
04 June 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

An accurate and efficient algorithm to identify malicious nodes of a graph

Published version:

DOI:10.1109/TIFS.2023.3328211

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1962997 since 2024-03-19T14:53:42Z

1

An accurate and efficient algorithm to identify

malicious nodes of a graph
Rossano Gaeta

Abstract—The identification of misbehaving elements in a
distributed system is an important task in many diverse settings
that can be represented as graphs; this problem can be cast as
the computation of a subset of the graph nodes by exploiting a
pre-determined detection mechanism. In this paper we propose
a simple yet accurate algorithm to compute the set of nodes
of a graph suspected to be malicious that is based on the so
called comparison detection model. In this framework, a node
can play the role of the comparator for two of its neighbors and
can provide a boolean result based on the actual status of both.
The algorithm we propose has low computational complexity
and linear space complexity; furthermore, it only requires one
parameter to trade accuracy against computational cost. We also
show it outperforms the state-of-the-art and performs equally
very well on both synthetic and real world graphs.

Index Terms—Malicious node identification, comparison detec-
tion model, efficient algorithm, mathematical model.

I. INTRODUCTION

The problem of identifying misbehaving elements in a

distributed system is important in many diverse settings.

Examples are represented by the identification of:

• misbehaving nodes in wireless relay networks, e.g., ve-

hicular delay-tolerant networks [1], [2],

• malicious users in (possibly mobile) social networks [3],

[4],

• attackers in distributed storage [5] or collaborative

streaming networks [6], and

• faulty or malicious computing nodes in a distributed

processing/sensing infrastructure [7].

By abstracting away many details, we observe that a common

feature of these settings is that they might all be represented

as graphs wherein nodes are components and links exist to

represent components that somehow exchange information

between them. Once this abstraction is accepted the problem

of identifying misbehaving nodes can be cast as the problem

of computing a subset of the nodes suspected to be malicious

by exploiting a pre-determined detection mechanism.

In this paper we focus on the abstract problem of identifying

malicious nodes in a graph. In particular, we do so by relying

on the so called comparison detection model as proposed in

[8], [9] and recently exploited in [10], [11]. According to this

detection model, a node can play the role of the comparator

whose task is to feed a pair of its neighbors with problems.

Nodes under scrutiny by the comparator provide answers to

these problems: honest nodes never lie and always provide the

same correct answer while malicious nodes always give the

Rossano Gaeta is with Università degli Studi di Torino, Dipartimento di
Informatica, Torino, Italia. E-mail: rossano.gaeta@unito.it

wrong answer. Honest and malicious nodes are assumed to

always provide different answers to the same set of problems.

The comparison result is a boolean value assumed to be false

if comparator and both compared neighbors are honest; the

results is assumed to be true if the comparator is honest and

at least one neighbor is malicious. Finally, the result of the

comparison cannot be predicted if the comparator itself is

malicious.

Our contribution

We first propose a straightforward algorithm based on the

comparison detection model to compute the set of malicious

nodes that displays low computational cost and we later refine

it to obtain a higher accuracy algorithm with higher computa-

tional cost, linear space complexity, and the highest accuracy.

We will explore the impact of structural characteristics of

graphs on the algorithm performance and we will show that

it outperforms the state-of-the-art and performs equally very

well on both synthetic and real world graphs.

The rest of the paper is organized as follows: Section II

describes the framework we consider and presents algorithms

that implement the comparison detection model, Section III

illustrates three algorithms we developed to compute the set

of suspect nodes of a graph, Section IV presents accuracy

and complexity results. Comparison against state-of-the-art

approaches is presented in Section V while Section VI dis-

cusses related literature. Finally, Section VII summarizes paper

contribution and outlines future developments.

To help the reader, Table I summarizes the notation used

throughout this paper.

II. SYSTEM AND ATTACK MODEL

SYMBOL DESCRIPTION

Section II

G = (V, E) input graph
M ⊆ V set of actual malicious nodes
Γ(u) neighborhood of node u
Ms ⊆ V set of suspect malicious nodes

A ⊆rnd
x B A random subset of B, |A| = min(x, |B|)

ρ(c) ⊆rnd
nc

(Γ(c)− {u}) subset of neighborhood of c excluding u
nc = |ρ(c)| cardinality of ρ(c)

Section III

pfp false positive probability
ptp true positive probability

TABLE I: Notation

We consider an undirected graph G = (V,E) whose set of

nodes and links are denoted as V and E, respectively. For

2

each node u ∈ V we denote as Γ(u) its neighborhood, i.e.,

the set of nodes connected to u by an edge.

The set of nodes V is partitioned in two subsets M and

V − M ; the subgraph induced by M is composed of all

malicious nodes and is termed as the malicious region while

the subgraph induced by V −M is called the honest region.

An edge connecting the two regions is called attack edge and

no hypothesis are made on the sparsity of attack edges. Figure

1 depicts a portion of G wherein malicious nodes are drawn

as dashed line circles while honest nodes are represented as

continuous line circles.

As an example, in the context of online social networks

malicious nodes might be spammers, fake users, and com-

promised normal users that are maintained by an attacker to

perform various malicious activities, e.g., influence elections

and financial markets, spreading of spam and misinformation,

collecting private user data.

u

c1

ci

cj

v
cj
5

v
cj
1

Γ(u) = {c1, . . . ci . . . cj . . .}

v
cj
2

v
cj
3

v
cj
4

Γ(cj) = {v
cj
1 , . . . v

cj
5 }

Fig. 1: Part of a graph G: dashed line circles represent mali-

cious nodes, continuous line circles represent honest nodes.

The main goal of the analysis is the computation of the

set of suspect nodes Ms ⊆ V . To this end, we consider

as the only detection mechanism the comparison detection

model as proposed in [8], [9] and recently exploited in [10],

[11]. According to this detection model, a node can play

the role of the comparator whose task is to feed a pair

of its neighbors with problems. Nodes under scrutiny by

the comparator provide answers to these problems: honest

nodes never lie and always provide the same correct answer

while malicious nodes always give the wrong answer. Honest

and malicious nodes are assumed to always provide different

answers to the same set of problems. The comparison result

is a boolean value assumed to be false if comparator and both

compared neighbors are honest; the results is assumed to be

true if the comparator is honest and at least one neighbor

is malicious. Finally, the result of the comparison cannot be

predicted if the comparator itself is malicious.

Algorithm 1 defines function compare() and it illustrates

the computation carried out by a comparator node c that is

managing nodes u and v that are both its neighbors, i.e.,

u, v ∈ Γ(c). We modeled unpredictability of the comparison

Algorithm 1 compare(c, u, v)

1: r = is malicious(u) ∨ is malicious(v)
2: if is malicious(c) ∧ uniform() <= 0.5 then
3: r = not(r)
4: end if
5: return r

Algorithm 2 m(u, c, nc)

1: ρ(c) ⊆rnd
nc

(Γ(c)− {u})
2: r = true;
3: for v ∈ ρ(c) do
4: r = r ∧ compare(c, u, v)
5: end for
6: return r

result for malicious comparators as the outcome of a ran-

dom experiment whose realization might trigger the logical

inversion of the comparison result. Function is malicious()
returns true if the argument node is actually malicious and

false otherwise. Function uniform() returns a random variate

from the uniform distribution in the interval [0, 1].
Assuming the comparator node c is honest, when the result

of the comparison is true we only know that at least one

between nodes u and v is malicious. More information is

required to assess the status of node u. To this end, we build on

the comparison detection model and we consider a malicious

indicator function for node u managed by comparator c

defined as m(u, c, nc) =
∧

v∈ρ(c) compare(c, u, v) where

ρ(c) is a random subset of the neighborhood of comparator

c excluding u (the notation A ⊆rnd
x B is used to describe

that A is a random subset of B and that cardinality of A is

|A| = min(x, |B|)). The size nc of ρ(c) is a parameter of

Algorithm 2 that describes a straightforward computation of

malicious indicator function m().

III. IDENTIFICATION ALGORITHMS

We first propose in Section III-A a straightforward algorithm

based on the comparison detection model to compute the set

of malicious nodes that displays the least computational cost

expressed as the number of calls to function compare(), i.e.,

Algorithm 1). This simple solution will be refined in Section

III-B to obtain a higher accuracy algorithm at the cost of higher

computational complexity. Accuracy of both algorithms will

be exactly described by mathematical models. Section III-C

presents a synthesis of both solutions yielding an algorithm

with low computational complexity, linear space complexity,

and the highest accuracy.

A. A straightforward solution (sf algorithm)

A straightforward solution to compute the set of suspect

nodes Ms is given by Algorithm 3 (that we denote as the sf

algorithm). It simply considers each node u ∈ V and computes

its status according to Algorithm 2 by means of a randomly

chosen neighbor c of node u to act as comparator.

Unfortunately, this simple approach does not yield high

accuracy. To show this, we assume we deal with random

d−regular graphs [12], i.e., a class of random graph models

3

Algorithm 3 sf(G, nc)

1: Ms = ∅;
2: for u ∈ V do
3: c ⊆rnd

1 Γ(u)
4: if m(u, c, nc) then
5: Ms = Ms ∪ {u}
6: end if
7: end for
8: return Ms

wherein all nodes are randomly connected to d others1. Under

this assumption, we consider all possible cases when each

node u (including the comparator c) has d neighbors and a

node in V is malicious with probability pm.

When node u is honest sf algorithm can fail when:

• comparator node c is honest. In this case, it could happen

that all nodes in ρ(c) are malicious ending up in a

misidentification of node u as a false positive (FP) by

function m(). More formally, misidentification of honest

node u as FP occurs when c has nc ≤ y ≤ d−1 malicious

neighbors and all nc neighbors randomly chosen by

comparator c are malicious. The probability honest node

u is misidentified as malicious by a honest comparator is

then given by

bhonfp = (1− pm)

d−1∑

y=nc

B(y, pm, d− 1)H(nc, y, d− 1− y, nc),

where factor (1− pm) accounts for the probability com-

parator c is honest, B(y, pm, d−1) is the probability that

y out of d − 1 neighbors are malicious (it is described

by the binomial probability distributions with parameters

pm and d − 1), and H(nc, y, d − 1 − y, nc) is the

hypergeometric distribution that describes the probability

that in a population composed of y malicious nodes and

d − 1 − y honest nodes exactly nc malicious nodes are

selected when randomly extracting a subset of size nc.

• comparator c is malicious. In this case, regardless the

number of malicious neighbors of comparator c, node u

can be misidentified as malicious if c does not invert all of

the selected malicious neighbors in ρ(c) and it inverts all

of the selected honest neighbors in ρ(c). The probability

honest node u is misidentified as malicious by a malicious

comparator is then given by

bmal
fp = pm

d−1∑

y=0

B(y, pm, d− 1)

nc∑

s=0

H(s, y, d−1−y, nc)

2nc−s · 2s
=

pm

2nc

.

It follows that, regardless the actual status of comparator c,

the above analysis yields the overall probability of misidenti-

fication of a honest node u as a false positive by sf algorithm

as

pfp = bhonfp + bmal
fp . (1)

If node u is malicious sf algorithm can accurately identify it

when:

1Of course, our analysis can be generalized to random graphs whose degree
distribution is described by an arbitrary discrete probability distribution P (d).

Algorithm 4 ex(G, nc)

1: Ms = ∅;
2: for u ∈ V do
3: γ(u) ⊆rnd

nc
Γ(u)

4: nm = 0;
5: for c ∈ γ(u) do
6: if m(u, c, nc) then
7: nm = nm + 1;
8: end if
9: end for

10: if nm ≥ ⌊nc

2
⌋+ 1 then

11: Ms = Ms ∪ {u}
12: end if
13: end for
14: return Ms

• comparator c is honest. In this case, node u can never be

misidentified as honest since function m() always returns

true. It follows that the probability node u is correctly

identified as malicious by a honest comparator is simply

bhontp = 1− pm.

• comparator c is malicious. In this case, a malicious node

u is correctly identified as such if c does not invert all

the comparison results for the selected neighbors in ρ(c).
This event occurs with probability bmal

tp = pm

2nc
.

It follows that sf algorithm yields an overall true positive

probability given by

ptp = bhontp + bmal
tp . (2)

It is easy to observe that the complexity of sf algorithm in

terms of number of calls to function compare() is O(nc ·|V |).

B. An expensive solution (ex algorithm)

The main issue of sf algorithm is that it relies on only one

randomly chosen neighbor of node u to play the comparator

role. A quite simple technique to improve accuracy is to rely

on a set of comparators and to identify a node based on the

outcome of the majority of comparators. Algorithm 4 (that we

denote as the ex algorithm) implements this solution to com-

pute the set of suspect nodes Ms and requires the number of

comparators for identifying node u as a parameter. Accuracy

of ex algorithm can be exactly described by Equations 3 and

4 that represent the probability the majority of comparators

identifies node u as malicious.

pfp =

nc∑

nm=⌊nc

2
⌋+1

B(nm, bhonfp + bmal
fp , nc) (3)

and that

ptp =

nc∑

nm=⌊nc

2
⌋+1

B(nm, bhontp + bmal
tp , nc) (4)

We observe that complexity of ex algorithm is O(n2
c · |V |).

C. An accurate and efficient solution (ae algorithm)

In Section IV we show that ex algorithm yields higher

accuracy when compared against sf algorithm. Nevertheless,

it is still based on a random selection of comparators and

4

Algorithm 5 compute status(u, c, nc)

1: if c == UNDEFINED then
2: γ(u) ⊆rnd

nc
Γ(u)

3: nm = 0;
4: for v ∈ γ(u) do
5: if m(u, v, nc) then
6: nm = nm + 1;
7: end if
8: end for
9: return (nm ≥ ⌊nc

2
⌋+ 1)?MALICIOUS : HONEST

10: else
11: return (m(u, c, nc))?MALICIOUS : HONEST
12: end if

Algorithm 6 ae(G, nc)

1: ncomputed = 0;Q = ∅;Ms = ∅;
2: for u ∈ V do
3: status[u] = UNDEFINED;
4: end for
5: repeat
6: for u ∈ V do
7: if status[u] == UNDEFINED then
8: ncomputed = ncomputed + 1
9: status[u] = compute status(u,UNDEFINED, nc)

10: if status[u] == HONEST then
11: for v ∈ Γ(u) do
12: enqueue(v, u,Q)
13: end for
14: break
15: else

16: Ms = Ms ∪ {u}
17: end if
18: end if
19: end for
20: while Q 6= ∅ do
21: q = dequeue(Q)
22: if status[q.u] == UNDEFINED then
23: ncomputed = ncomputed + 1
24: status[q.u] = compute status(q.u, q.c, nc)
25: if status[q.u] == HONEST then
26: for v ∈ Γ(q.u) do
27: enqueue(v, q.u, Q)
28: end for
29: else
30: Ms = Ms ∪ {q.u}
31: end if
32: end if
33: end while
34: until ncomputed < |V |
35: return Ms

it does not exploit any of the partial identifications already

computed. This observation leads to the highly accurate yet

efficient Algorithm 6 (that we denote as the ae algorithm).

After an initialization phase (lines 1 through 4), the algo-

rithm scans nodes whose status is still to be determined to

identify them (for loops in lines 6 through 19). For these nodes

no previous knowledge can be exploited hence their status is

computed by Algorithm 5 based on a set of comparators as in

ex algorithm. If a node u is identified as malicious it is inserted

in output set Ms otherwise the scanning interrupts and u is

used as a trusted comparator for all its neighbors in Γ(u).
All nodes that can be identified by a trusted comparator are

inserted in a queue Q and analyzed in a breadth−first fashion

(lines 20 through 33). Their status is computed by Algorithm

5 by simply evaluating function m() with a trusted comparator.

As soon as queue Q empties scanning is resumed for nodes

still to be identified. The algorithm terminates when all nodes

of graph G have been considered.

Computational complexity of ae algorithm is more difficult

to characterize and lies between O(nc · |V |) and O(n2
c · |V |).

This is because function compute status() (Algorithm 5) acts

like sf algorithm if it is invoked with a defined comparator

node c while it acts like ex algorithm, otherwise. As for space

complexity, ae algorithm requires linear space to store the

results of status computation, i.e., the status[] array and the

queue Q.

IV. EVALUATION

In this section we present results we obtain from running

algorithms presented in Section III on both synthetic and

real world graphs. In particular, in Section IV-A we vali-

date Equations 1, 2, 3, and 4 by comparing their predic-

tions against results obtained from experiments on random

d−regular graphs [12]. Section IV-B compares accuracy and

computational costs of sf algorithm, ex algorithm, and ae

algorithm while Section IV-C analyzes the impact of structural

characteristics of synthetic random graphs on the accuracy of

ae algorithm. Finally, in Section IV-D we show performance

of ae algorithm on real world graphs taken from [13].

To evaluate the accuracy of identification algorithms we

define the:

• true positive probability (denoted as detection rate in

[11]) as ptp = |Ms∩M|
|M| , and

• false positive probability (denoted as false positive rate

in [11]) as pfp = |Ms−Ms∩M|
|V−M| .

When dealing with synthetic graphs, we analyzed graphs

whose size is |V | = 10, 000 and we computed average ptp and

pfp by considering 500 different realizations of topologies and

20 different assignment of malicious nodes for each topology.

The set of malicious nodes M is synthesized by selecting a

random subset of elements in V whose size is equal to pm·|V |,
i.e., M ⊆rnd

pm·|V | V .

All algorithms have been developed by using the C

programming language that exploit the igraph library

[14] to support graph creation, import, and manipula-

tions. All experiments have been run on a Intel i9-9900K

CPU based PC equipped with 64GB RAM. A repos-

itory on Github is available for software download at

https://github.com/rossano-gaeta/malicious-identification.

A. Validation results

The first set of results we present aims to validate Equations

1, 2, 3, and 4. To this end, we consider random graphs whose

nodes all share the same degree d, i.e., random d−regular

graphs. Figure 2 depicts ptp (left graph) and pfp (right graph)

obtained from sf algorithm and ex algorithm for different

values of d and pm. To avoid cluttering the graphs, we only

show results for nc =
d+2
2 . It can be noted that mathematical

models for ptp and pfp exactly predict the output of sf

algorithm and ex algorithm for any choice of d and pm. The

same accuracy is obtained for all values 1 ≤ nc ≤ d.

https://github.com/rossano-gaeta/malicious-identification

5

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

pm

Eq. 2, d = 4
sf, d = 4

Eq. 2, d = 8
sf, d = 8

Eq. 4, d = 4
ex, d = 4

Eq. 4, d = 8
ex, d = 8

ptp, nc = (d + 2) / 2

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

pm

Eq. 1, d = 4
sf, d = 4

Eq. 1, d = 8
sf, d = 8

Eq. 3, d = 4
ex, d = 4

Eq. 3, d = 8
ex, d = 8

pfp, nc = (d + 2) / 2

Fig. 2: True positive (left graph) and false positive (right graph) probabilities comparing sf algorithm and ex algorithm against

predictions from Equations 1, 2, 3, and 4 for d = 4, 8, and nc =
d+2
2 as a function of pm.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

nc

sf, d = 4
sf, d = 5
sf, d = 6
sf, d = 7

ptp, pm = 0.3

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

nc

ex, d = 4
ex, d = 5
ex, d = 6
ex, d = 7

ptp, pm = 0.3

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

nc

ae, d = 4
ae, d = 5
ae, d = 6
ae, d = 7

ptp, pm = 0.3

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 1 2 3 4 5 6 7 8

nc

sf, d = 4
sf, d = 5
sf, d = 6
sf, d = 7

pfp, pm = 0.3

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 1 2 3 4 5 6 7 8

nc

ex, d = 4
ex, d = 5
ex, d = 6
ex, d = 7

pfp, pm = 0.3

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 1 2 3 4 5 6 7 8

nc

ae, d = 4
ae, d = 5
ae, d = 6
ae, d = 7

pfp, pm = 0.3

Fig. 3: True positive (top row) and false positive (bottom row) probabilities for sf algorithm (left column), ex algorithm (middle

column), and ae algorithm (right column) when pm = 0.3 as a function of nc.

B. Comparison results

A careful observation of validation results presented in

Figure 2 also suggests that:

• values of pfp decrease for both algorithms as d increases;

• values of ptp also decrease as d increases but only for sf

algorithm;

• the behavior of ptp as a function of d is not easily

assessable for ex algorithm. Indeed, for small values of

pm the higher d the higher ptp while for pm > 0.35
smaller values of d yield higher accuracy.

To clarify the last point, Figure 3 depicts results for ptp (top

row) and pfp (bottom row) for sf algorithm (left column), ex

algorithm (middle column), and ae algorithm (right column)

when pm = 0.3 as a function of nc and d. It can be noted

that:

• for sf algorithm optimal ptp is obtained when nc = 2
for any value of d while optimal pfp can be attained

whenever nc = d;

• for ex algorithm and fixed d, both ptp and pfp do not

show monotonic trends with respect to nc. In particular,

optimal values of ptp are obtained when nc = d if d is

odd and for nc = d − 1 if d is even. The opposite is

valid if we focus on pfp whose optimality is reached for

nc = d− 1 if d is odd and for nc = d if d is even;

• for ae algorithm nc = d yields optimal accuracy for both

ptp and pfp.

Non-monotonicity of accuracy with respect to nc for ex

algorithm (the saw-shaped curves in Figure 3, middle graphs)

6

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

pm

sf, d = 5
sf, d = 8
ex, d = 5
ex, d = 8
ae, d = 5
ae, d = 8

ptp, optimal nc

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

pm

sf, d = 5
sf, d = 8

ex, d = 5
ex, d = 8

ae, d = 5
ae, d = 8

pfp, optimal nc

Fig. 4: True positive (left graph) and false positive (right graph) probabilities comparing sf algorithm, ex algorithm, and ae

algorithm for d = 5, 8 as a function of pm and optimal nc.

 0

 0.0005

 0.001

 0.0015

 0.002

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

pm

sf
ex
ae

Average CPU times, d = 5, optimal nc for ptp

 0

 0.0005

 0.001

 0.0015

 0.002

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

pm

ae, |V| = 4000
ae, |V| = 8000

ae, |V| = 16000

Average CPU times, d = 8, nc = d

Fig. 5: Average CPU times (in seconds). Left graph shows a comparison among sf algorithm, ex algorithm , and ae algorithm

for d = 5 and optimal nc for ptp as a function of pm. Right graph depicts same results for ae algorithm for d = 8 and optimal

nc (nc = d) as a function of pm for different graph sizes |V |.

is due to the majority rule implemented to determine the status

of a node. In Algorithm 4, line 10 the comparison is performed

by using the floor function on nc

2 and the same is described

by Equations 3 and 4.

Analysis of results of Figure 3 also suggests that optimal

accuracy of identification algorithms can differ greatly. To this

end, we compare them by using for each the value of nc that

yields optimal ptp and pfp. Figure 4 depicts ptp (left graph)

and pfp (right graph) comparing sf algorithm, ex algorithm,

and ae algorithm for d = 5, 8 as a function of pm and optimal

nc for both accuracy indexes.

It can be noted that sf algorithm always performs the worst

with respect to both ptp and pfp. On the contrary, ae algorithm

always yields higher accuracy with respect to ptp. Remarkably,

it is able to correctly identify up to 99% of actual malicious

nodes even when pm is very high.

As far as pfp is concerned, superiority of one algorithm over

the other depends on both node’s degree d and overall fraction

of malicious nodes pm. In particular, for small degree nodes ae

algorithm yields better results with respect to ex algorithm for

0 < pm ≤ 0.2. For pm > 0.2 ex algorithm yields lower pfp
values. For higher degree nodes ex algorithm always proves

to be the best choice with pfp < 10−8 for all values of pm
we considered.

Nevertheless, better performance of an algorithm from the

accuracy point of view should be carefully scrutinized in

view of the required computational cost. Figure 5 (left-graph)

presents the average cpu times (in seconds) to compare sf

algorithm, ex algorithm, and ae algorithm for d = 5 and

optimal nc for ptp as a function of pm. As expected, the

computational effort for sf algorithm is the lowest since

optimal ptp is obtained for nc = 2 while ex algorithm requires

the highest effort. Actual CPU times are also affected by

the values of pm; indeed, high values require more frequent

execution of the logical inversion in line 3 of Algorithm 1. It

can be noted that computational cost of ae algorithm is only

slightly higher than the least expensive sf algorithm.

7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

pm

ptp, random d-regular
ptp, ER
ptp, WS

pfp, random d-regular
pfp, ER
pfp, WS

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7 8 9 10
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

d

ptp, pm = 0.2
ptp, pm = 0.3
pfp, pm = 0.2
pfp, pm = 0.3

ptp, optimal nc

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

pm

ptp, random d-regular
ptp, ER
ptp, WS

pfp, random d-regular
pfp, ER
pfp, WS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25

d

ER
WS

random d-regular

Degree distribution, d
-
 = 8

Fig. 6: True positive and false positive probabilities for op algorithm comparing random graphs with different degree

distributions and same average d for d = 6 (left column) and d = 8 (right column) as a function of pm. Middle column,

top graph shows performance on random d-regular graphs as a function of d. Middle column, bottom graph shows all degree

distributions.

For this reason, in the sequel we will only consider the

ae algorithm with optimal nc, i.e., nc = d. This also means

that ae algorithm with optimal nc is actually parameterless;

indeed, parameter nc can be dropped from ae algorithm and

from Algorithms 2 and 5 by:

• removing it from the parameter list of each algorithm,

• replacing operator ⊆rnd
nc

with = in Algorithms 2 and 5,

and

• replacing nc with |Γ(u)| in Algorithm 5.

In the sequel, we shall term the ae algorithm with optimal nc

as the op algorithm.

C. Results for op algorithm and structural characteristics

In this section we further explore accuracy of op algorithm

to analyze the impact of structural characteristics of graphs.

To this end, we evaluated its accuracy over Erdős-Rényi

(ER), Watts-Strogatz (WS), and random d-regular graphs [15]

sharing the same average degree d. For the ER graphs we

adopted the G(n, p) model where p is set to yield the desired

average degree d while for the WS graphs we used the

unidimensional model with degree d and rewiring probability

equal to 0.25. Figure 6 depicts results comparing random

graphs with different degree distributions and same average

d for d = 6 (left column) and d = 8 (right column) as a

function of pm. It can be noted that op algorithm yields the

lowest accuracy when run on ER random graphs. To find an

explanation in Figure 6 (middle column, top graph) we show

how ptp and pfp behave on random d-regular graphs as a

function of d. The higher d the higher the accuracy for both

indexes. Figure 6 (middle column, bottom graph) shows the

degree distribution of these three classes of random graphs;

it can be noted that the left tail for ER random graphs is

”heavier”, i.e., the fraction of low degree nodes is higher

with respect to both WS and random d-regular graphs. The

influence of low degree nodes on the accuracy of op algorithm

can also be noticed by comparing results for d = 6 (left

column) and d = 8 (right column); higher d yields higher

accuracy.

We further investigated the accuracy of op algorithm by

considering ER random graphs whose average is d = 8 and

whose clustering coefficient (CC) can be tuned according to

method presented in [16]. Figure 7 depicts ptp and pfp com-

paring ER random graphs with different clustering coefficients

and same average degree d = 8 as a function of pm. Note that

for pm ≤ 0.25 index ptp is not affected by CC while for higher

fraction of malicious nodes higher clustering is beneficial to

accuracy. On the contrary, higher clustering is detrimental to

index pfp whose values increase as CC increase for all values

of pm.

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

pm

ptp, CC = 0.1
ptp, CC = 0.25

ptp, CC = 0.4
pfp, CC = 0.1

pfp, CC = 0.25
pfp, CC = 0.4

Fig. 7: True positive (left graph) and false positive (right graph)

probabilities for op algorithm comparing ER random graphs

with different clustering coefficients and same average degree

d = 8 as a function of pm.

8

D. Results for op algorithm on real world graphs

DATASET |V | |E| d

Facebook 22,470 171,002 15.2
Twitch 168,114 6,797,557 80.8
Pokec 1,632,803 22,301,964 27.3

TABLE II: Dataset description for the evaluation of op algo-

rithm.

To prove that accuracy of the op algorithm is very high also on

real world graphs, Figure 8 shows ptp and pfp as a function of

pm for Pokec, Twitch, and Facebook crawled graphs retrieved

from [13] and whose statistics are summarized in Table II. It

can be noted that ptp is very close to 1 even for very high

values of pm. At the same time, pfp keeps very low for both

curves for all values of pm in the range we considered.

As a final remark, in [11] it is pointed out that when a

node is surrounded by malicious neighbors its identification as

either honest or malicious is unreliable with high probability.

We could redefine the accuracy of the identification algorithms

by considering only the subset of nodes whose neighborhood

includes at least one honest node; we call these nodes as

structurally identifiable. In this case, Figure 9 shows that ptp
is virtually equal to 1 for all pm values in the range we

considered and for all real world crawled graphs we analyzed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
10-6

10-5

10-4

10-3

10-2

pm

ptp, Pokec
ptp, Twitch

ptp, Facebook
pfp, Pokec

pfp, Twitch
pfp, Facebook

Fig. 8: Accuracy of the op algorithm for Pokec, Twitch, and

Facebook crawled graphs retrieved from [13].

V. COMPARISON AGAINST STATE-OF-THE-ART

In this section we compare performance of the op algorithm

against state-of-the-art approaches. In particular, in Section

V-A we consider the work in [11] that exploits Hamiltonian

cycle decomposition of a graph. This work is the closest to

ours and the one that inspired the current paper. We show

that the op algorithm outperforms it, i.e., it yields a false

positive probability that is at least one order of magnitude

lower and a true positive probability that keeps very close to

1 for a wide range of values of the fraction of malicious nodes.

Since in [11] the authors showed their method is superior to

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
10-6

10-5

10-4

10-3

10-2

pm

ptp, Pokec
ptp, Twitch

ptp, Facebook
pfp, Pokec

pfp, Twitch
pfp, Facebook

Fig. 9: Accuracy of the op algorithm for Pokec, Twitch, and

Facebook crawled graphs retrieved from [13] for structurally

identifiable nodes.

trust−based approaches in [17], [18] and machine learning

based approaches in [19], [20] this means that the op algorithm

can be considered as a better approach with respect to them,

as well.

Furthermore, in Section V-B we compare the performance

of the op algorithm against those of Sybilscar as proposed

in [21]. This approach has been developed with the specific

goal of detecting of malicious nodes (termed as sybil nodes)

in online social networks. We show that the op algorithm

outperforms it as soon as the homophily assumption of the

graph under study is relaxed. Since in [21] the authors showed

their method is superior to [22], [23] this means that the op

algorithm can be considered as a better approach with respect

to these proposals, as well.

A. Hamiltonian cycle decomposition: a brief description

The work in [11] starts from a graph with S nodes,

randomly selects s < S nodes, considers a set of n common

features, and forms N = 2n groups of nodes used to represent

subsets of nodes that share the same feature values. Relations

among groups are then represented by a n-dimensional hyper-

cube Qn with N nodes with the (very strong) assumption that

an entire group is either honest or malicious. The analysis is

carried out by:

1) obtaining 2n−⌈log
2
(n+1)⌉ cycles whose length is

⌈log2(n+ 1)⌉ in a Hamiltonian cycle decomposition of

Qn;

2) computing the results of all comparisons performed

by each node on its neighbors in each cycle of the

Hamiltonian cycle decomposition to obtain a so called

syndrome;

3) exploiting properties of cycle decompositions and syn-

dromes proved for hypercube Qn to devise an identifi-

cation algorithm.

Results comparison: To perform a comparison, as in [11]

we consider the graph crawled from the Pokec social network.

Figure 10 shows ptp and pfp as a function of pm. The inset

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
10-6

10-5

10-4

10-3

10-2

pm

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.04 0.08 0.12
10-5

10-4

10-3

10-2

10-1

ptp, op algorithm
pfp, op algorithm

ptp, ref. [11]
pfp, ref. [11]

Fig. 10: True positive and false positive probabilities for the

op algorithm (comparison against Figure 15 and Figure 16 in

[11]) as a function of pm.

zooms in the range [0, 0.15] that is the one considered in

Figures 15 and 16 in [11]. It can be noted that both proposals

yield ptp values (denoted as detection rate in [11]) that keep

close to 1 for pm up to 0.15 although for pm = 0.15 the op

algorithm yields ptp = 0.983 while the approach in [11] yields

ptp = 0.954. Unfortunately, it is not possible to assess the

accuracy of the technique proposed in [11] for higher values

of pm. As for pfp (denoted as false positive rate in [11]), the

op algorithm yields values for pm = 0.15 that are at least one

order of magnitude lower than those depicted in Figure 16 in

[11].

Computational complexity of [11] depends on the number

of nodes N . In particular, obtaining a Hamiltonian cycle

decomposition of Qn and computing the results of all com-

parisons (a syndrome) are both O(N). The last third step

in our brief summary, i.e., the amount of comparisons to

exploit properties of cycle decompositions and syndromes of

Qn is O(N+2 log2 N). Furthermore, [11] requires a long pre-

processing whose complexity adds to the identification algo-

rithm. Also, computational complexity of both pre-processing

and identification depends on the chosen number n of common

features: the higher n, the larger N = 2n hence the complexity.

It is worth noting that this complexity is necessary only

provide information on s < S nodes of an original graph and

only in an aggregated fashion since identification is performed

on a group level. An additional algorithm would be needed

to analyze a single group to identify malicious nodes of the

original graph increasing the overall complexity. Finally, at

least S
s

runs of the algorithm would be necessary to obtain

information on the whole original graph.

Accuracy of [11] also depends on the set of n common fea-

tures but no sensitivity analysis is provided with respect to this

performance index. To increase accuracy for the subset of s

nodes, the authors of [11] suggest to consider several different

Hamiltonian cycle decompositions of the original hypercube

Qn and to run multiple rounds of their algorithm to exploit

different realizations of comparisons by malicious nodes. Un-

fortunately, no evidence is provided that this approach would

work and no details are offered on how to deal with multiple

realizations of their identification algorithm. Of course, such a

strategy would increase the overall computational complexity.

Accuracy of the op algorithm is higher with respect to [11]

because comparison results obtained by malicious nodes are

taken into account the lowest number of times. Indeed, in

[11] the second step requires all N nodes (including malicious

nodes) to compare their two neighbors in their cycle to obtain

a syndrome. Results obtained from malicious nodes cannot be

trusted entirely (on average, half of the comparisons performed

by malicious nodes are incorrect). In the op algorithm:

• on the one hand, more resources are spent in the ini-

tial steps to determine the status of a node (function

compute status() is invoked with parameter c equal to

UNDEFINED). In this case, the op algorithm acts like

the ex algorithm whose values of 1− pfp are the highest

possible as witnessed by results in Figure 2 right graph.

This means that once a node is identified as honest it is

truly so with the highest possible probability. Therefore,

it is immediately used as a trusted comparator for all its

neighbors (break instruction in line 14 of Algorithm 6).

• on the other hand, Figure 2 left graph also shows that the

probability to let a malicious node serve as comparator,

i.e., 1− ptp, is the lowest possible.

The op algorithm then reduces the negative impact of mali-

cious nodes on the overall accuracy. Figure 2 also suggests that

the higher the node degree d the higher the overall accuracy.

One of the future development of this work could be the

analysis of improvements that can be obtained by having a

degree−guided choice to analyze nodes.

B. Sybilscar: a brief description

Sybilscar was proposed with the goal of unifying previous

approaches that were based on loop Belief Propagation or

random walks by defining an algorithm that could work by

exploiting a local rule to update the posterior probability of a

node to be malicious. Therefore, an original rule that combines

neighbor influences with prior knowledge is defined and it

is iteratively applied to every node to compute the posterior

probabilities of being malicious. At the core of this and other

approaches lies the assumption that the honest regions and the

malicious region (termed as the benign region and the sybil

region in [21], respectively) are sparsely connected, i.e., edges

connecting the two regions are few with respect to the number

of edges connecting nodes within the same region. The sparsity

of attack edges is called homophily in [21] to mean that two

connected nodes are either both honest or both malicious with

high probability.

Results comparison: To compare performance we repro-

duced results in [21] by:

• using the software the authors made available at

https://github.com/binghuiwang/sybildetection;

• considering the same real world graphs whose statistics

are summarized in Table III;

• adopting the same modeling approach wherein for each

network the graph to analyze is obtained by duplicating

https://github.com/binghuiwang/sybildetection

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

na/2|V|

Facebook, op algorithm
Facebook, Sybilscar
Enron, op algorithm

Enron, Sybilscar
Epinions, op algorithm

Epinions, Sybilscar

AUC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

na/2|V|

Facebook, op algorithm
Facebook, Sybilscar
Enron, op algorithm

Enron, Sybilscar
Epinions, op algorithm

Epinions, Sybilscar

ptp

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 0.5 1 1.5 2 2.5 3 3.5 4

na/2|V|

Facebook, op algorithm
Facebook, Sybilscar
Enron, op algorithm

Enron, Sybilscar
Epinions, op algorithm

Epinions, Sybilscar

pfp

Fig. 11: AUC (left graph), true positive (middle graph), and false positive (right graph) probabilities for op algorithm compared

against Sybilscar as na increases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

na/2|V|

Facebook, op algorithm
Facebook, Sybilscar
Enron, op algorithm

Enron, Sybilscar
Epinions, op algorithm

Epinions, Sybilscar

AUC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

na/2|V|

Facebook, op algorithm
Facebook, Sybilscar
Enron, op algorithm

Enron, Sybilscar
Epinions, op algorithm

Epinions, Sybilscar

ptp

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 0.5 1 1.5 2 2.5 3 3.5 4

na/2|V|

Facebook, op algorithm
Facebook, Sybilscar
Enron, op algorithm

Enron, Sybilscar
Epinions, op algorithm

Epinions, Sybilscar

pfp

Fig. 12: AUC (left graph), true positive (middle graph), and false positive (right graph) probabilities for op algorithm compared

against Sybilscar as na increases for a different attack model.

it to represent the malicious region and na attack edges

are added between them;

• selecting 200 nodes uniformly at random and using them

as a training dataset with the remaining ones that are used

as testing data;

• setting the numerous parameters required by Sybilscar to

the same values used in [21];

• adding to the ptp and pfp performance indexes the so

called Area Under the Receiver Operating Character-

istic Curve (AUC) to evaluate ranking accuracy. If we

assume nodes are ranked with respect to their posterior

probability of being malicious in a descending order then

AUC is the probability that a randomly selected malicious

node ranks higher than a randomly selected honest node.

Clearly, random guessing yields AUC = 0.5.

DATASET |V | |E| d

Facebook 4,039 88,234 43.7
Enron 33,696 180,811 10.7
Epinions 75,877 405,739 10.6
Twitter 41,652,230 1,202,513,046 57.7

TABLE III: Dataset description for the comparison against

Sybilscar taken from [13].

For a given real world graph, an experiment consists in adding

uniformly at random na attack edges between the honest

and the malicious regions. We performed 30 independent

experiment and averaged results that are depicted in Figures

11 and 12. There the AUC (left graph), ptp (middle graph),

and pfp (right graph) probabilities are shown for the op

algorithm compared against Sybilscar as na increases. Results

are presented as a function of the normalized number of attack

edges na

2|V | for a fair comparison of results among different

networks.

On the one hand, it can be noted that the op algorithm

always outperforms Sybilscar with respect to pfp (for the

Facebook network pfp = 0). On the other hand, Sybilscar

yields higher AUC and ptp values with respect to the op

algorithm when the number of attack edges is low with respect

to the overall size of the graph to be analyzed. This is not

surprising because Sybilscar heavily relies on the fact that the

two regions are sparsely connected. This also means that many

malicious nodes are not structurally identifiable as defined in

Section IV-D yielding poorer performance of the op algorithm

with respect to ptp. Nevertheless, as the amount of attack edges

increases the op algorithm outperforms Sybilscar with respect

to all performance indexes.

To further prove that Sybilscar can offer better performance

only under very special hypothesis, Figure 12 depicts the same

comparison under an attack scenario wherein each node in the

malicious region establishes exactly 1, 2, . . . attack edges with

randomly chosen honest nodes in the honest region. This attack

model involves the same overall amount of attack edges but

with a different distribution among malicious nodes. It can be

noted that in this case the op algorithm always outperforms

Sybilscar for all performance indexes. Also note that the op

algorithm is able to yield high accuracy when half of the nodes

are malicious, i.e., when pm = 0.5.

Finally, the Twitter dataset used in [21] is considered as

11

retrieved from https://people.duke.edu/∼zg70/dataset.html; it

includes randomly sampled 100,000 malicious and 10,000,000

honest nodes which are used as ground truth for training and

testing. Also in this case we reproduced results presented

in [21] by using the same set of values for the parameters

required by Sybilscar. To this end, we first considered 500,000

nodes sampled uniformly at random among the ground truth

to use them as a training dataset; the rest of honest and

malicious nodes are used as testing data. In this case, results

reported in Table IV clearly show that (as commented in [21],

Section 7.2.2) Sybilscar yields poor results due to both weak

homophily and the use of an unbalanced training dataset, i.e.,

a training dataset wherein honest nodes are much more than

malicious ones. On the contrary, the op algorithm performs

very well in this scenario with respect to all performance

indexes.

We also considered a balanced training dataset wherein we

randomly sampled 50,000 honest nodes and the same amount

of malicious nodes from the provided ground truth as in [24]

that discusses a preliminary version of Sybilscar. Sybilscar

performs much better in this case (as commented in [21],

Section 7.2.2) but still much worse than the op algorithm.

ALGORITHM AUC ptp pfp

Sybilscar (unbalanced) 0.234 0.004 0.001
Sybilscar (balanced) 0.810 0.995 0.980
op algorithm 0.999 0.999 0.00005

TABLE IV: Comparison between the op algorithm and

Sybilscar for the Twitter dataset.

VI. RELATED WORKS

The problem of detecting misbehaving elements in a dis-

tributed system has received ample attention in the literature.

Depending on the context different ad-hoc techniques have

been devised.

For instance, survey [1] paints a very useful and comprehen-

sive picture of attacks and countermeasures in wireless relay

networks. In this context, techniques proposed in [25], [26],

[27], [28], [17], [18], [29], [30], [31] are somehow based on

reputation and/or trust.

In the context of online social networks, exploitation of

social information to design detection mechanisms has been

followed in [32], [33], [34], [19], [35], [36], [37]. Furthermore,

several interesting papers have dealt with the problem of

detecting fake users (termed as Sybils) by exploiting prop-

erties of mixing times of random walk on social graphs

with limited attack edges [38], [22], [39] or by defining a

semi-supervised learning framework to perform both malicious

nodes classification and ranking [23]. Notably, [24] proposes

a framework to unify random walk−based methods and loop

belief propagation−based methods.

Machine learning, statistics, and cryptography protocols

are very important tools of several approaches for malicious

behavior detection in other contexts [40], [41], [20], [42], [43],

[44], [45], [46].

The work in [11] is the closest to ours and the one that in-

spired the current paper. It focuses on human contact networks

and exploits social features to build a topology structure. It

then devises a graph theoretical comparison detection model

to compute the set of malicious nodes. In particular, the

detection method is a diagnosis process that relies on the

Hamiltonian cycle decomposition of hypercubes. The authors

showed their method is superior to those in [17], [18], [19],

[20]. Our method yields better results with respect to [11],

i.e., a false positive probability that is at least one order of

magnitude lower and a true positive probability that keeps

very close to 1 for a wide range of values of the fraction

of malicious nodes. Furthermore, the low computational cost

of our proposal makes it feasible to run the algorithm on very

large graphs.

VII. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this paper we tackled the problem of computing the set

of malicious nodes in a graph. To this end, we relied on

the comparison detection model already exploited by previous

work on this subject. We first proposed a straightforward

algorithm that displays the least computational cost and we

later refined it to obtain a higher accuracy algorithm with the

highest computational complexity. We finally synthesized them

to develop an algorithm with low computational complexity,

linear space complexity, and the highest accuracy. We explored

the impact of structural characteristics of graphs on the algo-

rithm accuracy and we also showed it outperforms the state-

of-the-art. Finally, we showed our proposal performs equally

very well on both synthetic and real world graphs.

The current work could be extended by considering/devising

other detection models to cope with nodes that could alternate

between honest and malicious behaviors. Furthermore, since

we showed that both degree distribution and clustering coef-

ficient of the graph can impact the accuracy of the algorithm

we plan to further investigate how to exploit them to improve

accuracy. In particular, we observed that the op algorithm

reduces the negative impact of malicious nodes on the overall

accuracy as commented in Section V-A. Our analysis suggests

to explore a degree−guided choice for node analysis.

REFERENCES

[1] B. Jedari, F. Xia, and Z. Ning, “A survey on human-centric communi-
cations in non-cooperative wireless relay networks,” IEEE Communica-

tions Surveys & Tutorials, vol. 20, no. 2, pp. 914–944, 2018.
[2] J. A. Dias, J. J. Rodrigues, F. Xia, and C. X. Mavromoustakis, “A

cooperative watchdog system to detect misbehavior nodes in vehicular
delay-tolerant networks,” IEEE Transactions on Industrial Electronics,
vol. 62, no. 12, pp. 7929–7937, 2015.

[3] L. Xu, L. Lin, and S. Wen, “First-priority relation graph-based malicious
users detection in mobile social networks,” 11 2015, pp. 459–466.

[4] B. Jedari, F. Xia, H. Chen, S. K. Das, A. Tolba, and Z. AL-Makhadmeh,
“A social-based watchdog system to detect selfish nodes in opportunistic
mobile networks,” Future Generation Computer Systems, vol. 92, pp.
777–788, 2019.

[5] R. Gaeta, “On the impact of pollution attacks on coding-based dis-
tributed storage systems,” IEEE Transactions on Information Forensics

and Security, vol. 17, pp. 292–302, 2022.
[6] A. Fiandrotti, R. Gaeta, and M. Grangetto, “Securing network coding

architectures against pollution attacks with band codes,” IEEE Transac-

tions on Information Forensics and Security, vol. 14, no. 3, pp. 730–742,
2019.

https://people.duke.edu/~zg70/dataset.html

12

[7] K. Gu, X. Dong, and W. Jia, “Malicious node detection scheme based
on correlation of data and network topology in fog computing-based
vanets,” IEEE Transactions on Cloud Computing, vol. 10, no. 2, pp.
1215–1232, 2022.

[8] M. Malek, “A comparison connection assignment for diagnosis of
multiprocessor systems,” in Proceedings of the 7th Annual Symposium

on Computer Architecture, ser. ISCA ’80, 1980, p. 31–36.

[9] J. Maeng and M. Malek, “A comparison connection assignment for self-
diagnosis of multicomputer systems,” in Proc. 1981 Symp. on Fault

Tolerant Comp., 1981, pp. 173–175.

[10] L. Lin, L. Xu, D. Wang, and S. Zhou, “The g -good-neighbor con-
ditional diagnosability of arrangement graphs,” IEEE Transactions on

Dependable and Secure Computing, vol. 15, no. 3, pp. 542–548, 2018.

[11] L. Lin, Y. Huang, L. Xu, and S.-Y. Hsieh, “Better adaptive malicious
users detection algorithm in human contact networks,” IEEE Transac-

tions on Computers, vol. 71, no. 11, pp. 2968–2981, 2022.

[12] B. Bollobás, Random Graphs, 2nd ed. Cambridge University Press,
2001.

[13] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data , Jun. 2014.

[14] G. Csardi and T. Nepusz, “The igraph software package for complex
network research,” InterJournal, vol. Complex Systems, p. 1695, 2006.
[Online]. Available: https://igraph.org

[15] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs with
arbitrary degree distributions and their applications,” Physical Review E,
vol. 64, no. 2, 2001.

[16] E. Volz, “Random networks with tunable degree distribution and clus-
tering,” Physical Review E, vol. 70, no. 5, 2004.

[17] H. Zhu, S. Du, Z. Gao, M. Dong, and Z. Cao, “A probabilistic
misbehavior detection scheme toward efficient trust establishment in
delay-tolerant networks,” IEEE Transactions on Parallel and Distributed

Systems, vol. 25, no. 1, pp. 22–32, 2013.

[18] S. K. Dhurandher, A. Kumar, and M. S. Obaidat, “Cryptography-based
misbehavior detection and trust control mechanism for opportunistic
network systems,” IEEE Systems Journal, vol. 12, no. 4, pp. 3191–3202,
2017.

[19] H. Alvari, E. Shaabani, S. Sarkar, G. Beigi, and P. Shakarian, “Less is
more: Semi-supervised causal inference for detecting pathogenic users
in social media,” in Companion Proceedings of The 2019 World Wide

Web Conference, 2019, pp. 154–161.

[20] A. Abou Daya, M. A. Salahuddin, N. Limam, and R. Boutaba,
“Botchase: Graph-based bot detection using machine learning,” IEEE

Transactions on Network and Service Management, vol. 17, no. 1, pp.
15–29, 2020.

[21] B. Wang, J. Jia, L. Zhang, and N. Z. Gong, “Structure-based sybil
detection in social networks via local rule-based propagation,” IEEE

Transactions on Network Science and Engineering, vol. 6, no. 3, pp.
523–537, 2019.

[22] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro, “Aiding the detection
of fake accounts in large scale social online services,” in Presented as

part of the 9th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 12), 2012, pp. 197–210.

[23] N. Z. Gong, M. Frank, and P. Mittal, “Sybilbelief: A semi-supervised
learning approach for structure-based sybil detection,” IEEE Transac-

tions on Information Forensics and Security, vol. 9, no. 6, pp. 976–987,
2014.

[24] B. Wang, L. Zhang, and N. Z. Gong, “Sybilscar: Sybil detection in online
social networks via local rule based propagation,” in IEEE INFOCOM

2017-IEEE Conference on Computer Communications. IEEE, 2017,
pp. 1–9.

[25] W. R. Pires, T. H. de Paula Figueiredo, H. C. Wong, and A. A. F.
Loureiro, “Malicious node detection in wireless sensor networks,” in
18th International Parallel and Distributed Processing Symposium,

2004.

[26] W. Zhang, S. Zhu, J. Tang, and N. Xiong, “A novel trust management
scheme based on dempster–shafer evidence theory for malicious nodes
detection in wireless sensor networks,” The Journal of Supercomputing,
vol. 74, pp. 1779–1801, 2018.

[27] J. A. Dias, J. J. Rodrigues, F. Xia, and C. X. Mavromoustakis, “A
cooperative watchdog system to detect misbehavior nodes in vehicular
delay-tolerant networks,” IEEE Transactions on Industrial Electronics,
vol. 62, no. 12, pp. 7929–7937, 2015.

[28] E. Ayday and F. Fekri, “An iterative algorithm for trust management and
adversary detection for delay-tolerant networks,” IEEE Transactions on

Mobile Computing, vol. 11, no. 9, pp. 1514–1531, 2011.

[29] M. Nitti, R. Girau, and L. Atzori, “Trustworthiness management in the
social internet of things,” IEEE Transactions on knowledge and data

engineering, vol. 26, no. 5, pp. 1253–1266, 2013.
[30] R.-I. Ciobanu, C. Dobre, M. Dascălu, Ş. Trăuşan-Matu, and V. Cristea,

“Sense: A collaborative selfish node detection and incentive mechanism
for opportunistic networks,” Journal of Network and Computer Appli-

cations, vol. 41, pp. 240–249, 2014.
[31] R. Chen, F. Bao, M. Chang, and J.-H. Cho, “Dynamic trust management

for delay tolerant networks and its application to secure routing,” IEEE

Transactions on Parallel and Distributed Systems, vol. 25, no. 5, pp.
1200–1210, 2013.

[32] A. Mei, G. Morabito, P. Santi, and J. Stefa, “Social-aware stateless
forwarding in pocket switched networks,” in 2011 Proceedings IEEE

INFOCOM. IEEE, 2011, pp. 251–255.
[33] B. Jedari, F. Xia, H. Chen, S. K. Das, A. Tolba, and A.-M. Zafer, “A

social-based watchdog system to detect selfish nodes in opportunistic
mobile networks,” Future Generation Computer Systems, vol. 92, pp.
777–788, 2019.

[34] G. Yang, S. He, and Z. Shi, “Leveraging crowdsourcing for efficient
malicious users detection in large-scale social networks,” IEEE Internet

of Things Journal, vol. 4, no. 2, pp. 330–339, 2016.
[35] X. Chen, B. Proulx, X. Gong, and J. Zhang, “Exploiting social ties for

cooperative d2d communications: A mobile social networking case,”
IEEE/ACM Transactions on Networking, vol. 23, no. 5, pp. 1471–1484,
2014.

[36] I. Parris and T. Henderson, “Friend or flood? social prevention of
flooding attacks in mobile opportunistic networks,” in 2014 IEEE 34th

international conference on distributed computing systems workshops

(ICDCSW). IEEE, 2014, pp. 16–21.
[37] K. Gu, X. Dong, and W. Jia, “Malicious node detection scheme based

on correlation of data and network topology in fog computing-based
vanets,” IEEE Transactions on Cloud Computing, vol. 10, no. 2, pp.
1215–1232, 2020.

[38] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “Sybilguard:
defending against sybil attacks via social networks,” in Proceedings of

the 2006 conference on Applications, technologies, architectures, and

protocols for computer communications, 2006, pp. 267–278.
[39] J. Jia, B. Wang, and N. Z. Gong, “Random walk based fake account

detection in online social networks,” in 2017 47th annual IEEE/IFIP

international conference on dependable systems and networks (DSN).
IEEE, 2017, pp. 273–284.

[40] S. Dvorak, P. Prochazka, and L. Bajer, “Gnn-based malicious network
entities identification in large-scale network data,” in NOMS 2022-2022

IEEE/IFIP Network Operations and Management Symposium. IEEE,
2022, pp. 1–4.

[41] M. Aravind, V. Sujadevi, M. R. Krishnan, P. S. AU, S. Pal, A. Vazhayil,
G. Sridharan, and P. Poornachandran, “Malicious node identification
for DNS data using graph convolutional networks,” in 2022 IEEE

7th International Conference on Recent Advances and Innovations in

Engineering (ICRAIE), vol. 7. IEEE, 2022, pp. 104–109.
[42] T. N. D. Pham and C. K. Yeo, “Detecting colluding blackhole and

greyhole attacks in delay tolerant networks,” IEEE Transactions on

Mobile Computing, vol. 15, no. 5, pp. 1116–1129, 2015.
[43] Z. Cui, Y. Zhao, Y. Cao, X. Cai, W. Zhang, and J. Chen, “Malicious

code detection under 5g hetnets based on a multi-objective rbm model,”
IEEE Network, vol. 35, no. 2, pp. 82–87, 2021.

[44] T. Zoppi, A. Ceccarelli, and A. Bondavalli, “Madness: A multi-layer
anomaly detection framework for complex dynamic systems,” IEEE

Transactions on Dependable and Secure computing, vol. 18, no. 2, pp.
796–809, 2019.

[45] X. Lin, “Lsr: Mitigating zero-day sybil vulnerability in privacy-
preserving vehicular peer-to-peer networks,” IEEE Journal on Selected

Areas in Communications, vol. 31, no. 9, pp. 237–246, 2013.
[46] B. Wang, J. Jia, and N. Z. Gong, “Graph-based security and privacy

analytics via collective classification with joint weight learning and prop-
agation,” in ISOC Network and Distributed System Security Symposium

(NDSS), 2019.

http://snap.stanford.edu/data
https://igraph.org

	Introduction
	System and attack model
	Identification algorithms
	A straightforward solution (sf algorithm)
	An expensive solution (ex algorithm)
	An accurate and efficient solution (ae algorithm)

	Evaluation
	Validation results
	Comparison results
	Results for op algorithm and structural characteristics
	Results for op algorithm on real world graphs

	Comparison against state-of-the-art
	Hamiltonian cycle decomposition: a brief description
	Sybilscar: a brief description

	Related works
	Conclusions and Future Developments
	References

