
Reliable and Efficient Agent-Based
Modeling and Simulation
Alessia Antelmi1, Pasquale Caramante2, Gennaro
Cordasco2, Giuseppe D’Ambrosio2, Daniele De Vinco2,
Francesco Foglia2, Luca Postiglione2, Carmine
Spagnuolo2

1Università degli Studi di Torino, Via Verdi, 8 - 10124 Torino, Italy
2Università degli Studi di Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano (SA), Italy
Correspondence should be addressed to cspagnuolo@unisa.it

Journal of Artificial Societies and Social Simulation 27(2) 4, 2024
Doi: 10.18564/jasss.5300 Url: http://jasss.soc.surrey.ac.uk/27/2/4.html

Received: 27-01-2023 Accepted: 13-02-2024 Published: 31-03-2024

Abstract: Agent-based models is a fundamental approach to untangle and study complex systems. Over the
last decade, the need for more elaborate computing-demanding models has given rise to many frameworks and
tools to run ABM simulations. Current state-of-the-art ABM tools focus either on ease of use, performance, or
a trade-off between these two elements. Still, efficiency-oriented solutions (required for both large and small-
scale simulations) are vulnerable to memory flaws which could invalidate experiment results. This work aims
to merge efficiency, reliability, and safety under an innovative ABM software framework based on the Rust pro-
gramming language. Our framework, krABMaga, is an open-source library that offers a high-level environment
by exploiting meta-programming and expandable visualization features. We equipped our library with a dy-
namic simulation monitoring system and model exploration and optimization capabilities over parallel, dis-
tributed and cloud architectures. After presenting the overall architecture and functionalities of krABMaga, we
compare our framework’s performance against the most widely adopted ABM software and the scalability po-
tential of our simulation engine on a model calibration experiment running over an AWS EC2 virtual cluster
machine. All code and examples models are available on GitHub.

Keywords: Agent-Based Model, Agent-Based Simulation Engine, Model Exploration and Optimization, Reliabil-
ity and Efficiency, Open-Source

Introduction

1.1 A wide range of natural, social and artificial organizations are characterized by many closely interacting com-
ponents, which give rise to incomprehensible behaviors if we only consider a single component at a time (An-
derson 1972). Such organizations are commonly referred to as complex systems, and as examples, we could
give traffic control, weather forecast, policy-making, or still current epidemic dynamics (Estrada 2023). Com-
plex systems are analyzed by formulating a model that can imitate the real-world system and are usually the
output of the scientific effort of numerous experts from different (Siegenfeld & Bar-Yam 2020). In this research
field, agent-based modelling (ABMs) embodies a solid modelling approach to design the behavior of a complex
system from bottom-up, as modelers can define agents and environments to reproduce particular aspects or
proprieties of the underlying reality.

1.2 Over the last decade, the research community has provided many software frameworks and tools to support
the development of ABM simulations (Abar et al. 2017). These instruments are usually available as software
libraries for different programming languages and can offer support for specific computational platforms (e.g.,
CPU, GPU, distributed computing Rousset et al. 2016; Andelfinger & Cai 2022) or particular application domains
(e.g., traffic modeling (Yun et al. 2022), economics (Alves Furtado 2022), or social sciences (Retzlaff et al. 2022)).
Generally, the existing ABM simulation engines either share the primary objective of guaranteeing ease of use,

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



performance, or a trade-off between these two elements based on the modelers’ needs and computational
requirements of the model to be developed (Antelmi et al. 2023). In this context, it is worth noting that high-
performance computing solutions are not only suited for large-scale/fine-grain ABMs, but they are also con-
venient when small-scale ABMs require huge computational support (An et al. 2021). This statement becomes
especially true when, for instance, a small-scale ABM simulation model has to undergo alternative modeling
phases, such as calibration, verification, validation, sensitivity and uncertainty analysis, and experimentation
(Carrella 2021). Furthermore, simulation runs usually require a significant number of Monte Carlo repetitions.
In a scenario of horizontal scaling, these massive Monte Carlo runs can be deployed to and accelerated by high-
performance computing resources (Tang & Bennett 2010). In a scenario of vertical scaling, the only suitable
alternative to speed up the overall simulation process is reducing the execution time of the model. From this
perspective, handling computation-intensive large/small-scale models and analyses efficiently and supporting
the execution of long-running reliable simulations becomes an even more critical requirement.

1.3 Current state-of-the-art efficiency-oriented ABM tools rely on C++-based solutions (Antelmi et al. 2023). The ma-
jor drawback of such solutions is their vulnerability to memory flaws, such as memory leaks or stack overflows,
that could unexpectedly cause a failure (Zhang et al. 2022) in a single simulation run that will eventually jeop-
ardize the overall experiment or any of the cited modeling phases. In the context of ABM development, such
scenarios are not so rare, given the intrinsic dynamic behavior of a simulation. In other words, the modeler is
never guaranteed that everything will always work out just fine.

1.4 To address the requirements of simultaneously offering efficiency, reliability, and safeness, we propose krAB-
Maga, a novel tool for developing ABM simulations and supporting the modeler in handling their overall life
cycle. krABMaga embraces these requirements as core development goals thanks to the use of Rust as the
underlying implementation and model development language. The Rust language is characterized by perfor-
mance comparable to C, which reduces the running time of a single simulation, and a distinctive programming
model, which enables simulation reliability by guaranteeing no memory-related errors in long-running experi-
ments. In particular, our software library follows the Safe Rust specifics (Rust Doc 2023), which ensure the above
reliability requirements.

1.5 krABMaga particularly suits application scenarios where scaling up (both vertically and horizontally) is not vi-
able or limited. Our simulation engine, therefore, targets small-scale and possibly long-running ABM simula-
tions that require computation-intensive operations. Nonetheless, thanks to its architecture and programming
model, krABMaga easily scales up to accommodate distributed computation environments (e.g., cloud-based
platforms).

1.6 Our contributions can be summarized as follows:
1. The description of the architecture of a modern simulation engine for agent-based modeling implemented

with the Rust language supporting reliable and efficient long-running simulations.

2. The implementation of krABMaga, an open-source library for ABMs, written using safe Rust specification.
It comprises a simulation engine, a visualization component to allow native and web-based efficient vi-
sualization, a set of monitoring tools for guiding the modeler in executing and gathering results of the
simulation, and a model exploration and optimization mechanism also supporting parallel, distributed,
and cloud executions.

3. The availability of a series of functionalities (exposed via the Rust meta-programming features) to support
the modeler in calibrating, verifying, and validating their ABM model without modifying the underlying
model development pipeline. This highly modular design disentangles the pure ABM development phase
from the others.

4. A performance comparison of krABMaga against the most commonly adopted open-source solutions for
ABM, and the scalability results of a model calibration experiment running on an Amazon AWS EC2 cluster
machine.

1.7 The remainder of the paper is organized as follows. Section 2 first briefly summarizes the key features of the
Rust language, offering the reader the appropriate background to capture the peculiarities of our framework,
then introduces krABMaga thoroughly describing its main components and functionalities. Section 3 guides
us through a step-by-step tutorial to build the multi-agent Wolf, Sheep, and Grass model with krABMaga to de-
scribe the process of designing and implementing an ABM with our engine. Section 4 discusses the most com-
mon and used frameworks for ABM modeling and simulations. Section 5 presents a performance comparison
of krABMaga against the most commonly used open-source solutions for ABM and further shows the scalability
potential of our simulation engine. Finally, Section 6 concludes this work and discusses some future directions
regarding the development of krABMaga.

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



The krABMaga ABM simulation tool

2.1 This Section introduces the Rust language, giving the reader an overview of the main selling points of the lan-
guage together with a brief description of its evolution. It further thoroughly describes the krABMaga architec-
ture by detailing its main components, the core functionalities, and the simulation’s workflow.

The Rust programming language

2.2 Rust is a multi-paradigm system programming language designed by the Mozilla Research Group in 2009 and
released as a stable version in 2015. The Rust compiler is free and open-source dual-licensed under the MIT and
Apache License 2.0.

2.3 Rust aims to provide developers safety, speed, and concurrency through its peculiar syntax, combining the ex-
pressiveness and usability of high-level languages, like Python and Java, with the efficiency and performance
of low-level languages, like C and C++ (Matsakis & Klock 2014). The Rust language adopts some of the Object-
Oriented Paradigm principles and ensures safe concurrency and memory management thanks to its LLVM-
based compiler, which further guarantees efficiency by automatically providing low-level optimizations and
performance. The memory management rules, these characteristics, and the lack of a garbage collector make
Rust’s performance comparable to C.

2.4 Recently, Rust’s popularity has risen among companies and developers thanks to its software reliability and
safety approach (Bychkov & Nikolskiy 2021). Companies like Firefox, Dropbox, and Cloudflare already use Rust
in production, and several significant projects have adopted this language as their primary developing tool.
For instance, Linux developers added new features to the existing kernel infrastructure using Rust code, while
both Google and Microsoft exploited Rust to reduce memory-related bugs and security flaws in Android and
Windows systems.

2.5 Rust’s peculiarities also increased interest in academia, resulting in several studies considering Rust’s character-
istics through a theoretical lens. In particular, Jung et al. (2018) provided the first formal and machine-checked
proof of Rust safety properties by proving that "a semantically well-typed program is memory and thread-safe:
it will never perform any invalid memory access and will not have data races.". Moreover, Pearce (2021) formally
demonstrated the validity of two basic concepts of Rust: references lifetimes and borrowing.

2.6 Throughout the manuscript, we refer to certain technical elements of the Rust language. Although this work is
self-contained, we refer the reader to the Rust official documentation for more details 1.

The krABMaga architecture

2.7 krABMaga is a fast, reliable, discrete-event multi-agent simulation toolkit based on the Rust language designed
to be a ready-to-use tool for developing ABM simulations. Our selection of Rust as the framework’s develop-
ment language stems from its inherent principles of performance, reliability, and productivity, which harmonize
seamlessly with the fundamental objectives of krABMaga. Still, it is crucial to emphasize that the true poten-
tial of our toolkit is unlocked through the fusion of Rust and our expertise in ABM tools, which empowered us
to craft an efficient and resilient framework. Specifically, we carefully engineered all the underlying structures
and components to maximize efficiency while ensuring ease of use and comprehensibility.

2.8 krABMaga embraces and re-engineers the architectural concepts of the wide-adopted MASON simulation li-
brary (Luke et al. 2005). This design choice provides modelers with a familiar programming environment that
decreases the learning curve of our framework while exploiting Rust’s peculiarities and programming model.
The name krABMaga is a portmanteau, i.e., a blend from the combination of Krav Maga (a famous martial art)
and ABM, which also sounds similar to the crustacean name Crab, the mascot of Rust. This name comes from
the original ambition of Krav Maga to be effective and practical; we adopted the same principle in the design of
our tool.

2.9 krABMaga’s architecture is made up by two main software elements: the Engine and the Visualization compo-
nents. The Engine component comprises all core functionalities to develop and run a simulation model, while
the Visualization component exploits the Engine layer to visualize the simulation.

2.10 Figure 1 depicts the architecture of krABMaga and highlights the dependencies and connections between its
components.

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



Figure 1: The krABMaga architecture.

The Engine component

2.11 The Engine component comprises the definition and implementation of the building blocks of every ABM simu-
lation: (i) the agents, who model the entities of the simulation, (ii) the state of the simulation formed by all fields
where the agents interact with each other and retrieve information, and (iii) the scheduler, which manages all
simulation events. The absence of unsafe code blocks within the Engine component enhances the framework’s
memory and thread safety, which, in turn, bolsters the reliability of krABMaga.

Simulation agents

2.12 In krABMaga, an agent is any Rust object that implements the trait Agent. The use of traits helps the developer
to specify agents’ behaviors and properties easily by enforcing the implementation of specific functions defin-
ing how the agents should be appropriately scheduled (e.g., the method step(), which determines how the
agents act in each simulation step). The developer can further specify the implementation of other optional
methods to improve agent control and complexity.

2.13 An overview of the methods included in the trait Agent follows.
• function step(state), mandatory function defining the agent’s behavior. The modeler can access the

simulation state through the State input parameter and possibly modify the environment (e.g., simula-
tion fields) or any other global structure;

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



• function is_stopped(state), optional function defining the condition that determines whether the
agent must be scheduled in the following simulation step or it can be removed from the simulation. This
method allows the developer to manage the agent’s lifecycle;

• function before_step(state), optional function defining the agent’s behavior that must be performed
before the execution of each simulation step;

• function after_step(state), optional function defining an agent’s behavior that must be performed
after the execution of each simulation step.

2.14 krABMaga supports the development of multi-agent simulations allowing the specification of different agents
within the same model. This feature is achieved by encapsulating an objectAgentwithin the structureAgentImpl,
which the scheduler uses in practice.

Simulation environment

2.15 The simulation environment contains the fields where the agents live and act and represents the model’s state.
In krABMaga, the agents must update and read their location by interacting with the simulation state, even
though they store their location internally. In this way, the state always contains the latest data, and the agents
are guaranteed to access up-to-date information.

2.16 The modeler has to implement the model’s state, which defines the fields where the agents are placed, any
global property of the model, and additional actions to perform during the simulation. Further, the modeler
must define three mandatory methods, summarized below:

• function init(schedule), function used to initialize the model, which should include the code for
creating agents and fields and initializing the simulation properties at startup;

• function update(step), function defining the simulation behavior to run at the end of each simulation
step. It must define all the procedures for updating the different structures of the state (including the
invocation of the update method for each field);

• function reset(), function used for resetting the simulation, usually containing the code for a clean
initialization of the state structures.

The modeler can also define the state behavior at a specific simulation time via the following optional methods:

• function before_step(schedule), function defining the state’s behavior that must be performed be-
fore the execution of each simulation step;

• function after_step(schedule), function defining the state’s behavior that must be performed after
the execution of each simulation step;

• function end_condition(schedule), function defining the condition that determines when the sim-
ulation should end.

• function end_condition(schedule), function defining the condition that determines when the sim-
ulation should end.

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



2.17 Simulation fields. A field is a data structure that represents the environment where the agents act and defines
how they can move and interact within it. krABMaga provides three field classes 2, which cover the fundamental
spaces required in an ABM, and specific functionalities for each of them, e.g., placing agents, retrieving agents’
neighborhoods, and managing the simulation’s static elements. Figure 2 depicts the krABMaga field taxonomy.
A detailed description follows.

Figure 2: The krABMaga field taxonomy.

Grid2D is a data structure based on a matrix design. In a Grid2D field, agents can move across the matrix
cells, and a pair of coordinates identifies their location. krABMaga exposes two types of Grid2D fields:
SparseGrid2D and DenseGrid2D. SparseGrid2D is appropriate for low-density fields, where most of
the cells are empty, and exploits a HashMap to speed up read and search operations. The DenseGrid2D
works better for high-density fields, where most of the cells contain a value, and is based on the Rust
object matrix to make write operations as fast as possible. Both fields can be further specialized in:

• an ObjectGrid2D field, namely a Grid2D field for storing any Rust structures that implements a
specific set of traits. Each cell of the field may contain more than one agent.

• a NumberGrid2D, a simpler Grid2D field for placing any Rust structure that implements a specific
set of traits. This field is optimized to handle primitive types, such as numerical values. In this case,
each cell contains only a single agent.

This design choice lets the developer optimize their simulation performance by choosing the field that
better suits the model.

Field2D is a bi-dimensional (possibly toroidal) continuous space where agents can be placed anywhere within
the field. The coordinates of an agent placed in a Field2D field are represented as a Real2D object con-
sisting of a pair of floating-point values.

Network is a graph-shaped field that defines non-spatial relationships between agents. This field permits
the definition of directed, undirected, and weighted networks where the nodes represent agents and
edges relationships between them. krABMaga also provides the HNetwork field, where the underlying
interaction network is modeled as a hypergraph. Specifically, hypergraphs are a generalization of graphs
in which every (hyper)edge connects an arbitrary number of nodes.

2.18 Field updates. A crucial feature of krABMaga is the use of the double-buffering technique to manage fields’
memory. Each field uses two data structures to store its values: one structure is read-only (read state), and
the other is write-only (write state). At the beginning of each simulation step, the read state contains up-to-
date information, while the write state is empty. Any object performing a reading (resp. writing) procedure

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



will thus access the read (resp. write) state. Hence, the two data structures are independent, but the engine
automatically synchronizes them at each step’s end. Thanks to the double-buffering technique, krABMaga can
perform any read operations concurrently on the read-only data structure, thus, significantly improving the
performance of the simulation. On the contrary, writing operations, which change the simulation state, are
performed sequentially to avoid data race and contention on the write state.

2.19 In a nutshell, the double-buffering technique guarantees that when an agent is scheduled, the correct informa-
tion (e.g., the agent’s neighbors’ location) from the previous simulation step is used.

2.20 The modeler must define how each simulation field must be updated via either one of the following functions.

1. function lazy_update(). This efficient update operation swaps the read and the write states, and it is
suggested when the simulation data changes at each step. In this case, the swap approach significantly
improves the performance. In practice, this function re-initializes the memory.

2. function update(). This update operation moves all the data from the write state to the read state.
This function is computationally intensive and should be used when (part of) the data of the previous
simulation step must be preserved.

2.21 The double-buffering mechanism of krABMaga is transparent to the modeler. Still, our framework offers addi-
tional methods that enable expert users to optimize their code for specific needs. These methods operate on
the write state and are marked as unbuffered. For instance, a user may choose to design the simulation model
to use the lazy_update function and, hence, obtain a more efficient execution.

Scheduler

2.22 The krABMaga scheduler manages all the discrete events happening in the simulation. In other words, it con-
trols when the behavior of an agent (defined in the Agent.step() method) should be run. The scheduler han-
dles the simulation timeline via a priority queue, which sorts the agents according to their scheduling time and
priority. During each simulation step, the scheduler selects all agents whose scheduling time matches the cur-
rent simulation time, pushes them into a helper priority queue associated with the current step (which sorts
agents based on their priority), and then calls their step functions.

2.23 The modeler can access the scheduling functionalities to control the pace of the simulation through theScheduler
3 object. Specifically, krABMaga provides two functions to schedule a new agent, i.e., insert it in the priority
queue:

• function schedule_once(agent, time, ordering). This function schedules a single-time agent,
which will be removed from the scheduling queue after the execution of itsstep function. The parameters
include the agent’s current step time and priority;

• function schedule_repeating(agent, time, ordering). This function schedules an agent during
each next simulation step. The parameters include the agent’s current step time and priority.

2.24 The scheduler also handles the actions to perform before and after each simulation step associated with the
agents (see Section 2.9) and simulation state (see Section 2.12). Further, the krABMaga scheduler can manage
different types of agents within the same model.

2.25 Scheduling process. The simulation process can be roughly split into three main phases. During the first phase,
the scheduler initializes the number of simulation steps and its state to then invoke the state’s behavior that
must be performed before the execution of each simulation step (State.before_step function). Soon after,
the scheduler selects and removes from the event queue Q all agents a whose scheduling time ta matches the
current simulation time T and inserts them into the priority queue E associated with the current simulation
step. In the second phase, the scheduler handles the execution of each agent’s behavior (Agent.before_step,
Agent.step, Agent.after_step functions) contained in the queue E according to their priority. The agents
are pushed again in the event queue Q if they need to be scheduled in the next simulation steps. When there
are no more events in the queue E, the scheduler moves to the next phase. In the third and last phase, the
scheduler invokes the state’s behavior that must be performed after the execution of each simulation step
(State.after_step function) and at the end of each simulation step (State.update function) to update all
the State’s data structures. The scheduler will continue processing the events until the maximum number of
steps s is reached or an end condition occurs (see Section 2.12). Figure 3 summarizes the described scheduling
process.

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



Figure 3: krABMaga scheduling flow.

Monitoring tools

2.26 The development of an ABM is a complex process that requires the modeler to define each component prop-
erly in order to obtain an accurate simulation of the system under study. Further, ABM models usually have

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



stochastic components, which give life to patterns that may be analysed statistically but may not be predicted
precisely. For this reason, most models need to be run several times to be able to correctly analyze their behav-
ior. To alleviate these challenges, krABMaga offers a series of declarative macros for verifying the reproducibility
of a model (Zhang & Robinson 2021) and tracking simulation data. krABMaga also includes a convenient mon-
itoring tool via a Terminal User Interface (TUI) that allows the modeler to monitor simulation events, create
graphs based on tracked data, and check the simulation performance. The TUI provides some default infor-
mation about the simulation, such as the step number, CPU and memory usage, and the number of steps per
second executed. The user can add further information using a simple set of macro exposes by krABMaga. It
is worth stressing that none of these features affect the simulation performance and execution since they are
managed in a separate thread. A few details about the functions the user can manipulate to run a systematic
suite of experiments and personalize the TUI follow.

• Execution-related macros

– simulate!(state, steps, reps). This macro runs an agent-based simulation for the specified
number of steps and repeats the same simulation according to the number of repetitions reps.

– check_reproducibility!(state, steps, agent). This macro verifies whether two runs of the
same simulation produce exactly the same results having fixed a common seed. The definition of
the agents must implement the trait ReproducibilityEq in order to perform the reproducibility
control.

• Graph-related macros

– addplot!("Agents", "X axis", "Y axis", bool). This macro allows the modeler to create
a new tab within the TUI to accommodate a new plot that can be populated using the plot!()
macro. The last input parameters regulates whether the newly added plot should be stored locally
in csv format.

– plot!("Agents", "Series", x, y). This macro adds a new point of the series Series located
at coordinates (x,y) to the plot Agents.

• Log-related macros

– log!(Info, format!("STEP: {}", step)), bool). Thelog! macro allows the modeler to log
any information within the TUI using different kinds of messages based on the event type, namely
Info, Warning, Critical, and Error. An additional parameter enables saving the logs locally.

The Visualization component

2.27 An ABM framework that provides visual feedback of the simulation during its execution results in a significant
advantage for the modeler by allowing a better understanding of the system behavior (Kornhauser et al. 2009).
For this reason, krABMaga offers an efficient 2D visualization system based on the Bevy engine4, which can be
run locally or in a web browser thanks to WebAssembly5. Moreover, our framework provides a simple control
panel to manage the simulation via the egui6 library, which enables the user to pause, stop, and restart the sim-
ulation execution and manage its velocity (i.e., step rate). A few details about the Bevy engine and WebAssembly
follow.

Bevy Engine. Rust’s combination of low-level control, excellent performance, and modern build tools makes it
an exciting choice for game developers and leads to the creation of several game engines. Among these,

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



the Bevy engine arises for its ease of use and efficiency. Bevy is a simple, open-source, data-driven game
engine built in Rust that offers a complete 2D and 3D feature set. Bevy is simple to use for new devel-
opers but very flexible when used by experts providing a data-oriented modular architecture and high-
performance parallelization.

WebAssembly. WebAssembly (Wasm) is a binary instruction format for stack-based virtual machines designed
as a portable compilation target for any programming language that enables running applications in the
browser. Wasm grants excellent performance thanks to its conversion process that does not require pars-
ing or compiling steps to convert the source language into byte code. The result is a small executable that
can run on any browser with native performance. In krABMaga, we exploited wasm-pack7 to generate We-
bAssembly code and webpack8 to bundle the application for its release.

2.28 The krABMaga visualization component is entirely modular and acts as a separate system; thus, the user can
either visualize the simulation or not without modifying the underlying model. This component is designed as
a wrapper of the simulation model: each primary trait defined in the Engine component has its counterpart
in the Visualization sub-system (e.g., the trait Agent is paired with the trait AgentRender). The Visualization
component automatically manages the model initialization and the graphical update at each step.

2.29 A detailed description of the traits exposed follows.

• VisualizationState, trait used to manage the visualization elements’ startup and setup. The object
implementing this trait must define how to initialize the graphics and retrieve the agent from the simu-
lation state;

• AgentRender, trait defining how agents should be drawn. The object implementing this trait must define
the sprite representing the agent in the visualization, the agent scale, location, rotation, and how the
information coming from the simulation state needs to be managed to update the agent rendering;

• The Visualization component provides different traits defining how the field should be drawn based on
its type:

– BatchRender, trait designed for fields containing numerical values that have to be visualized as a
simple texture. The object implementing this trait must define how the visualization engine will con-
vert the 2D points into pixels. It is worth highlighting that the simplicity of the data structure allows
the whole structure to the GPU to be sent in a single batch, hence improving overall performance;

– RenderObjectGrid2D, trait designed for fields containing an object within each cell (not used for
agents). The object implementing this trait must define how the engine will draw the object, includ-
ing the sprite to use, its scale, rotation, and update method;

– NetworkRender, trait designed for the network field. The object implementing this trait defines
how the visualization engine must draw the edges.

High performance model exploration and optimization

2.30 Calibrating, exploring, and validating ABMs are crucial tasks to obtain reliable results. However, when the num-
ber of variables regulating the behavior of an ABM jumps from just a few tens to thousands or more, addressing
these tasks may become computationally infeasible due to the high dimensionality of the search space.

2.31 Perrone et al. (2012) identified a community need for tools that facilitate the model exploration and optimiza-
tion process. In response to this requirement, the authors developed the Simulation Automation Framework for
Experiments (SAFE), which offers support from model construction to output data analysis. SAFE was designed
to handle parallel execution on multi-core servers and distributed facilities.

2.32 In a similar vein, SESSL (Ewald & Uhrmacher 2014) is a Domain-Specific Language (DSL) tailored for experiments
and optimization processes, functioning as a distinct layer atop simulation systems. Similarly, the nlrx package
(Salecker et al. 2019) serves as an interface between R and the NetLogo framework, enabling self-contained
and reproducible analysis of NetLogo models within the R language. It even allows for the utilization of high-
performance computing clusters, enabling multiprocessing and the execution of large model simulations.

2.33 When it comes to high-performance computing techniques, OpenMOLE (Reuillon et al. 2013) is an example
of a workflow engine specifically designed for the distributed exploration of simulation models. It provides a

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



domain-specific language that abstracts users from the technical details required for distributing experiments
in a high-performance computing environment.

2.34 krABMaga effectively meets these needs by providing model exploration and optimization APIs through the
use of macros. These macros hide the complexity of the process and can be run in a parallel or distributed
environment. Moreover, the framework seamlessly integrates with cloud computing platforms, employing the
Function-as-a-Service (FaaS) model. In particular, the parallel mode leverages the Rayon library9, enabling data
parallelism, while the distributed mode harnesses the MPI (Message Passing Interface) protocol via the rsmpi
crate10, a Rust-based MPI binding. Additionally, krABMaga extends support to the Amazon AWS platform11,
facilitating the embedding of simulation execution within an independent function that can be deployed and
run in parallel on the cloud.

2.35 Here, we describe the krABMaga’s model exploration and optimization macros in their sequential version. Each
macro is also configurable to exploit different computing back-ends by specifying the optional enum parameter
ComputingMode, which can assume the values parallel, distributed, or cloud. By default, each macro is
run sequentially in the local environment.

2.36 For further details, we refer the reader to the official krABMaga documentation12.

Model exploration

2.37 This process, aka parameters sweeping, consists in analyzing the model sensitiveness by varying the input con-
figurations. Algorithm 1 reports the pseudo-code of the procedure. For each input configuration xi ∈ X (Line
1), the framework runs the simulation Φ over s computational steps, with a fixed random seed ϵj . This process
is repeated R times (Lines 2 − 3). The procedure returns the expected simulation values obtained from each
input configuration (Lines 4− 5).

Algorithm 1 explore!(X ,Φ(·, ·, s)), R
1: for each xi ∈ X do ▷ This loop can be run sequentially, or in a parallel/distributed environment.
2: for j ← 1 to R do ▷ Runs the simulation R times.
3: zj ← Φ(xi, ϵj , s) ▷ Result of a stochastic simulation run over s computational steps, with the configuration

x ∈ X and having fixed a random seed ϵ.
4: yi = E[z1, z2, . . . , zR] ▷ Evaluate the expected value of the simulation over R runs.
5: returnY ← {y1, y2, . . . , yR} ▷ Set of expected simulation results corresponding to the configuration setX .

2.38 krABMaga supports the user in generating random values for an input parameter by exposing the macro
gen_param!(type, min, max, n), which returns a vector ofnuniformly distributed input values in the range
min and max. Further, the framework provides the output data Y within a DataFrame structure, which permits
a straightforward analysis of the results and can be easily exported as a CSV data file.

2.39 krABMaga supports the user in generating random values for an input parameter by exposing the macro
gen_param!(type, min, max, n), which returns a vector ofnuniformly distributed input values in the range
min and max. We chose to implement uniform distributions as our first method, given their widespread use in
simulation scenarios. We plan to incorporate additional distributions for creating random parameters in future
updates. Furthermore, the framework provides the output dataY within a DataFrame structure, which permits
a straightforward analysis of the results and can easily be exported as a CSV data file.

Model optimization

2.40 This process, aka simulation via optimization, exploits a search-based optimization algorithm for finding the
best input configuration for the simulation. In krABMaga, we implemented three parameter optimization ap-
proaches, accessible via as many Rust macros.

Random search [random_search!(...)] explores the parameter space by using a random searching algo-
rithm, which consists of iteratively computing and evaluating a set of random input configurations until
the maximum number of iterations is reached or a desired simulation score/error is achieved.

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



Evolutionary search [evolutionary_search!(...)] optimizes the simulation parameters by adopting an
evolutionary searching strategy. Specifically, krABMaga provides a genetic algorithm-based approach (Stonedahl
& Wilensky 2011).

Bayesian search [bayesian_search!(...)] performs a Bayesian optimization-based searching strategy (Jones
et al. 1998) for parameter optimization similarly to the evolutionary strategy.

2.41 In krABMaga, each of the above macros implements a modified version of Algorithm 1. Specifically, each strat-
egy defines how the set of input configurations X is defined; then, a goodness or error value is evaluated for
each set of expected simulation results to iteratively inform the parameter search space strategy.

Programming with krABMaga: the Wolf, Sheep, and Grass Model

3.1 This Section describes the process of designing and implementing an ABM with krABMaga, using the Wolf,
Sheep, and Grass (WSG) model as a use case. This model is a typical example of the effective use of ABMs and
has been widely studied (Wilensky & Reisman 1998, 2006).

Defining the WSG model

3.2 WSG is a model which simulates the population dynamics of predators and prey that coexist in a shared ecosys-
tem. Wolves are the predators eating sheep, their prey, which, in turn, eat the grass. Both wolves and sheep
consume energy for each activity; so, food availability dictates the ability to restore energy and survive. Specif-
ically, sheep survival depends on the grass growth rate. If the number of sheep is too high, grass will not grow
in time to be eatable. Wolves’ survival relies on sheep’s reproduction rate. If the wolves’ number is too high,
they will eat too many sheep, precluding their reproduction.

3.3 Given its dynamics, the WSG model requires a set of parameters correctly calibrated to realize a stable system.
A system is called stable if the agents’ population fluctuates over time but never reaches extinction. Conversely,
the system is unstable if all the agents die at any given point.

WSG agents

3.4 The WSG model has three fundamental concepts: wolves, sheep, and grass. Wolves and sheep move and ac-
tively interact with the environment, while the grass is stationary and only grows over time. For this reason,
wolves and sheep can be represented as agents, while the grass as a numerical value (see Section 3.12). De-
spite wolves and sheep acting similarly, their interaction with the system is different; thus, these two entities
are modeled as separated agents. Regardless of their nature, both agents need to carry some essential infor-
mation: a unique identifier (id), their current location in the field, and their previous location. Additionally, the
WSG model needs specific properties for each agent, such as (i) its current energy, (ii) the energy gained from
food, (iii) its reproduction probability, and (iv) its life state: dead or alive. The definition of the Wolf and Sheep
agents is illustrated in Figure 4.

Figure 4: Wolf (left) and sheep (right) agent properties.

3.5 In krABMaga, each entity representing an agent must implement the trait Agent and define its behavior in the
function step(). Wolves and sheep perform three actions: moving, eating, and reproducing.

3.6 Moving. Wolves and sheep randomly move around the landscape. With a given probabilityα (momentum_probability),
the agent moves in the same direction as the previous step; with probability 1 − α, the agent moves in a ran-
dom position. Figure 5 depicts the code regulating how sheep move, but the same applies for wolves on the
wolf_grid (see Section 3.12).

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



Figure 5: Agents’ moving behavior.

3.7 Survival and Reproduction. After moving, wolves and sheep simulate energy loss by subtracting a fixed value
from their energy. If their energy drops below zero, the agent sets its LifeState to Dead. If the agent survives,
it tries to reproduce. If it succeeds, it halves its energy and creates a new agent. It is worth noting that agents
cannot add new entities to the scheduler within their function step() as only the simulation State object can
interact with the scheduler. The new_sheep and new_wolves arrays of the simulation State serve this purpose.
Figure 6 depicts the code for the sheep agents, but the same applies for wolves using Wolf::new().

Figure 6: Agents’ reproducing behavior.

3.8 Eating. The system’s stability depends on the possibility of wolves and sheep eating. After moving to a new lo-
cation, agents will search for food and eat if certain conditions are met. The implementation of eating behavior
differs between wolves and sheep due to the different natures of their food, as wolves eat other agents (sheep)
while sheep eat a simpler entity (grass).

3.9 Eating grass. A sheep can eat grass on its location if it is fully grown and the grass has not been eaten by another
sheep in that step. This last requirement is verified using the functionget_value_unbuffered() that accesses
the write state of the grass field. If the value obtained is not null, another sheep has already eaten the grass since
it has been written in the write state structure. If the sheep successfully eats the grass, it sets the grass value on
the field to 0 and gains some energy, as depicted in Figure 7.

Figure 7: Eating behavior of sheep agents.

3.10 It is crucial to stress that using the functionget_value_unbuffered()allows access to up-to-date information
since the updates of the data structures only happen at the end of the simulation step. This approach guaran-
tees that if a sheep eats some grass in a location during a given step and, later on, but in the same step, another
sheep moves in the same location, it will correctly see the grass level equal to zero.

3.11 Eating sheep. A wolf can only eat a sheep on its location if another wolf has not already eaten the prey in that
step. This requirement is checked using a dedicated data structure storing eaten sheep (see Figure 8). Wolf
agents can modify the simulation field since their function step() has access to the state of the simulation.

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



However, no agent can manipulate the scheduler due to the krABMaga safety policy. To overcome this limita-
tion, we followed the same strategy used when introducing new agents: we added the array killed_sheep in
the simulation State object to remove the eaten sheep from the scheduler.

Figure 8: Eating behavior of wolf agents.

3.12 When a wolf eats a sheep, it sets the LifeState of its prey to Dead, removes the agent from the field, inserts it in
the killed_sheep array, and gains some energy. Figure 8 shows the logic of this process.

WSG state

3.13 In krABMaga, the simulation State object, which implements the trait State, initializes the model, defines and
updates the data structures regulating the model’s logic, schedules the agents, and controls the pace of the
simulation. In this example, the WsgState object defines the (i) simulation fields, (ii) their size, (iii) the current
simulation step, (iv) a unique id counter to assign different identifiers to new agents, (v) the number of agents,
i.e., sheep and wolves, and (vi) three data structures to support the addition to and removal from the scheduler
of agents (see Section 3.3). More specifically, the WsgState object initializes three different fields to manage
the three entities of the model: the grass, wolf, and sheep fields. Specifically, the grass field is instantiated as
a NumberGrid2D field, where each cell contains a numerical value representing the grass growth state, while
the wolf and sheep fields are instantiated as two DenseObjectGrid2D structures. Using two different fields to
handle the behavior of wolves and sheep improves the overall performance of the simulation when looking for
a specific kind of agent; for instance, if a wolf tries to eat a sheep, the only structure queried will be the sheep
field. Lines 1− 12 of Figure 9 list the above properties.

3.14 Initialization phase. The initialization of the simulation happens in the function init() (Lines 15− 20). This
function populates the three simulation fields by adding grass values, sheep, and wolves. Specifically, the
method generate_grass() iterates through the grass_field cells and inserts a value representing the grass
available in each cell (Lines51−59). The methodsgenerate_sheep() (Lines60−69) andgenerate_wolves()
(Lines 70 − 79) work similarly: they create the respective agent, place it in a given location the corresponding
fields, and add it to the scheduler’s queue via the function schedule_repeating(), which notifies the sched-
uler that the agents need to be scheduled in all following simulation steps. Here, we emphasize the use of the
Box structure, which wraps the newly created agent (either a wolf or a sheep) and enables krABMaga to handle
multi-agent simulations.

3.15 Updating phase. The WsgStateobject handles the update of all fields during each simulation step through the
definition of the mandatory method update(). In particular, this method also implements the grass-growing
process (Lines22−29), which increases the grass values of all cells in thegrass_fieldvia the functionapply_to
_all_values. The parameter GridOption::READWRITE ensures that the existing information is not overwrit-
ten. In more detail, this option allows us to check the WriteState structure before increasing the grass values
since a sheep agent could have already written that field’s cell (i.e., eating all grass). In Lines 30− 33, all simu-
lation fields are updated.

3.16 In this use case, the State object also implements the method after_step that defines the logic regulating
the eating and reproducing behavior of the agents (Lines 35 − 50). After each step, the WsgState object it-
erates through the new_sheep and new_wolves structures to add agents in the scheduler using the method

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



schedule_repeating()while it iterates over the arraykilled_sheep to remove dead agents from the schedul-
ing process via the method dequeue().

Figure 9: WSG simulation state.

Running and analyzing the WSG model

3.17 At this point, we have defined all elements of the WSG model. Now, let’s see how to run it and analyze its
execution with the TUI.

3.18 Running the simulation. The WSG model includes several parameters influencing the system’s evolution and
stability, such as the number of sheep and wolves, the cost of each agent’s step, the energy gained from food,
and the grass growth rate. Figure 10 shows the main.rs file, which defines these parameters (Lines 1 − 7).
Here, the function main() instantiates the simulation State with the required parameters and runs the macro
simulate! to launch the simulation.

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



Figure 10: main.rs file.

3.19 Analyzing the simulation. The krABMaga GUI terminal helps us investigate the stability of the ecosystem
predator/prey by creating dynamic plots of the simulation status. These plots are managed within the State
object and, hence, have access to all simulation data (see Figure 11). The structure of each plot is defined within
the function init() via the macro add_plot!(), which specifies the plot’s title and labels (Lines 3−14). Then,
the plot is populated using the macro plot!() called within the function after_step(), which adds a data
point after each simulation step (Lines 20− 49). The code listed in Figure 11 results in two plots: the first shows
the trend of the wolf and sheep population (see Figure 12), while the second tracks newly born wolf and sheep
agents, as well as the number of sheep killed by wolves (see Figure 13).

Figure 11: Setting the krABMaga TUI interface.

Visualizing the WSG model

3.20 After having the WSG simulation up and running, we can use the Visualization component of krABMaga to visu-
ally monitor the behavior of the developed model. The trait VisualizationState manages the entire visual-
ization model similar to the trait State in the sense that we need to initialize (function on_init()) and update
(function update()) the visualization of the grass field and the agents. The function get_agent_render()
fetches the data structures defined in the model (grass_field, wolves_grid, sheep_grid).

3.21 In this specific use case, wolf and sheep agents move in the space, while the grass is a static environmental ele-
ment. To render the agents’ movement, we let the Wolf and Sheep objects implement the trait AgentRender.
Then, we defined how the engine must draw the agent at each step, specifying its position, orientation, and
scale in the function update(). The only difference between sheep and wolf agents resides in their repre-
senting sprites, specified in the sprite() function. Eaten sheep disappear from the field. In the method

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



before_render(), run before each simulation step, we inform the visualization to render the newly born
agents. To graphically represent the growing grass, we implemented the trait BatchRender in the field
DenseNumberGrid2D. In more detail, we used the method get_pixel() to specify the color of each cell based
on the amount of grass contained (the greener the cell, the higher the grass available).

3.22 To actually use the visualization component, we need to define a Visualization object within the function
main(), which allows us to set up the graphical properties of the visualization and run it.

3.23 A snapshot of the visualization of the WSG model is depicted in Figure14. The complete code is available on the
krABMaga repository13

Figure 12: Plot describing the trend of the wolf and sheep populations.

Figure 13: Plot depicting the trend of newly born wolves and sheep, as well as killed sheep.

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



Figure 14: The GUI interface for the Wolf, Sheep & Grass simulation.

Related Work

4.1 The interest of the research community in ABMs has considerably increased recently thanks to the numerous
and various application fields to which the agent paradigm brings considerable advantages. In light of this surge
of interest, several tools and frameworks have emerged to facilitate the development, execution, and analysis
of ABMs, addressing the needs of different communities of experts. For instance, some platforms, such as MA-
SON and Repast, are close to the computer science world, providing general-purpose libraries and frameworks
usable with common programming languages like Java. Other tools, like Netlogo, furnish simplified language
specifically designed to make ABM development accessible to non-experts developers instead. In this Section,
we outline some of the most important and impactful frameworks for developing and running ABMs to offer the
reader an overview of existing literature and, hence contextualize the significance of krABMaga. Here, we focus
on general-purpose ABM software used for real applications, with a stable and maintained software version,
consistent user base, and associated research works and projects. A more comprehensive survey about ABM
tools and software is described in Abar et al. (2017).

4.2 Here, we begin our overview with MASON (Luke et al. 2005) since its architecture profoundly inspired krABMaga
development. MASON is an open-source discrete-event simulation toolkit in Java designed to be a general-
purpose tool usable for the design, execution, and visualization of ABMs. MASON provides the developer with
functionalities and APIs supporting the most common needs of a modeler, including the definition of common
agents’ behaviors, environment creation with different fields, and scheduling management. One of MASON’s
main advantages is its snapshot system which enables the user to stop and save a simulation to later resuming
it on another machine, thanks to the compatibility of the Java Virtual Machine. Moreover, additional features
are available in MASON thanks to the existing extension, including the use of GIS data with GeoMASON (Sulli-
van et al. 2010), model exploration with ECJ (White 2012), as well as the possibility of running a simulation on
distributed and cloud systems with DistributedMASON (Cordasco et al. 2018).

4.3 Agents.jl (Datseris et al. 2022) is a recent framework for agent-based simulations that provides utilities and ad-
hoc structures for implementing, running, and visualizing models exploiting the Julia programming language.
Agents.jl focuses on performance and ease of use, allowing users to develop models with only a few lines of
code. The framework is available as a Julia library and is easily usable with the plethora of analytical tools of
the Julia ecosystem. Agents.jl offers the most commonly used fields, like grids, continuous space, and graphs,
and supports the use of OpenStreetMap data. This library also provides model exploration functionalities and
parallel and distributed computation support.

4.4 From research that exploit the accessibility of a programming language to provide a usable ABM framework,
Mesa (Kazil et al. 2020) is one of the most used and actively supported. Mesa is an open-source modular frame-
work for building, analyzing, and visualizing ABMs built upon Python to provide usability and accessibility. The
architecture of Mesa is composed of three major elements: model, analysis, and visualization. The model com-
ponent exposes all the methods to define the agent behavior and the simulation environment. The analysis
functionalities include recording, storing, and exporting data from the model. Finally, the visualization com-
ponent provides a front-end browser-based visualization to design, interact with, and control the model. The

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



main advantage of Mesa resides in its extensibility; the community is, therefore, encouraged to create several
extensions to handle, for instance, multi-processor systems or GIS data.

4.5 The field of ABM simulations is constantly expanding with new software and tools. However, some works rep-
resent the pillars of ABM development. Besides MASON, NetLogo (Wilensky 1999), Repast (North et al. 2013),
Flame (Holcombe et al. 2006), and AnyLogic (Borshchev et al. 2002) are the most relevant and used tools for
simulation design.

4.6 NetLogo is a free agent-based modeling environment implemented in Java/Scala that has become the stan-
dard platform for developing ABMs. NetLogo is a robust, powerful, simple-to-learn, and easy-to-use Domain-
Specific Language offering a GUI to create and edit components to realize any simulation. The importance and
popularity of NetLogo has risen thanks to its community which is constantly providing extensions to enrich
NetLogo with new functionalities. Examples of such extensions include GIS data, 3D visualization, and integra-
tion with other languages, like Python with PyNetLogo (Jaxa-Rozen & Kwakkel 2018) or Pylogo (Abbott. & Lim.
2021), or R with RNetLogo (Thiele 2014). Other relevant extensions worth to be mentioned are HubNet (Jiang &
Zhao 2009) and BehaviorSpace (Railsback et al. 2017). HubNet allows the creation of a participatory simulation
over a network where users can control and interact with a simulation running on a remote machine. Behav-
iorSpace includes parameter sweeping capabilities that enable data collection from multiple executions and
the exploitation of distributed and parallel techniques.

4.7 Repast is an open-source family of widely used agent-based modeling and simulation platforms, implemented
in several programming languages, which include many built-in features for ABM development. Repast Sim-
phony (North et al. 2013) is a Java-based modeling system based on a modular plug-in architecture that allows
users to replace specific components. This toolkit provides automated methods to perform all the common
tasks required in a simulation and supports model visualization in 2D and 3D, GIS Data, a snapshot system, and
the capability to run multi-threaded simulations. Further, the Repast Simphony plug-in enables adding a wide
range of external tools for any needs, like statistical analysis, data mining, or integration with other languages.

4.8 RepastHPC (Collier & North 2013) is a parallel and distributed C++ implementation of Repast Simphony specific
for ABM simulation targeting large-scale distributed computing platforms based on MPI. The newest member
of the Repast suite is Repast4Py (Collier et al. 2020), a Python-based framework based on RepastHPC to develop
distributed ABMs.

4.9 FLAME is a generic agent-based modeling system that provides a formal framework for creating models com-
patible with any computing platform. The framework is inherently parallel and can automatically optimize per-
formance without user effort. Users can describe a model using the XXML language based on state machines
that FLAME will then compile into a C-based application. FLAMEGPU (Richmond & Chimeh 2017) extends FLAME
to easily use GPU capabilities without deep knowledge of the CUDA programming language or optimization
strategies. Specifically, FLAMEGPU maps the formal XXML specification used in FLAME to the CUDA program-
ming language to produce a parallel and efficient application.

4.10 We conclude this overview with AnyLogic, proprietary software for developing ABMs through a simple user
interface, hence, particularly suitable for non-expert developers. The AnyLogic platform includes APIs for mod-
eling agents’ behavior, supporting several environments (e.g., GIS space), and different execution paradigms
(e.g., distributed and parallel computation). AnyLogic offers visualization capabilities and a GUI to control any
aspect of the simulation during its execution visually. Moreover, a snapshot system allows the user to stop and
restore the simulation later. AnyLogic Cloud is an extension of the main platform that permits running ABMs on
cloud computing resources.

4.11 Table 1 summarizes the ABM frameworks and tools described, emphasizing whether they provide support for
the most relevant features. The last two rows of the table show the declared efficiency and ease of use for each
tool as discussed in the survey by Antelmi et al. (2023). Specifically, the term ease of use refers to the effort
required for installation and setup procedures, the presence of examples, and the clarity of the documentation
provided. The ease of use of a tool is closely tied to the programming language used (higher-level languages
are generally easier to approach), the number of available functionalities (the higher, the better), and the avail-
ability of a dedicated GUI or a VSL (which can further reduce the need for coding). The term efficiency refers to
the capability of the ABM tool to handle large and complex models granting low execution time. The classifi-
cation of ABM tools according to their efficiency is determined by how the authors position themselves within
the state-of-the-art regarding the potential to handle large-scale models and the efficiency in executing them.

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



ABM Tool /
Features

MASON
(Luke
et al.
2005)

Agents.jl
(Datseris
et al.
2022)

Mesa
(Kazil
et al.
2020)

NetLogo
(Wilensky
1999)

Repast
(North
et al.
2013)

Flame
(Hol-
combe
et al.
2006)

AnyLogic
(Bor-
shchev
et al.
2002)

krABMaga

Programming
Language

Java Julia Python Java and
Scala,
Python
and R with
exten-
sions

C++,
Java, and
Python,
based on
version

C and
XXML

Java Rust

Supported
environ-
ment fields

Grid, Continuous space, Network

Visualization 2D/3D 2D/3D 2D/3D
with ex-
tension

2D/3D 2D/3D 3D 2D/3D 2D (3D
Experi-
mental)

GUI Yes, lim-
ited

No Yes, lim-
ited

Yes Yes No Yes Yes, lim-
ited

GIS Data Yes, with
extension

No Yes, with
extension

Yes Yes No Yes No (Ongo-
ing)

Model Ex-
ploration

Yes, with
extension

Yes Yes, with
extension

Yes, with
extension

Yes, with
Repast
Simphony

No Yes Yes, par-
allel, dis-
tributed
and cloud
comput-
ing are
also sup-
ported

Checkpoint
and Snap-
shot

Yes No No Yes Yes No Yes No (Future
Work)

Parallel In-
Model Exe-
cution

No No, del-
egated
to the
modeler

Yes, with
extension

No Yes, with
Repast
HPC

Yes Yes Yes, Exper-
imental

Distributed
In-Model
Execution

Yes, with
Dis-
tributed
MASON

No, del-
egated
to the
modeler

No Yes, with
extension

Yes Yes Yes Yes, Exper-
imental

Declared
efficiency

High High Low Very low Medium Medium High High

Declared
ease of use

Medium Medium High Very high Medium Medium Very high Medium

Table 1: Comparison of ABM framework/software features.

4.12 Current state-of-the-art regarding ABM software includes tools more focused on ease of use, like NetLogo and
Mesa, or frameworks more centered on performance and flexibility, like MASON and Repast. With krABMaga, we
tried to cover the current open challenges in the ABM field, aiming to provide a valuable tool that can offer good
performance and reliable executions while still granting an accessible development experience. To this end,
we provide extensive documentation, examples, and functionalities to abstract the ABM development process

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



from the engine-related mechanisms and the specific nuances of the Rust programming language. While a
basic familiarity with Rust is beneficial, it is noteworthy to highlight that it is not a prerequisite for using our
framework, even though some coding skills are needed. Many implementation details remain transparent to
the user, allowing individuals without extensive Rust expertise to utilize our tool effectively.

Performance Evaluation

5.1 This Section presents a two-fold performance evaluation of krABMaga: first, we investigated the library’s effi-
ciency in running different ABM simulations against the most adopted ABM tools, then we evaluated the scala-
bility potential of the model optimization module.

Model simulation experiment

5.2 In this experiment, we are interested in showing the performance of krABMaga in running ABM models and
comparing it with the most representative ABM tools, namely Agents.jl, MASON, Mesa, NetLogo and Repast.

5.3 Models. As a benchmark, we employed the following ABMs, each with its peculiarities regarding data struc-
tures, agents’ behaviors, and environment types.

• Flockers. Developed by Craig Reynolds, this is one of the most famous ABM simulating a flock’s flying
behavior. In this model, the agents move within a continuous toroidal space according to a simple set of
rules.

• Schelling. This is a simple segregation model based on a 2D grid in which agents decide whether to move
into a new cell based on the status of their neighbors.

• Wolf, Sheep and Grass. This multi-agent model simulates the population dynamics of predators and prey
coexisting in a shared environment.

• ForestFire. This stochastic spreading model is realized as a cellular automaton to reproduce the fire dif-
fusion in a forest.

5.4 To perform a fair comparison, we benchmarked only official released model for each platforms; still, some dif-
ferences could exist due to the variance in the frameworks, mainly because of the different programming lan-
guages involved. The model and benchmark implementations are available on the krABMaga repository14

5.5 Benchmark configurations.All experiments have been performed on the same virtual machine running over a
VMware Esxi hypervisor and equipped with: Ubuntu 21.10 x86_64 machine, 8 VCPU, 16GB RAM, and 256 storage
(on SDD). The performance of each framework has been tested with different models configurations, starting
with a field of size 100× 100, 1000 agents, and 200 steps, while keeping an agent density of ∼= 10%, calculated
as width∗height

number of agents . We obtained the other configurations by doubling the number of agents and changing the field
dimension to preserve the agent density:

1. Agents: 1000 - Field size: 100× 100

2. Agents: 2000 - Field size: 141× 141

3. Agents: 4000 - Field size: 200× 200

4. Agents: 8000 - Field size: 282× 282

5. Agents: 16000 - Field size: 400× 400

6. Agents: 32000 - Field size: 565× 565

7. Agents: 64000 - Field size: 800× 800

8. Agents: 128000 - Field size: 1131× 1131

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



5.6 Each experiment has been run 10 times.
5.7 Results. Figure 15 shows the results of our experiments, focusing on each framework’s average running time

(in seconds) when varying the model dimension while keeping the agent density fixed. Such values only keep
into account the actual simulation time and exclude the initialization time required by each engine. Overall,
krABMaga always performs better than the other platforms, requiring the lowest computational time regard-
less of the computational load. In only a single scenario, Agents.jl reached the same performance as our plat-
form (see Figure 16d) but consumed up to the 90% of the system’s available memory. Figure 16 refers to the
same benchmark, reporting the average number of simulation steps per second. In general, the heavy mem-
ory usage of some platforms limited the maximum computational workload tested, as these platforms were
unable to simulate larger systems. For that reason, we were unable to assess configurations with a higher com-
putational complexity. It is important to stress that these results come from adequately using different fields,
data structures, and methods in each framework since every model exposes different peculiarities that must
be appropriately addressed when implementing the corresponding ABM.

Figure 15: Running times of each framework on the four ABMs, varying the computational load by increasing
the number of agents while preserving the agent density.

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



Figure 16: Simulation steps per second required by each framework on the four ABMs, varying the computa-
tional load by increasing the number of agents while preserving the agent density.

Model calibration experiment

5.8 In this second experiment, we analyzed the scalability of krABMaga when calibrating an ABM via the model
optimization functionality offered by our simulation engine. The full code of this experiment is available on the
official krABMaga example repository.15

5.9 Model. As a benchmark model, we built an ABM for simulating an epidemic spreading in a population, where
agents can get infected via their neighbors in a similar fashion of the work of Crooks & Hailegiorgis (2014).
Specifically, we implemented the Susceptible (S), Infectious (I), Recovered (R) compartmental model, which
specifies how agents move from the state S to I (i.e., become infected with a probability β proportional to the
number of infected neighbors), and from I to R (i.e., recover from the infection with a probability γ). The agent
contact network follows the Barabási-Albert preferential attachment rule. Some details about the simulation
follow.

5.10 The simulation State, in addition to the network structure, includes the definition of the parameters governing
the dynamics of virus spread: (i) the probability that a susceptible node transitions to an infected state, and (ii)
the probability that an infected node transitions to a resistant state. The simulation begins with the network
containing only one infected node randomly placed within it and continues until either the maximum number
of steps is reached, or there are no more infected nodes. Each step corresponds to a day, during which nodes
may alter their status. Specifically, susceptible nodes examine the status of their neighbors, and if any neighbor
is infected, there’s a chance that the susceptible node becomes infected as well. Infected nodes, on the other
hand, make an attempt to recover during each step, changing their status to resistant. In contrast, resistant
nodes remain inactive since they are immune to infection and cannot infect others.

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



5.11 This sample scenario particularly fits the ABM simulations that krABMaga intends to support. Fitting an epi-
demic model with actual data and then performing experiments on top of the designed model usually requires
(i) exploring the parameter space to calibrate the model’s input parameters, (ii) verifying the model’s correct-
ness, (iii) validating the model’s output, (iv) analyze the sensitivity of the model, and finally (v) run the intended
experiments. Since each phase requires running the simulation multiple times, guaranteeing that each run is
efficient and reliable is critical. For simplicity, we will only focus on the first listed phase in this use case

5.12 Calibration data. As ground-truth data, we used the Italy’s average number of daily new infections during
the SARS-CoV-2 virus pandemic (moving average over seven days). In particular, we focused on a period of 45
days from December 2021 to January 2022, when the Omicron variant caused a new outbreak. This dataset
is available on the official website of the Istituto Superiore di Sanità, the leading public health body in Italy16.
Models of the like are widely described in the literature (Hoertel et al. 2020; Clara & Liu 2020).

5.13 Simulation setting. We simulated10, 000agents for51days (three days more than the calibration time window
to compute the average of new simulated infections). We normalized the infection data by the size of the Italian
population (divided by 60M).

5.14 Optimization strategy. To find the input parameter configuration generating outputs that best fit real-world
data, we used the evolutionary search approach offered by krABMaga. In more detail, we considered an initial
population of 128 randomly generated individuals, 20 simulation repetitions for evaluating a single configura-
tion (e.g., individual), and 2000 optimization loops (e.g., generations). Specifically, each individual comprised
two real value genes, representing the infection and recovery probabilities [β, γ]. At each generation, the evo-
lutionary strategy computed the new population by selecting the best 20% of individuals and generating the
remaining80% using a crossover operation (combining two random individuals from the previous generations).
A mutation operator was then applied to change one of the two genes of the individuals randomly. The simu-
lation output represented the average error between simulated and real data.

5.15 The overall calibration process resulted in about 5 million simulation executions. If all these simulations were
carried out sequentially, it would have taken approximately 172 days (this estimate derives from summing the
running time of each simulation execution). However, we completed the task in just 45 hours by leveraging
distributed computing.

5.16 Results. Figure 17 shows the infection curves derived from simulated data based on the best configuration
computed by the optimization process and the real infection curve. Table 2 focuses on some statistics compar-
ing a sequential execution of the optimization process against its parallel/distributed version. We performed
this comparison on a virtual cluster machine of 16nodes running over Amazon AWS EC2, where each node used
the c4.2xlarge instance type and was equipped with an Intel Xeon Processor with 8 virtual CPUs, 15 GB of mem-
ory, and a high-speed network. We analyzed the system’s performance by running the optimization process for
one hour and by varying the number of VCPUs and incrementing the number of nodes. We collected the number
of computed generations per hour (Gs/h), the time (seconds) for computing a generation (s/G), and the speedup
against the sequential execution for each setting. As highlighted in the table, the best performance is achieved
in the last distributed setting using 16 nodes and 128 VCPU, which is 96 times faster than the sequential setting.
It is worth noting that we only report the simulation speedup to stress krABMaga’s capabilities in scaling up in
such scenarios. Given the results from the previous experiment (showing that krABMaga achieves the lowest
simulation time when varying the workload), we did not replicate this scenario using other simulation engines.

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



Figure 17: SIR calibration results.

Backend #Instances VCPUs Gs/h s/G Speedup
Sequential 1 1 0 7459 1
Parallel 1 8 3.1 1149 6.5
Distributed 2 16 6.2 579 12.9
Distributed 4 32 12.1 297 25.1
Distributed 8 64 23.2 155 48
Distributed 16 128 44.3 81 92

Table 2: Evaluation of krABMaga’s scalability on an Amazon EC2 virtual cluster machine.

Conclusion and Future Work

6.1 ABMs are a powerful approach to unraveling the complexity governing real-world systems. Over the last decade,
the need for more elaborate computing-demanding models gave rise to many frameworks and tools to run ABM
simulations. The mostly adopted ABM frameworks either focus on the easiness of use by non-expert users,
computational efficiency, which requires technical skills, or a trade-off between these two elements. However,
scalability and efficiency become critical requirements even when small-scale ABMs need huge computational
support. In such cases, having a simulation engine able to strongly improve the running times of a single sim-
ulation is the only viable option to enhance the overall ABM model development’s performance without (or
only partially) introducing new computational resources. At the same time, guaranteeing the absence of any
memory flaws that could invalidate the whole experiment is another fundamental condition.

6.2 To address the requirements of simultaneously offering efficiency, reliability, and safeness, we presented krAB-
Maga, a modern open-source library for agent-based modeling and simulation written in Safe Rust. Our library
offers native support for reliable and efficient long-running ABM simulations. In this paper, we described the ar-
chitecture of our simulation engine, discussing its main characteristics and functionalities, such as the support
for high-performance model exploration and optimization for ABM. The performance evaluation of krABMaga
against the most used open-source ABM software demonstrated how our framework could provide optimal per-
formance regardless of the computational load. Our experiments also proved the scalability of krABMaga, thus,
its potential in handling large-scale models.

6.3 We plan to continue the development of krABMaga along two main directions to build a more comprehensive
tool over time. The first direction aims to improve the system’s modeling capabilities by introducing the support
for (i) 3D simulations (which consists of adapting the current solution of 2D fields in the 3D space and extending
the visualization component to support these fields); (ii) in-model parallelization, and (iii) the integration of GIS
data (whose visualization with the Bevy engine requires significant effort since it does not offer native support).
The second direction focuses on enhancing krABMaga’s support to all ABM model developing phases, including
calibration, verification, validation, sensitivity analysis, and experimentation, to fully assist the developer by
making these phases as transparent as possible.

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



Notes

1https://www.rust-lang.org/learn
2https://github.com/krABMaga/krABMaga/tree/main/src/engine/fields
3https://github.com/krABMaga/krABMaga/blob/main/src/engine/schedule.rs
4Bevy engine: https://bevyengine.org/
5WebAssembly: https://webassembly.org/
6egui - https://www.egui.rs/
7wasm-pack: https://rustwasm.github.io/
8webpack: https://webpack.js.org/
9https://github.com/rayon-rs/rayon

10https://github.com/rsmpi/rsmpi
11https://aws.amazon.com/lambda
12https://docs.rs/krabmaga/latest/krabmaga/#macros
13WSG model repository: https://github.com/krABMaga/examples/tree/main/wolfsheepgrass
14https://github.com/krABMaga/ABM-Comparisons
15https://github.com/krABMaga/examples/tree/main/sir_ga_exploration
16https://covid19.infn.it/iss/

References

Abar, S., Theodoropoulos, G. K., Lemarinier, P. & O’Hare, G. M. P. (2017). Agent based modelling and simulation
tools: A review of the state-of-art software. Computer Science Review, 24, 13–33

Abbott., R. & Lim., J. (2021). PyLogo: A Python reimplementation of (much of) NetLogo. Proceedings of the
11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications -
SIMULTECH

Alves Furtado, B. (2022). PolicySpace2: Modeling markets and endogenous public policies. Journal of Artificial
Societies and Social Simulation, 25(1), 8

An, L., Grimm, V., Sullivan, A., Turner II, B. L., Malleson, N., Heppenstall, A., Vincenot, C., Robinson, D., Ye, X., Liu,
J., Lindkvist, E. & Tang, W. (2021). Challenges, tasks, and opportunities in modeling agent-based complex
systems. Ecological Modelling, 457, 109685

Andelfinger, P. & Cai, W. (2022). Advanced tutorial: Parallel and distributed methods for scalable discrete simu-
lation. 2022 Winter Simulation Conference (WSC)

Anderson, P. W. (1972). More is different. Science, 177(4047), 393–396

Antelmi, A., Cordasco, G., D’Ambrosio, G., De Vinco, D. & Spagnuolo, C. (2023). Experimenting with agent-based
model simulation tools. Applied Sciences, 13(1), 13

Borshchev, A., Karpov, Y. & Kharitonov, V. (2002). Distributed simulation of hybrid systems with AnyLogic and
HLA. Future Generation Computer Systems, 18(6), 829–839

Bychkov, A. & Nikolskiy, V. (2021). Rust language for supercomputing applications. Communications in Computer
and Information Science, 1510, 391–403

Carrella, E. (2021). No free lunch when estimating simulation parameters. Journal of Artificial Societies and
Social Simulation, 24(2), 7

Clara, L. & Liu, F. (2020). Effect of control measure on the development of new COVID-19 cases through SIR
model simulation. medRxiv. Available at: https://www.medrxiv.org/content/10.1101/2020.10.27.2
0220590v1.full

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300

https://www.rust-lang.org/learn
https://github.com/krABMaga/krABMaga/tree/main/src/engine/fields
https://github.com/krABMaga/krABMaga/blob/main/src/engine/schedule.rs
https://bevyengine.org/
https://webassembly.org/
https://www.egui.rs/
https://rustwasm.github.io/
https://webpack.js.org/
https://github.com/rayon-rs/rayon
https://github.com/rsmpi/rsmpi
https://aws.amazon.com/lambda
https://docs.rs/krabmaga/latest/krabmaga/#macros
https://github.com/krABMaga/examples/tree/main/wolfsheepgrass
https://github.com/krABMaga/ABM-Comparisons
https://github.com/krABMaga/examples/tree/main/sir_ga_exploration
https://covid19.infn.it/iss/
https://www.medrxiv.org/content/10.1101/2020.10.27.20220590v1.full
https://www.medrxiv.org/content/10.1101/2020.10.27.20220590v1.full


Collier, N. & North, M. (2013). Parallel agent-based simulation with repast for high performance computing.
Simulation, 89(10), 1215–1235

Collier, N. T., Ozik, J. & Tatara, E. R. (2020). Experiences in developing a distributed agent-based modeling
toolkit with Python. 2020 IEEE/ACM 9th Workshop on Python for High-Performance and Scientific Computing
(PyHPC)

Cordasco, G., Scarano, V. & Spagnuolo, C. (2018). Distributed MASON: A scalable distributed multi-agent simu-
lation environment. Simulation Modelling Practice and Theory, 89, 15–34

Crooks, A. T. & Hailegiorgis, A. B. (2014). An agent-based modeling approach applied to the spread of cholera.
Environmental Modelling & Software, 62, 164–177

Datseris, G., Vahdati, A. R. & DuBois, T. C. (2022). Agents.jl: A performant and feature-full agent-based modeling
software of minimal code complexity. sIMULATION, 0, 003754972110688

Estrada, E. (2023). What is a complex system, after all? Foundations of Science, 2023

Ewald, R. & Uhrmacher, A. M. (2014). SESSL: A domain-specific language for simulation experiments. ACM
Transactions on Modeling and Computer Simulation, 24(2), 1–25

Hoertel, N., Blachier, M., Blanco, C., Olfson, M., Massetti, M., Rico, M. S., Limosin, F. & Leleu, H. (2020). A stochastic
agent-based model of the SARS-CoV-2 epidemic in France. Nature Medicine, 26(9), 1417–1421

Holcombe, M., Coakley, S. & Smallwood, R. (2006). A general framework for agent-based modelling of complex
systems. Proceedings of the European Conference on Complex Systems

Jaxa-Rozen, M. & Kwakkel, J. H. (2018). PyNetLogo: Linking NetLogo with Python. Journal of Artificial Societies
and Social Simulation, 21(2), 4

Jiang, L. & Zhao, C. (2009). The Netlogo-based dynamic model for the teaching. 2009 Ninth International Con-
ference on Hybrid Intelligent Systems

Jones, D. R., Schonlau, M. & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions.
Journal of Global Optimization, 13(4), 455 – 492. doi:10.1023/A:1008306431147

Jung, R., Jourdan, J.-H., Krebbers, R. & Dreyer, D. (2018). RustBelt: Securing the foundations of the rust pro-
gramming language. Proceedings of the ACM on Programming Languages, 2

Kazil, J., Masad, D. & Crooks, A. (2020). Utilizing Python for agent-based modeling: The Mesa framework. In
R. Thomson, H. Bisgin, C. Dancy, A. Hyder & M. Hussain (Eds.), Social, Cultural, and Behavioral Modeling, (pp.
308–317). Cham: Springer International Publishing

Kornhauser, D., Wilensky, U. & Rand, W. (2009). Design guidelines for agent based model visualization. Journal
of Artificial Societies and Social Simulation, 12(2), 1

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K. & Balan, G. (2005). MASON: A multiagent simulation environ-
ment. Simulation, 81(7), 517–527

Matsakis, N. & Klock, J., F.S. (2014). The Rust language. HILT 2014 - Proceedings of the ACM Conference on High
Integrity Language Technology

North, M. J., Collier, N. T., Ozik, J., Tatara, E. R., Macal, C. M., Bragen, M. & Sydelko, P. (2013). Complex adaptive
systems modeling with Repast Simphony. Complex Adaptive Systems Modeling, 1(3)

Pearce, D. (2021). A lightweight formalism for reference lifetimes and borrowing in rust. ACM Transactions on
Programming Languages and Systems, 43(1), 3

Perrone, L. F., Main, C. S. & Ward, B. C. (2012). SAFE: Simulation Automation Framework for Experiments. Pro-
ceedings of the 2012 Winter Simulation Conference (WSC)

Railsback, S. F., Ayllón, D., Berger, U., Grimm, V., Lytinen, S., Sheppard, C. & Thiele, J. (2017). Improving exe-
cution speed of models implemented in NetLogo. Journal of Artificial Societies and Social Simulation, 20(1),
3

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300



Retzlaff, C. O., Burbach, L., Kojan, L., Halbach, P., Nakayama, J., Ziefle, M. & Calero Valdez, A. (2022). Fear, be-
haviour, and the COVID-19 pandemic: A city-scale agent-based model using socio-demographic and spatial
map data. Journal of Artificial Societies and Social Simulation, 25(1), 3

Reuillon, R., Leclaire, M. & Rey-Coyrehourcq, S. (2013). OpenMOLE, a workflow engine specifically tailored for
the distributed exploration of simulation models. Future Generation Computer Systems, 29(8), 1981–1990

Richmond, P. & Chimeh, M. K. (2017). FLAME GPU: Complex system simulation framework. 2017 International
Conference on High Performance Computing Simulation

Rousset, A., Herrmann, B., Lang, C. & Philippe, L. (2016). A survey on parallel and distributed multi-agent sys-
tems for high performance computing simulations. Computer Science Review, 22, 27–46

Rust Doc (2023). Rust Doc Lang - Meet safe and unsafe. Available at: https://doc.rust-lang.org/nomico
n/meet-safe-and-unsafe.html

Salecker, J., Sciaini, M., Meyer, K. M. & Wiegand, K. (2019). The nlrx R package: A next-generation framework for
reproducible NetLogo model analyses. Methods in Ecology and Evolution, 10(11), 1854–1863

Siegenfeld, A. F. & Bar-Yam, Y. (2020). An introduction to complex systems science and its applications. Com-
plexity, 2020, 6105872

Stonedahl, F. & Wilensky, U. (2011). Finding Forms of Flocking: Evolutionary Search in ABM Parameter-Spaces.
In T. Bosse, A. Geller & C. M. Jonker (Eds.), Multi-Agent-Based Simulation XI, (pp. 61–75). Springer Berlin Hei-
delberg

Sullivan, K., Coletti, M. & Luke, S. (2010). GeoMason: Geospatial support for MASON. Available at: https:
//cs.gmu.edu/~eclab/projects/mason/extensions/geomason/

Tang, W. & Bennett, D. (2010). The explicit representation of context in agent-based models of complex adaptive
spatial systems. Annals of the Association of American Geographers, 100(5), 1128–1155

Thiele, J. C. (2014). R marries NetLogo: Introduction to the RNetLogo package. Journal of Statistical Software,
58(2), 1–41

White, D. R. (2012). Software review: The ECJ toolkit. Genetic Programming and Evolvable Machines, 13(1),
65–67

Wilensky, U. (1999). NetLogo. Available at: https://ccl.northwestern.edu/netlogo/

Wilensky, U. & Reisman, K. (1998). Connectedscience: Learning biology through constructing and testing com-
putational theories - An embodied modeling approach. Available at: https://ccl.northwestern.edu/1
998/ConnectedScience.pdf

Wilensky, U. & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly: Learning biology through construct-
ing and testing computational theories - An embodied modeling approach. Cognition and Instruction, 24,
171–209

Yun, T.-S., Kim, D., Moon, I.-C. & Bae, J. W. (2022). Agent-based model for urban administration: A case study of
bridge construction and its traffic dispersion effect. Journal of Artificial Societies and Social Simulation, 25(4),
5

Zhang, H., Wang, S., Li, H., Chen, T.-H. & Hassan, A. E. (2022). A study of C/C++ code weaknesses on stack over-
flow. IEEE Transactions on Software Engineering, 48(7), 2359–2375

Zhang, J. & Robinson, D. T. (2021). Replication of an agent-based model using the replication standard. Envi-
ronmental Modelling & Software, 139, 105016

JASSS, 27(2) 4, 2024 http://jasss.soc.surrey.ac.uk/27/2/4.html Doi: 10.18564/jasss.5300

https://doc.rust-lang.org/nomicon/meet-safe-and-unsafe.html
https://doc.rust-lang.org/nomicon/meet-safe-and-unsafe.html
https://cs.gmu.edu/~ eclab/projects/mason/extensions/geomason/
https://cs.gmu.edu/~ eclab/projects/mason/extensions/geomason/
https://ccl.northwestern.edu/netlogo/
https://ccl.northwestern.edu/1998/ConnectedScience.pdf
https://ccl.northwestern.edu/1998/ConnectedScience.pdf

	Introduction
	The krABMaga ABM simulation tool
	The Rust programming language
	The krABMaga architecture
	The Engine component
	Simulation agents
	Simulation environment
	Scheduler
	Monitoring tools

	The Visualization component
	High performance model exploration and optimization
	Model exploration
	Model optimization


	Programming with krABMaga: the Wolf, Sheep, and Grass Model
	Defining the WSG model
	WSG agents
	WSG state
	Running and analyzing the WSG model

	Visualizing the WSG model

	Related Work
	Performance Evaluation
	Model simulation experiment
	Model calibration experiment

	Conclusion and Future Work

