
13 January 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Adaptive residual refinement in an RBF finite difference scheme for 2D time-dependent problems

Published version:

DOI:10.1007/s40314-023-02541-1

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1965632 since 2024-03-29T17:14:58Z

This is the author’s final version of the contribution published as:

G. Garmanjani, M. Esmaeilbeigi, R. Cavoretto. Adaptive residual refinement
in an RBF finite difference scheme for 2D time-dependent problems. Compu-
tational and Applied Mathematics (2024) 43:39, DOI: 10.1007/s40314-023-
02541-1.

The publisher’s version is available at:
[https://doi.org/10.1007/s40314-023-02541-1]

When citing, please refer to the published version.

Link to this full text:
[https://hdl.handle.net/2318/1965632]

This full text was downloaded from iris -AperTO: https://iris.unito.it/

iris-AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

https://iris.unito.it/

Adaptive residual refinement in a RBF finite difference scheme for 2D
time-dependent problems

G. Garmanjani1, M. Esmaeilbeigi1, R. Cavoretto2,3

1Department of Mathematics, Malayer University, Malayer 65719-95863, Iran
2Department of Mathematics “G. Peano”, University of Torino, via Carlo Alberto 10, 10123 Torino, Italy

3Member of the INdAM Research group GNCS

Abstract

The current study introduces a fast and accurate method based on a novel adaptive meshfree technique
to solve time-dependent partial differential equations with solutions representing high gradients or quick
changes in several local areas of the domain. Utilizing uniform grids for these problems is prohibitive
computationally since the solution reaches the singularity. This study aims to suggest an adaptive strategy
to produce a suitable and cost-effective irregular node refinement. For this purpose, a dynamic algorithm
is proposed that finds areas with quick changes and applies a local node adaptive approach merely in those
nearly singular areas. Additionally, within this algorithm, unlike Kansa technique, the radial basis function
collocation technique was mixed with a finite difference scheme. According to this approach, in place of
using the adaptive algorithm on the complete domain of the problem, it can be used only on time steps.
Therefore, we need only to solve small systems of linear equations on each time step instead of large systems
on the entire domain. Besides performing a stability analysis of the numerical scheme, the new algorithm is
tested on parabolic (heat equation) and hyperbolic (wave equation) PDEs over regular and irregular two-
dimensional domains. The attained results prove the accuracy and effectiveness of the proposed technique.
Especially, our computational method is able to reduce the nodes in the domain with no impairment in
terms of accuracy, thus turning out to be effective in the localization of oscillations owing to sharp gradients
in the solution.

Keywords: partial differential equations, meshless methods, RBF collocation, adaptive distribution
2010 MSC: 65M70, 65M06, 65M50, 65Y20

1. Introduction

Time-dependent PDEs (partial differential equations) [44] can explain phenomena in different areas, like
economics, biology, engineering, physics, etc. Supported by the development of the computer, the numerical
methods [3] have become effective techniques to study these types of problems. RBF (radial basis function)
approaches were admired for their ease and simple operation in multivariate approximation of scattered
data [2, 8, 16, 32, 49]. These positive features made the RBFs particularly suitable for solving mathemat-
ically time-dependent PDEs (see [1, 27, 29, 30, 31, 37, 43, 45, 48]). Comparing the latter with low-order
approaches like finite differences (FDs), finite elements, and finite volumes, RBF-based techniques provide
several benefits such as no need for a triangulation or mesh, dimension independence, simple operation, and
no stair casing or polygonizing for boundaries. Furthermore, high-order or spectral convergence is attained
depending on how the RBFs are selected [9, 21].

Lots of evolutionary problems involving time-dependent PDEs have solutions with steep transitions
like sharp wave fronts or boundary layers. Previously, it was mostly recognized that adaptive mesh-based
approaches are able to solve the sharp transitions to a suitable level of accuracy with no need to use
numerous mesh points [23]. Such approaches, by continuous relocation of mesh points to track properties
to the calculated solution, offer an ideal adaptive tactic to solve these types of problems. A strategy of

Preprint submitted to Computational and Applied Mathematics March 29, 2024

adaptive refinement aims to create an optimal point distribution providing the necessary precision and the
least freedom level. Within an adaptive algorithm, a larger number of nodes are generally added only on the
domain parts in which more details or steep variations are present, whereas simultaneously a reduced (but
adequate) amount of nodes is maintained in smooth areas. Indeed, it is known that node positions have an
important role since further nodes are needed in a very localized area, as well as for the classical problem of
interpolation stability, determined by the Lebesgue constant and demonstrated over the Gibbs and Runge
phenomena [6, 35].

For time-dependent problems, adaptive approaches are of particular interest as the fact of facing dynamic
problems may lead to occur quick movement of the solution in some specific regions. Usually, two methods
exist for modification of grids in time: the former consists in transferring the grid with the fronts [25], the
latter aims to localize the refinement simply where required. Here, at all time steps, the refined grid may
have to reflect the problem dynamics [5, 10]. In addition, some scientists prefer a hybrid approach of local
mesh refinement and moving meshes [4].

These attractive properties motivated several scientists in various research fields, and thus significant
effort was performed to integrate an adaptive algorithm with RBF-based approaches. At first, some adaptive
methods based on greedy algorithms were proposed in [40]. Later, in the work [47] adaptive RBF algorithms
were used to choose the location of the collocation points, while in [52] a dynamic adaptive method for time-
based PDEs was introduced. Moreover, in the paper [28] a dynamic node adaptive approach for almost
singular problems on large domains was developed. Different RBF schemes based on residual subsampling
methods were then established for solving interpolation and boundary value problems in [19, 26]. Similar
adaptive techniques were also proposed to solve elliptic PDEs [13, 14, 15]. More lately, various scientists
suggested several adaptive approaches for solving time-dependent PDEs (see e.g. [18, 20, 38, 41, 42] and
references therein).

In this study, we solve time-dependent PDEs whose solution shows fast changes or high gradients in
several local areas of the domain. More precisely, a novel adaptive meshfree technique is proposed with a
RBF-FD approximation scheme used to solve the time-dependent PDEs through regular or irregular 2D
domains. The main goal of the current study is to develop a dynamic algorithm detecting areas with fast
changes and applying a local node adaptive algorithm only in the nearly singular areas. Though numerous
adaptive techniques were introduced for detecting nearly singular regions, owing to the ill-conditioning and
to the large domain of the PDE problem, the node adaptive algorithms present in literature might meet any
difficulty in finding these almost singular areas. In the present algorithm, a node adaptive strategy works
only on local nearly singular areas. Additionally, the RBF collocation technique has been mixed with a
FD scheme. On the basis of this approach, instead of using the adaptive refinement scheme on the whole
domain, our new algorithm is used only on time steps. In addition to this, we apply our adaptive approach
only in any time step, unlike other available methods that make use of it on the entire domain. In addition,
it should be noted that our adaptive algorithm has a reiterative approach, i.e. it adds new nodes to initial
refinement in an iterative method that needs to solve a linear system at any iteration. In this case, we can
thus solve small linear systems on each time step instead of large systems on the entire domain. The main
feature of the proposed method is the low-dimensional linear system that must be solved in each step. This
technique indeed first detects automatically areas with fast changes, and then applies a local node adaptive
algorithm only in those nearly singular regions. Accordingly, this advantage overwhelms possible problems
that occur in other adaptive algorithms.

The article is organized as follows. Section 2 provides the key theoretical foundations regarding RBF
approximation; moreover, the RBF collocation technique with a FD-based discretization is proposed for
time-dependent PDEs. Stability analysis of the used collocation technique is provided in section 3. In
section 4, the adaptive refinement scheme is described. The results of our extensive numerical tests are
provided in section 5. Ultimately, section 6 presents the conclusions.

2. RBF approximation

Given that the numerical solution of time-dependent PDEs utilizing RBFs is characterized by concepts
of scattered data interpolation, in this section we first provide an overview of the key theoretical aspects

2

RBF φε(r)

Gaussian C∞ (GA) e−ε
2r2

MultiQuadric C∞ (MQ) (1 + ε2r2)1/2

Inverse MultiQuadric C∞ (IMQ) (1 + ε2r2)−1/2

Thin Plate Spline Cν+1 (TPS) (−1)ν+1r2ν log r

Matérn C2 (M2) e−εr(εr + 1)

Wendland C2 (W2) (1− εr)4+ (4εr + 1)

Table 1: Some examples of well-known RBFs. Note that (·)+ identifies the truncated power function, and ν ∈ N.

related to RBF interpolation, and then we extend them to the case of RBF collocation.

2.1. RBF interpolation by conditionally positive definite functions

Within scattered data interpolation by RBFs, the reconstruction of a function u(x) defined at a set of
distinct data points or centers or nodes X = {x1, . . . ,xN} of a domain Ω ⊆ Rd may be expressed as a linear
combination of RBFs, which in general can also provide for adding a polynomial term. Thus, the resulting
RBF interpolant su,X : Ω→ R assumes the form

su,X(x) =

N∑
j=1

αjφε(||x− xj ||) +

Q∑
k=1

βkpk(x), x ∈ Rd, (1)

in which αj and βk denote real coefficients to be computed, || · || identifies the Euclidean distance, and
φε : R≥0 → R defines a RBF affected by a shape parameter ε > 0 such that φε(||x − z||) = φ(ε||x − z||),
for all x, z ∈ Ω. For easiness, φε is referred as φ in the following. Table 1 shows a few of the most known
RBFs together with their smoothness orders [33].

Moreover, in (1) p1, . . . , pQ create a basis for the Q-dimensional space πm−1(Rd) of polynomials of overall
degree ≤ m− 1 in d variables. In this case, the interpolation conditions

su,X(xi) = u(xi), i = 1, . . . , N,

are accomplished by the following constrains

N∑
j=1

αjpk(xj) = 0, k = 1, . . . , Q. (2)

The expansion (1) is therefore obtained by solving the linear system(
A P
PT O

)(
α
β

)
=

(
u
0

)
, (3)

in which the matrix A ∈ RN×N is formed by the entries Aij = φ(||xi − xj ||), i, j = 1, . . . , N , P ∈ RN×Q
is given by Pjk = (pk(xj)), j = 1, . . . , N , k = 1, . . . , Q, α = (α1, . . . , αN)T , β = (β1, . . . , βQ)T , u =
(u1, . . . , uN)T , 0 is a zero vector of length Q, and O is a Q × Q zero matrix. The system (3) is clearly
solvable when the interpolation matrix A is non-singular (or invertible) [50].

Definition 2.1. The points X = {x1, . . . ,xN} ⊆ Rd with N ≥ Q = dimπm(Rd) are named πm(Rd)-
unisolvent when the zero polynomial is the merely polynomial from πm(Rd) vanishing on all of them.

Theorem 2.1. Supposing that φ represents conditionally positive definite of order m and X is a πm−1(Rd)-
unisolvent set of nodes. Then the system given in (3) is uniquely solvable.

3

The use of the polynomial
∑Q
k=1 βkpk(x) in (1) is generally needed if φ is conditionally positive definite,

namely when φ possesses a polynomial progress to infinity as in the case of MQ and TPS. These functions (in
Rd, for any d) have a global support and are conditionally positive definite of order m = 1 and m = ν+1, with
ν ∈ N, respectively. Consequently, adding a polynomial term of such orders in (1) – along with constrains
(2) – is essential to ensure existence and uniqueness of the solution in (3). In contrast, the addition of a
polynomial is not typically vital when we work with positive definite RBFs like GA, IMQ, and M2 functions
(see Table 1). This fact is true in Rd for any d. Furthermore, as all the functions have a global support,
they generate a dense (or full) interpolation matrix and occasionally – for some specific selections of ε – it
may be very ill-conditioned [33].

To enhance the condition number of the matrix, compactly supported RBFs (CSRBFs) might also be
used, though they disappear over a user-determined threshold distance σ. Consequently, only the entries
of the interpolation matrix referring to the nodes lying closer than σ to a certain CSRBF center assume
a non-null value. This leads to a sparse matrix. Practically, the use of CSRBFs waned since it has been
clear that, to achieve a good level of precision, most nodes in the point set need to be covered by the
overlap distance σ, so resulting in a full matrix again [46]. A well-known class of CSRBFs is represented by
Wendland functions such as the W2 in Table 1, whose support is [0, σ], with σ = 1/ε. Such a function is
positive definite in Rd for d ≤ 3 [51].

For any linear partial differential operator L, within a similar representation as (1), Lu may be approx-
imated by [24]

Lu(x) '
N∑
j=1

αjLφ(||x− xj ||) +

Q∑
k=1

βkLpk(x).

In our technique, the RBF φ we use is the TPS. The reason is that in [36] Franke demonstrated that TPS
and MQ yield the most precise results for the multivariate approximation of scattered data. Nevertheless,
while the TPS method is parameter free and is characterized by a sound mathematical theory [7], the common
RBF methods (including MQ as well) depend on the value of ε and so far no mathematical theory has been
found to select the optimum value. Therefore, though ε influences the accuracy of the numerical method,
such a choice can be done by using experimental tuning parameters or costly optimization approaches that
enable us to determine the optimal shape parameter [11, 34, 39]. Moreover, we observe that the TPS is
conditionally positive definite of order m = ν + 1 [50]. Given that φ is C2ν−1 continuous, a higher-order
TPS has to be utilized for higher-order partial differential operators. To prevent the problems at x = 0

(log(0) = −∞), we make use of φ(x) = (−1)
3‖x‖32 log ‖x‖‖x‖22 for k = 2.

2.2. RBF collocation based on FDs for time-dependent PDEs

Here, a meshfree collocation technique combined with a RBF-FD scheme is provided for solving parabolic
and hyperbolic PDEs.

2.2.1. Parabolic PDEs

Considering a spatial domain Ω and a linear operator L that perform over a smooth function on Ω, we
assume that the operator L always acts w.r.t. the spatial variable even when a time variable t exists. On
the time interval [0, T], we look for a scalar function u : Ω× [0, T]→ R fulfilling the time-dependent PDE

∂u(x, t)

∂t
− Lu(x, t) = f(x, t), x ∈ Ω, (4)

together with the following initial and boundary conditions

u(x, 0) = u0(x), x ∈ Ω, (5)

Bu(x, t) = g(x, t), x ∈ ∂Ω, t > 0, (6)

where f , g, and u0 are the known functions, and B represents a boundary operator of Dirichlet, Neumann
or mixed type, while ∂Ω identifies the boundary of the spatial domain Ω. When considering Dirichlet

4

boundary conditions, the time derivative of the PDE (4) may be discretized by a common FD formula using
the following θ-weighted method

un+1(x)− un(x)

δt
= θ

(
Lun+1(x) + fn+1(x)

)
+ (1− θ) (Lun(x) + fn(x)) , (7)

where 0 ≤ θ ≤ 1, un+1(x) = u(x, tn+1), tn+1 = tn + δt, and δt is the time step size. The rearrangement of
(7) gives

un+1(x) + ηLun+1(x) = un(x) + ζLun(x) + zn+1(x), (8)

where η = −θδt, ζ = (1− θ)δt, and zn+1 = δt(θfn+1(x) + (1− θ)fn(x)).
Because we use TPS RBFs for the two-dimensional domain, supposing a total of (N − 6) collocation

points, un(x) can be estimated by

un(x, y) '
N−6∑
j=1

λnj ϕ(rj) + λnN−5x
2 + λnN−4y

2 + λnN−3xy + λnN−2x+ λnN−1y + λnN . (9)

To get the coefficients (λ1, λ2, . . . , λN−1, λN), the collocation technique is utilized using (9) in every points
xi = (xi, yi), i = 1, 2, . . . , N − 6. Thus, we have

un(xi, yi) '
N−6∑
j=1

λnj ϕ(rij) + λnN−5x
2
i + λnN−4y

2
i + λnN−3xiyi + λnN−2xi + λnN−1yi + λnN , (10)

where rij = ‖xi − xj‖ =
√

(xi − xj)2 + (yi − yj)2. The additional conditions in (2) are thus expressed as
follows

N−6∑
j=1

λnj x
2
j =

N−6∑
j=1

λnj y
2
j =

N−6∑
j=1

λnj xjyj =

N−6∑
j=1

λnj xj =

N−6∑
j=1

λnj yj =

N−6∑
j=1

λnj = 0. (11)

Writing (10) together with (11) in a matrix form, we have

un = Aλn, (12)

where un =
(
un1 , . . . , u

n
N−6, 0, 0, 0, 0, 0, 0

)T
, and λn = (λn1 , . . . , λ

n
N)

T
. Then, setting ϕij = ϕ(rij),

i, j = 1, . . . , N − 6, the matrix A is given by

A =

ϕ11 · · · ϕ1(N−6) x21 y21 x1y1 x1 y1 1
...

. . .
...

...
...

...
...

...
...

ϕ(N−6)1 · · · ϕ(N−6)(N−6) x2N−6 y2N−6 xN−6yN−6 xN−6 yN−6 1
x21 · · · x2N−6 0 0 0 0 0 0
y21 · · · y2N−6 0 0 0 0 0 0
x1y1 · · · xN−6yN−6 0 0 0 0 0 0
x1 · · · xN−6 0 0 0 0 0 0
y1 · · · yN−6 0 0 0 0 0 0
1 · · · 1 0 0 0 0 0 0

N×N

.

Assuming that B and I are the indexes of boundary and internal points, respectively, and N−6 represents
the overall number of centers, namely N = NI + NB + 6, then the N × N matrix A may be decomposed
into three matrices AI , AB , and AE , i.e.

A = AI +AB +AE ,

where

AI = [aij for (i ∈ I, 1 ≤ j ≤ N) and 0 elsewhere] ,

AB = [aij for (i ∈ B, 1 ≤ j ≤ N) and 0 elsewhere] ,

AE = [aij for (N − 5 ≤ i ≤ N, 1 ≤ j ≤ N) and 0 elsewhere] .

5

Utilizing the notation LA to designate the matrix that has the same size as A, with entries of âij = Laij , 1 ≤
i, j ≤ N , and using (9) in (8) along with (6), the resultant system can be written in the matrix form

Cλn+1 = Dλn + vn+1, (13)

where

C = A+ ηLAI ,
D = AI + ζLAI ,

vn+1 =
[
zn+1
i for (i ∈ I), gn+1

j for (j ∈ B) and 0 elsewhere
]T
,

λn = (λn1 , . . . , λ
n
N)

T
.

The system (13) is attained by integrating (8), which refers to the internal points, and (6) that applies
to the boundary points. Hence, utilizing the condition (5), we can calculate λn+1 by solving the system
(13). Then, by replacing such values of λn in (12), the approximated solution of the PDE at time level n is
attained.

2.2.2. Hyperbolic PDEs

Considering a spatial domain Ω and a linear operator L that performs over a smooth function on Ω, we
assume that the operator L always acts w.r.t. the spatial variable even when a time variable t exists. On
the time interval [0, T], we look for a scalar function u : Ω× [0, T]→ R fulfilling the time-dependent PDE

∂2u(x, t)

∂t2
− Lu(x, t) = f(x, t), x ∈ Ω, (14)

in conjunction with the subsequent initial and boundary conditions,

u(x, 0) = h(x), x ∈ Ω, (15)

ut(x, 0) = k(x), x ∈ Ω, (16)

Bu(x, t) = g(x, t), x ∈ ∂Ω, t > 0, (17)

where f , g, h and k are the known functions, and B represents a boundary operator of Dirichlet, Neumann or
mixed type, while ∂Ω identifies the boundary of the spatial domain Ω. When considering Dirichlet boundary
conditions, the discretization of the time derivative of the partial differential equation (14) can be achieved
through a conventional finite difference formula utilizing the θ-weighted approach.

un+1(x)− 2un(x) + un−1(x)

(δt)2
= θ

(
Lun+1(x) + fn+1(x)

)
+ (1− θ) (Lun(x) + fn(x)) , (18)

where 0 ≤ θ ≤ 1, un+1(x) = u(x, tn+1), tn+1 = tn + δt, un−1(x) = u(x, tn−1), tn−1 = tn − δt, and δt is the
time step size. The rearrangement of (18) gives

un+1(x) + ηLun+1(x) = 2un(x)− un−1(x) + ζLun(x) + zn+1(x), (19)

where η = −θ(δt)2, ζ = (1− θ)(δt)2, and zn+1 = (δt)2(θfn+1(x) + (1− θ)fn(x)).
Utilizing the notation LA to designate the matrix that has the same size as A, with entries of âij =

Laij , 1 ≤ i, j ≤ N , and using (9) in (19) along with (17), the resultant system can be written in the matrix
form

Cλn+1 = Dλn − Eλn−1 + vn+1, (20)

6

where

C = A+ ηLAI ,
D = 2AI + ζLAI ,
E = AI ,

vn+1 =
[
zn+1
i for (i ∈ I), gn+1

j for (j ∈ B) and 0 elsewhere
]T
,

λn = (λn1 , . . . , λ
n
N)

T
.

The system (20) is attained by integrating (19), which refers to the internal points, and (17) that applies
to the boundary points. Hence, utilizing the condition (16), we can calculate λn+1 by solving the system
(20). Then, by replacing such values of λn in (12), the approximated solution of the PDE at time level n is
attained.

At n = 0 Eq. (19) has the following form

u1(x) + ηLu1(x) = 2u0(x)− u−1(x) + ζLu0(x) + z1(x), (21)

To approximate u−1(x) in the internal points, the initial velocity is used. For this, we discretize the initial
velocity as

u1(x)− u−1(x)

2δt
= k(x) (22)

Writing (21) together with (22) we have

2u1(x) + ηLu1(x) = 2u0(x) + 2δtk(x) + ζLu0(x) + z1(x). (23)

Though the system of equations is effective for any value of θ ∈ [0, 1], we will utilize θ = 1/2 (the
prominent Crank-Nicholson method).

3. Stability analysis

Starting from the results in [22], we analyze numerical stability of the proposed method, which is applied
to the time-dependent equation (4). Now, introducing a perturbation in (13), we define the error

en = un − ũn,

where un represents the discrete exact solution and ũn denotes the approximated numerical solution. Hence,
the equation for the error en+1 can be written as follows

en+1 = Ken, (24)

where the amplification matrix K takes the form

K = AC−1DA−1.

If the error en → 0, as n→∞, then the numerical scheme is stable. In particular, stability is assured when
the spectral radius ρ of the matrix K is less than or equal to 1, i.e. ρ(K) ≤ 1. If we substitute K in (24)
we have

CA−1en+1 = DA−1en. (25)

Moreover, if we assume Dirichlet boundary conditions, equation (25) becomes

Pen+1 = Qen, (26)

7

where

P = [I − θδtM] ,

Q = [I + (1− θ)δtM] ,

I ∈ RN×N is the identity matrix and the matrix M = LAIA−1.
From (26) it follows that stability is guaranteed provided that all the eigenvalues of the matrix P−1Q

are less than one. This fact happens if ∣∣∣∣1 + (1− θ)δtλM
1− θδtλM

∣∣∣∣ ≤ 1, (27)

with λM denoting an eigenvalue of matrix M . The following generalized eigenvalue problem is solved to
determine such eigenvalues

LAIs = λMAs.

For Crank-Nicholson scheme, namely assuming θ = 1/2, the condition (27) is always true provided that
λM ≤ 0. This also holds for θ = 1. In both cases we state that the numerical method is unconditionally
stable. When considering the explicit method, i.e. for θ = 0, the stability condition assumes the form

|1 + δtλM | ≤ 1.

Hence the related technique is stable when

δt ≤ − 2

λM
and λM ≤ 0.

4. Adaptive node refinement algorithm

Now, we can present the algorithm for solving time-dependent PDEs, whose solution offers fast changes or
high gradients in several local areas of the domain. Our major goal is to develop an adaptive algorithm first
to find the areas with quick changes and then applies a local node adaptive approach merely in those almost
singular areas. In this algorithm, we consider a numerical scheme characterized by the use of collocation
points and TPS RBFs. Since our technique is characterized by FDs, we utilize the adaptive algorithm at
any time step. Comparing the latter with the conventional algorithms applied on the whole domain of the
problem, the novel algorithm is used in any time step, i.e. we solve small linear systems of equations in the
adaptive approach on each time step instead of large linear systems as in Kansa collocation method. The
step by step process is showed in Algorithm 1, where the domain Ω is assumed to a square region in order
to make the description simpler. At the final step of this recursive procedure (Algorithm 1), the remaining
area will be small enough. Hence, the ultimate phase of the adaptive algorithm can be completed as detailed
in Algorithm 2.

In the algorithms presented in this section, we compute the residuals of the Root Mean Square (RMS)
error in N = NI +NB points:

ResRMS =

√√√√ 1

N

(
NI∑
i=1

(Lũ (xi, yi, T)− f (xi, yi, T))
2

+

NB∑
i=1

(ũ (xi∗, yi∗, T)− g (xi∗, yi∗, T))
2

)
, (28)

where (xi, yi)
NI

i=1 are interior points and (xi
∗, yi

∗)
NB

i=1 are boundary points. The functions f and g in (28)
derive from PDE problem, while ũ denotes the approximate solution.

In order to describe the algorithm in a more detailed way, we distinguish three different positions in
which a nearly singular area can be located in the domain, namely close to the center, close to the boundary,
or in an intermediate region between center and boundary.

8

Algorithm 1 The step by step adaptive algorithm

Input: the domain Ω = [a, b]× [a, b], the real numbers δ and Tol
Output: adaptive centers

1: the remaining area = Ω.
2: centers = ∅.
3: adaptive centers = ∅.
4: the covering area = ∅.

5: if
b− a

2δ
=

⌊
b− a

2δ

⌋
then

6: n =
b− a

2δ
.

7: else

8: n =

⌊
b− a

2δ

⌋
+ 1.

9: end if
10: for i = 1 : n do
11: ∆i = a boundary layer of the remaining area with width δ in all direction at the i-th step.
12: the covering area = the covering area ∪ ∆i.
13: the remaining area = Ω - (the covering area).
14: centers = a coarse uniform grid on ∆i.
15: adaptive centers = centers ∪ adaptive centers.
16: Solving the PDE problem by RBF technique on adaptive centers.
17: ResRMS = the residuals’ RMS error at the evaluation points located on ∆i.
18: while ResRMS > Tol do
19: R = compute the residuals at points halfway between the adaptive centers on ∆i.
20: Tol1 = mean value of R.
21: P = intermediate points with residual higher than Tol1.
22: adaptive centers = P ∪ adaptive centers.
23: Solving the PDE problem by RBF process on adaptive centers.
24: ResRMS = the residuals’ RMS error at the evaluation points located on ∆i.
25: end while
26: end for

Figure 1: Some steps of Algorithm 1 when quick changes are located close to the center of the domain.

Firstly, in Fig. 1 we show the case in which the nearly singular area is located in the center of Ω. Here,
the ultimate step of the algorithm starts with no need to apply the adaptive strategy in the previous steps.
The final stage is started if the remaining region is characterized by a small enough area. So the adaptive
procedure is carried out just in the small area with quick changes.

In Fig. 2 we then illustrate a few of the algorithm steps if a nearly singular area is localized in the

9

Algorithm 2 Final step of the adaptive algorithm

1: centers = a coarse uniform grid on the remaining area.
2: adaptive centers = centers ∪ adaptive centers.
3: Solving the PDE problem by RBF technique on Ω.
4: ResRMS = the residuals’ RMS error at the evaluation points located in the remaining area.
5: if ResRMS ≤ Tol then
6: The final solution is achieved.
7: else
8: while ResRMS > Tol do
9: R = compute the residuals at points halfway between the adaptive centers on the remaining area.

10: Tol1 = mean value of R.
11: P = intermediate points with residual higher than Tol1.
12: adaptive centers = P ∪ adaptive centers.
13: Solving the PDE problem by RBF technique on Ω.
14: ResRMS = the residuals’ RMS error at the evaluation points located in the remaining area.
15: end while
16: The final solution is obtained.
17: end if

boundary. Here, since all boundary conditions must be satisfied, the adaptive refinement process in the first
step is carried out over the entire boundary layer. In the next steps, the algorithm goes on without using
any adaptive policy until the remaining region is small enough and the final stage of the computational
procedure is executed.

Figure 2: Some steps of Algorithm 1 when quick changes are located close to the boundary of the domain.

Finally, in Fig. 3 we give a graphical representation of some algorithm steps when quick changes are
located in an intermediate region between the center and boundary of the domain. The algorithm proceeds
until the nearly singular regions is identified and after that the node adaptive strategy is applied. Then,
the final step of the algorithm is initiated with no further request of applying the adaptive strategy. Note
that hachure present in the mentioned figures represents the region in which the node adaptive approach
was carried out.

According to Figs. 1–3, prior to utilizing our adaptive approach, the algorithm discovers the areas with
quick changes and then the node adaptive method is conducted just on small regions with quick variations.
Hence, probable problems of other algorithms are reduced by this dynamic capability of finding the almost
singular area in large domains. Moreover, by this capability, we can use specific or more sophisticated meth-
ods in the nearly singular area, whereas in other parts of the domain basic or simpler methods are sufficient
for our purposes. We observe that when more than one nearly singular area exists in the computational do-
main, the procedure can be employed to identify these “critical” areas applying the node adaptive approach
until the entire calculation domain is covered. This capability of the suggested technique is well described

10

Figure 3: Some steps of Algorithm 1 when quick changes are located in an intermediate area between center and boundary of
the domain.

by the numerical experiments provided in section 5.

Remark 4.1. The adaptive algorithm is only utilized for the first time step when the position of high
gradients or fast changes of the problem solution in the domain has no change at the advanced time. In such
a case, relative nodal positions will remain unaffected. Therefore, in the adaptive approach only one linear
system must be solved (using the LU decomposition technique) instead of numerous linear systems at any
time step. This allows us a significant saving in terms of time and memory space. Consequently, we need
to solve a novel linear system by applying the LU factorization only once, as the coefficient matrix is not
changed at various time steps.

Remark 4.2. In the pursuit of attaining the desired level of accuracy through the utilization of a uniform
point arrangement, it becomes imperative to significantly increase the number of collocation points. The
majority of computational operations employed in the uniform approach are dedicated to solving the system
of linear equations. The arithmetic complexity associated with solving this system is denoted as O(N3), which
signifies a substantial volume of computational operations. Due to the large value of N , the magnitude of
this computational operation is very significant. Conversely, the adaptive algorithm presented in this paper
detects regions with rapid changes and exclusively applies a local node adaptive algorithm within these nearly
singular areas. Consequently, the computational operations employed in Algorithm 1 to generate adapted
points solely involve solving small localized linear systems and conducting limited comparisons. By employing
this adapted approach, the number of collocation points is significantly reduced, and the system of linear
equations possesses much smaller dimensions in comparison to the uniform approach. The computational
time reported in next section clearly demonstrates the advantage of the adapted method over the uniform
method. In summary, it can be concluded that in the uniform approach, in order to achieve the desired level
of accuracy, the point arrangement throughout the entire problem-solving area must be chosen with much
greater precision. Although the uniform arrangement approach does not incur any costs associated with point
arrangement, the computational operations required to solve the system of linear equations are so extensive
that the cost of generating the adaptive point arrangement is comparatively negligible. On the other hand,
the modified approach will have the ability to significantly reduce the number of collocation points through
the solution of a small system of linear equations and limited comparisons, which will save considerable time
in solving the final system of linear equations. In addition, in the adapted approach, we are dealing with
a smaller system of equations, and the possibility of encountering computational problems should be greatly
reduced.

5. Numerical experiments

This section aims to show the results obtained by applying the adaptive algorithm explained previously
for solving the time-dependent PDEs. For this purpose, we take two difficult benchmark problems in two

11

−5 0 5
−5

0

5

−5 0 5

−5

0

5

0 5 10 15

0

2

4

6

8

10

12

14

16

Figure 4: Example of regular and irregular domains for uniform points.

dimensions (parabolic and hyperbolic PDEs). At first, we test our scheme for the subsequent heat equation

ut(x, y, t)− uxx(x, y, t)− uyy(x, y, t) = f(x, y, t), (x, y) ∈ Ω, t ∈ [0, T], (29)

along with the initial and Dirichlet boundary conditions

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

u(x, y, t) = g(x, y, t), (x, y) ∈ ∂Ω, t ∈ [0, T],

where f , g, and u0 are selected based on the analytical solution. Next, we apply the new algorithm for the
following wave equation

utt(x, y, t)− uxx(x, y, t)− uyy(x, y, t) = f(x, y, t), (x, y) ∈ Ω, t ∈ [0, T], (30)

along with the initial and Dirichlet boundary conditions

u(x, y, 0) = h(x, y), (x, y) ∈ Ω,

ut(x, y, 0) = k(x, y), (x, y) ∈ Ω,

u(x, y, t) = g(x, y, t), (x, y) ∈ ∂Ω, t ∈ [0, T],

where f , g, h, and k are selected based on the analytical solution. In the current research, we take into
account three kinds of regular and irregular domains involving convex (square and circular) and non-convex
domains, see Fig. 4.

The values of Tol and δ in the algorithm given in section 3 have the main role in the detection of the
ultimate node distribution and accordingly in the solution accuracy. Indeed, the choice of Tol and δ depends
on the examined problems. In general, however, we expect that smaller values of such parameters will cause
more precise results since a denser distribution is formed in a greatly localized region. Note that in this
section N identifies the overall number of nodes in the ultimate node distribution. All numerical results
showed in this section were attained using Matlab on a laptop (Intel Core i5, 2.6 GHz processor).

In order to analyze the accuracy of our numerical scheme and assess the approximation error, we define
the maximum absolute (L∞) and the RMS errors

L∞ = max
1≤i≤M

|u(xi, yi, T)− ũ(xi, yi, T)|,

RMS =

√√√√ 1

M

M∑
i=1

|u (xi, yi, T)− ũ (xi, yi, T)|2,

where T represents the maximum time level, i.e. T = tmax, u (x, y, T) is the exact solution, ũ (x, y, T) denotes
the approximate solution and M refers to the overall number of evaluation points. In all our numerical tests
we compute the L∞ and RMS errors using a uniform distribution consisting of M = 8100 (90× 90) points.

12

0 5 10 15

0

2

4

6

8

10

12

14

16

step=1, N = 1324

0 5 10 15

0

2

4

6

8

10

12

14

16

step=2, N = 1396

0 5 10 15

0

2

4

6

8

10

12

14

16

step=3, N = 1436

0 5 10 15

0

2

4

6

8

10

12

14

16

step=4, N = 1849

Figure 5: Different steps of the adaptive algorithm in Example 5.1.

Though the approximation method expressed in section 2 is usually effective for any values of θ ∈ [0, 1],
in the following we discuss the case θ = 1/2, which characterizes the famous Crank-Nicholson method.
Moreover, we perform all our tests using the TPS RBF.

The current analysis is devoted to analyze the efficiency computing the CPU times (in seconds) of our
numerical method, as well as to verify its accuracy and stability.

5.1. Parabolic PDE

5.1.1. Regular domain

In this subsection, we present numerical results attained from tests performed for the heat equation (29)
on the square domain.

Example 5.1. Consider the 2D heat equation (29) with the following exact solution

u (x, y, t) =
(

2e−100(x−8)
2−100(y−8)2 + 2e−10(x−1)

2−10(y−1)2 + 2e−10(x−15)
2−10(y−15)2

+ 2e−10(x−1)
2−10(y−15)2 + 2e−10(x−15)

2−10(y−1)2
)
e−0.2πt. (31)

This solution is a function with various areas characterized by fast changes, and an adaptive refinement
strategy needs to be applied in each of these nearly singular areas. Our adaptive algorithm is used for
solving this problem in the domain Ω = [0, 16]× [0, 16]. Further, in all cases, we consider T = 1 and δt = 0.1
as time parameters.

Fig. 5 depicts the nodes distributions in various steps of the algorithm, while Fig. 6 represents the exact
solution profile and the ultimate adaptive distribution gained by applying the adaptive algorithm.

The results reported in Table 2 show that our adaptive distribution (algorithm) achieves better accuracy
with a smaller number of nodes than uniform distribution with many more nodes.

Moreover, Fig. 7 displays the absolute errors calculated at the evaluation points on Ω = [0, 16]× [0, 16].

13

Figure 6: Profile of the final adaptive distribution in Example 5.1 and the exact solution (31) on Ω = [0, 16] × [0, 16] with
δt = 0.1 and T = 1.

Table 2: Comparison of accuracy, condition number, and CPU time between the uniform and adaptive distribution
in Example 5.1 on Ω = [0, 16] × [0, 16] with δt = 0.1 and T = 1.

Method N RMS L∞ δ κ (A) Time(s)
Uniform distribution 6889 3.16× 10−1 5.68× 100 1.43× 1012 347.55
Adaptive distribution 1849 1.02× 10−4 1.57× 10−3 2 1.10× 1012 318.81

As previously stated, if the location of high gradients corresponding to the solution of the problem over
the domain is not changed at the advance time, our adaptive algorithm needs to be used only in the first
time step. In such a case, relative nodal locations will not change. Therefore, we have to solve only one
linear system instead of a large number of linear systems on each time step. In particular, in Table 3 we
observe that the algorithm is only used in the first step and this adaptive distribution will not change in the
advance time steps. Note that the value T used here (and in the next tables) represents the maximum time
level T expressed in seconds (s).

According to this work, a quite uniform behavior can be summarized as follows: numerical stability
(condition number) of the two approaches (uniform vs adaptive distribution) is almost the same, with
typically a slight advantage for the adaptive technique, however, we observe a considerable decrease of the

0
2

4
6

8
10

12
14

16

0

5

10

15

0

1

2

3

4

x 10
−3

xy

a
b
s
o

lu
te

 e
rr

o
r

Figure 7: Absolute errors on Ω = [0, 16]× [0, 16] in Example 5.1 with N = 1849, δt = 0.1, and T = 1.

14

Table 3: Accuracy, condition number, and CPU time for adaptive distribution on Ω = [0, 16]× [0, 16] in Example 5.1
with δt = 0.1 and N = 1849.

T (s) RMS L∞ δ κ (A) Time(s)
1 2.25× 10−4 3.65× 10−3 2 3.24× 1012 32.53
2 1.41× 10−4 2.11× 10−3 2 3.24× 1012 45.62
3 8.50× 10−5 1.16× 10−3 2 3.24× 1012 51.05
4 5.25× 10−5 6.27× 10−4 2 3.24× 1012 56.36
5 3.43× 10−5 3.39× 10−4 2 3.24× 1012 65.22
10 1.11× 10−5 1.96× 10−5 2 3.25× 1012 76.64
15 7.13× 10−6 1.60× 10−5 2 3.25× 1012 101.22
20 4.84× 10−6 1.19× 10−5 2 3.23× 1012 131.75
25 3.30× 10−6 8.61× 10−6 2 3.23× 1012 153.97

Table 4: Comparison of accuracy, condition number, and CPU time between the uniform and adaptive distribution
in Example 5.2 on the non-convex domain Ω ⊆ [−5, 5] × [−5, 5] with δt = 0.01 and T = 1.

Method N RMS L∞ δ κ (A) Time(s)
Uniform distribution 7329 9.58× 10−2 6.48× 10−1 3.88× 1011 3870.13
Adaptive distribution 841 6.53× 10−4 3.39× 10−3 1 2.25× 1011 708.39

CPU time and a remarkable increase in accuracy when the adaptive approach is compared with the uniform
one.

5.1.2. Irregular domain

This subsection presents numerical results attained from experiments performed to examine the behavior
of our adaptive technique for the heat equation on convex (circular) and non-convex domains, see Fig. 4.

Example 5.2. Consider the 2D heat equation with the subsequent exact solution

u(x, y, t) =
(
e−100(x)

2−100(y)2
)
e−0.2πt. (32)

Now, to show the applicability of our technique on an irregular shaped domain, this problem is solved on
a non-convex domain Ω ⊆ [−5, 5]× [−5, 5], whose area is revealed in Fig. 4 (left). Specially, the boundary
of this irregular domain Ω is defined as follows

∂Ω = {(r, θ) | r(θ) = 4 +
4

10
(sin(6θ) + sin(3θ))}.

The exact solution (32) is a flat function with an interior point-wise steep peak at center. Moreover, in this
example, we take as time parameters the constants δt = 0.01 and T = 1.

In Fig. 8 we report distributions of nodes in various steps of the algorithm on the non-convex domain.
Fig. 9 gives a graphical representation of the exact solution and the conclusive adaptive distribution attained
via the adaptive scheme.

Numerical results highlight that, using an adaptive distribution of nodes generated by our algorithm, we
can get a better accuracy than an uniform distribution (even if in the latter case a very large number of
nodes is considered), see Table 4. Moreover, Fig. 10 displays the absolute errors calculated at the evaluation
points on the irregular non-convex domain.

In Table 5, the dynamic algorithm is only used in the first step and this adaptive distribution will not
change in the advance time steps.

Even in this second case, our adaptive method (w.r.t. the uniform one) behaves in a quite uniform way:
the conditioning is rather similar, whereas the efficiency expressed in CPU time and the accuracy obtained
computing the RMS error show that our adaptive approach performs much better than the uniform one.

15

−5 0 5
−5

0

5

step=1, N = 82

−5 0 5
−5

0

5

step=2, N = 200

−5 0 5
−5

0

5

step=3, N = 280

−5 0 5
−5

0

5

step=4, N = 320

−5 0 5
−5

0

5

step=5, N = 841

Figure 8: Different steps of the adaptive algorithm in Example 5.2.

Table 5: Accuracy, condition number, and CPU time for adaptive distribution on the non-convex domain Ω ⊆
[−5, 5] × [−5, 5] in Example 5.2 with δt = 0.01 and N = 1849.

T (s) RMS L∞ δ κ (A) Time(s)
1 1.00× 10−4 6.35× 10−4 1 1.44× 1012 65.36
2 9.93× 10−5 4.63× 10−4 1 1.43× 1012 113.63
3 8.53× 10−5 3.18× 10−4 1 1.43× 1012 167.46
4 6.81× 10−5 2.17× 10−4 1 1.43× 1012 255.08
5 5.18× 10−5 1.47× 10−4 1 1.43× 1012 323.56
10 9.58× 10−6 2.11× 10−5 1 1.43× 1012 578.15
15 1.47× 10−6 3.02× 10−6 1 1.43× 1012 941.51
20 2.14× 10−7 4.32× 10−7 1 1.43× 1012 1396.67
25 3.09× 10−8 6.19× 10−8 1 1.43× 1012 1528.38

16

Figure 9: Profile of the final adaptive distribution in Example 5.2 and the exact solution (32) on the non-convex domain
Ω ⊆ [−5, 5]× [−5, 5] with δt = 0.01 and T = 1.

−5

0

5

−5

0

5
0

0.5

1

1.5

2

2.5

3

3.5

x 10
−3

xy

a
b
s
o

lu
te

 e
rr

o
r

Figure 10: Absolute error on the non-convex domain Ω ⊆ [−5, 5]× [−5, 5] in Example 5.2 with N = 841, δt = 0.01, and T = 1.

Example 5.3. Consider the 2D heat equation (29) where f and g are selected based on the following
analytical solution

u(x, y.t) =
(
e−100(x)

2−100(y+1.5)2 + e−100(x)
2−100(y−1.5)2

)
e−0.2πt. (33)

In this last example, the heat problem is solved on the circular domain Ω = [−5, 5] × [−5, 5] showed in
Fig. 4 (center). Here, we use as time parameters the constant values δt = 0.1 and T = 1.

As in previous cases, in Fig. 11 we plot the node distributions obtained in the various steps of the
algorithm, while in Fig. 12 we show the exact solution together with the final adaptive distribution of
nodes derived from application of our adaptive algorithm. The experimental results demonstrate that the
adaptive approach with a smaller number of nodes has a greater efficacy and accuracy than the uniform one
that involves a denser node distribution, see Table 6. Moreover, Fig. 13 demonstrates the absolute errors
calculated at the evaluation points on the circular domain.

In Table 7, the dynamic algorithm is only used in the first step and this adaptive distribution will not
change in the advance time steps.

Finally, we conclude this third example observing that RMS error, CPU time and conditioning have a
behavior similar to previous cases.

17

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

step=1, N = 92

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

step=2, N = 192

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

step=3, N = 272

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

step=4, N = 1833

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

step=5, N = 1849

Figure 11: Different steps of the adaptive algorithm in Example 5.3.

Table 6: Comparison of accuracy, condition number, and CPU time between the uniform and adaptive distribution
in Example 5.3 on the circular domain Ω = [−5, 5] × [−5, 5] with δt = 0.1 and T = 1.

Method N RMS L∞ δ κ (A) Time(s)
Uniform distribution 7094 1.25× 10−2 1.80× 10−1 6.42× 1010 459.29
Adaptive distribution 1849 3.69× 10−5 2.92× 10−4 1 5.68× 1010 344.77

Table 7: Accuracy, condition number, and CPU time for adaptive distribution on the circular domain Ω = [−5, 5] ×
[−5, 5] in Example 5.3 with δt = 0.1 and N = 1849.

T (s) RMS L∞ δ κ (A) Time(s)
1 5.99× 10−5 3.88× 10−4 1 5.73× 1012 33.25
2 4.16× 10−5 2.53× 10−4 1 5.73× 1012 36.17
3 2.82× 10−5 1.39× 10−4 1 5.73× 1012 47.45
4 2.00× 10−5 8.37× 10−5 1 5.73× 1012 57.79
5 1.50× 10−5 5.25× 10−5 1 5.73× 1012 64.40
10 4.76× 10−6 1.13× 10−5 1 5.75× 1012 73.77
15 1.54× 10−6 6.09× 10−6 1 5.54× 1012 110.05
20 5.11× 10−7 3.69× 10−6 1 5.71× 1012 140.12
25 2.05× 10−7 2.63× 10−6 1 5.73× 1012 175.21

18

Figure 12: Profile of the final adaptive distribution in Example 5.3 and the exact solution (33) on the circular domain
Ω = [−5, 5]× [−5, 5] with δt = 0.1 and T = 1.

−6
−4

−2
0

2
4

6

−6
−4

−2
0

2
4

6
0

1

2

3

x 10
−4

xy

a
b
s
o

lu
te

 e
rr

o
r

Figure 13: Absolute errors on the circular domain Ω = [−5, 5]× [−5, 5] in Example 5.3 with N = 1849, δt = 0.1, and T = 1.

5.2. Hyperbolic PDE

5.2.1. Regular domain

In the following section, we present numerical findings obtained from experiments conducted on the
square domain for the wave equation (30).

Example 5.4. Consider the 2D wave equation (30) with the subsequent exact solution

u (x, y, t) =
(

2e−100(x−8)
2−100(y−8)2 + 2e−10(x−1)

2−10(y−1)2 + 2e−10(x−15)
2−10(y−15)2

+ 2e−10(x−1)
2−10(y−15)2 + 2e−10(x−15)

2−10(y−1)2
)
e−0.2πt. (34)

This solution is a function with various areas characterized by fast changes, and an adaptive refinement
strategy needs to be applied in each of these nearly singular areas. Our adaptive algorithm is used for
solving this problem in the domain Ω = [0, 16]× [0, 16]. Further, in all cases, we consider T = 1 and δt = 0.1
as time parameters.

Fig. 14 illustrates the exact solution profile and the ultimate adaptive distribution gained by applying
the adaptive algorithm. The outcomes presented in Table 8 demonstrate that our adaptive distribution al-

19

Figure 14: Profile of the final adaptive distribution in Example 5.4 and the exact solution (34) on Ω = [0, 16] × [0, 16] with
δt = 0.1 and T = 1.

Table 8: Comparison of accuracy, condition number, and CPU time between the uniform and adaptive distribution
in Example 5.4 on Ω = [0, 16] × [0, 16] with δt = 0.1 and T = 1.

Method N RMS L∞ δ κ (A) Time(s)
Uniform distribution 6889 3.76× 10−1 7.13× 100 1.56× 1012 505.14
Adaptive distribution 1849 5.15× 10−4 7.98× 10−3 2 1.10× 1012 478.74

gorithm attains superior accuracy with a reduced number of nodes in comparison to the uniform distribution
approach, which employs a significantly larger number of nodes.

In addition, Figure 15 illustrates the absolute errors that have been computed at the evaluation points
on Ω = [0, 16]× [0, 16].

0
5

10
15

0

5

10

15
0

1

2

3

x 10
−3

xy

a
b

s
o
lu

te
 e

rr
o
r

Figure 15: Absolute errors on Ω = [0, 16]× [0, 16] in Example 5.4 with N = 1849, δt = 0.1, and T = 1.

As previously mentioned, if the position of high gradients corresponding to the solution of the problem
across the entire domain remains unchanged at the advance time, our adaptive algorithm will only need to
be applied in the initial time step. In such a scenario, the relative nodal positions will remain constant.
Consequently, we will only need to solve a single linear system instead of a multitude of linear systems at
each time step. Specifically, Table 9 demonstrates that the algorithm is solely utilized in the first step, and
this adaptive distribution will remain unaltered in subsequent advance time steps.

Moreover, as expected, these tests point out a similar behavior of error compared to the parabolic PDE
case.

20

Table 9: Accuracy, condition number, and CPU time for adaptive distribution on Ω = [0, 16]× [0, 16] in Example 5.4
with δt = 0.1 and N = 1849.

T (s) RMS L∞ δ κ (A) Time(s)
1 3.07× 10−4 3.44× 10−3 2 1.51× 1013 49.20
2 3.92× 10−4 2.91× 10−3 2 1.51× 1013 67.85
3 4.11× 10−4 2.13× 10−3 2 1.51× 1013 73.08
4 4.54× 10−4 1.49× 10−3 2 1.51× 1013 80.94
5 4.48× 10−4 1.19× 10−3 2 1.51× 1013 91.64
10 4.07× 10−4 1.03× 10−3 2 1.50× 1013 175.94
15 3.53× 10−4 7.74× 10−4 2 1.51× 1013 230.93
20 4.48× 10−4 1.18× 10−3 2 1.51× 1013 193.74
25 2.36× 10−4 6.82× 10−4 2 1.51× 1013 300.05

5.2.2. Irregular domain

This subsection presents the numerical results obtained from experiments conducted to investigate the
behavior of our adaptive technique for the wave equation on convex (circular) and non-convex domains, as
depicted in Fig. 4.

Example 5.5. Let us contemplate the 2D wave equation alongside the ensuing exact solution.

u(x, y, t) =
(
e−100(x)

2−100(y)2
)
e−0.2πt. (35)

In order to demonstrate the effectiveness of our technique on a domain with irregular shape, we have
solved the problem on a non-convex domain Ω ⊆ [−5, 5] × [−5, 5], the area that is represented in Fig. 4
(left). Specifically, the boundary of this irregular domain Ω is defined as follows:

∂Ω = {(r, θ) | r(θ) = 4 +
4

10
(sin(6θ) + sin(3θ))}.

The exact solution (35) is a flat function with an interior point-wise steep peak at center. Moreover, in this
example, we take as time parameters the constants δt = 0.01 and T = 1.

Fig. 16 gives a graphical representation of the exact solution and the conclusive adaptive distribution
attained via the adaptive scheme. The numerical findings indicate that by utilizing an adaptive node

Figure 16: Profile of the final adaptive distribution in Example 5.5 and the exact solution (35) on the non-convex domain
Ω ⊆ [−5, 5]× [−5, 5] with δt = 0.01 and T = 1.

distribution produced by our algorithm, a higher degree of accuracy can be achieved in comparison to a

21

Table 10: Comparison of accuracy, condition number, and CPU time between the uniform and adaptive distribution
in Example 5.5 on the non-convex domain Ω ⊆ [−5, 5] × [−5, 5] with δt = 0.01 and T = 1.

Method N RMS L∞ δ κ (A) Time(s)
Uniform distribution 7329 1.11× 101 1.03× 102 6.00× 1012 3115.35
Adaptive distribution 841 1.18× 10−4 1.02× 10−3 1 1.78× 1013 840.09

Table 11: Accuracy, condition number, and CPU time for adaptive distribution on the non-convex domain Ω ⊆
[−5, 5] × [−5, 5] in Example 5.5 with δt = 0.01 and N = 1849.

T (s) RMS L∞ δ κ (A) Time(s)
1 6.22× 10−4 3.90× 10−3 1 1.30× 1014 67.95
2 1.12× 10−3 3.89× 10−3 1 1.34× 1014 119.19
3 1.54× 10−3 3.14× 10−3 1 1.30× 1014 180.85
4 1.66× 10−3 2.43× 10−3 1 1.30× 1014 234.15
5 1.16× 10−3 1.88× 10−3 1 1.28× 1014 286.49
10 1.09× 10−3 1.96× 10−3 1 1.30× 1014 577.30
15 1.12× 10−3 2.82× 10−3 1 1.28× 1014 859.68
20 1.17× 10−3 2.07× 10−3 1 1.30× 1014 1132.19
25 1.16× 10−3 3.56× 10−3 1 1.31× 1014 1393.68

uniform distribution, even when the latter involves a substantial number of nodes. This is evidenced in
Table 10. Moreover, Fig. 17 displays the absolute errors calculated at the evaluation points on the irregular
non-convex domain.

−5

0

5

−5

0

5
0

0.5

1

1.5

x 10
−4

xy

a
b
s
o

lu
te

 e
rr

o
r

Figure 17: Absolute error on the non-convex domain Ω ⊆ [−5, 5]× [−5, 5] in Example 5.5 with N = 841, δt = 0.01, and T = 1.

In Table 11, the dynamic algorithm is only used in the first step and this adaptive distribution will not
change in the advance time steps.

Even in this case, our adaptive method (w.r.t. the uniform one) behaves in a quite uniform way: the
conditioning is rather similar, whereas the efficiency expressed in CPU time and the accuracy obtained
computing the RMS error show that our adaptive scheme performs much better than the uniform one.

Example 5.6. Consider the 2D wave equation (30) where f and g are selected based on the following
analytical solution

u(x, y.t) =
(
e−100(x)

2−100(y+1.5)2 + e−100(x)
2−100(y−1.5)2

)
e−0.2πt. (36)

22

Table 12: Comparison of accuracy, condition number, and CPU time between the uniform and adaptive distribution
in Example 5.6 on the circular domain Ω = [−5, 5] × [−5, 5] with δt = 0.1 and T = 1.

Method N RMS L∞ δ κ (A) Time(s)
Uniform distribution 7094 1.23× 10−1 8.12× 10−1 4.01× 1011 365.66
Adaptive distribution 1849 5.26× 10−5 4.43× 10−4 1 5.76× 1011 350.84

In this last example, the heat problem is solved on the circular domain Ω = [−5, 5] × [−5, 5] showed in
Fig. 4 (center). Here, we use as time parameters the constant values δt = 0.1 and T = 1.

As in previous cases, in Fig. 18 we show the exact solution together with the final adaptive distribution
of nodes derived from application of our adaptive algorithm. The experimental results demonstrate that the

Figure 18: Profile of the final adaptive distribution in Example 5.6 and the exact solution (36) on the circular domain
Ω = [−5, 5]× [−5, 5] with δt = 0.1 and T = 1.

adaptive approach with a smaller number of nodes has a greater efficacy and accuracy than the uniform one
that involves a denser node distribution, see Table 12. Moreover, Fig. 19 demonstrates the absolute errors
calculated at the evaluation points on the circular domain.

−5

0

5

−5

0

5
0

2

4

6

x 10
−4

xy

a
b

s
o

lu
te

 e
rr

o
r

Figure 19: Absolute errors on the circular domain Ω = [−5, 5]× [−5, 5] in Example 5.6 with N = 1849, δt = 0.1, and T = 1.

In Table 13, the dynamic algorithm is only used in the first step and this adaptive distribution will not
change in the advance time steps.

Finally, we conclude this last example observing that RMS error, CPU time and conditioning have a
behavior similar to previous cases.

23

Table 13: Accuracy, condition number, and CPU time for adaptive distribution on the circular domain Ω = [−5, 5]×
[−5, 5] in Example 5.6 with δt = 0.1 and N = 1849.

T (s) RMS L∞ δ κ (A) Time(s)
1 1.15× 10−4 6.94× 10−4 1 5.70× 1011 35.66
2 2.19× 10−4 6.83× 10−4 1 5.70× 1011 34.88
3 3.12× 10−4 7.55× 10−4 1 5.70× 1011 43.61
4 3.72× 10−4 6.77× 10−4 1 5.66× 1011 51.59
5 3.80× 10−4 5.80× 10−4 1 5.67× 1011 55.84
10 3.03× 10−4 6.57× 10−4 1 5.70× 1011 86.02
15 1.24× 10−4 6.82× 10−4 1 5.69× 1011 113.00
20 2.57× 10−4 2.11× 10−3 1 5.70× 1011 147.60
25 5.46× 10−4 3.27× 10−3 1 5.68× 1011 176.30

6. Conclusions and future work

In this paper, we proposed a novel adaptive meshfree technique to solve the time-dependent PDEs in
two-dimensional domains. The dynamic algorithm introduced in this study finds areas with fast changes
and applies a local node adaptive approach only in the almost singular areas. Moreover, in this algorithm,
unlike Kansa approach, the RBF collocation technique was mixed with a FD scheme. Using this idea, the
novel adaptive algorithm is simply applied on time steps rather than on the entire domain (like other avail-
able adaptive algorithms). Therefore, this benefit overwhelms possible problems existing in other adaptive
algorithms. Moreover, if the position of high gradients or fast changes in the solution does not change at an
advanced time, we can only utilize our dynamic algorithm in the first time step. Indeed, in such a condition
relative nodal locations will not change. Therefore, the approach requires to solve only one linear system
instead of many linear systems on each time step. This causes a remarkable saving of memory space and
time. Consequently, we solve a new linear system only once, as the coefficient matrix is not changed in the
different time steps. This research shows that the adaptive method can reach a particular accuracy level
with a considerable lower computational effort compared to the uniform RBF-FD technique. The numerical
study presented in this work demonstrates high accuracy can be acquired for adaptive distributions even if
a reduced number of nodes is necessary. On the contrary, numerous nodes are required to obtain relatively
high accuracy for the uniform distribution. The considered examples show good efficiency of this technique
based on CPU time-saving and convergence rate. Therefore, our adaptive scheme showed that we can find
the almost singular areas over the entire domain.

As a future work, we intend to implement a new modified algorithm for the localized RBF-partition of
unity method (RBF-PUM), which might also be used with other kinds of kernel bases to solve 3D time-
dependent problems. For an overview on RBF-PUMs, see e.g. [12, 17] and references therein.

Acknowledgments

The authors sincerely thank the anonymous referee(s) for the valuable comments and suggestions, which
enabled to significantly improve the quality of this paper. The third author acknowledges financial support
from the INdAM–GNCS Project “Computational methods for kernel-based approximation and its appli-
cations”, code CUP E55F22000270001. Moreover, this work was partially supported by the Department
of Mathematics “G. Peano”of the University of Torino through 2020 project “Mathematical methods in
computational sciences”. This research has been accomplished within the RITA (Research ITalian network
on Approximation) and the UMI Group TAA (Approximation Theory and Applications).

Declarations

Conflict of interest The authors declare that they have no any competing interests.

24

References

[1] M. Ahmad, Meshless analysis of parabolic interface problems, Eng. Anal. Bound. Elem. 94 (2018) 134-152.
[2] M. Ahmad, B. Ullah, Local radial basis function collocation method for stokes equations with interface conditions, Eng.

Anal. Bound. Elem. 119 (2020) 246-256.
[3] W.F. Ames, Numerical methods for partial differential equations, Academic Press, 2014.
[4] D.C. Arney, J.E. Flaherty, An adaptive mesh-moving and local refinement method for time-dependent partial differential

equations, ACM Trans. Math. Software, 16 (1990) 48-71.
[5] J. Bell, M. Berger, J. Saltzman, M. Welcome, Three-dimensional adaptive mesh refinement for hyperbolic conservation

laws, SIAM J. Sci. Comput. 15 (1) (1994) 127-138.
[6] J.P. Boyd, Trouble with Gegenbauer reconstruction for defeating Gibbs phenomenon: Runge phenomenon in the diagonal

limit of Gegenbauer polynomial approximations, J. Comput. Phys. 204 (2005) 253-264.
[7] I. Boztosun, A. Charafi, An analysis of the linear advection-diffusion equation using mesh-free and mesh-dependent

methods, Eng. Anal. Bound. Elem. 26 (2002) 889-895.
[8] M.D. Buhmann, Radial basis functions: theory and implementations, In: Cambridge monographs on applied and compu-

tational mathematics, vol. 12., Cambridge University Press, 2003.
[9] M. Buhmann, N. Dyn, Spectral convergence of multiquadric interpolation, Proc. Edinburgh Math. Soc. 36 (2) (1993)

319-333.
[10] D. Burgarelli, M. Kischinhevsky, R.J. Biezuner, A new adaptive mesh refinement strategy for numerically solving evolu-

tionary PDE’s, J. Comput. Appl. Math. 196 (1) (2006) 115-131.
[11] R.E. Carlson, T. Foley, The parameter R2 in multiquatric interpolation, Comput. Math. Appl. 21 (1991) 29-42.
[12] R. Cavoretto, A numerical algorithm for multidimensional modeling of scattered data points, Comput. Appl. Math. 34

(2015) 65-80.
[13] R. Cavoretto, A. De Rossi, Adaptive meshless refinement schemes for RBF-PUM collocation, Appl. Math. Lett. 90 (2019)

131-138.
[14] R. Cavoretto, A. De Rossi, Error indicators and refinement strategies for solving Poisson problems through a RBF partition

of unity collocation scheme, Appl. Math. Comput. 369 (2020) 124824.
[15] R. Cavoretto, A. De Rossi, A two-stage adaptive scheme based on RBF collocation for solving elliptic PDEs, Comput.

Math. Appl. 79 (2020) 3206-3222.
[16] R. Cavoretto, Adaptive radial basis function partition of unity interpolation: A bivariate algorithm for unstructured data,

J. Sci. Comput. 87 (2021) 41.
[17] R. Cavoretto, A. De Rossi, W. Erb, Partition of unity methods for signal processing on graphs, J. Fourier Anal. Appl. 27

(2021) 66.
[18] R. Cavoretto, Adaptive LOOCV-based kernel methods for solving time-dependent BVPs, Appl. Math. Comput. 429 (2022)

127228.
[19] R. Cavoretto, A. De Rossi, An adaptive residual sub-sampling algorithm for kernel interpolation based on maximum

likelihood estimations, J. Comput. Appl. Math. 418 (2023) 114658.
[20] S. Çayan, B. B. Özhan, M. Sezer, An adaptive approach for solving fourth-order partial differential equations: algorithm

and applications to engineering models, Comput. Appl. Math. 41 8 (2022) 1-17.
[21] AH-D Chengi, M.A. Golberg, E.J. Kansa, G. Zammito, Exponential convergence and h–c multiquadric collocation method

for partial differential equations, Numer. Methods Partial Differ. Eq. 19 (5) (2003) 571-594.
[22] P.P. Chinchapatnam, K. Djidjeli, P.B. Nair, Unsymmetric and symmetric meshless schemes for the unsteady convection-

diffusion equation, Comput. Methods Appl. Mech. Engrg. 195 (2006) 2432-2453.
[23] S.F. Davis, J.E. Flaherty, An Adaptive Finite Element Method for Initial-Boundary Value Problems for Partial Differential

Equations, SIAM J. Sci. Stat. Comp. 3 (1) (1982) 6-22.
[24] M. Dehghan, A. Shokri, A numerical method for two-dimentional Schrödinger equation using collocation radial basis

functions, Comput. Math. Appl. 54 (2007) 136-146.
[25] V. Dolejsi, Anisotropic hp-adaptive discontinuous Galerkin method for the numerical solution of time dependent PDEs,

Appl. Math. Comput. 267 (2015) 682-697.
[26] T.A. Driscoll, A.R.H. Heryudono, Adaptive residual subsampling for radial basis function interpolation collocations prob-

lems, Comput. Math. Appl. 53 (2007) 927-939.
[27] M. Esmaeilbeigi, M.M. Hosseini, S.T. Mohyud-Din, A new approach of the radial basis functions method for telegraph

equations, Int. J. Phys. Sci. 6 (6) (2011) 1517-1527.
[28] M. Esmaeilbeigi, M.M. Hosseini, Dynamic node adaptive strategy for nearly singular problems on large domains, Eng.

Anal. Bound. Elem. 36 (2012) 1311-1321.
[29] M. Esmaeilbeigi, G. Garmanjani, A shift-adaptive meshfree method for solving a class of initial-boundary value problems

with moving boundaries in one-dimensional domain, Numer. Methods Partial Differ. Eq. 32 (6) (2016) 1622-1646.
[30] M. Esmaeilbeigi, G. Garmanjani, Gaussian radial basis function interpolant for the different data sites and basis centers,

Calcolo, 54 (1) (2017) 155-166.
[31] M. Esmaeilbeigi, M. Paripour, G. Garmanjani, Approximate solution of the fuzzy fractional Bagley-Torvik equation by

the RBF collocation method, Comput. Methods Differ. Equ. 6.2 (2018) 186-214.
[32] M. Esmaeilbeigi, O. Chatrabgoun, An efficient method based on RBFs for multilayer data interpolation with application

in air pollution data analysis, Comput. Appl. Math. 38.4 (2019) 1-20.
[33] G.E. Fasshauer, Meshfree Approximation Methods with Matlab, World Scientific, Singapore, 2007.
[34] G.E. Fasshauer, Positive definite kernels: Past, present and future, Dolomites Res. Notes Approx. 4 (2011) 21-63.

25

[35] B. Fornberg, J. Zuev, The Runge phenomenon and spatially variable shape parameters in RBF interpolation, Comput.
Math. Appl. 54 (2007) 379-398.

[36] R. Franke, Scattered data interpolation: test of some methods, Math. Comput. 38 (1982) 181-200.
[37] G. Garmanjani, R. Cavoretto, M. Esmaeilbeigi, A RBF partition of unity collocation method based on finite difference

for initial–boundary value problems, Comput. Math. Appl. 75 (11) (2018) 4066-4090.
[38] L. Ge, T. Sun, An adaptive hp-version stochastic Galerkin method for constrained optimal control problem governed by

random reaction diffusion equations, Comput. Appl. Math. 41 3 (2022) 1-30.
[39] A. Golbabai, E. Mohebianfar, H. Rabiei, On the new variable shape parameter strategies for radial basis functions,

Comput. Appl. Math. 34 (2015) 691-704.
[40] Y.C. Hon, R. Schaback, X. Zhou, An adaptive greedy algorithm for solving large RBF collocation problems, Numer.

Algorithms, 32 (1) (2003) 13-25.
[41] M. Hussain, S. Haq, A hybrid radial basis functions collocation technique to numerically solve fractional advection-diffusion

models, Numer. Methods Partial Differ. Eq. (2020), to appear; https://doi.org/10.1002/num.22472
[42] Z. Jannesari, M. Tatari, An adaptive strategy for solving convection dominated diffusion equation, Comput. Appl. Math.

39 2 (2020) 1-15.
[43] M.N. Khan, I. Hussain, I. Ahmad, H. Ahmad, A local meshless method for the numerical solution of space-dependent

inverse heat problems, Math. Methods Appl. Sci. 44 (4) (2021) 3066-3079.
[44] P.G. Lefloch, Hyperbolic systems of conservation laws, Oxford University Press, 2000.
[45] J. Lu, Y. Nie, A collocation method based on localized radial basis functions with reproducibility for nonlocal diffusion

models, Comput. Appl. Math. 40 8 (2021) 1-23.
[46] F.M.B. Martinez, Meshless methods for elliptic and free-boudary problems, PhD thesis, 2008.
[47] S.A. Sarra, Adaptive radial basis function methods for time dependent partial differential equations, Appl. Numer. Math.

54 (1) (2005) 79-94.
[48] V. Singh, R.K. Mohanty, Local meshless method for convection dominated steady and unsteady partial differential equa-

tions, Eng. Comput. 35 (2019) 803-812.
[49] Z. Ullah, B. Ullah, W. Khan, Proportional topology optimisation with maximum entropy-based meshless method for

minimum compliance and stress constrained problems, Eng. Comput. 38 (6) (2022) 5541-5561.
[50] H. Wendland, Scattered Data Approximation, Cambridge Monogr. Appl. Comput. Math., vol. 17, Cambridge Univ. Press,

Cambridge, 2005.
[51] H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv.

comput. Math. 4 (1995) 389-396.
[52] Z. Wu, Dynamically knots setting in meshless method for solving time dependent propagation equation, Comput. Methods.

Appl. Mech. Eng. 193 (12-14) (2004) 1221-1229.

26

