can be used to build the term structure of growth
rates volatility.

Equity and State-Price Density

We follow Eraker and Shaliastovich (2008) and the state-price density based on recursive
preferences of Epstein and Zin (1989) type. To do so, we use the Campbell and Shiller
(1988) approximation to log-linearize the return Rc,t on the wealth of market participants
(that in this economy pays-out Ct):

d logRc,t = k0dt+ k1dwct − (1− k1)wctdt+ d logCt, (D9)

Where k0 and k1 are endogenous constants to be determined. We conjecture that the log
wealth-consumption ratio of the economy is an affine function of Xt: wct = A0 +AᵀXt. We
use Eq. (D9) to rewrite the state-price density dynamics as follows:

d logMt = θ log βdt− θ

ψ
d logCt − (1− θ)d logRc,t

= (θ log β − (θ − 1) log k1 + (θ − 1) (k1 − 1)Aᵀ (Xt − µX)) dt− λᵀdXt, (D10)

where λ = γvC + (1− θ) k1A and µX = (0, x̄, 0, 0, 0)ᵀ. Then, the Euler equation can be
written as:

1 = Et
[
Mt+τ

Mt

e
∫ τ
0 d logRc,t+s

]
, ∀τ.

Since the term in the conditional expectation has to be a martingale, we apply Itô’s lemma
to compute its drift that we set equal to zero:

0 = θ log β + χᵀ (M+KXt) + θk0 − θ(1− k1)(A0 + AᵀXt) +
1

2
χΣ(Xt)

ᵀΣ(Xt)χ
ᵀXt, (D11)
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where χ = θ
((

1− 1
ψ

)
vC + k1A

)
. Since Eq. (D11) holds for all Xt and we set the coefficients

on Xt and the residual constant equal to zero. The endogenous coefficients k1, A0 and
A = (Ay, Ax, Az, Aw)ᵀ are obtained by solving the following system:

0 =Kᵀχ− θ (1− k1)A+
1

2
χᵀHχ,

0 = θ (log β + k0 − (1− k1)A0) +Mᵀχ+
1

2
χᵀhχ,

θ log k1 = θ (log β + (1− k1)AᵀµX) +Mᵀχ+
1

2
χᵀhχ.

The solution coefficients should be inserted into Eq. (D10) to obtain the equilibrium state
price density.26 The wealth is then given by Wt = Ct exp(A0 + AᵀXt), where Ay = Aw = 0.
Applying Itô’s Lemma to Eq. (D10) yields:

dMt

Mt

= (θ log β − (θ − 1) log k1 + (θ − 1) (k1 − 1)Aᵀ (Xt − µX) + µ(Xt)
ᵀλ) dt

+
1

2
λᵀΣ(Xt)λdt− λᵀΣ(Xt)dBt

= − (r0 + r̄ᵀXt) dt− λᵀΣ(Xt)dBt, (D12)

where the coefficients r0 and r̄ = (ry, rx, rz, rw)ᵀ are:

r0 = −θ log β + (θ − 1) (log k1 + (k1 − 1)AᵀµX) +Mᵀλ− 1

2
λᵀhλ,

r̄ = (1− θ) (k1 − 1)A+Kᵀλ− 1

2
λᵀHλ.

Therefore, the risk-free rate is given by rt = r0 + r̄ᵀXt and the vector of risk prices is given by
Ω(Xt) = (Ωy,Ωx,Ωz,Ωw)ᵀ = Σ(Xt)

ᵀλ, where it turns out that ry = rw = 0 and Ωy = Ωw = 0.

Term Structures

Following Duffie et al. (2000), the risk-neutral dynamics of Xt are given by:

dXt =
(
MQ +KQXt

)
dt+ Σ(Xt)dBQt ,

MQ =M− hλ,
KQ =K −Hλ,
dBQt = dBt + Σ(Xt)

ᵀλ dt.

26Note that the above system of equations could yields multiple solutions. Tauchen (2011) proposes
to select the root which ensures the non-explosiveness of the system. Alternatively, one could select an
economically reasonable solution.
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Then, we can compute the discounted value of several payouts, such as Dt+τ , D
ϕ
t+τ and the

unitary payout of a risk-less bond:

Et
[
Mt+τ

Mt

exp(vᵀXt+τ )

]
= EQ

[
exp(−

∫ τ

0

rt+sds+ vᵀXt+τ )

]
= exp(q0(τ) + q(τ)ᵀXt),

where v ∈ {vD, vϕ, (0, 0, 0, 0)ᵀ}. The deterministic function qo(τ) and q(τ) = (qy(τ), qx(τ),
qz(τ), qw(τ)) solve the following system of ODEs:

q′0(τ) = − r0 +
(
MQ)ᵀq(τ) +

1

2
q(τ)ᵀh q(τ),

q′(τ) = −r̄ +
(
KQ
)ᵀ
q(τ) +

1

2
q(τ)ᵀHq(τ),

with initial conditions q0(0) = 0 and q(0) = v.
Therefore, the risk-less bond price, the strip price of the aggregate payout and the strip

price of the cross-sectional payout are given by

Bt,τ = exp(q0(τ) + q(τ)ᵀXt), with v = (0, 0, 0, 0)ᵀ,

Pt,τ = exp(q0(τ) + q(τ)ᵀXt), with v = vD,

Pϕ
t,τ = exp(q0(τ) + q(τ)ᵀXt), with v = vϕ.

Aggregate Equity

The price Pt of the stock paying out the aggregate payout Dt can be computed either as the
time integral of the corresponding strip price over any maturity or via an exponential affine
approximation. Such exponential affine approximation is given by

Pt = Dt exp(Am0 + (Am)ᵀXt),

where the coefficients Am0 , A
m = (Amy , A

m
x , A

m
z , A

m
w )ᵀ, and the endogenous constant km1 solve

the following system:

0 = (θ − 1)(k1 − 1)A+ (km1 − 1)Am +Kᵀχm + (1/2)χᵀ
mHχm,

0 = θ log β − (θ − 1)(log k1 + (k1 − 1)AᵀµX)− (log km1 + (km1 − 1)(Am)ᵀµX) +Mᵀχm

+ (1/2)χᵀ
mhχm,

0 =Am0 + (Am)ᵀµX − log km1 + log(1− km1 ),

where χm = vD + km1 A
m − λ. It turns out that Amy = Amw = 0. Therefore, the risk premium

on aggregate equity is equal to RPm(xt) = ((Am + vD)ᵀΣ(Xt))Ω(Xt), which is an affine
function of xt only.

Cross-Sectional Equity

The price of the stock paying out the stream Dϕ
t can be computed either as the time integral

of the corresponding strip price over any maturity or via an exponential affine approximation.
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Such exponential affine approximation is given by

Pϕ
t = Dϕ

t exp(Aϕ0 + (Aϕ)ᵀXt),

where the coefficients Aϕ0 , A
ϕ = (Aϕy , A

ϕ
x , A

ϕ
z , A

ϕ
w)ᵀ, and the endogenous constant kϕ1 solve

the following system:

0 = (θ − 1)(k1 − 1)A+ (kϕ1 − 1)Aϕ +Kᵀχϕ + (1/2)χᵀ
ϕHχϕ,

0 = θ log β − (θ − 1)(log k1 + (k1 − 1)AᵀµX)− (log kϕ1 + (kϕ1 − 1)(Aϕ)ᵀµX) +Mᵀχϕ

+ (1/2)χᵀ
ϕhχϕ,

0 =Aϕ0 + (Aϕ)ᵀµX − log kϕ1 + log(1− kϕ1 ),

where χϕ = vϕ + kϕ1A
ϕ− λ. It turns out that Aϕy = Aϕw = 0. Therefore, the risk premium on

the cross-sectional stock is equal to RPϕ(xt) = ((Aϕ + vϕ)ᵀΣ(Xt))Ω(Xt), which is an affine
function of xt only.
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