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A B S T R A C T   

Precision Agriculture (PA) has revolutionized crop management by leveraging information technology, satellite 
positioning data, and remote sensing. One crucial component in PA applications is the Normalized Difference 
Vegetation Index (NDVI), which offers valuable insights into crop vigor and health. However, discontinuity of 
optical satellite acquisitions related to cloud cover and the huge load of the required processing time pose 
challenges to real-time applications. NDVI prediction emerges as an innovative solution to address these limi
tations. It allows for proactive decision-making by providing accurate estimates, enabling farmers and land 
managers to plan essential agronomic activities such as irrigation, fertilization, and pest control, based on 
anticipated future conditions. This study introduces an Artificial Neural Network (ANN) model incorporating 
NDVI, Normalized Difference Water Index (NDWI), temperatures, and precipitation as predictive variables. The 
model employs a novel time series slicing algorithm, Boosting Adaptive Time Series Slicer (BATS), to enhance the 
input training dataset’s variability, presenting the model with a broader range of examples. A 2-Bidirectional 
Long Short-Term Memory (LSTM) forecasting model was developed to predict future NDVI values over short 
and medium-term horizons. The study area used to train, test and validate the ANN corresponds to a diverse 
landscape of cultivated corn fields located in Piemonte (NW-Italy). Results showed that NDVI future estimates 
were accurate; considering three time horizons for predictions (5, 10, and 15 days) RMSE values resulted to be 
0.028, 0.038 and 0.050, respectively. Additionally, ablation tests proved that the most important variable for 
enhancing the model’s accuracy is the NDWI, and the most useful timesteps are the four most recent ones. To 
preliminary investigate the capability of the ANN to operate over a wider and different area it was applied over 
the entire Europe, using the LUCAS dataset as reference map to locate corn fields. Results show RMSE of 0.062, 
0.083 and 0.105 for the 5, 10 and 15 days forecasting horizons, respectively. The methodology proposed in this 
paper can be a possible alternative to more ordinary approaches for NDVI forecasting that nowadays appears to 
be a fundamental step for a proactive precision agriculture where crop management can be significantly 
improved. Future developments should explore the use of sequence-to-sequence ANNs to predict the develop
ment of multiple spectral indices over multiple crop types simultaneously.   

1. Introduction 

Precision Agriculture (PA) is a pivotal approach for enhancing crop 
management and resources optimization (Sharma et al., 2021). It in
volves technologies like geographical information systems, satellite 
positioning and remote sensing to improve crop yield, economize input 
utilization, and reduce environmental impacts. Normalized Difference 
Vegetation Index (NDVI) is a widely used remotely sensed tool for 
estimating key crop metrics like biomass and vegetation health status, 
which are essential for precise agricultural planning and budgeting, 

significantly influencing crop yield projections and environmental 
management (Houborg and McCabe, 2016). 

Despite the widespread adoption of NDVI, the intermittent nature of 
satellite acquisitions negatively affects crop monitoring and related 
agricultural deductions. Satellite data collection often encounters in
terruptions due to factors like cloud cover during imaging and the 
limited frequency of satellite passes over a given area (Li et al., 2021). 
These interruptions can hinder the timely assessment of crop conditions, 
leading to challenges in optimizing resource allocation and decision- 
making for agronomic activities. 
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In this regard, NDVI forecasting offers a game-changing solution. It 
offers a pivotal advantage by enabling the anticipation of agronomic 
activities. Rather than relying solely on historical or real-time NDVI data 
from satellite imagery, forecasting allows for a proactive decision- 
making process. With accurate predictions, farmers and land managers 
can preemptively plan and implement essential agronomic practices, 
such as irrigation, fertilization, and pest control, based on anticipated 
future conditions (Blaes et al., 2016, Radočaj et al., 2023, Soccolini and 
Vizzari, 2023). This proactive approach can significantly enhance the 
efficiency of resource allocation and crop management, ultimately 
contributing to improved agricultural productivity and sustainability. 
Moreover, in the droughts mitigation context, NDVI forecasting is a 
particularly useful tool for macro-scale regional water management. In 
fact, by offering predictive insights into vegetation health and land cover 
changes, NDVI forecasting empowers regional authorities and policy
makers to make informed decisions about water allocation, conservation 
measures, and the overall management of critical water resources 
(Maselli et al., 2020, Nouri et al., 2014, Poudel et al., 2021). During 
periods of severe drought, where water availability becomes a pressing 
concern, the capability to anticipate vegetation stress and water demand 
through NDVI forecasts plays a crucial role for optimizing water distri
bution, mitigating the impacts of drought, and safeguarding the 
ecological balance of ecosystems. NDVI forecasting at macro-scale can 
substantially improve regional resilience against water scarcity. Conse
quently, accurate NDVI forecasting has emerged as a pivotal element for 
enhancing the reliability and utility of NDVI as an agricultural indicator. 

Possible approaches in forecasting tasks are based on Machine 
Learning (ML) and Deep Learning (DL). These methodologies utilize 
historical data to predict future values. Common ML algorithms are 
Random Forest (RF) and Support Vector Machine (SVM). They analyze 
patterns in data to make predictions, focusing on relationships within 
the features (Parmar et al., 2019, Mountrakis et al., 2011). RF and SVM 
have been widely used in time series analysis with notable success (de 
Castro et al., 2020, Son et al., 2020). However, it’s important to note that 
these algorithms were not specifically designed to capture time de
pendencies such as autoregressive, seasonal, and cyclic phenomena that 
define time series. Indeed, each observation is considered an indepen
dent variable, not as part of a sequence. Additionally, RF and SVM are 
one-output models, which make them natively not suited for multi-step 
forecast problems (de Castro et al., 2020; Huang et al., 2017; Reuß et al., 
2021; Roy et al., 2022). Conversely, DL architectures like Recurrent 
Neural Networks (RNNs) can capture more complex patterns, including 
short and long temporal dependencies, making them particularly suited 
for forecasting tasks that involve time-dependent data and provide 
multiple outputs (Torres et al., 2021, Yamak et al., 2020). However, it 
should be mentioned that training and fine tuning Artificial Neural 
Networks (ANNs) require large datasets to avoid overfitting and can be 
computationally intensive due to the amount of trainable parameters 
and dataset dimension. Therefore, depending on the task complexity and 
data availability, considering ML algorithms instead of DL ones could be 
the preferred way. 

NDVI forecasting using DL typically operates at two distinct scales: 
large-area forecasts and field-level forecasts. Large-area forecasts focus 
on predicting the average NDVI values over extensive, relatively ho
mogenous regions, such as irrigation districts or forest covers (Fathollahi 
et al., 2023). In contrast, field-level forecasts aim to predict NDVI values 
for individual fields covering smaller, heterogeneous areas that are more 
representative of actual field conditions (Cavalli et al., 2023). Field-level 
forecasts offer valuable insights for farmers, especially in a precision 
agriculture framework. However, predicting NDVI at this level presents 
unique challenges, given the inherent noise and variability in field-level 
NDVI data. Additionally, the forecasting horizon significantly impacts 
the complexity of the problem. Some methods focus on predicting only 
the immediate next NDVI value, while others strive to provide multi-step 
forecasts over extended periods (Ahmad et al., 2023, Cavalli et al., 
2023). In this framework, state-of-the-art methodologies are 

significantly limited by three main problems: a) limited forecasting 
horizons, b) moderate prediction accuracies and c) ignoring complex 
patterns, including short and long temporal dependencies. 

In this work, we address these research gaps by developing an ANN 
which incorporates a Long Short-Term Memory (LSTM)-based fore
casting model. The research focuses on field-level NDVI prediction for 
short and medium-terms, specifically targeting forecasts at 5, 10, and 15 
days ahead. Previous studies have effectively utilized historical NDVI, 
temperatures, and precipitation data for predicting future NDVI values, 
underscoring the importance of these variables in capturing the essential 
climatic and phenological influences on vegetation health (Cavalli et al., 
2023). However, it is worth mentioning that Normalized Difference 
Water Index (NDWI) is able to reflect crop moisture availability, we 
included for the first time the water-related spectral index in our model 
to provide a more comprehensive assessment of vegetation health and 
water stress levels (Gao, 1996, Szabo et al., 2016). For this scope, 
Sentinel-2 (S2) data were chosen as the best suited for the aims of the 
study thanks to the high spatial, temporal, and spectral resolution. The 
study area selected for this work is a complex landscape of cultivated 
corn fields within the Piemonte Region (NW Italy), covering more than 
160,000 total ha and extending across a study area of over 13000 km2. 
Finally, the ANN is tested on a dataset covering the entire Europe in 
order to evaluate the ANN transferability to other ecozones. 

2. Materials 

2.1. Study Area 

The Piemonte Region (NW-Italy) is made of 8 provinces showing 
different geomorphological and climatic features, leading to a complex 
agricultural landscape (Ghilardi et al., 2023, Sarvia et al., 2021). A 
Walter and Lieth climate diagram is reported in Figure 1 to better 
describe the average climate in Piemonte region. 

It is one of Italy’s main corn-producing regions, accounting for 23% 
of the total cultivated corn area and 26% of the total production, 
underscoring its significance in national agriculture (ISTAT - Coltiva
zioni: Cereali, legumi, radici bulbi e tuberi, last access 7 February 24) . 
The study area (AOI) develops over the Torino, Vercelli, Cuneo, Ales
sandria, and Asti provinces (Figure 2). Within AOI, corn fields were 
surveyed in the period 2018-2022. Prior to analysis, fields under 0.1 ha 
and with a shape index (SI, equation (1) greater than 3 were excluded to 
reduce mixed pixel effects resulting in a total of 130,401 corn fields 
(more than 160,000 ha) (Sarvia et al., 2021). This extensive exploration 
over multiple years across a large area is aimed at capturing a high 
spatial-temporal variability. 

SI =
P

2
̅̅̅̅̅̅
πA

√ (1)  

where P and A are the polygon perimeter and area, respectively. 
In Northern Italy, corn cultivation includes two types of corn with 

distinct growing cycles: grains corn and silage corn. The first type, 
characterized by a longer growing cycle, is planted in mid-April to early 
May. Germination and emergence occur in May (BBCH 00-09), followed 
by vegetative growth until June (BBCH 10-39), then heading and 
flowering from mid to late July (BBCH 51-69), and ear development and 
ripening in August and September (BBCH 71-89), concluding in harvest 
from late September to October. The second type, with a shorter growing 
cycle, is sown in June to July post the winter wheat harvest. The silage 
corn rapidly progresses from germination to vegetative growth in July, 
with heading, flowering, and ear development, aiming for harvest by 
late September to October (Berti et al., 2019, Sarvia et al., 2021). 

2.2. Rainfall 

Water scarcity significantly constraints plant growth, development, 
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and yield (Rockström et al., 2010), particularly during periods of water 
deficit stress, commonly referred to as drought stress (Efeoğlu et al., 
2009). Thus, precipitation plays a key role in biomass growth and 
phenology models. The Global Precipitation Measurement mission 
provides hourly calibrated precipitation data (Pcal) with a spatial res
olution of 10 km. From these records, daily accumulated precipitation 
was computed and the yearly TS was derived using Google Earth Engine. 
To align Pcal data to the S2 spatial resolution (10 m), a nearest-neighbor 
resampling was applied, ensuring spatial coherence. 

2.3. Air Temperature 

Temperatures play a second key role in modelling the crop’s 
phenological cycle and biomass production (Lizaso et al., 2018). As a 
result, maximum and minimum thermal data were sourced from a 
network of 116 meteorological stations (Figure 3) affiliated with the 
regional meteorological network (accessible at www.arpa.piemonte.it). 

These data were collected over the period spanning from January 1, 
2018, to December 31, 2022, with daily frequency. 

Growing Degree Days (GDD) is a recognized metric for character
izing biomass growth during the phenological season, taking into ac
count the temperature’s impact on crops, which is closely related to 
their thermal efficiency. In this study, daily GDD values were calculated 
using the formula from (Mcmaster, 1997). Daily temperature records 
were obtained from the meteorological station closest to the considered 
field and used to compute daily GDD according to eq. (2): 

GDDi =

{

max
(
Ti
max + Ti

min

2
− TBASE, 0

)}

(2)  

where Ti
max and Ti

min are the daily (i-th) maximum and minimum tem
peratures and TBASE stands for the nominal base temperature, which 
varies depending on the crop and defines the minimum temperature 
threshold necessary to trigger the phenological development of 

Figure 1. Walter and Lieth climate diagram for the Piemonte region from 2010 to 2022.  

Figure 2. Corn fields collected in the Piemonte region (red outline) over different provinces (Reference system: WGS 84/UTM zone 32N, EPSG: 32632).  
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vegetation (Salazar-Gutierrez et al., 2013). TBASE selection is a largely 
discussed topic in literature (Gill et al., 2014; Giolo et al., 2021; Miller 
et al., 2001; Salazar-Gutierrez et al., 2013). TBASE is a very complex 
factor depending on both the plant species and the cultivar (Salazar- 
Gutierrez et al., 2013). In this work, the TBASE was set equal to 10 ◦C 
according to (Hou et al., 2014). 

Finally, GDDs pertaining to each meteorological station were spa
tialized using the Voronoi Polygons algorithm (Gold et al., 1997). The 
resulting polygons were then rasterized with a 10 m spatial resolution in 
order to match the S2 one. 

2.4. Satellite data 

Despite the current availability of Earth observation satellite imag
ery, not all acquisitions are suitable for PA and agronomic applications. 
In the context of meeting the specific requirements for precision 
farming, several fundamental operational prerequisites must be 
addressed: (a) the imagery should possess adequate geometric resolu
tion relative to the size of agricultural fields, ensuring that the details of 
individual fields can be effectively captured; (b) a high temporal reso
lution is essential to monitor the dynamic phenological phases of crops 
over time; (c) the spectral bands must exhibit sensitivity to crucial crop 
parameters, including biomass, photosynthetic activity, and leaf water 
content; and (d) the cost associated with acquiring this data should be 
aligned with the budget constraints of the agronomic sector, ideally 
being provided free of charge. These stringent criteria are crucial for 
precision farming applications, ensuring that the data used is not only 
accessible, but also highly relevant to the specific needs of agronomic 
and PA practices. In this context, the S2 mission stands out in meeting 
these criteria, as it offers a nominal time resolution of 5 days, although 
this is somewhat dependent on cloud cover. Moreover, the images are 
distributed free of cost and come pre-calibrated to at-the-ground 
reflectance and at a maximum geometric resolution of 10 meters. 
These attributes render them exceptionally compatible with the objec
tives of this study. The European Union’s S2 mission is equipped with 
multispectral optical sensors that span the range from 400 to 2500 nm, 
including the visible to medium infrared spectrum. 

Considering the extensive geographical coverage and the need for 
multi-year analysis in this study, Google Earth Engine was chosen as the 
platform for processing already geometrically and radiometrically cor
rected reflectance values from the S2 Harmonized level 2-A data. This 

product level has a nominal positional accuracy of 3m and a radiometric 
resolution of 12 bits (Gascon et al., 2017). The combination of spectral 
bands allows for the generation of spectral indices that can effectively 
describe distinct crop behaviours. Specifically, for this study, the NDVI 
and the NDWI have been selected. The focus on NDVI and NDWI aligns 
with the objective to manage computational resources efficiently while 
ensuring the predictive model remains focused on key parameters 
(Johnson and Kjell, 2019, Bargagli Stoffi et al., 2022). This approach 
minimizes data redundancy and enhances operational efficiency, 
enabling accurate analysis of crop status using the available spectral 
data. In particular, four spectral bands were selected for NDVI and NDWI 
computation: green (560 nm ± 35 nm) having a geometric resolution of 
10 m; red (665 nm ± 30 nm) having a geometric resolution of 10 m; NIR 
(842 nm ± 115 nm) having a geometric resolution of 10 m and SWIR1 
(1610 nm ± 90 nm) having a geometric resolution of 20 m. The latter 
was resampled using nearest neighbour method to the 10 m geometric 
resolution. This decision aligns with the study’s requirements for effi
cient and scalable analysis over large areas and extended time periods, 
facilitating the comprehensive assessment of the datasets. 

NDVI is a well-established spectral index in the scientific literature, 
renowned for its ability to provide insights into vegetation characteris
tics (Borgogno-Mondino et al., 2022). It is particularly valuable for 
phenological analysis (Farbo et al., 2022), ecosystem characterization 
(Orusa et al., 2023), crop yield prediction (Mkhabela et al., 2011), 
assessment of crop biomass (Meng et al., 2013), monitoring of urban 
green areas and heat islands (Grover and Singh, 2015), and the devel
opment of insurance strategies in agriculture (Sarvia et al., 2020). In this 
research, NDVI was utilized as a predictor for phenology and biomass 
estimation according to eq. (3): 

NDVI =
b8 − b4
b8 + b4

(3)  

where b8 and b4 correspond to near infrared and red S2 spectral bands, 
respectively. Several other spectral indices can be effectively used in the 
PA context like the Normalized Difference RedEdge (NDRE) and the 
Enhanced Vegetation Index (EVI). However, both have limitations due 
to some intrinsic aspects of the spectral bands used for their computa
tion. Specifically, the NDRE requires the use of the Red-Edge band, 
which for S2 has a coarser geometric resolution (20 m) compared to the 
Red and NIR spectral bands (10 m). This resolution is less suitable for the 

Figure 3. Arpa Meteorological Stations taken into account for the study. (Reference System: WGS84/UTM 32 N, EPSG: 32632).  

A. Farbo et al.                                                                                                                                                                                                                                   



ISPRS Journal of Photogrammetry and Remote Sensing 211 (2024) 244–261

248

small and fragmented fields typical of Italian agriculture. Additionally, 
depending on the red-edge band used to compute NDRE different results 
can be obtained, leaving a high degree of discretionality to the user and, 
therefore, a lower robustness about repeatability of the method. Con
cerning the EVI, this index incorporates the Blue spectral band, which is 
notoriously affected by atmospheric noise (Okin and Gu, 2015). It has 
been found that the noise of the EVI index increases with increasing EVI 
values (i.e., high Leaf Area Index - LAI) (Miura et al., 2000). Conversely, 
NDVI is more affected by noise at very low values (indicative of almost 
no vegetation) (Miura et al., 2000). Additionally, EVI was first intro
duced during the MODIS mission, and a set of empirical coefficients 
were developed specifically for this mission (Huete et al., 1994). Using 
EVI in a different mission without adjusting the parameters could 
introduce errors that are difficult to track, as reported for other indices 
(Zhen et al., 2023). Moreover, EVI is considered a viable solution to the 
well-known NDVI saturation effect only at high LAI values, such as those 
found in tropical forests. However, it should also be noted that the NDVI 
saturation effect becomes problematic at very high LAI values (>4), as 
reported by Potithep et al. (Potithep et al., 2013). Conversely, studies 
have found that such high LAI levels rarely occur in corn fields (Hosseini 
et al., 2015; Pacheco et al., 2001; Fei et al., 2012). Considering all these 
aspects, NDVI emerges as the most suitable spectral index for analysis in 
this study. 

Within the agricultural landscape of northern Italy, a substantial 
portion of the corn cultivation, exceeding 52%, relies on irrigation 
practices. This significant reliance on irrigation implies that precipita
tion data alone may not be sufficient of estimating soil water avail
ability. A noteworthy case in point is the Piemonte region, where 
approximately 70% of corn cultivation is under irrigation (Regione 
Piemonte: Censimenti generali dell’agricoltura - dati di sintesi, last ac
cess 13 October 23). Therefore, an additional spectral index able to 
relate to water content has been considered (i.e. NDWI). 

NDWI plays a pivotal role in assessing agricultural landscapes. NDWI 
primarily focuses on the presence of water and its variations, making it 
valuable for monitoring and managing water resources in agricultural 
regions. This index is especially sensitive to changes in water content, 
which can provide critical information for irrigation management, 
drought detection, and soil moisture assessment in agricultural settings 
(Gao, 1996, Szabo et al., 2016). Consequently, NDWI was also selected 
in this study to enhance the understanding of water-related dynamics in 
corn fields. NDWI was computed according to eq. (4): 

NDWI =
b3 − b11
b3 + b11

(4)  

where b3 and b11 correspond to green and short-wave infrared-1 S2 
spectral bands, respectively. 

NDVI and NDWI time series (TS) were generated, recognizing that 
Sentinel-2 data are prone to interference from clouds and shadows, 
which can alter the accuracy of the derived indices. To address this issue, 
the Scene Classification Layer (SCL) was employed to identify and 
exclude pixels compromised by clouds, snow, and shadows. This pre
processing step is critical for minimizing the influence of atmospheric 
conditions on the TS. After this correction, TS were regularized to a 5- 
day frequency, with linear interpolation used to fill gaps in the time 
domain. Satellite-based TS are notoriously noisy, as acknowledged in 
numerous studies (Hird and McDermid, 2009). To isolate the noise-free 
trend within TS, a first-order Savitzky-Golay smoothing algorithm with a 
five-observation window was used (Michishita et al., 2014). This 
smoothing was exclusively applied to the NDVI (NDVIs), as it is the 
target variable for the ANN forecasting. Conversely, the unsmoothed 
NDVI and NDWI were utilized as input variables because the Savitzky- 
Golay smoothing method results in the loss of the initial and final ob
servations, making the use of smoothed TS as ANN inputs unsuitable in 
practical and real-time applications. This misalignment between the 
input and target data processing is necessary to train the ANN to process 

previous noisy S2 TS to forecast NDVI crop trends. 

3. Methods 

3.1. Data processing 

This work was aimed at improving NDVI value prediction for PA 
applications and land planning management. The workflow, illustrated 
in Fig. 4, integrates meteorological and satellite data through a struc
tured process comprising three key steps: (i) data preparation was 
intended for generating the appropriate multivariate TS serving as in
puts for the ANN; (ii) ANN design, training, tuning and testing was 
aimed at verifying actual potentialities of the explored AI-based 
approach to NDVI prediction. This step involves different phases out
lined in sections 3.3, 3.3.1, and 3.3.2; (iii) ANN generalization test was 
intended to verify the capability of a locally trained ANN to predict 
NDVI value out of its comfort zone. This was achieved with reference to 
the entire Europe exploiting corn crop maps from the LUCAS dataset. 
The description of data processing details is provided in the subsequent 
sections, offering comprehensive insights into each step of the proposed 
methodology. 

3.1.1. Time series harmonization 
Harmonizing spectral indices, precipitation and GDD time series is a 

necessary step for comparing and relating these factors. Therefore, 
spectral, precipitation and thermal time series were computed for each 
field. Furthermore, since corn growing season may vary significantly 
between fields, a common period (from emergence to senescence) must 
be locally defined to make comparable different corn fields. For this 
task, the Start of Season (SOS) and the End of Season (EOS) for each field 
were extracted from NDVIs TS according to the following procedure:  

- NDVImax (day of maximum NDVI value) identification: corn usually 
express the maximum NDVI values between mid-June and mid- 
August, therefore this period has been used to identify the day in 
which the maximum NDVI value occurs;  

- SOS identification: the first lowest value below a defined threshold 
was found in a backward-looking process from NDVImax to the start 
of NDVIs TS. Initially the threshold was set to 0.3, indicating a non- 
vegetated moment in the field. However, some fields might be 
managed with no-tillage practices and the bare soil might not be 
present. Therefore, to identify the SOS in unconventional managed 
fields, the process was repeated with an increased threshold of 0.05 
until 0.5. Once SOS was identified, all the previous data including 
SOS in NDVIs TS were removed;  

- EOS identification: a similar process used for SOS identification was 
used but with a forward-looking instead of a backward-looking 
process. Similarly, all the subsequent data in NDVIs TS after EOS 
were removed. 

Once the NDVIs TS for each field was processed and the non-corn 
related data removed, all the remaining TS (NDVI, NDWI, Pcal and 
GDD) were filtered based on NDVIs TS and all data outside the SOS-EOS 
interval were removed for each field individually. 

Subsequently, Pcal and GDD data were accumulated for each corn 
field using equations (5) and (6), respectively, resulting in the cumula
tive Global Precipitation Measurement (GPM) and Accumulated 
Growing Degree Days (AGDD) for each day (i-th) up to the last available 
day (n): 

GPM =
∑n

i=1
Pcali (5)  

AGDD =
∑n

i=1
GDDi (6)  

To ensure consistency in the time series data, they were harmonized to 
match the 5-day timestep of the S2 TS. Finally, for each field, the Day of 
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the Year (DOY) TS was retrieved, indicating the specific day on which 
each observation occurred. 

At the conclusion of the time series harmonization process, the input 
variables exhibit varying scales, potentially posing a challenge during 
the ANN training phase. It is a well-established practice that ANNs tend 
to perform more effectively when all input and target variables are 
standardized or normalized (Djordjević et al., 2022). Finally, the six 
variables (NDVIs, NDVI, NDWI, AGDD, GPM, and DOY) were individ
ually subjected to normalization using a min-max scaler. This pre
processing step ensures that the variables are brought to a consistent 
scale, enhancing the ANN’s ability to learn and make accurate 
predictions. 

3.1.2. Dataset partitioning 
In this study, the dataset was partitioned into three subsets: 57% for 

training, 15% for validation, and 28% for testing. To ensure a robust 
estimation of model performance, Monte Carlo cross-validation was 
employed, using five distinct seeds to randomize the data division pro
cess (Xu and Liang, 2001). 

3.1.3. Minibatch generation 
The proposed model was developed to generate NDVI predictions for 

corn at any point during the phenological cycle, necessitating the 
adoption of a mini-batch approach. To begin with, the input and target 
variables were defined: in this study, the input data consisted of the 
previous 10 observations (equivalent to 50 days) of NDVI, NDWI, AGDD, 

GPM, and DOY. Meanwhile, the target data consisted of the subsequent 
three observations (i.e. 5, 10, and 15 days) of NDVIs. NDVIs was chosen 
as target variable to train the ANN to predict de-noised NDVI values. 

Considering ten past observations (50 days) as input data would 
prevent the ANN to be applied at the beginning of the corn growing 
period. To avoid this problem, two different approaches were used: a 
Sliding Window (SW) was used to cut the TS for the test and validation 
dataset and a Boosting-Adaptive Timeseries Slicer (BATS) was used to 
cut the TS for the train dataset. Both SW and BATS ultimately produce 
mini-batches of ten timesteps for the input and three for the target, 
however the content of the mini-batches differs significantly. In Figure 5 
a graphical representation of the two mechanisms is reported. 

SW was designed to slide through TS generating mini-batches. 
Initially SW considers the first three observations and zero-pads the 
seven empty spaces. As it progresses, the number of considered obser
vations increases while the number of padded empty spaces decreases. 
This continues until the mini-batches consist solely of actual observa
tions. It was found out that pre-padding led to better results compared to 
post-padding in Recurrent Neural Network (Dwarampudi and Reddy, 
2019). Therefore, pre-padding was used to make all minibatches the 
same length (i.e. ten timesteps). 

BATS was designed to have 7 sliding windows that use different 
sequence lengths to generate the ten timesteps mini-batches. Specif
ically, the sliding windows consider a minimum of three observations up 
to a maximum of ten. All the mini-batches were pre-padded similarly to 
SW. 

Figure 4. Schematic workflow of data processing and deep learning processes.  
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ANN was trained utilizing BATS data as input to ensure robust 
training even under circumstances where data availability is con
strained, such as during the initial stages of the growth cycle. For the 
ANN validation and testing phase, data were processed with the SW 
approach. This strategic choice was made to enable the ANN to harness 
all available information for making accurate predictions when a wealth 
of data is accessible. Conversely, it ensures that the ANN remains pro
ficient even in scenarios characterized by limited data availability dur
ing the early phases of the cycle. In essence, the ANN was trained to 
adapt and perform effectively under diverse data conditions, ranging 
from data-rich to data-scarce situations. 

3.2. ANN settings 

The forecasting method is carried out at field-level for each provided 
sequence. The ANN was designed with 2-Bidirectional Long Short-Term 
Memory (BiLSTM) layers. The employed ANN is a type of RNN that 
integrates two LSTM units at each time step. LSTM is a specialized 
recurrent hidden unit designed to capture and learn long and short-term 
dependencies, as originally proposed by Hochreiter and Schmidhuber 
(Hochreiter and Schmidhuber, 1997). The core of LSTM units revolves 
around the concept of memory cells, which maintain temporal de
pendencies. Within an LSTM unit, there exist three critical gates: the 
input gate denoted as it, the forget gate as ft, and the output gate as ot . At 

any given time step t, the LSTM unit processes the input xt along with the 
previous hidden state ht− 1, combining them under the regulation of a 
hyperbolic tangent function (eq. (7)) as follows: 

gt = tanh
(
Wxgxt +Whght− 1 + bg

)
(7)  

where Wxg represents the input weights, Whg the recurrent weights, and 
bg the bias term. The input gate it plays a pivotal role in determining 
what information should be stored in the memory cell, and it operates 
through a sigmoid function (eq. (8)): 

it = σ(Wxixt +Whiht− 1 + bi) (8)  

where Wxi represents the input weights, Whi the recurrent weights, and 
bi the bias term. The forget gate ft serves to decide what content in the 
existing memory cell should be retained or forgotten (eq. (9)): 

ft = σ
(
Wxf xt +Whf ht− 1 + bf

)
(9)  

where Wxf represents the input weights, Whf the recurrent weights, and 
bf the bias term. Information is then updated in the memory cell Ct by 
incorporating inputs from both the input gate and the forget gate, 
allowing for the integration of new information gt while discarding part 
of the current memory content (eq. (10)): 

Ct = ft ⊙ Ct− 1 + it ⊙ gt (10) 

Figure 5. Graphical representation of SW and BATS approaches in mini-batch generation from a generic TS.  
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Finally, the output (hidden) state ht is computed by the output gate ot 
and the updated memory cell Ct (eq. (11)): 

ht = ot ⊙ tanh(Ct) (11)  

Where ot is determined by yet another sigmoid function: 

ot = σ(Wxoxt +Whoht− 1 + bo) (12)  

By combining two LSTM units in a bidirectional manner, a BiLSTM 
network is derived, enabling the analysis of past states from two 
different point of view: forward looking and backward looking. BiLSTM 
networks provide a comprehensive perspective on time series data, as 
they learn from sequences at each time step, thereby offering a holistic 
view of temporal dependencies (Bin et al., 2019, Graves et al., 2005). 

ANN hyperparameters were fine-tuned with a systematic exploration 
of the hyperparameter space, guided by a range of potential configura
tions for layers and neurons as suggested by existing literature (Step
chenko and Chizhov, 2015, Reddy and Prasad, 2018, Ahmad et al., 
2023, Cavalli et al., 2023). Ultimately, the best model was chosen as the 
one which reached the lowest overall RMSE from the cross validation 
procedure. Additionally, the ANNs were initialized with different seeds 
in order to minimize variability. The resulting network’s structure in
cludes an input layer that houses the predictors. In this case, these are 
mini batches of ten timesteps that include five variables (NDVI, NDWI, 
AGDD, GPM, and DOY). This is followed by two BiLSTM layers, each 
with 64 hidden units and a subsequent 20% dropout layer to prevent 
overfitting. A linear layer then calculates the predictions for the next 
three timesteps (i.e. 5, 10, 15 days) in the network output. The final 
layer, the output layer, contains the target forecasts. The ANN structure 
is reported in figure 6. 

The ANN was trained with a batch size of 64. The Adam optimizer 
was used with a learning rate set to 1e-3 and Mean Squared Error (MSE) 
was used as the loss function. The total number of training epochs was 
set to 100. However, if the validation loss did not decrease for ten 
consecutive epochs, the training would have been halted, and the 
weights from the last epoch with decreased loss would have been 
restored. 

3.3. Model performance assessment 

The assessment of ANN performance was conducted by examining 
one timestep forecast at a time on the test datasets derived from the 
Monte Carlo cross validation. Specifically, the evaluation involved 

calculating the Root Mean Squared Error (RMSE) between the forecasts 
generated by the ANN and the corresponding target values for each 
timestep according to eq. (13): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(ŷi − yi)2

√

(13)  

where ŷi and yi are respectively the predicted and target i-th forecasts 
and n is the total number of forecasts. RMSE is used to measure the 
average magnitude of the errors, providing a sense of overall model 
performance. 

Following this, to visually assess the output of the three linear neu
rons and investigate potential biases linked to NDVI values, density 
scatter plots and their corresponding linear models were generated. 

For a more comprehensive evaluation of the model’s performance 
throughout the phenological cycle, the RMSE and Mean Error (ME, eq. 
(14)) of each output linear neuron were calculated for each DOY. This 
approach also helped to identify periods where the model excelled or 
faced challenges compared to others. 

ME =
1
n

∑n

i=1
(ŷi − yi) (14)  

where ŷi and yi are respectively the predicted and target i-th forecasts 
and n is the total number of forecasts. ME is crucial for identifying any 
biases in the model, as it indicates whether the errors are systematically 
over or under predicting the target values. 

From literature it was observed that the S2-retrieved NDVI uncer
tainty ranges from 0.01 to 0.07 (Borgogno-Mondino et al., 2016, De 
Petris et al., 2023). To enhance the understanding of the errors made by 
the ANN throughout the phenological cycle, the percentage of errors 
exceeding a cautious NDVI uncertainty threshold of 0.04 (i.e. significant 
errors) was computed for each forecasting horizon. It’s important to 
note that this uncertainty pertains to the original NDVI, not the 
smoothed NDVI (NDVIs), which is the output of the ANN. However, 
since NDVIs is derived from the original NDVI, the uncertainty affecting 
the original NDVI also impacts the NDVIs to some extent. 

3.3.1. Timesteps Ablation Test 
The model’s training involved the use of ten fixed timesteps, which 

were occasionally zero-padded through the BATS algorithm. This 
strategy aimed to enable the model to acquire the ability to make ac
curate NDVI forecasts during periods with abundant data (such as the 
mid-late growing season) as well as during periods characterized by 
limited data availability (such as the initial phase of the growing season 
where few past observations are present). However, it’s worth noting 
that this approach could be further refined by determining the minimum 
number of timesteps necessary to achieve satisfactory results. 

To address this optimization challenge, the test dataset was subjected 
to perturbations by incrementally zero-padding one timestep at a time. 
This process continued until the inputs provided to the ANN consisted 
solely of sequences of zeros, essentially offering no meaningful infor
mation. For each set of removed timesteps, the RMSE for each forecast 
was calculated and then compared to the RMSE obtained without per
turbations. This systematic examination helped pinpoint the minimum 
number of timesteps required to maintain acceptable forecasting per
formance, thereby fine-tuning the model’s efficiency. 

3.3.2. Variables Ablation Test 
Five input variables were used to train the ANN, however some 

doubts arise regarding the importance of all of them. Ordinarily, 
multivariate models use only highly significant variables and exclude 
the less important ones (Sauerbrei et al., 2020). It is good practice to 
check which variable is more important for the model performances in 
order to understand the underlying processes. 

To determine less important variables, a similar approach to that 
outlined in section 3.3.1 was utilized. Specifically, each variable was Figure 6. ANN structure representation. X1-X10 are the inputs at each timestep.  
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individually subjected to zero-padding, and the corresponding per
turbed RMSE was calculated. ΔRMSEi was then computed according to 
eq. (15) to assess the impact of omitting each variable i: 

ΔRMSEi = RMSEp
i − RMSEo (15)  

where RMSEp
i represents the RMSE observed when each variable i is 

zero-padded, effectively omitting its information from the ANN while 
RMSEo represent the overall RMSE. This analysis provides insights into 
the extent of errors introduced by the absence of individual variables, 
aiding in the identification of their relative importance in the modeling 
process. 

3.3.3. ANN generalization capability 
In literature, many works use ANNs and remote sensing or 

geographical data over relatively small study areas and are not tested 
over bigger and more diverse dataset (Small, 2021). Such limitation can 
result in well-trained ANNs that struggle to generalize effectively across 
more variable AOIs. In our work, the AOI is confined to the Piemonte 
region, as described in section 2.1. To mitigate this constraint, we 
collected data spanning five years, from 2018 to 2022, in order to cap
ture a wide range of temporal and climatic variability. However, even 
with this extended dataset, there are inherent limitations, and it remains 
crucial to test the trained ANN against a completely different and more 
diverse dataset. 

To address this need, we gathered 1002 corn fields from the year 
2018 using the LUCAS dataset (Figure 7). The LUCAS (Land Use/Cover 
Area frame statistical Survey) dataset is an initiative organized by the 
European Statistical Office (EUROSTAT), designed to collect informa
tion on land cover and land use across all Member States of the European 
Union. This layer was used to detect the position of corn fields outside 
the study area (EU level). For each field in this dataset, we collected and 
computed NDVI, NDVIs, GPM, and DOY TS data, following the meth
odology outlined in sections 2.2, 2.3, 2.4 and 3.1.1. 

However, obtaining data for Growing Degree Days (AGDD) pre
sented a distinct challenge, as it was impractical to collect data from 
meteorological stations across the entire European region. To address 
this, we sourced daily maximum and minimum air temperature data at a 
2-meter height from the ERA5 reanalysis dataset provided by ECMWF 
(European Center for Medium-Range Weather Forecasts). Previous 
studies have indicated that ERA5 air temperature data generally exhibit 
satisfactory levels of accuracy and precision. However, it’s important to 
note that these levels can vary significantly depending on the specific 
study area (McNicholl et al., 2022, Tetzner et al., 2019). Consequently, 
ERA5 is considered a valuable tool, though it is important to anticipate 
the possibility of encountering increased errors during the inference 
phase in certain scenarios. 

Finally, temperature data were converted from ◦Kelvin to ◦Celsius to 
compute AGDD as outlined in section 3.1.1. 

All time series were normalized using previously derived min-max 
scalers for each variable. Subsequently, SW approach was employed to 
create mini batches for input and target data in the ANN. 

Since GPM data over European dataset were approximately 2.5 to 3 
times higher than the GPM values computed specifically for the Pie
monte region, concerns arise regarding the accuracy of ANN in pro
cessing such heterogeneous data. In fact, feeding ANN with values 
outside the ones of calibration range could potentially lead to mis
interpretations and erroneous forecasts. Therefore, the variable ablation 
test was performed to assess the importance of each variable and spe
cifically evaluate the role of each variable. Based on the ΔRMSEi anal
ysis, it was decided to include only the most crucial variables in the 
subsequent transferability analysis. 

To evaluate whether the ANN could achieve satisfactory results with 
varying amounts of timestep information, the timestep importance 
assessment as described in section 3.3.1 was conducted. Simultaneously, 
the transferability performance of the ANN was evaluated, following the 
methodology outlined in section 3.3. 

Europe host a variety of climatic regions (Beck et al., 2018), which 
can significantly influence crop growth (Hatfield et al., 2018). Simply 
comparing the ANN’s transferability results to those computed for the 
Piemonte region might obscure certain spatial patterns. Therefore, the 
LUCAS dataset was divided based on the present Köppen bioclimatic 
regions generated by Beck et al. (Beck et al., 2018), resulting in a total of 
seven groups (Figure 7):  

● BSk - arid, steppe, cold: 34 fields;  
● Csa - temperate, dry summer, hot summer: 19 fields;  
● Csb - temperate, dry summer, warm summer: 19 fields;  
● Cfa - temperate, no dry season, hot summer: 79 fields;  
● Cfb - temperate, no dry season, warm summer: 396 fields;  
● Dfa - cold, no dry season, hot summer: 58 fields;  
● Dfb - cold, no dry season, warm summer: 398 fields. 

Subsequently, the RMSE for the three-timestep forecasts was attrib
uted to each bioclimatic region, enabling visualization of the model’s 
performance across the entire European region. 

4. Results 

4.1. Model performance assessment 

ANN was evaluated on the test datasets derived from the Monte Carlo 
cross validation (28% of total corn fields). The average RMSE for each of 
the three output neurons, along with the respective standard deviations 

Figure 7. Spatial distribution of corn fields from LUCAS dataset in 2018 over different Köppen bioclimatic regions. (Reference System: WGS84, EPSG: 4326).  
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(STD), is reported in Table 1. Results from the Monte Carlo cross- 
validation, particularly the low STD, indicate the model’s stability. 
Consequently, for simplicity, all subsequent results are based on a single 
ANN. 

As expected, the ANN exhibits higher errors at increasing forecasts 
timestep. From literature it was observed that the S2-retrieved NDVI 
uncertainty ranges from 0.01 to 0.07 (Borgogno-Mondino et al., 2016). 
Notably, the ANN demonstrates the capability to generate forecasts up 
to 15 days in advance with errors comparable to NDVI theoretical 
uncertainty. 

To gain further insights into potential biases between the predicted 
and target values, a first order linear model was constructed for each 
prediction horizon and is illustrated in Figure 8. 

As previously noted in Table 1, the errors exhibit an increasing trend 
as the prediction horizon extends. Specifically, R2 decreases from 0.96 at 
the 5-day horizon to 0.91 at the 15-day horizon. A closer examination of 
the linear model parameters provides further insights into the fore
casting process: the intercept consistently exceeds 0, while the slope 
consistently falls below 1. Notably, at low NDVI values, the model tends 
to overestimate the actual values. This is particularly pronounced at the 
15-day horizon, where values below 0.5 NDVI are significantly over
estimated. This outcome aligns with expectations since the ANN was 
trained to forecast NDVI over vegetated areas. Low NDVI values are 
often associated with fields featuring sparse or small vegetation or non- 
photosynthetically active plants in senescent phases (Gao et al., 2020). 
Consequently, predicting NDVI under these conditions appears to be 
more challenging compared to when crops are in their full development 
phase. 

Furthermore, scatterplot’s points density highlights that only a small 
fraction of the forecasts deviates significantly from the bisector, while 
the majority of forecasts are concentrated around high NDVI values. 

To explore the model’s performance at different dates, the average 
NDVIs profile with its standard deviation was plotted, along the NDVI 
RMSE for the three temporal horizons for the entire forecasting period 
(Figure 9). 

NDVIs first observations start with values about 0.5 despite the 
filtering of NDVIs TS to retain values above 0.3. The time series depicted 
in Figure 9 pertains to the forecasting period, which initiates from the 
fourth observation (i.e., 20 days) after the first recorded NDVIs value 
exceeding 0.3. It’s important to note that during this period, corn un
dergoes a rapid growth phase, which readily results in NDVI values 
surpassing the 0.3 threshold. 

Remarkably, the most elevated RMSE values for all the forecasting 
horizons are notably concentrated after DOY 230. This particular period 
corresponds to the late season, typically at the end of August, when corn 
plants enter the senescence phase and harvesting commences (Pan et al., 
2015). Consequently, during both the training and test phases, the ANN 
demonstrated challenges in accurately capturing the extreme NDVI 
variability induced by these two phenomena. In contrast, throughout the 
phases from crop growth to full development, the RMSE consistently 
remains below the NDVI uncertainty identified by Borgogno-Mondino 
et al. (Borgogno-Mondino et al., 2016). This highlights how the pro
posed model achieves good predictions during the critical stages of the 
phenological cycle. 

To conduct a more in-depth examination of whether the ANN dem
onstrates any consistent bias during the test phase throughout the 
phenological cycle, ME of the three forecasting horizons is presented in 

Figure 10. 
Figure 10 reveals a notable period from DOY 190 to 230, corre

sponding to the timeframe from mid-July to mid-August, during which 
the mean error consistently exhibits a positive trend, albeit remaining 
below 0.005, for all the forecasting horizons. This observation might 
suggest a slight overestimation by the ANN during the corn flowering 
phase. 

As previously stated, NDVI values are affected by variable levels of 
uncertainty (from 0.01 up to 0.07) depending on the observation period 
and the NDVI value itself, therefore it is essential to set a cautious un
certainty threshold of 0.04 in order to separate the significant errors to 
the non significant ones. An enhanced comprehension of instances 
where the ANN registers significant errors surpassing the NDVI 
threshold can be obtained by observing the progression of the percent
age of it. This progression, which spans the entire corn phenological 
season, is depicted in Figure 11. 

Figure 11 provides valuable insights into the forecasting outcomes. 
Notably, in the most challenging scenario, involving the furthest fore
casting horizon of 15 days, the ANN is unable to make accurate pre
dictions for approximately 40-46% of the total fields. Notably, the most 
pronounced errors are observed in the initial forecast of the 15-day 
horizon. This outcome is reasonably expected, considering the limited 
information available to the ANN during the early stages of the pheno
logical cycle, where only 3 timesteps (equivalent to 15 days) contain 
useful data, as reported in section 3.1.3. The addition of a single valu
able observation to the input data was effective in reducing the errors to 
38% of the total observations. 

On average, the ANN falls short in predicting outcomes in 9.7% of 
cases for the 5-day horizon, 18.7% of cases for the 10-day horizon, and 
27.9% of cases for the 15-day horizon. During the period spanning from 
DOY 140 to 220, a timeframe characterized by significant agricultural 
activities, the ANN exhibits inaccuracies in forecasts for 8.2%, 15.5%, 
and 24% of cases for the 5-day, 10-day, and 15-day forecasting horizons, 
respectively. These results highlight the efficacy of ANN making it a 
reliable tool with low error thresholds, specifically for the 5 and 10 days 
forecasting horizon. 

4.1.1. Timesteps Ablation Test 
The model’s training approach, which involved the use of ten fixed 

timesteps with variable zero-padding sequences, was undertaken to 
impart the capacity to make accurate NDVI forecasts across periods with 
varying data availability. This approach sought to accommodate both 
data-rich phases, such as the mid-late growing season, and periods with 
limited data, as seen at the start of the growing season. However, in an 
effort to optimize this process by identifying the minimum number of 
timesteps required for satisfactory results, a further investigation was 
conducted. Figure 12 illustrates the impact of incrementally removing 
timesteps on the RMSE for the three forecasting horizons. The purpose of 
this analysis was to determine the critical threshold beyond which the 
forecasting performance of the model becomes significantly 
compromised. 

Carefully inspecting figure 12 it is possible to identify the moment 
the ablation test causes a dramatic increase of RMSE. Specifically, for all 
the forecasting horizons removing 8 timesteps of information leads to 
significantly higher errors. That was quite expected since the entire 
training process involved no less than 3 useful timesteps. Removing 7 
timesteps leads to an appreciable, although smaller, error increase; on 
the other hand, removing 1 to 6 timesteps causes no appreciable effects 
on the ANN results. This means that the minimum amount of useful 
timestep data to get accurate forecasts is 3 (i.e. 15 days) and the optimal 
is 4 (i.e. 20 days). 

4.1.2. Variables Ablation Test 
A variable importance assessment was conducted to identify the 

variables with the most impact on the ANN model. This was achieved by 
zero-padding each input variable individually and measuring the 

Table 1 
NDVI forecasts average RMSE and respective STD for each output neuron.  

Forecast Timesteps(Output Neurons) NDVI RMSE 
Mean STD 

5 days 0.028 2.33E-04 
10 days 0.038 3.33E-04 
15 days 0.050 4.27E-04  
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subsequent effect on RMSE. This method provided data on the relative 
importance of these variables in the forecasting process. Figure 13 il
lustrates the results, highlighting the variables that have a substantial 
effect on the predictive performance of the ANN. 

Interestingly, the GPM ΔRMSE is the lowest among all the other 
variables, meaning that the variable itself is not that important for the 

model. However, it is known of the precipitation importance on corn 
development (Yamoah et al., 2000). The answer to this apparent 
contradiction can be found in the GPM characteristics, in the corn water 
management and in the presence of the NDWI as input variable. 

Specifically, the Global Precipitation Measurement data has 

Figure 8. Target NDVI (X axis) vs Predicted (Y axis) NDVI at 5 days prediction horizon (a), at 10 days prediction horizon (b), at 15 days prediction horizon (c). The 
color scale of each pixel in the scatter plot corresponds to the density of data points within that pixel. Red line represents the fitted linear model. 

Figure 9. Average NDVIs profile (black line) with its standard deviation. NDVI 
forecasts RMSE at 5, 10 and 15 days horizons during the entire phenological 
cycle are represented by the green, blue and red lines, respectively. 

Figure 10. NDVI forecasts ME at 5, 10 and 15 days horizons during the entire 
phenological cycle are represented by the green, blue and red lines, 
respectively. 

Figure 11. Average NDVIs profile (black line) with its standard deviation. 
Percentage of significant forecasting errors above NDVI threshold (0.04) at 5, 
10 and 15 days horizon during the entire phenological cycle are represented by 
the green, blue and red lines, respectively. 

Figure 12. Timesteps Ablation Test. On the X-axis is reported the number of 
ablated input timesteps. Dotted lines correspond to the ANN average RMSE as 
reported in Table 1 (Section 4.1) and solid lines correspond to the RMSE 
derived from the incremental ablation of the inputs timesteps. Green, blue and 
red lines indicate the RMSE at the 5, 10 and 15 days forecasting horizons, 
respectively. 
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exhibited a propensity to either slightly under- or over-estimate ground 
reference data, and the degree of this variation appears to be contingent 
upon the specific study area (Ramsauer et al., 2018). While the GPM 
data has emerged as a valuable tool for quantifying daily precipitation 
on a global scale, concerns have been raised regarding its reliability for 
applications in smaller geographic areas due to its relatively coarse 
geometric resolution (10 km). 

Additionally, NDWI proves to be a valuable predictor for estimating 
vegetation water content (VWC), which is intricately linked to soil water 
content (Cosh et al., 2019). Consequently, providing VWC information 
to the ANN, as opposed to relying solely on precipitation data, appears to 
enhance the accuracy of NDVI forecasts. Figure 13 underscores the 
significance of NDWI as the most influential variable in the forecasting 
process thanks to the ablation test. It’s noteworthy that NDWI’s ΔRMSE 
is 0.15 for the 5 and 10-day horizons and increasing to 0.17 for the 
15-day horizon. This trend is consistent across various variables, where 
the importance of a variable intensifies with the forecasting horizon’s 
length. An exception is NDVI, which gradually diminishes in importance 
with extended forecasting horizons. This observation suggests that past 
NDVI values are vital for precise predictions in the nearest horizons, 
while for longer-term predictions, past NDWI assumes the pivotal role. 
This implies that historical VWC significantly influences future crop 
biomass, with its impact growing as the forecasting horizon extends. 

The relationship between AGDD and NDVI is a well-established 
connection in the existing literature (Ghamghami et al., 2019). Conse
quently, it was anticipated that this variable would exert a significant 
impact on the ANN’s predictions, although not to the same degree as 
NDVI values. This discrepancy can be attributed to the method 
employed in deriving air temperature data from the nearest meteoro
logical station. Since air temperature measurements might originate 
from several kilometres away from the specific field, the influence of 
AGDD on predictions is somewhat mitigated in comparison to the more 
localized and direct impact of NDVI values. 

Unexpectedly, DOY plays an important role in the ANN, specifically 
at the 10 and 15 days horizons. Knowing in which period of the year the 
past NDVI, NDWI, AGDD and GPM observations occur allows the ANN to 
correctly identify the growing period. This is a critical insight since it’s 
well-established that the timing of corn seeding significantly impacts the 
growth (Djaman et al., 2022). 

4.1.3. ANN generalization capability 
The ANN’s ability to generalize over a different AOI was tested using 

a dataset comprising 1002 corn fields from the LUCAS dataset, collected 
across Europe in 2018. However, before delving into the ANN’s per
formance, it’s crucial to evaluate the relevance of each input variable. 

It’s worth noting that variations in bioclimatic areas can result in sig
nificant differences in monthly average temperatures and annual total 
precipitation levels (Cortesi et al., 2012; Metzger et al., 2005). Of 
particular concern were the GPM values, which frequently exceeded 
those observed in the Piemonte region by a factor of 2 to 3. This raised 
questions about the ANN’s capacity to produce accurate forecasts when 
presented with data points outside the range encountered during the 
training phase. 

For this reason, the first conducted analysis was the variables abla
tion test on the LUCAS dataset (Figure 14). 

In comparison to Figure 13, it is noteworthy that all variables appear 
to have diminished in importance except the NDVI. However, it is 
crucial to consider that the overall RMSE values have also shifted to 
higher values, specifically to 0.098, 0.124, and 0.154 for the 5, 10, and 
15 days forecasting horizons (Table 2). ΔRMSE serves as a relative 
measure of the variables’ importance within the model. 

Examining individual variables, GPM ΔRMSE consistently displays 
negative values, indicating a general decline in the ANN’s performance 
when the GPM variable is included. Interestingly, NDVI has emerged as 
the most crucial variable, and the diminishing importance observed in 
Figure 13 has been further accentuated. NDWI, while still valuable, has 
lost some of its utility to the ANN. DOY and AGDD continue to provide 
information to the ANN, although their significance has become ques
tionable. This was expected due to the specific training area character
ized by distinct agricultural practices and temperatures which may vary 
compared to the entire European agricultural context. Additionally, the 
training dataset represents only a subset of the diverse corn cultivars in 
Europe (more than 5000 according to European Commission, 2024), 
each with varying phenological cycles and thermal efficiencies (Hou 
et al., 2014). Consequently, DOY and AGDD variables in the LUCAS 
dataset might not align with the same temporal patterns and relation
ships with other variables as observed in the Piemonte dataset. 

Following the variable ablation test, it was evident that the GPM 
variable had an adverse impact on the ANN’s performance when tested 
on the LUCAS dataset. Consequently, to optimize results, GPM was 
excluded from the ANN inputs. With this adjustment, the ANN was 
evaluated using the LUCAS dataset, and the overall RMSE was calculated 
for each forecasting horizon (Table 2). However, this approach causes a 
misalignment between the results obtained in the Piemonte region (with 
GPM variable included) and the results in the LUCAS dataset (without 
GPM). Therefore, to overcome this inconsistency, the GPM variable was 
also removed from the Piemonte test inputs and the ANN was tested 
again. From this point onward, when comparing LUCAS and Piemonte 
region results’, we refer to the ones where the GPM variable is not 
included in the inputs. 

Figure 13. Variables Ablation Test. On the X-axis are reported the input ab
lated variables. Green, blue and red bars indicate the ΔRMSE at the 5, 10 and 
15 days forecasting horizons, respectively. 

Figure 14. LUCAS Variables Ablation Test. On the X-axis are reported the input 
ablated variables. Green, blue and red bars indicate the ΔRMSE at the 5, 10 and 
15 days forecasting horizons, respectively. 
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When comparing ANN RMSE – NO GPM for AOI and LUCAS, a 
noticeable increase in the RMSE for all three output neurons can be 
detected. Specifically, the RMSE for each of the forecasting horizons has 
more than doubled, rising from 0.037 to 0.062, from 0.051 to 0.083, and 
from 0.067 to 0.105 for the 5, 10, and 15-day horizons respectively. It is 
important to note that all RMSE values have exceeded the average NDVI 
threshold, indicating a higher number of significant errors. However, 
this increase in error should be viewed in context and refers to the entire 
Europe with all its climatic variability as depicted in Figure 7. 

In order to check the timestep importance for the ANN on the LUCAS 
dataset, the ablation test conducted on the timesteps is reported in figure 
15. 

Carefully inspecting figure 15 it is possible to identify the moment 
the ablation test causes a dramatic increase of RMSE. Specifically, for all 
the forecasting horizons removing nine information timesteps leads to 
significantly higher errors. Compared to figure 12, it is evident that the 
ANN only uses the last three timesteps instead of the last four. Probably, 
the input and forget gates (it and ft, respectively) do not expect so much 
data diversity and do not allow the usage of all the information but only 
the most recent one when a so variable dataset is tested. 

To better understand where the biggest errors lie and highlight po
tential biases between the predicted and target values, a first order linear 
model was used for each prediction horizon and is illustrated in 
Figure 16. 

The first notable distinction, when compared to Figure 8(a, b, c), is 
the reduced density of point clouds, primarily attributed to the differ
ences in dataset dimensions between the Piemonte and LUCAS datasets. 
All three figures 16 - a, b, c exhibit a trend similar to Figure 8 (a, b, c), 
wherein R2 decreases as the forecasting horizon increases. Furthermore, 
in this case, the offset and slope consistently maintain values greater 
than 0 and less than 1, respectively, although the extent of 

overestimation at low NDVI values is more pronounced. 
Just like the scatterplots shown in Figures 8, the concentration of 

points indicates that only a small portion of the forecasts significantly 
diverge from the bisector of the scatterplot. Meanwhile, most of the 
forecasts are clustered in the area representing high NDVI values. To 
have a better understanding of the ANN performances during the 
phenological cycle, the RMSE for the three forecasting horizons and the 
average NDVI profile are reported in Figure 17. 

There are several crucial observations to make. First, Figure 17.a 
shows similar RMSE temporal profiles in comparison to the ones re
ported in Figure 11 although slightly higher as expected by the analysis 
conducted in section 4.1.2. Specifically, it seems that GPM variable 
mostly affects the period from DOY 230 to 260. Second, it is essential to 
note the remarkable extension of the standard deviation in the NDVI 
average profile when comparing Figure 17.a and 17.b. It is evident that 
NDVI values throughout the year exhibit considerably more variability 
in LUCAS dataset, with standard deviations consistently exceeding 0.2. 
In contrast, the Piemonte region, despite data originating from different 
years, typically maintains an average standard deviation value below 
0.1. This heightened variability is a clear explanation for the increase in 
ANN RMSE on the LUCAS dataset. Moreover, the patterns in the ANN 
RMSEs for the three forecasting horizons are similar, where the lowest 
errors are predominantly concentrated in the middle parts of the 
phenological cycle. 

Finally, LUCAS dataset was divided into the 7 european Köppen 
climatic zones and the average RMSE was reported in figure 18 in order 
to better visualize its spatial distribution across different climatic zones. 

Figure 18 highlights the spatial distribution of the errors the ANN 
makes when inference is performed on a completely different and more 
variable dataset in respect to the one which was trained on. It is evident 
that depending on the climatic zone, the errors dramatically change. 
Specifically, BSk, Csa and Cfa (arid, steppe, cold; temperate, dry sum
mer, hot summer; temperate, no dry season, hot summer- respectively) 
show the smaller errors when compared to the “continental” climates 
like Cfb and Dfb. However, it is worth noting that Cfb and Dfb have a 
much larger number of corn fields, which could potentially affect the 
reliability of this comparison. 

5. Discussions 

NDVI is one of the most popular vegetation indices used in remote 
sensing applications and precision farming contexts. However, cloud 
coverage and processing temporal lags pose significant challenges for 
real-time applications, particularly in the agricultural sector. Further
more, NDVI forecasting offers a pivotal advantage by enabling the 
anticipation of vital agronomic activities and proactive decision- 
making. With accurate predictions, farmers and land managers can 
preemptively plan and implement essential agronomic practices, 
enhancing the efficiency of resource allocation and contributing to 
improved agricultural productivity and sustainability. In addition to its 
agricultural applications, NDVI forecasting holds immense potential for 
micro and macro-scale regional water resources management, particu
larly in the context of severe droughts. By offering predictive insights 
into vegetation health and land cover changes, NDVI forecasting em
powers regional authorities and policymakers to make informed de
cisions about water allocation, conservation measures, and the overall 
management of critical water resources. During periods of severe 
drought, where water availability becomes a pressing concern, the 
ability to anticipate vegetation stress and water demand through NDVI 
forecasts plays a crucial role in optimizing water distribution, mitigating 
the impacts of drought, and safeguarding the ecological balance of 
ecosystems. This macro-scale utilization of NDVI forecasting can sub
stantially improve regional resilience in the face of water scarcity, ul
timately contributing to the sustainable management of water resources. 

Previous research in NDVI estimation for the current growing season 
has largely relied on conventional time-series forecasting like 

Table 2 
NDVI forecasts RMSE for each output neuron on Piemonte (AOI) and LUCAS 
dataset with and without the GPM as input variable.  

Forecast 
Timesteps(Output 
Neurons) 

NDVI 
RMSE 
(AOI) 

NDVI RMSE 
– NO GPM 
(AOI) 

NDVI RMSE 
(LUCAS) 

NDVI RMSE – 
NO GPM 
(LUCAS) 

5 days 0.028 0.037 0.098 0.062 
10 days 0.038 0.051 0.124 0.083 
15 days 0.050 0.067 0.154 0.105  

Figure 15. Timesteps Ablation Test. On the X-axis is reported the number of 
ablated input timesteps. Dotted lines correspond to the ANN overall LUCAS 
RMSE – NO GPM as reported in Table 2 and solid lines correspond to the RMSE 
derived from the incremental ablation of the inputs timesteps. Green, blue and 
red lines indicate the RMSE – NO GPM at the 5, 10 and 15 days forecasting 
horizons, respectively. 
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autoregressive and regression techniques (Atkinson et al., 2012, Cao 
et al., 2015, Vorobiova and Chernov, 2017). However, these approaches 
have consistently been surpassed by deep learning methods, particularly 
those integrating time series analysis. Gomez-Lagos et al. (Gómez-Lagos 
et al., 2023) employed a standard multilayer perceptron but was limited 
by its testing solely on NDVI pixels for a single date. Analyses on a single 
date are not viable for a model that must be tested over an entire 
growing season, therefore ANN which specifically deal with time series 
are needed. 

When it comes to forecasting tasks, a time series approach is needed 
and as such, advanced methods have begun to incorporate RNNs or 
variants like LSTM. For instance, Stepchenko and Chizhov (Stepchenko 
and Chizhov, 2015) accomplished MODIS pixel-level forecasts with an 
RMSE of 0.035 using LSTM architectures. However, questions arose 
regarding their training procedure and the absence of a validation set. 
Similarly, Reddy and Prasad (Reddy and Prasad, 2018) employed LSTM 
for large-area NDVI forecasts, achieving a remarkably low RMSE of less 
than 0.03. However, this study focused on forecasting averages over 
extensive regions using 250m MODIS pixels, a task that is less intricate 
than field-level predictions which are influenced by agronomic 
practices. 

More recently, Ahmad et al. (Ahmad et al., 2023) introduced the 
ConvLSTM methodology for field-level predictions, achieving an RMSE 
of 0.0782. However, it’s important to note that Ahmad et al. used 
relatively large 250m pixels suitable for the vast fields common in 
Southern American agriculture, which differs from our goal of predict
ing NDVI in smaller and more fragmented fields typically found in 

Italian agriculture. 
Finally, Cavalli et al. (Cavalli et al., 2023) proposed several LSTM 

networks for forecasting NDVI values at 1, 2, and 3 days with RMSE that 
surpassed every other approach in the field-level forecasting task. Their 
best results achieved RMSE values of 0.032, 0.062, and 0.085 for the 
respective time steps. While comparing these outcomes to our results, 
some differences must be considered: Cavalli et al. trained several LSTM 
ANN to forecast at 1, 2, and 3 days, while our methodology aimed to 
create a single model for forecasting at 5, 10, and 15 days. Our ANN 
achieved an RMSE of 0.028 at 5 days, outperforming the 1-day forecast 
obtained by Cavalli et al. At 15 days in the future, our ANN’s RMSE of 
0.051 surpassed the 2-day forecast of 0.06201 by Cavalli et al. 

It is worth noting that our ANN was trained on a considerably larger 
area compared to other studies (>160000 ha in our study compared to 
120000 ha in Cavalli et al. and 1945 ha in Ahmad et al.). Moreover, AOI 
explores an extensive area (13000 km2) which guarantees a high 
pedological, topographical and climatic variability. The increased 
variability in the training dataset posed an extremely difficult task to the 
ANN which ultimately aided in the generalization phase. We tested the 
ANN’s ability to generalize across the entire European continent, a task 
not previously undertaken to our knowledge. The performance of the 
ANN decreased as expected, but it still outperformed the models pro
posed by Cavalli et al. 

Our methodology introduced several novel elements: the use of Bi- 
LSTM, exploration of significant variability, introduction of NDWI and 
DOY as input variables, and implementation of BATS - a minibatch 
procedure that allowed training the ANN to perform effectively in 

Figure 16. Target NDVI (X axis) vs Predicted (Y axis) NDVI at 5 days prediction horizon (a), at 10 days prediction horizon (b), at 15 days prediction horizon (c) for 
the LUCAS dataset. The color scale of each pixel in the scatter plot corresponds to the density of data points within that pixel. Red line represents the fitted 
linear model. 

Figure 17. Plots a and b report the average NDVIs profiles (indicated by the black lines) along with their associated standard deviations. The RMSEs – NO GPM of 
NDVI forecasts at 5, 10, and 15-day horizons throughout the complete phenological cycle are presented by the green, blue, and red lines, respectively. Plot a pertains 
to the Piemonte test dataset, while plot b represents the LUCAS dataset. 
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periods with both small and large data availability. All the previous 
elements set the new state of the art when facing the NDVI forecasting 
task. 

6. Conclusion 

In this paper, a double-layer Bi-LSTM was employed to forecast NDVI 
at three different timesteps (5, 10 and 15 days) for corn crop. Specif
ically, the ANN was trained in Piemonte region (NW Italy) over a vast 
dataset that comprised a total of 130401 corn fields collected over five 
years (from 2018 to 2022). The ANN was intended to predict NDVI time 
series based on past meteorological (temperature and precipitation), 
spectral indices (NDVI and NDWI from Sentinel-2 mission) and the day 
of the year in which each observation occurs in periods with both large 
and limited data availability thanks to a peculiar training minibatch 
generation we call BATS. Additionally, conducted ablation tests 
confirmed that the key factor in improving the model’s precision is the 
NDWI, whereas GPM contributed minimally to the ANN’s performance, 
likely due to its coarse spatial resolution. Also, the last four timesteps 
were found to be the most informative, indicating that long sequences 
are not necessarily needed for accurate forecasts. 

The proposed methodology, thanks to the described novelties, 
managed to outperform all the previous models. Furthermore, it is 
essential to emphasize that the ANN model was intentionally designed 
for real-time application, allowing its use at any point during the 
phenological season, whether data availability is limited or abundant. 
This adaptability enhances its practical utility in agricultural decision- 

making and monitoring, making it a valuable tool for farmers, author
ities and researchers alike. Nevertheless, there are limitations to this 
approach. Training the ANN, particularly with very large datasets, re
quires considerable computational resources and time. Moreover, while 
the ANN inputs are sequential, the outputs are three discrete future 
values. Future enhancements should evolve the model into a sequence- 
to-sequence ANN, where outputs also form a sequential series while 
forecasting multiple spectral indices at the same time such as NDRE and 
EVI. Moreover, comparative studies with multiple machine learning and 
deep learning algorithms, including Random Forest, Support Vector 
Machine, sequence-to-sequence LSTM, and Transformer models, should 
be undertaken to further validate and improve the forecasting capa
bility. Although the current workflow is optimized for a single crop type, 
expanding its applicability to multiple crops remains a key objective for 
future development. 

Finally, we propose to define a common benchmark dataset on which 
crop forecasting models should be tested in order to better compare 
them. A large open dataset is not easy to find, however LUCAS dataset 
can be the reference for all the future works until larger datasets become 
available. 

Ultimately, NDVI forecasts are essential in both the precision farming 
context and in the regional monitoring services. Knowing beforehand 
the crop behaviour is a powerful tool to be used to better plan agronomic 
practices and to manage water resources (at field, consortium and 
regional level). 

Figure 18. a) Spatial distribution of Köppen climatic zones, b) 5-day horizon RMSE (green) for Köppen climatic zones, c) 10-day horizon RMSE (blue) for Köppen 
climatic zones, d) 15-day horizon RMSE (red) for Köppen climatic zones. 
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