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Cognition refers to human mental abilities such as memory, attention, 
processing speed, reasoning and executive function. Performance on 
cognitive tasks varies between individuals, and is highly heritable1 and 
polygenic2,3. To date, however, progress in identifying molecular genetic 
contributions to healthy human cognitive abilities has been limited4,5.

A distinction can be made between cognitive domains such as the 
ability to apply acquired knowledge and learned skills (so-called crys-
tallized abilities), and fluid cognitive abilities such as the capacity to 
establish new memories, reason in novel situations or perform cogni-
tive tasks accurately and quickly6. Within individuals, performance 
on different measures of cognitive ability tends to be positively cor-
related such that people who do well in one domain, such as memory, 
tend to do well in other domains7. Seemingly disparate domains of 
cognitive ability also show high levels of genetic correlation in twin 

studies, typically in excess of 0.6 (ref. 8), and analyses using genome-
wide similarity between unrelated individuals (genome-wide complex 
trait analysis) has also demonstrated substantial genetic correlation 
between diverse cognitive and learning abilities9,10. These studies 
suggest genes that influence human cognition may exert pleiotropic 
effects across diverse cognitive domains, such that genes regulating 
one cognitive ability might influence other cognitive abilities.

As impairment of cognitive function is a core clinical feature of 
many neurodevelopmental diseases including schizophrenia11, 
autism12, epilepsy13 and intellectual disability (by definition), we 
sought to investigate gene-regulatory networks for human cogni-
tion and to determine their relationship to neurodevelopmental 
disease. An overview of our experimental design is provided in 
Supplementary Figure 1.
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Systems genetics identifies a convergent gene network 
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Genetic determinants of cognition are poorly characterized, and their relationship to genes that confer risk for neurodevelopmental 
disease is unclear. Here we performed a systems-level analysis of genome-wide gene expression data to infer gene-regulatory 
networks conserved across species and brain regions. Two of these networks, M1 and M3, showed replicable enrichment for 
common genetic variants underlying healthy human cognitive abilities, including memory. Using exome sequence data from 
6,871 trios, we found that M3 genes were also enriched for mutations ascertained from patients with neurodevelopmental  
disease generally, and intellectual disability and epileptic encephalopathy in particular. M3 consists of 150 genes whose 
expression is tightly developmentally regulated, but which are collectively poorly annotated for known functional pathways.  
These results illustrate how systems-level analyses can reveal previously unappreciated relationships between neurodevelopmental 
disease–associated genes in the developed human brain, and provide empirical support for a convergent gene-regulatory network 
influencing cognition and neurodevelopmental disease.
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RESULTS
Gene coexpression network analysis
We hypothesized that unsupervised genome-wide coexpression net-
work analysis starting from the human hippocampus may be informa-
tive for genes and pathways that influence cognition. Specifically, gene 
coexpression network analysis could prioritize sets of genes preferen-
tially enriched for common variants (that is, single-nucleotide poly-
morphisms; SNPs) associated with cognitive abilities and thus reveal 
genetic pathways that influence variable cognitive performance.

As starting material, we used 122 fresh-frozen whole-hippocam-
pus samples surgically resected en bloc from patients with temporal 
lobe epilepsy (TLE) (Supplementary Table 1). We used surgical hip-
pocampus samples from living patients to avoid potential unwanted 
effects on gene expression related to the variable agonal state or time 
to autopsy associated with post-mortem samples. In addition, we used 
several gene expression data sets (detailed below) to assess the repro-
ducibility of the identified gene networks in non-TLE hippocampi 
both across species and across brain regions.

We first determined gene coexpression networks in the human 
hippocampus by weighted gene coexpression network analysis 
(WGCNA), which groups sets of covarying genes across the sample 
set into coexpression ‘modules’14. Applied to the full set of 122 sam-
ples, WGCNA grouped the human hippocampus transcriptome into 
24 distinct coexpression modules (M1−M24), which varied in size 
from 29 to 1,148 genes (Fig. 1a and Supplementary Table 2).

To identify which of the 24 hippocampus modules from patients 
with TLE had coexpression patterns unrelated to epilepsy, for each 
module we compared its coexpression topology in patients with TLE 
with that from hippocampus samples ascertained from persons with 
no history of psychiatric or neurological illness15. We undertook this 
comparative network analysis using the default network dissimilar-
ity measure in WGCNA based on the topological overlap matrix 
(TOM)14. We calculated empirical P values for the validity (that is, 
reproducibility) of modules by comparing the average topological 
overlap for module genes to the average connectivity of 10,000 ran-
domly sampled networks (Online Methods). After Bonferroni adjust-
ment for the number of modules tested, we found that 16 of the 24 
modules were significantly preserved in 63 nondiseased human 
postmortem hippocampus samples (empirical P ≤ 0.002; Fig. 1a and 
Supplementary Table 3), suggesting the coexpression of genes in 
these 16 modules is unrelated to epilepsy. Additionally, preservation 
of these 16 coexpression modules in a distinct human hippocampus 
gene expression data set provides an independent line of evidence to 
support the validity of these modules.

As molecular pathways underlying cognitive processes might be 
evolutionarily conserved16–18, and indeed the rodent hippocampus 
has long been the primary model for studying molecular processes 
related to learning and memory19, we next aimed to identify which 
of the human hippocampus coexpression modules are preserved in 
the healthy mouse hippocampus. To this aim, we carried out high-
throughput sequencing of mRNA (RNA-seq) on snap-frozen hip-
pocampus samples from 100 healthy adult mice and assessed the 
coexpression patterns between the mouse orthologs of human hip-
pocampus module genes (Online Methods). Of the 16 human hip-
pocampus modules preserved between nondiseased postmortem 
hippocampus and surgical hippocampus samples from patients with 
TLE, four modules (M1, M3, M11 and M19) were also significantly 
preserved in the healthy mouse hippocampus (empirical P ≤ 0.002; 
Fig. 1a and Supplementary Table 3).

To assess whether the four cross-species conserved hippocampus 
modules (M1, M3, M11 and M19) are specific to the hippocampus 

or more widely expressed and coexpressed across the human cortex, 
we then analyzed genome-wide gene expression data from 102 post-
mortem human brains from the UK Brain Expression Consortium 
(UKBEC)20 across the following brain regions: cerebellum, temporal 
cortex, occipital cortex and frontal cortex. We treated each brain region 
as an independent data set and adjusted gene expression levels in 
UKBEC for age, gender, postmortem interval, cause of death and brain 
bank identifier. Comparative network analysis, performed as described 
above, showed preservation of all four hippocampus coexpression 
modules in multiple other brain regions (Supplementary Table 4). 
Therefore, despite the modules being originally reconstructed from 
hippocampus gene expression data, these results suggest the modules 
are not specific to the hippocampus and thus might be capturing func-
tions that are more widely distributed in the human cortex.

We analyzed biological terms and canonical pathways enriched 
among the genes in all 24 hippocampus modules from TLE patients 
(Supplementary Table 5). The different hippocampal coexpression 
modules demonstrated notable functional specificity. Of the four 
modules conserved in healthy hippocampi across species (M1, M3, 
M11 and M19), only M1 (n = 1,148 genes) and M3 (n = 150 genes) 
were enriched for functional categories explicitly related to synap-
tic processes (Fig. 1b). Module M1 was highly enriched for Kyoto 
Encyclopaedia of Genes and Genomes (KEGG) pathways ‘calcium 
signaling’ (Benjamini-Hochberg (BH)-corrected P = 7.3 × 10−7, ratio 
of enrichment (r) = 3.0), ‘axon guidance’ (BH P = 9.0 × 10−5, r = 2.5) 
and ‘long-term potentiation’ (BH P = 4.0 × 10−3, r = 5.0), and for the 
gene ontology (GO) terms ‘synapse’ (BH P = 6.9 × 10−15, r = 2.5), 
‘neuron projection’ (BH P = 1.4 × 10−14, r = 2.2) and ‘synaptic vesi-
cle’ (BH P = 2.9 × 10−8, r = 3.5). Module M3 was enriched for genes 
belonging to ‘postsynaptic density’ (PSD) (BH P = 9.0 × 10−4, r = 6.6) 
and ‘Reelin signaling pathway’ (BH P = 0.049, r = 12.5). We therefore  
investigated whether M1 and M3 were enriched for genes encoding 
postsynaptic complexes using data on 671 proteins in human neocorti-
cal PSD and 79 proteins related to NMDA receptor−activity-regulated  
cytoskeleton complexes (NMDAR-ARC) previously implicated in 
neurodevelopmental disease, memory and intelligence5,17,21,22. We 
found that genes comprising the PSD and NMDAR-ARC complexes 
were significantly overrepresented in M1 (Fisher’s exact test (FET) 
P = 5.4 × 10−13, odds ratio (OR) = 2.10, 95% confidence interval 
(CI) 1.73−2.55 and P = 2.6 × 10−8, OR = 4.25, 95% CI 2.57−6.90, 
respectively) but not in M3 (Fig. 1c). However, manual annotation of 
gene function for M3 genes revealed that 58 of the 121 genes with a 
reported putative function had a biological activity potentially related 
to neural processes (Supplementary Table 6), suggesting M3 is also 
capturing previously unknown connectivity between genes that share 
related functions. Analysis of physical interactions between the pro-
tein products of genes in M1 and M3 using the InWeb database23 
revealed significant enrichment for direct protein-protein interac-
tions for M1 (551 of 1,148 genes, P = 0.001) and M3 (17 of 150 genes, 
P = 0.02), providing further evidence to support the validity of these 
two coexpression modules.

In summary, these comparative genome-wide network analyses 
starting from human surgical hippocampus samples identify four 
modules (M1, M3, M11 and M19) that are cross-species−conserved 
and whose constituent genes are widely coexpressed across the human 
brain. Two of these modules (M1 and M3) are highlighted as having 
potential function related to neural activity.

Integrated cognitive GWAS data and gene network analysis
To determine the relationship between the four cross-species pre-
served coexpression modules (M1, M3, M11 and M19) and human 
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Figure 1  Gene coexpression network analysis. (a) Dendrogram showing clustering of coexpressed genes (modules) based on human surgical hippocampus 
samples. Top color bar: 24 modules (M1−M24) generated by unsupervised hierarchical clustering of the surgical hippocampal transcriptome; second 
color bar: 16 (of 24) modules whose gene coexpression relationships are significantly preserved in nondiseased postmortem human hippocampus;  
third color bar: 5 (of 24) human surgical hippocampus modules whose gene coexpression relationships are preserved in the healthy mouse hippocampus; 
bottom color bar: the 4 coexpression modules conserved across all three expression data sets (1–3). (b) KEGG and Pathway Commons (Pathways) 
and gene ontology (GO) enrichments for M1 (blue) and M3 (black). BP, biological process; MF, molecular function; CC, cellular component. For each 
functional category the ratio of enrichment is reported on top of each bar. (c) Enrichment of proteins comprising the postsynaptic density (PSD) and 
NMDAR-ARC complexes in M1 (blue) and M3 (black). ORs of enrichment are reported on top of each bar. (d) Heatmap of gradient of expression of 
modules M1 and M3 spanning fetal development to late adulthood and in topographically distinct cortical regions. A1C, auditory cortex; AMY, amygdala; 
CBC, cerebellar cortex; DFC, dorsolateral prefrontal cortex; HIP, hippocampus; IPC, posterior inferior parietal cortex; ITC, inferior temporal cortex;  
M1C, primary motor cortex; MD, mediodorsal nucleus of thalamus; MFC, medial prefrontal cortex; OFC, orbital prefrontal cortex; S1C, primary 
somatosensory cortex; STC, superior temporal cortex; STR, striatum; V1C, primary visual cortex; VFC, ventrolateral prefrontal cortex.
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cognitive function we tested each module for 
enrichment of genetic association with four 
cognitive phenotypes (general fluid cognitive 
ability, processing speed, crystalized cogni-
tive ability and verbal delayed recall) in two 
independent cohorts of cognitively healthy 
subjects. Our ‘discovery’ cohort consisted of 
genome-wide association study (GWAS) data 
relating to 6,732 (after quality control) cog-
nitively healthy subjects participating in the 
‘Generation Scotland: Scottish Family Health 
Study’ (GS:SFHS)24. The ‘replication’ cohort 
consisted of independent GWAS data relat-
ing to 1,003 (after quality control) cognitively 
healthy subjects participating in the Lothian 
Birth Cohort 1936 (LBC1936)25. Mean age at 
assessment was 55 years (s.d. = 11.35) in GS:
SFHS and 69.6 years (s.d. = 0.8) in LBC1936. 
Descriptions of how we derived the cognitive 
phenotypes and GWAS analysis are available 
in Online Methods.

To test each module’s association to the four 
cognitive phenotypes we first used versatile 
gene-based association study26 (VEGAS) to account for the number 
of SNPs in each gene and the linkage disequilibrium (LD) between 
those SNPs followed by GWAS enrichment analysis using the Z-score 
enrichment method27 (Online Methods). As a negative control, and 
to assess specificity of the GWAS-enrichments, each module was also 
tested against five large GWAS of clinical phenotypes with no known 
relationship to healthy cognitive performance (waist:hip ratio, fasting 
glucose homeostasis, glucose challenge homeostasis, systolic blood 
pressure and diastolic blood pressure; (Supplementary Table 7).

In the larger discovery cohort (GS:SFHS), we found nominal enrich-
ment of association (P < 0.05) for M1 with general fluid cognitive abil-
ity, processing speed, crystalized cognitive ability and verbal delayed 
recall, and for M3 with general fluid cognitive ability, processing speed 
and verbal delayed recall (Table 1). Neither M1 nor M3 was enriched 
for association to any of the five noncognitive control phenotypes 
despite the substantial sample size and power of these GWAS studies  
(Supplementary Table 7). M11 and M19 were not significantly  
(P < 0.05) enriched for association with any cognitive phenotype. We 
adopted a false discovery rate (FDR) adjustment based on the number 
of modules and phenotypes tested in the discovery cohort GS:SFHS, 
and modules significantly enriched for association at FDR <10% were 
taken forward for replication in LBC1936. The strongest replicable 
enrichment of association was between M3 and general fluid cognitive 
ability (GS:SFHS P = 0.002, Z score = 2.95; LBC1936 P = 0.004, Z score =  
2.66) (Table 1). In addition, we observed replicable enrichment of 
association between M3 and delayed recall (GS:SFHS P = 0.038,  
Z score = 1.77; LBC1936 P = 0.005, Z score = 2.56). For M1, we 
observed replicable enrichment of association with delayed recall (GS:
SFHS P = 0.016, Z score = 2.14; LBC1936 P = 0.006, Z score = 2.51) 
and crystalized cognitive ability (GS:SFHS P = 0.020, Z score = 1.96;  
LBC1936 P = 0.045, Z score = 1.70).

These results suggest modules M1 and M3 are enriched for genes 
related to general cognitive ability including memory. We therefore 
further explored M1 and M3 by investigating their expression in 
different stages of human brain development following the method 
of Pletikos28 and by undertaking a detailed analysis of brain region 
expression of M1 and M3 genes. Using data from Kang and colleagues29 
consisting of gene expression measurements from 11 topographically  

defined cortical areas from 53 human brains spanning 10 weeks 
post-conception (PCW) to 82 years of age (Online Methods), we 
observed a clear developmental gradient of expression of both M1 
and M3 beginning in early mid-fetal development (16 ≤ PCW ≤ 19), 
maximal by birth and then persisting through all post-natal periods 
(Fig. 1d). Consistent with the coexpression analyses using UKBEC 
data (Supplementary Table 4), we observed that following birth M1 
and M3 genes are highly expressed across the human cortex with 
the exception of striatum, mediodorsal nucleus of thalamus and cer-
ebellar cortex. The developmentally regulated expression of M1 and 
M3 genes across diverse brain regions is consistent with the genetic 
evidence (Table 1) suggesting these modules play a broader role in 
human cognitive abilities beyond hippocampal memory.

The tightly regulated developmental trajectory of expression of 
M1 and M3 led us to explore their transcriptional control. Using the 
WebGestalt toolkit30 to test for enrichment of transcription factor 
binding sites (TFBS) among M1 and M3 genes, we found M1 was 
highly enriched for NRSF/REST (repressor element 1-silencing trans
cription factor) targets (BH P = 0.0006), and this was confirmed using 
a set of previously published and experimentally derived targets of 
REST31 (enrichment P = 0.007). For M3, the maximum TFBS enrich-
ment was for SRY (sex determining region Y) transcription factor  
(BH P = 0.01). However, using publicly available data on sex-biased 
gene expression in the brain29 we found no evidence of enrichment 
for male-specific genes in M3 (data not shown). In addition, we found  
no significant enrichment for experimentally derived REST targets in 
M3 (P = 0.67), suggesting different processes underlie the transcrip-
tional regulation of M1 and M3 in the brain.

Burden of neurodevelopmental de novo mutations in gene networks
Extensive epidemiological and genetic evidence suggest that clini-
cally distinct neurodevelopmental disorders could be thought of as 
reflecting different patterns of symptoms (or impairments) of a shared 
neurodevelopmental continuum32. The co-occurrence of clinical 
symptoms and diagnostic overlap between neuropsychiatric disor-
ders has also meant that diseases such as epilepsy are increasingly 
considered within the neurodevelopmental spectrum33. Since cogni-
tive impairment is a core component of many neurodevelopmental 

Table 1  Module enrichment for genetic association with cognitive abilities
Discovery cohort GS:SFHS  

n = 6,732 subjectsa
Replication cohort LBC1936  

n = 1,003 subjectsa

Module Phenotype Genesb Z score P valuec (FDR) Genesb Z score P valuec

M1 General fluid cognitive ability 983 2.33 0.010 (5.3%) 1,051 0.73 0.230
Processing speed 983 1.79 0.040 (8.9%) 1,051 0.51 0.300
Crystalized cognitive ability 983 1.96 0.020 (6.4%) 1,051 1.70 0.045
Delayed recall 1,051 2.14 0.016 (6.4%) 1,046 2.51 0.006

M3 General fluid cognitive ability 135 2.95 0.002 (2.4%) 142 2.66 0.004
Processing speed 135 2.80 0.003 (2.4%) 142 1.02 0.150
Crystalized cognitive ability 135 1.60 0.050 (8.9%) 142 −0.10 0.540
Delayed recall 142 1.77 0.038 (8.9%) 139 2.56 0.005

M11 General fluid cognitive ability 121 0.27 0.390 (52%)
Processing speed 121 −0.63 0.740 (78%)
Crystalized cognitive ability 121 1.62 0.050 (8.9%) 133 1.09 0.140
Delayed recall 133 0.04 0.480 (59%)

M19 General fluid cognitive ability 466 1.28 0.100 (16%)
Processing speed 466 −1.29 0.900 (90%)
Crystalized cognitive ability 466 −0.27 0.610 (69%)
Delayed recall 504 0.42 0.340 (49%)

aTotal number of participants after genotype quality control. bGenes in the module with ≥1 genotyped SNP within the  
transcription start and end positions of the gene (NCBI36, hg18). cP value for enrichment of association determined by 
100,000 bootstrap samples.
Bold, enrichment of association P < 0.05; FDR was calculated to account for the number of modules and cognitive  
domains tested (16 tests); modules with FDR < 10% in the discovery cohort were taken forward for replication  
in LBC1936.
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disorders including schizophrenia11, autism12 and epilepsy13, we set 
out to explore the relationship between the four cross-species con-
served gene coexpression modules (and in particular M1 and M3) 
and susceptibility to neurodevelopmental disease.

To this aim, we first assessed if any of the modules were enriched 
for genes intolerant to functional mutation using the residual varia-
tion intolerance score (RVIS)34; genes considered to be intolerant to 
mutation according to their RVIS are more likely to be associated with 
developmental disease when mutated34,35. Using the individual RVIS 
for each gene in a module we calculated a module-level RVIS and 
compared the distribution of RVIS scores for each module to the dis-
tribution of intolerance scores from all hippocampus-expressed pro-
tein-coding genes outside of that module (Online Methods). Of the 
four cross-species conserved modules, three (M1, M3 and M11) were 
significantly enriched for intolerant genes (Supplementary Table 8), 
meaning that these modules contain an excess of genes intolerant to 
functional genetic variation relative to the genome-wide expectation. 
Given their cross-species preservation of coexpression, this finding 
suggests selective constraints on these modules in terms of both their 
coding sequence and transcriptional regulation.

We then investigated the relationship between the four cross- 
species conserved modules and neurodevelopmental disease by 
testing each module for enrichment of validated non-polymorphic 
de novo single nucleotide variant mutations (DNMs) identified in 
neurodevelopmental whole-exome sequencing studies that used  
similar sequencing technologies, coverage criteria and variant-calling 
methodology (Online Methods). The neurodevelopmental disease 
cohort consisted of 5,738 non-overlapping published parent-offspring  
trios across four disease phenotypes; autism spectrum disorder  
(n = 4,186 trios), schizophrenia (n = 1,004 trios), intellectual dis-
ability (n = 192 trios) and epileptic encephalopathy (n = 356 trios) 
(see Online Methods for cohort references). Additionally, we consid-
ered DNMs from an independent cohort of 1,133 trios with severe, 
previously undiagnosed developmental disease from the deciphering 

developmental disorders study36,37. As controls, we used 1,891 non-
neurological control samples from seven published studies38–44.

Then we tested each module’s genetic relationship to disease using 
two statistical approaches. First, we compared rates of DNMs in each 
module relative to random expectation based on the collective con-
sensus coding sequence (CCDS) of module genes. We calculated the 
expected number of DNMs for each gene set (that is, module) based 
on the length of CCDS sequence of genes in the set and the overall 
frequency of DNM in all CCDS genes. Then to estimate the enrich-
ment we used the ratio between the observed number of DNMs in 
the gene set and the expected number based on this length model 
using binomial exact test (BET, two-tailed). Second, to accommodate 
for sequence context factors such as the inherent mutability of genes 
in a module, we adopted a FET (two-tailed) to empirically compare 
the rates of DNMs overlapping the CCDS real estate of a module in 
case cohorts and control cohorts. This approach also can identify 
modules comprising genes that are preferentially depleted of DNMs 
in healthy controls. For each module, we report DNM enrichments by 
both approaches and by considering three main classes of mutation:  
(i) predicted deleterious DNM (pdDNM) consisting of loss-of-function  
(nonsense and splice-site mutations) and predicted functional mis-
sense mutations, (ii) nonsynonymous DNM (nsDNM) consisting of 
all missense, nonsense and splice-site mutations and (iii) synony-
mous DNM (as a negative control). For completeness, we also report 
enrichments considering only loss-of-function (that is, nonsense and 
splice-site) mutations, although we expect limited power to detect sig-
nificant enrichments given that single nucleotide DNMs in this class 
were relatively uncommon in the neurodevelopmental disease cohorts 
used here. Finally, to assess specificity of the module-level enrichment 
results, for each class of DNM detailed above, we calculated an enrich-
ment of DNM among all genes significantly expressed in the human 
hippocampus (termed ‘background’ genes), taking the conservative 
route of including in this set of genes all the genes contributing to the 
individual coexpression modules.
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Figure 2  Enrichment of nsDNM from patients with neurodevelopmental disease. Statistical significance of overrepresentation of nsDNM in cases 
compared to controls is reported using Fisher’s exact test for epileptic encephalopathy (EE, 356 trios), autism spectrum disorders (ASD, 4,186 trios), 
intellectual disability (ID, 192 trios), schizophrenia (SCZ, 1,004 trios) and across all four neurodevelopmental disorders consisting of EE, ID, ASD and 
SCZ (combined, 5,738 trios). The nsDNM of the DDD study (1,133 trios) were not combined with the other neurodevelopmental disorders as some of 
the patients of the DDD study had congenital abnormalities without neuropsychiatric features. P value, OR and 95% CI are reported for M1, M3 and all 
genes expressed in the human surgical hippocampus samples (background). In the forest plot, the magnitude of the ORs are represented by the area of 
the squares and the 95% CI by horizontal lines. Blue, modules; red, background.
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Table 2  Genes in M3 impacted by neurodevelopmental-ascertained nonsynonymous de novo mutation

Gene symbol
Total 

nsDNM
Single nucleotide variant and  

predicted effect
Sift  

score Polyphen score Neurodevelopmental disease cohort

SCN2A 20 2:166,245,137 A>T SV ASD
2:166,201,379 C>A SG ASD
2:166,210,819 G>T SG ASD
2:166,152,367 G>A MS 0.11 0.025 ASD
2:166,152,578 A>G MS 0 0.999 ASD
2:166,170,231 G>A MS 0 0.999 ASD
2:166,201,312 G>A MS 0 0.999 ASD
2:166,231,378 T>C MS 0 1 ASD
2:166,201,311 C>T MS 0 0.999 ASD
2:166,234,111 C>T MS 0 0.996 ASD
2:166,234,116 A>G MS 0 0.999 EE
2:166,198,975 G>A MS 0 0.838 EE
2:166,201,311 C>T MS 0 0.999 ID
2:166,231,415 G>A SG ID
2:166,187,838 A>G SV SCZ
2:166,153,563 C>T SG DDD
2:166,165,305 G>A SV DDD
2:166,245,954 G>A MS 0 0.997 DDD
2:166,243,484 T>A MS 0 0.972 DDD
2:166,210,714 T>C MS 0 0.719 DDD

GABRB3 7 15:27,017,557 C>T MS 0.04 0.444 ASD
15:26,828,534 C>T MS 0 0.584 ASD
15:26,866,594 T>C MS 0.15 0.999 EE
15:26,806,254 T>C MS 0 1 EE
15:26,866,564 C>T MS 0 0.994 EE
15:26,828,484 T>C MS 0 0.967 EE
15:26,806,242 A>G MS 0 0.999 DDD

RYR2 7 1:237,870,440 C>A MS 0.23 0.034 ASD
1:237,666,734 C>T MS 0.02 0.947 ASD
1:237,868,631 C>T SG EE
1:237,995,907 G>A MS 0 0.998 ID
1:237,982,492 G>T MS 0 0.998 DDD
1:237,982,471 A>G MS 0 0.658 DDD
1:237,693,752 G>A MS 0.08 0.36 DDD

GNAO1 6 16:56,388,838 G>A MS 0 0.316 ASD
16:56,385,380 A>C MS 0 0.999 EE
16:56,385,396 T>C MS 0 0.996 EE
16:56,370,728 G>A MS 0.02 0.964 SCZ
16:56,370,674 C>T MS 0 1 DDD
16:56,309,901 T>G MS 0 0.799 DDD

TCF4 5 18:52,921,925 G>A SG ID
18:52,896,230 C>T MS 0 1 ID
18:53,070,725 G>A MS 0 0.942 ID
18:52,899,819 G>A SG DDD
18:52,895,593 C>T SV DDD

GRIN2A 3 16:9,928,084 G>C MS 0 0.921 ID
16:9,923,342 G>C MS 0.01 0.999 ID
16:9,857,517 A>G MS 0.01 0.816 SCZ

TCF20 2 22:42,564,699 G>A MS 1 0 ID
22:42,575,645 G>A SG DDD

PPP6R2 2 22:50,857,408 C>T MS 0.01 0.862 ASD
22:50,857,843 T>C MS 0.01 0.898 EE

NUAK1 2 12:106,461,269 G>A SG ASD
12:106,460,608 G>A MS 0.02 0.997 ASD

MYCBP2 2 13:77,700,568 A>G MS 0.54 0.039 ASD
13:77,657,240 G>A MS 0.14 0 DDD

KCNB1 2 20:47,990,976 G>A MS 0 1 EE
20:47,990,924 T>G MS 0 1 DDD

GNB5 2 15:52,427,874 T>C MS 0 1 ASD
15:52,416,801 T>C MS 0.38 0.68 SCZ

DLG2 2 11:83,497,765 G>C MS 0 0.786 ASD
11:83,194,295 C>T SV SCZ

BRSK2 1 11:1,471,005 G>C SV ASD
CAMK1D 1 10:12,595,343 C>A MS 0.06 0.003 ASD
CERS6 1 2:169,417,831 A>G MS 0.11 0.229 ASD
CNST 1 1:246,754,937 G>A MS 0.07 0.09 ASD
DENND5B 1 12:31,613,279 G>C MS 0.08 0.305 ASD
DUSP3 1 17:41,847,180 G>A MS 0 0.921 ASD
GLTSCR1L 1 6:42,796,946 C>G MS 0 1 ASD

(continued)
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We observed that module M3 was strongly and specifically enriched for 
genes that, when mutated, are associated with intellectual disability and 
epileptic encephalopathy, and that this enrichment holds true for both 
pdDNM (intellectual disability BET P = 6.6 × 10−5, FET P = 3.1 × 10−4,  
OR = 10.29, 95% CI 2.56−48.91; epileptic encephalopathy BET  
P = 1.9 × 10−6, FET P = 7.1 × 10−5, OR = 9.1, 95% CI 2.64−39.47) and all 
nsDNM (intellectual disability BET P = 3.3 × 10−5, FET P = 1.4 × 10−5,  
OR = 11.22, 95% CI 3.51−38.84; epileptic encephalopathy BET  
P = 1.3 × 10−5, FET P = 9.1 × 10−6, OR = 8.52, 95% CI 2.99−27.56) (Fig. 2  
and Supplementary Table 9). These enrichments remained signifi-
cant after adjustment for the number of modules and phenotypes 
tested. M1 was not significantly enriched for any neurodevelopmental  
disease above the background (Fig. 2). There was no enrichment in 
M3 of disease-ascertained synonymous DNM for neither intellectual 
disability (BET P = 0.251, FET P = 0.239) nor epileptic encephalopa-
thy (BET P = 0.576, FET P = 0.522), or any other neurodevelopmental 
phenotype (Supplementary Table 9).

For autism spectrum disorder and schizophrenia, there was a trend 
toward enrichment of disease-ascertained DNM in M3, but estimates 
of the 95% CI of the OR overlapped with those from background  
genes (Fig. 2). However, when combining all 5,738 trios with neu-
rodevelopmental disease (that is, intellectual disability + epileptic 
encephalopathy + autism spectrum disorder + schizophrenia) we 
observed significant enrichment of nsDNM in M3 above back-
ground (BET P = 3.54 × 10−6, FET P = 9.0 × 10−4, OR = 3.54, 95% CI 
1.51−9.74) (Fig. 2), suggesting M3 is enriched for genes impacted 
by DNM associated with neurodevelopmental disease broadly,  
and with intellectual disability and epileptic encephalopathy in par-
ticular. Consistent with this interpretation, M3 was also significantly 
enriched for nsDNM ascertained from unselected developmental phe-
notypes from the independent DDD study36,37 (BET P = 2.2 × 10−3,  
FET P = 1.0 × 10−3, OR = 4.08, 95% CI 1.60−12.35) (Fig. 2 and 
Supplementary Table 9).

In total, almost a third of genes in M3 (43 of 150) were impacted 
by one or more nsDNM across the five disease cohorts considered 

here (intellectual disability, epileptic encephalopathy, autism spec-
trum disorder, schizophrenia and DDD). These 43 genes and their 
corresponding mutation (with functional consequence) and disease 
phenotype are shown in Table 2 and Figure 3. Among the 43 genes in 
M3 impacted by nsDNM several genes including SCN2A, GABRB3, 
GNAO1, TCF4, GRIN2A and UPF3A are known to be implicated in 
neurodevelopmental disease. Thus, starting from an unsupervised 
gene network perspective, M3 revealed previously unappreciated 
coexpression between genes for heterogeneous neurodevelopmental 
disorders in the developed human brain.

The finding that M3 is highly enriched for genes that confer risk 
for neurodevelopmental disease when mutated led us to explore the 
relationship between M3 and neuropsychiatric disease using GWAS 
data relating to the Psychiatric Genomics Consortium traits attention 
deficit−hyperactivity disorder, bipolar disorder, major depressive dis-
order and schizophrenia45 as well as GWAS data relating to common 
forms of epilepsy from the International League Against Epilepsy 
(ILAE) Consortium on Complex Epilepsies46 and those from a risk 
and age of onset of Alzheimer’s disease47. We tested the enrichment in 
M3 of association to each phenotype as previously described (Online 
Methods). After Bonferroni correction for multiple testing, the only 
significant association was between M3 and schizophrenia (enrich-
ment P = 0.003, Z score = 2.76) (Supplementary Table 10). The cor-
responding enrichment statistics for schizophrenia trio−ascertained 
DNM were as follows: pdDNM BET P = 2.14 × 10−3, FET P = 0.013, 
OR = 4.52, 95% CI 1.25−20.27 and nsDNM BET P = 0.08, FET  
P = 0.029, OR = 3.35, 95% CI 1.1−11.28. This suggested that M3 
may be enriched for genes in which both common and rare variants 
contribute risk for schizophrenia.

DISCUSSION
Using a stepwise procedure we prioritized gene networks whose gene 
coexpression relationships were significantly reproducible across 
brain regions and species to facilitate the identification of function-
ally conserved and replicable networks. We demonstrated replicable 

Table 2  (Continued)

Gene symbol
Total 

nsDNM
Single nucleotide variant and  

predicted effect
Sift  

score Polyphen score Neurodevelopmental disease cohort

GRIA2 1 4:158,254,055 C>T SG ASD
GSK3B 1 3:119,582,433 G>T MS 0.01 0.521 ASD
HNRNPR 1 1:23,637,156 G>A MS 0 0 ASD
KLHL28 1 14:45,400,640 A>G MS 0.99 0.324 ASD
MAP1B 1 5:71,491,094 G>T MS 0.33 0 ASD
MCM4 1 8:48,883,381 G>C MS 0.04 0.363 ASD
NT5C3A 1 7:33,055,445 A>G MS 0.14 0.546 ASD
PAPD5 1 16:50,263,085 G>A MS 0.09 0.027 ASD
PIAS1 1 15:68,378,807 G>A MS 0.16 1 ASD
PUM1 1 1:31,437,728 G>A MS 0 0.999 ASD
UPF3A 1 13:115,057,116 G>A MS 0 1 ASD
GABRB1 1 4:47,405,630 T>C MS 0 0.998 EE
SGK223 1 8:8,234,597 C>A MS 0.01 0.36 EE
HIVEP3 1 1:42,047,669 G>A SG SCZ
PCDHAC2 1 5:140,346,499 G>T SG SCZ
SSBP3 1 1:54,870,560 G>A SG SCZ
TAF13 1 1:109,607,282 G>A SG SCZ
TNRC6C 1 17:76,083,048 C>G MS 0.01 0.808 SCZ
PHACTR1 1 6:12,933,928 G>A MS 0.02 0 DDD
PLEKHB2 1 2:131,884,360 G>A SV DDD
ROBO2 1 3:77,637,907 C>T MS 0.18 0.784 DDD
SPIN1 1 9:91,083,440 A>G MS 0 1 DDD
USP14 1 18:203,143 C>T SG DDD

M3 genes reported with nsDNM identified in heterogeneous neurodevelopmental phenotypes. We detail the number and kind of nsDNM and for each single nucleotide variant, Sift 
and Polyphen2 scores were calculated using the Ensembl SNP Effect Predictor tool49. ASD, autism spectrum disorder; ID, intellectual disability; EE, epilepsy; SCZ, schizophrenia; 
SV, splice variant; SG, stop gain; MS, missense.
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association between two of these coexpression networks (M1 and 
M3) and healthy human cognitive abilities. As M1 is functionally 
enriched for genes involved in synaptic processes, these findings 
provide systems-level evidence for a relationship between long-term 
potentiation and postsynaptic processes and human cognition, as 
previously suggested by an analysis of known postsynaptic signaling 
complexes5. In contrast to the functional specialization of M1, M3 is 
relatively poorly annotated for known functional categories or canoni-
cal pathways and our study revealed previously unappreciated coex-
pression relationships between genes influencing cognitive abilities. 
The finding that M1 and M3 influence cognitive abilities generally (as 
opposed to influencing specific cognitive domains such as memory) is 
in agreement with the evidence from twin and genome-wide complex 
trait analysis demonstrating high genetic correlation between diverse 
cognitive and learning abilities9,10,48. The widespread expression and 
coexpression of M1 and M3 genes across the human cortex, and their 
tight developmental regulation, is also consistent with these modules 
playing a role across cognitive domains.

By analyzing de novo mutations reported in whole-exome sequenc-
ing studies of neurodevelopmental disease parent-offspring trio 
cohorts, we found that rare genetic risk variants for neurodevelop-
mental disease also converged on module M3. Almost one-third of 
genes in M3 were impacted by one or more nonsynonymous DNM 
ascertained from neurodevelopmental disease cases. Among the indi-
vidual genes in M3 mutated in two or more cases, most were associated  
with more than one neurodevelopmental phenotype (Table 2). These 
results reveal a convergence of genetic risk variants contributing to 
healthy human cognitive abilities and neurodevelopmental disease 
on a common set of genes under tight developmental regulation and 
widely coexpressed in the human cortex. Nonspecific (or pleotropic) 
effects of pathogenic mutations have recently emerged as a key theme 
among neurodevelopmental disease genes35. Here we provided empir-
ical evidence to suggest this pleiotropy also extends to healthy cogni-
tive function, although the underlying mechanisms for mutational 
nonspecificity remain unknown.

One observation from our study is the extent to which the expression 
of M1 and M3 genes is temporally specified. After birth, expression  
of M1 and M3 genes appeared remarkably stable over time, con-
sistent with an enduring role for these genes in cognitive function 
throughout life. This is in keeping with the finding of the modules’ 
association with cognition in two independent cohorts that differ in 
their age at assessment (Table 1). Whereas studies have suggested that 
sequence variation in genes that are developmentally regulated can 
be related to susceptibility to neurodevelopmental disease42,43, here 
we showed that genes under tight developmental regulation and later 
coexpressed in the developed human brain are also related to this 
class of disorder as well as healthy cognitive processes. These observa-
tions provide a starting point for the identification of gene-regulatory  
factors that influence cognition and neurodevelopmental disease.

Our analyses integrating DNMs with gene-regulatory networks 
revealed that M3 was associated most strongly with intellectual 
disability and epileptic encephalopathy and to a lesser extent with 
neurodevelopmental disease in general. This is consistent with the 
hypothesis that genetic variation affecting quantitative variation in 
cognitive abilities overlaps with that underlying related monogenic 
phenotypes. However, when considering common risk variants (that 
is, SNPs) for neuropsychiatric disease, we observed an association 
between M3 and schizophrenia but not with common forms of 
epilepsy. Potential explanations for the lack of GWAS enrichment  
of association between M3 and common epilepsy include different 
gene contributions to severe childhood epileptic encephalopathy 
arising from rare de novo mutations compared to the (mostly) adult 
epilepsies considered in the ILAE study46, and/or insufficient power 
to detect common variant associations using the ILAE GWAS (which, 
despite consisting of only 8,696 epilepsy cases and 26,157 controls is 
the largest epilepsy GWAS yet undertaken). Further studies will be 
required to clarify the specific contribution of M3 genes to disease  
risk across the allelic spectrum, and to elucidate the role of both  
rare and common sequence variants in the complex inheritance of 
childhood and adult epilepsy.
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Figure 3  Graphical representation of the M3 coexpression network and its relationship to neurodevelopmental disease. Genes in M3 impacted by single 
nucleotide variant nsDNM from neurodevelopmental disease cases are drawn separately in a circle (right). The area of each node is proportional to the 
number of nsDNM for that gene across the full cohort of 6,871 parent-offspring trios (Online Methods). Individual nsDNM, their predicted affect and 
corresponding neurodevelopmental disease phenotypes are detailed in Table 2.
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In conclusion, starting from an unsupervised analysis of gene 
expression variation in the hippocampus and across the brain, we 
identified two cross-species conserved gene coexpression networks 
(M1 and M3) associated with healthy human cognitive abilities, and 
we identified one of these (M3) as a convergent gene network for both 
cognition and neurodevelopmental disease. Our experimental frame-
work, which integrates gene-network analysis with genetic susceptibil-
ity data, can be applied generally to any human behavioral or cognitive 
phenotype for which relevant genetic data (GWAS, whole-exome 
sequencing, etc.) are available. We have therefore made our human 
hippocampal gene network and data accessible via an integrated web 
tool (Neurodevelopmental disease Brain Integrated Gene Networks, 
http://www.nbign.co.uk). This framework and underlying data may 
help to tackle the fundamental challenge of understanding how genetic 
risk variants for neurodevelopmental disease and related cognitive phe-
notypes exert their effects in the developed human brain.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Human surgical hippocampus gene expression data generation. Ethics 
approval for the study was given by the NHS Tayside committee on research ethics  
(reference 05/S1401/89). Genome-wide gene expression data were generated from 
122 snap-frozen whole hippocampus samples surgically removed from patients 
who had undergone en bloc amygdalahippocampectomy for mesial TLE as previ-
ously described50. Informed consent was obtained from all patients and the study 
was approved by statutory Ethics Committees and Institutional Review Boards. 
Clinical data recorded for each patient included date of birth, gender, handedness, 
age at epilepsy onset, laterality of TLE, operation date, age at operation, preopera-
tive seizure frequency, antiepileptic drug therapy at the time of surgery and neu-
ropathology. Genome-wide gene expression was assayed as previously described50. 
Expression data were normalized by quantile normalization with background 
subtraction. Prior to network analysis, the data were filtered as follows: first, non-
expressed probes were removed using the internal P values of detection provided 
by Illumina BeadArray Reader. Probes were retained if they passed 95% confi-
dence threshold in at least 30% of the samples. Second, probes were removed if 
their sequences did not map uniquely to the reference genome or if the target 
regions contained at least one known SNP, as accessed by ReMOAT51. Third, the 
coefficient of variation (s.d./mean) in gene expression was used to remove the 
5% of probes showing the lowest variation in gene expression in the TLE cohort. 
These filtering steps defined a final data set of 11,837 probes, representing 9,616 
protein-coding unique genes (Ensembl version 72), which were then used for 
network analysis and as the ‘background’ gene set for enrichment analyses.

Gene coexpression network analysis of human surgical hippocampus samples. 
Before inferring gene coexpression networks, we used principal component (PC) 
analysis to calculate summary variables describing the variation in the microarray 
expression of the 11,837 probes and estimate the potential effects of clinical covari-
ates on global gene expression variability. The first three PCs explained the follow-
ing fraction of variation in gene expression: PC1, 25%; PC2, 15%; and PC3, 8%, with 
other components explaining <5% of the variability in gene expression. We assessed 
the impact of clinical covariates age, gender, epilepsy severity, anti-epileptic drug 
(AED) load and hippocampal ‘pathology type’ (that is, Ammons Horn Sclerosis 
alone or in association with reactive astrogliosis and/or neuronal loss) on global 
gene expression by calculating univariate correlations between PC1−PC3 and each 
clinical covariate. After Bonferroni correction for multiple testing, ‘pathology type’ 
was the only covariate to show a significant effect on gene expression in epileptic 
hippocampus (P = 1.1 × 10−4, R2 = 0.24 on PC1 of global gene expression). PC1 
summarized 25% of the global variation in gene expression, and since ‘pathology 
type’ explained only a limited fraction of this variability (R2 = 0.24), this was con-
sidered the only relevant covariate. This is in keeping with our previous analyses 
where we observed no significant effects from clinical covariates (apart from epi-
lepsy pathology as shown here)50. Gene expression levels were therefore adjusted 
to remove the effect of ‘pathology type’ by fitting linear models on gene expression 
and accounting for pathology using the lm function in R. The residuals from the 
linear model were then used in the coexpression network analysis.

Genes were then grouped into modules using weighted gene coexpression 
network analysis (WGCNA)14 on the set of 11,837 probes in 122 human hip-
pocampus samples. WGCNA builds undirected coexpression networks where 
the nodes of the network correspond to genes and edges between genes are 
determined by the pairwise correlations between the genes’ expression levels. 
To avoid outlier bias, Tukey’s biweight method52 was used to compute robust 
pairwise correlations of gene expression. The strength of relationships between 
probes is defined as the adjacency matrix, which is calculated by applying a 
power function (connection strength = |correlation|β) on the biweight correla-
tion matrix. The power function reduces the strength of weak correlations while 
preserving connection strength of highly correlated probes. Higher values of β 
increase this effect and increase specificity of gene interactions, whereas a lower 
β increases sensitivity. For the network analysis in the surgical hippocampus 
and for the comparative networks analyses in different data sets (see below), 
the beta was chosen to optimize the scale free property and the sparsity of con-
nections between genes in each data set. Then, the adjacency matrix was used 
to calculate the topological overlap matrix (TOM), which measures the number 
of neighbors that a pair of probes have in common, relative to the rest of the 
probes. Average hierarchical clustering was used to group genes based on the 
dissimilarity of gene connectivity, defined as 1 – TOM. The dynamic cut-tree 

method53 was used to cut the dendrogram on a branch-by-branch basis to pro-
duce coexpression clusters.

Reproducibility of TLE hippocampal modules in control (nondiseased) human 
and mouse hippocampus samples. Several independent hippocampal gene-
expression data sets were used to establish module reproducibility. To establish 
reproducibility of modules in nondiseased human hippocampus we used human 
postmortem hippocampus microarray expression data from 63 healthy postmor-
tem human brains publicly available from Pritzker Neuropsychiatric Disorders 
Research Consortium (http://www.pritzkerneuropsych.org/?page_id=1196).  
To investigate module conservation across species, we generated mRNA-sequencing  
(RNA-seq) expression data from 100 healthy mouse hippocampi as follows: 
total RNA was isolated from snap frozen hippocampi from 100 healthy (Crl:
NMRI(Han)-FR) mice. Mouse hippocampus samples were ascertained strictly 
in accordance with statutory ethical guidelines/regulations. cDNA and sample 
preparation for RNA sequencing followed manufacturer protocol (TruSeq RNA 
kit, Illumina). Samples were sequenced on an Illumina HiSeq 2000 sequencer as 
paired-end 75-nucleotide reads. Raw reads were mapped to the reference mouse 
genome (mm10) using TopHat54 version 2.0.8. Read counts per gene were cal-
culated for each sample using HTseq version 0.5.3 (http://www-huber.embl.de/
users/anders/HTSeq) and subsequently normalized across all the samples using 
trimmed mean of M value (TMM) approach55. For each replication gene expres-
sion data set we checked whether human surgical modules had higher connectiv-
ity in the replication data sets than expected by chance. For each replication gene 
expression data set, the adjacency matrix was calculated using biweight correla-
tions and the β value was chosen to optimize scale free property of the networks. 
The adjacency matrix was used to calculate topological overlap matrix (TOM) 
using WGCNA. For each of the 24 networks (M1−M24) detected in the 122 TLE 
subjects, empirical P values for the significance of the coexpression relationships 
were calculated by comparing the average topological overlap for network genes 
in the replication data sets (human or mouse) to the average connectivity of 
10,000 randomly sampled networks56. The randomly sampled networks had the 
same size of the networks detected in the TLE patients (M1−M24).

Module coexpression across brain regions. To determine whether coexpression 
of genes in modules M1 and M3 are preserved across topographically distinct 
cortical regions, we analyzed genome-wide gene expression data from four brain 
regions (cerebellum, temporal cortex, occipital cortex and frontal cortex) using 102 
postmortem human brains from the UK Brain Expression Consortium (UKBEC) 
(GSE60862)20. Each brain region was treated as an independent data set. Raw 
expression profiles from the Affymetrix Human Exon 1.0 ST Array were processed 
to transcript-level expression with Affymetrix Power Tools (APT) (http://www.
affymetrix.com/partners_programs/programs/developer/tools/powertools.affx) 
using probe logarithmic intensity error (plier) normalisation57 with probe G+C 
content correction. Only the most reliable ‘core’ set of probes was used to gen-
erate transcript-level expression profiles as defined by Affymetrix. Exons were 
considered as ‘expressed’ if more than 50% of the samples had detection above 
background P values below 0.01, as calculated using APT. Gene-level expression 
was obtained by taking the median of the expression values of multiple exons map-
ping to the same gene. Expression profiles from each brain region were analyzed as 
independent data sets and were processed separately. This means that some genes 
were considered as ‘expressed’ in some brain regions and not in others (number of 
unique Ensembl genes expressed per brain region as follows: frontal cortex, 14,800; 
temporal cortex, 14,777; cerebellum, 15,162; and occipital cortex, 14,815).

Gene expression profiles were corrected for measured clinical covariates: age, 
gender, postmortem interval, cause of death and the source of samples (that is, 
brain-bank identifier). The data were also adjusted for any potential batch effects 
using probabilistic estimation of expression residuals (PEER)58. PEER uses factor 
analysis to infer hidden determinants that explain large proportions of variability 
in the data. This approach allows expression data to be corrected for the effects 
of measured covariates such as age and sex as well as other potential sources of 
bias such as batch effects, environmental influences, sample history and other 
unknown factors58. Comparative network analysis was undertaken as previously 
(above) using the default network dissimilarity measure in WGCNA based on 
the TOM14, and empirical P values for the reproducibility of networks calculated 
by comparing the average topological overlap for module genes to the average 
connectivity of 10,000 randomly sampled networks.
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Spatiotemporal analysis of module expression. To determine the spatiotemporal 
expression dynamics of modules, we used quantile-normalized gene-level expres-
sion values (log2 transformed) from GSE60862 (ref. 29). These transcriptome data 
were generated using Affymetrix Human Exon 1.0 ST array analysis of 16 brain 
regions comprising the cerebellar cortex, mediodorsal nucleus of the thalamus, 
striatum, amygdala, hippocampus and 11 areas of the neocortex. The data were gen-
erated from 1,263 samples collected from 53 clinically unremarkable postmortem 
human brains, spanning embryonic development to late adulthood (from 10 weeks 
after conception to 82 years of age, which corresponded to periods 3–15, as previ-
ously designated)29. The log2-transformed gene expression data follows a bimodal 
distribution contributed by low (likely nonfunctional) and high expressed genes59. 
We used the expectation maximization (EM) algorithm to model gene expression 
levels as mixture of normal distributions and identify the underlying distributions 
of low and high expressed genes. Only the genes, with mean of log2-transformed 
expression values over the 95% percentile of distribution of low-expressed genes 
(here > 5.61) were considered for further analysis (n = 8,704). The EM algorithm 
was implemented using normalMixEM function from the mixtools R package. 
Spatiotemporal dynamics of coexpression modules M1 and M3 across 16 brain 
regions and 13 developmental time points were illustrated as a heatmap (Fig. 1d), 
as previously described28. Module expression for each region and developmental 
time point was calculated by averaging the scaled expression across all genes in a 
module. The resultant heatmap graphs illustrate the changes in expression of genes 
of a coexpression module across brain development and cortical regions.

Functional enrichment analysis of networks. Co-expression modules were func-
tionally annotated using WebGestalt30 with terms of Kyoto Encyclopedia of Genes 
and Genomes (KEGG)60, ‘Pathway Commons’ and GO61 terms. For each data set, 
we conservatively used all hippocampus-expressed genes (including those that 
contributed to the individual coexpression modules) as the background in the 
functional enrichment analyses. For each gene set (module), the ratio of enrich-
ment (r), r = k/ke is calculated as the number of genes in the module (k) over the 
expected value (ke) of genes in the reference as determined by WebGestalt30.

Assessment of overrepresentation of synaptic genes in modules. Enrichment 
of postsynaptic genes in the modules was assessed by hypergeometric test (two-
tailed). The list of genes encoding ARCs and NMDAR was sourced from a pub-
lished study (80 genes; see supplementary table 9 in ref. 17). The postsynaptic 
density (PSD) gene list used was the consensus human PSD genes (supplementary 
table 2 in ref. 22) that had an Ensembl gene identifier (745 out of 748 genes). 
PSD and ARC-NMDAR−encoding genes were tested for overrepresentation in 
the modules using the list of brain expressed genes as the background gene set 
(n = 9,616 genes).

Genome-wide association study of cognitive phenotypes. We analyzed four 
cognitive phenotypes in two independent community-based cohorts, discovery 
cohort GS:SFHS24 and replication LBC1936 (ref. 25). The same four cognitive 
phenotypes were analyzed in both LBC1936 and GS:SFHS; these were general 
fluid cognitive ability, crystallized ability, memory (delayed recall) and informa-
tion processing speed. For LBC1936, the general fluid factor was derived using 
the six nonverbal tests from the Wechsler Adult Intelligence scale IIIuk (ref. 62): 
matrix reasoning, digit span backward, symbol search, digit symbol coding, block 
design and letter-number sequencing. The raw scores from each of these tests were 
used in a PC analysis where the first unrotated PC was extracted using regression 
analysis. Next, each participant’s score on this PC was linearly regressed against 
age, sex and the first four multidimensional scaling components (to control for 
population stratification) used as predictor variables. The residuals from this 
model were then used in subsequent analyses. For crystallized ability, the National 
Adult Reading Test (NART)63 was used. For memory and information processing 
speed, the delayed memory section from the logical memory section and the digit 
symbol section of the WAIS-IIIUK (ref. 62) were used, respectively. For each of 
these single tests, the effect of age, sex and population stratification was control-
led for using regression approaches (as described above), and the standardized 
residuals from the regression model were used in the downstream analyses.

In GS:SFHS, for general fluid cognitive ability, the raw scores from the digit sym-
bol substitution task62, the delayed and immediate sections of the logical memory 
test64, verbal fluency65, and the Mill Hill vocabulary scale66 were subjected to a PC 
analysis where the first unrotated PC was extracted using regression. This PC was 

then used as the dependent variable in a linear regression model with age, sex and 
the first six principal components (to control for population stratification) used as 
predictor variables. The residuals from this model were then extracted and carried 
forward for subsequent analyses. Whereas different tests were used in the construc-
tion of the general factor in GS:SFHS and in LBC1936, correlations between general 
factors constructed from different test batteries is high67,68. As with LBC1936, for 
crystallized ability, memory and information-processing speed only a single test was 
used. For crystallized ability this was the Mill Hill vocabulary scale66, for memory 
the delayed section of the logical memory test64, and for information processing 
speed the digit symbol substitution task62 was used. As for general cognitive ability, 
the effects of age, sex and population stratification were controlled for using regres-
sion approaches. Using these cognitive phenotypes we then undertook a standard 
GWAS of cognitive phenotypes in GS:SFHS and LBC1936 separately, as follows.

GWAS in GS:SFHS. GS:SFHS was composed of families recruited from the 
population of Scotland between 2006 and 2011. 7,953 unrelated individuals aged 
between 35 and 65 years were recruited from Glasgow, Tayside, Ayrshire, Arran 
and the northeast of Scotland. 95% of subjects were contacted through their 
general practitioner, with the remaining 5% contacted through word of mouth. 
These individuals’ family members were also recruited, yielding a sample size 
of 24,084 with an age range of 18−100 years of age. A description of GS:SFHS is 
available in refs. 24 and 69. DNA from blood (or saliva from clinical and postal 
participants) was extracted following informed consent from 10,000 Caucasian 
participants who were born in the UK. DNA was processed and stored using 
the standard operating procedures at the Wellcome Trust Clinical Research 
Facility Genetics Core in Edinburgh70. Genotyping was undertaken on Illumina 
HumanOmniExpressExome-8 v1.0 DNA Analysis BeadChip. In order to ensure 
comparability between the LBC1936 cohort and GS:SFHS, the UCSC Batch 
Coordinate Conversion (liftOver) (https://genome.ucsc.edu/cgi-bin/hgLiftOver) 
tool was used to convert the hg 19 build of GS to hg18. To control for the effect of 
shared environment subjects who were related to another participant were removed 
(estimated kinship > 0.025) leaving a total of 6,816 unrelated participants. After 
quality control 594,756 SNPs with a minor allele frequency > 0.01 were included in 
the analysis. Cognitive phenotypes were derived as described above and the effects 
of age, sex and population stratification controlled for as described previously. The 
standardized residuals were used for subsequent single-SNP GWAS which was per-
formed using PLINK71. Single SNP P values of association to individual cognitive 
scores were then used in the GWAS enrichment analysis (see below).

GWAS in LBC1936. The LBC1936 cohort consisted of 1,091 cognitively healthy 
individuals (548 men and 543 women) assessed on cognitive and medical traits at a 
mean age 69.6 years (s.d. = 0.8). Informed consent was obtained from all subjects. 
All subjects were of Caucasian descent and almost all lived independently in the 
Lothian region (Edinburgh city and surrounding area) of Scotland. Genotyping 
using the Illumina 610-Quadv1 array was performed at the Wellcome Trust Clinical 
Research Facility, Edinburgh. Quality control measures were as follows: individuals 
were excluded from the study based on unresolved gender discrepancy, relatedness 
(so that no pair remained with estimated kinship >0.025), SNP call rate (≤0.95) and 
evidence of non-Caucasian descent. A total of 542,050 SNPs meeting the following 
conditions were included in the analysis: call rate ≥ 0.98, minor allele frequency ≥ 0.01  
and Hardy-Weinberg equilibrium test with P ≥ 0.001. After quality control, we 
included 1,003 participants in the association analysis. Derivation of the cognitive 
phenotypes is described above, followed by correction for age, sex and popula-
tion stratification. The standardized residuals were used for genotype-phenotype 
analyses by PLINK71. Single SNP P values of association to individual cognitive 
scores were then used in the GWAS enrichment analysis (see below).

GWAS enrichment analysis. To test for enrichment of genetic association in a 
gene set (that is, coexpression module) we used VEGAS26 to generate a gene-based 
association statistic (P value) controlled for the number of SNPs in each gene and 
the LD between those SNPs. In all analyses gene-based P values were calculated 
using VEGAS and the top 10% option with 100,000 iterations and a gene window 
consisting of the transcriptional start and stop position of each gene. For both GS:
SFHS and LBC1936, the genotype data from the GWAS participants was used to 
control for LD (rather than the default HapMap population) as this is expected to 
provide a more accurate estimate of the LD structure, which can be specific of the 
population cohort analyzed. For the other GWAS for which raw genotype data 
were not available (the Psychiatric Genomics Consortium traits, International 
League Against Epilepsy Consortium on Complex Epilepsies (Supplementary 
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Table 9), and the noncognitive control GWAS data sets of waist:hip ratio, fasting 
glucose homeostasis, glucose challenge homeostasis, systolic blood pressure and 
diastolic blood pressure (Supplementary Table 6)) the default HapMap population 
was used to control for LD in the VEGAS analysis. The GWAS-enrichment statistic 
was calculated for a given module from the gene-based association P values (from 
VEGAS) using the Z test−based bootstrapping method27 (one-sided) where, for 
each network, 100,000 random gene sets of same size as the network were sampled 
from the list of all hippocampus expressed genes (n = 9,616). P values of enrich-
ment for the discovery cohort were considered significant if they passed FDR 
correction for the number of modules tested, as indicated in each case.

Using RVIS to assess the genic intolerance properties of specific modules. 
The extent of human-specific genic constraint was estimated for each of the 
24 coexpression modules by using the genic protein-coding intolerance scores 
(RVIS)34. RVIS was only calculated for protein-coding genes that had at least 
one protein-coding transcript that was publically approved among the CCDS 
release 9 database72, and that had ≥70% of their CCDS real estate adequately 
covered among the population database adopted in their original manuscript 
(Exome Sequencing Project (ESP)-6500)34. This resulted in scores for 16,956 
assessable CCDS release 9 genes, thus all RVIS comparisons are restricted to 
these 16,956 ‘assessable’ genes. We found that 89.4% of the genes across all 
modules had an assessable RVIS score. To determine whether a module was 
enriched for genes that are relatively more intolerant to functional variation 
than the rest of the genes expressed in the human hippocampus (n = 8,414  
with CCDS), a two-tailed Mann-Whitney U test was used to compare the distri-
bution of genic RVIS scores for each module to the distribution from the rest of 
the hippocampus-expressed protein-coding genes outside of the module (mod-
ule-level RVIS results are reported in Supplementary Table 7).

Assessing the relationship between coexpression modules and neurodevelop-
mental disorder ascertained de novo mutations. We collated published DNM 
data sets to determine whether any relationships exists between coexpression 
modules and the DNMs reported in neurodevelopmental trio whole-exome 
sequencing studies. Collectively, the neurodevelopmental disease cohort con-
sisted of 5,738 non-overlapping published parent-offspring trios across four dis-
ease phenotypes; autism spectrum disorder (ASD, n = 4,186)44,73, schizophrenia 
(SCZ, n = 1,004)21,42,43,74,75 intellectual disability (ID, n = 192)41,76,77 and epileptic 
encephalopathy (EE, n = 356)78,79. Additionally, we considered DNMs from an 
independent cohort of 1,133 trios with severe, previously undiagnosed develop-
mental disease from the DDD study36,37. For controls, we used 1,891 nonneuro-
logical control samples from seven published studies38–44.

Each module’s genetic relationship to disease was tested using two approaches. 
First, we compared rates of DNMs in each module compared to random expecta-
tion based on the CCDS of module genes. In the absence of individual trio data 
across the different studies, we cannot determine the effectively sequenced real 
estate for each gene so we took the conservative route by assuming each gene 
has 100% of its CDDS sequence covered across all trios, appreciating that some 
genes will not have been adequately covered due to reasons such as capture kit 
specifications or low coverage. Thus, the expected numbers of DNM for each gene 
set is calculated based on the length of CCDS sequence of genes in the set and the 
overall frequency of DNM in all CCDS genes. Then to estimate the enrichment 
we used the ratio between the observed number of DNM in the gene set and the 
expected number based on this length model using BET (two-tailed). Second, 
to accommodate for sequence context factors such as the inherent mutability of 
genes in a module, we adopted a FET (two-tailed) to empirically compare the 
rates of DNMs overlapping the CCDS real estate of a module in case- and control 
cohorts. This approach is also able to capture modules comprised of genes that are 
preferentially depleted of DNMs in healthy control cohorts. For each module, we 
report single nucleotide variant DNM enrichments by both approaches and by 
considering three main classes of DNM: (i) pdDNM consisting of loss-of-function  
(that is, nonsense and splice-site mutations) plus with missense mutations with 
SIFT80 score ≤0.05 and Polyphen2 (ref. 81) score ≥ 0.5, (ii) nsDNM consisting 
of all missense, nonsense and splice-site single nucleotide variant mutations and 
(iii) synonymous DNM (as a negative control). Polyphen2 and SIFT scores were 
obtained using the Variant Effect Predictor Ensembl tool49. For completeness, 
we also calculated enrichments considering only loss-of-function (nonsense and 
splice-site) mutations but because DNMs in this class were relatively infrequent, 

when considered alone, we expect limited power to detect significant enrich-
ments. Finally, to establish specificity of the module-level results, we calculated  
enrichment of DNM for each class of DNM among all genes significantly 
expressed in the human hippocampus (background genes, n = 9,616) taking the 
conservative route of including among this set of genes all genes contributing to 
the individual modules. Supplementary Code is provided for the major functions 
used in the analytical workflow.

A Supplementary Methods Checklist is available.
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