
26 January 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Automatic feature extraction with Vectorial Genetic Programming for Alzheimer's Disease
prediction through handwriting analysis

Published version:

DOI:10.1016/j.swevo.2024.101571

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1998092 since 2024-07-17T09:39:06Z



Automatic Feature Extraction with Vectorial Genetic
Programming for Alzheimer’s Disease Prediction through

Handwriting Analysis

Irene Azzalia,e, Nicole D. Ciliab,c, Claudio De Stefanod, Francesco Fontanellad,1,
Mario Giacobinie, Leonardo Vanneschif

aIRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) ”Dino Amadori”, Meldola, Italy, Italy
bDepartment of Computer Engineering, University of Enna ”Kore”, Italy

cInstitute for Computing and Information Sciences, Radboud University Nijmegen, The Netherlands
dDepartment of Electrical and Information Engineering Mathematics, University of Cassino and Southern

Lazio, Italy
eData Analysis and Modeling Unit, Department of Veterinary Sciences, University of Torino, Italy

fNOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Portugal

Abstract

Alzheimer’s Disease (AD) is an incurable neurodegenerative disease that strongly im-

pacts the lives of the people a↵ected. Even if, to date, there is no cure for this disease,

its early diagnosis helps to manage the course of the disease better with the treatments

currently available. Even more importantly, an early diagnosis will also be neces-

sary for the new treatments available in the future. Recently, machine learning (ML)

based tools have demonstrated their e↵ectiveness in recognizing people’s handwriting

in the early stages of AD. In most cases, they use features defined by using the domain

knowledge provided by clinicians. In this paper, we present a novel approach based on

vectorial genetic programming (VE GP) to recognize the handwriting of AD patients.

VE GP is an enhanced version of GP that can manage time series directly. We applied

VE GP to data collected using an experimental protocol, which was defined to collect

handwriting data to support the development of ML tools for the early diagnosis of

AD based on handwriting analysis. The experimental results confirmed the e↵ective-

ness of the proposed approach both in terms of classification performance and size and

⇤Corresponding author
Email addresses: irene.azzali@irst.emr.it (Irene Azzali), nicoledalia.cilia@unikore.it

(Nicole D. Cilia), destefano@unicas.it (Claudio De Stefano), fontanella@unicas.it (Francesco
Fontanella), mario.giacobini@unito.it (Mario Giacobini), lvanneschi@novaims.unl.pt
(Leonardo Vanneschi)

Preprint submitted to Elsevier January 17, 2024

Manuscript File Click here to view linked References

https://www2.cloud.editorialmanager.com/swevo/viewRCResults.aspx?pdf=1&docID=9026&rev=2&fileID=119485&msid=160fd6dc-6f8f-4baa-a6c4-ec782fc5a39f
https://www2.cloud.editorialmanager.com/swevo/viewRCResults.aspx?pdf=1&docID=9026&rev=2&fileID=119485&msid=160fd6dc-6f8f-4baa-a6c4-ec782fc5a39f


simplicity of the models evolved.

1. Introduction

Alzheimer’s Disease (AD) is a neurodegenerative disease due to an abnormal growth

of amyloid plaques in nerve cells, which causes progressive atrophy of the brain. Cur-

rently accounting for 60-80% of dementia cases worldwide, it causes a continuous

decline of the cognitive functions needed to live a normal life without the intervention

of any caregiver. Since there is currently no cure for AD, early diagnosis is essential

to improve the quality of life of patients, as it allows pharmacological treatments to be

started earlier, thus slowing the progression of the disease. It has also been found that

the reduction of amyloid plaques is e↵ective only in the early stage of AD.

It is widely agreed that handwriting is one of the daily skills a↵ected by AD from

the early stages when other signs are not yet evident. Therefore, in the last years, there

has been a growing interest in using Artificial Intelligence (AI) to investigate the pecu-

liarities and irregularities of the handwriting [1, 2, 3] of people a↵ected by AD. This

interest is mainly focused on the analysis of online handwriting, where handwriting

traits are collected as time series of coordinates on the surface of the acquisition de-

vice, sampled at a given frequency. The main advantage of online acquisition is the

possibility of acquiring the kinematics (dynamics) of the writing process, which are

lost in o✏ine data.

Once data are collected, AI-based systems for handwriting analysis consist of three

steps: (i) preprocessing; (ii) feature extraction; and (iii) pattern recognition. Raw data

are typically preprocessed by means of standard signal processing algorithms, e.g., fil-

tering, noise reduction, and smoothing. However, their use must be carefully designed

since they require tuning several parameters, e.g., cut frequencies for filtering, and the

wrong settings of those parameters may a↵ect the overall performance of the system

[4]. Once data are preprocessed, informative dynamics features, such as velocity, ac-

celeration, and jerk, are extracted together with many others and used to distinguish AD

patients from healthy people. In this context, the studies presented so far have shown

that the feature extraction process is a very challenging task since neurodegenerative
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processes can a↵ect di↵erent areas of the brain, and alterations in writing performance

can concern cognitive or memory aspects and aspects related to fine motor control.

This is the reason why a large number of features is typically considered to cope with

the large variability of the e↵ects associated with the presence of neurodegenerative

disorders. The result is that some of these characteristics may be redundant, irrele-

vant, or even misleading. Feature selection techniques are typically used to alleviate

this problem [5]. Finally, the extracted and selected features are used to train a clas-

sifier for classification. Typical classification algorithms used are k-nearest neighbors,

support vector machine, and random forest, among the others [6]. The above-outlined

scenario shows that AI systems for handwriting analysis have two main drawbacks: (i)

the performance of the independent steps may a↵ect each other; for example, if the

extracted features are not e↵ective, the feature selection and classification steps can not

achieve a satisfactory performance; and (ii) their implementation requires rich domain

knowledge, needed, for example, to choose informative features.

In this framework, Vectorial Genetic Programming, VE GP [7], can be a promising

tool to automate feature extraction from online handwriting data, since it allows us

to directly exploit the raw data without applying any feature selection technique and

without using any apriori knowledge on the problem at hand.

VE GP is a method that extends Genetic Programming (GP) [8, 9] by using func-

tions that take in input vectors (e.g., time series). VE GP provides a rich and easily

extensible set of primitive operations for directly processing time series data, which

does not need to be collapsed in a predefined set of features. Furthermore, the inclusion

of aggregating parametric functions in the primitive set allows VE GP to automatically

generate informative features from data without any need for human intervention. Last

but not least, VE GP can generate models that are simple enough to be read and in-

terpreted, in some cases o↵ering some valuable insights on the application [10, 11]. It

is worth noting that the capability to provide interpretable models is of paramount im-

portance in the medical field, where trust is at the basis of the employment of machine

learning models in practice [12].

Starting from the above considerations, in a previous article, we used VE GP to

classify the handwriting of people a↵ected by AD based on their ability to accomplish
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nine well-defined tasks [13]. The proposed VE GP-based system took in input the

time series of the X and Y coordinates and the pressure of the movements performed

to accomplish the handwriting tasks acquired using a graphic tablet. The experimental

analysis on a dataset containing data from 130 participants showed that VE GP out-

performed a decision tree classifier trained on a set of features previously presented in

[14].

This paper presents a further development of the research activity first presented

in [14]. In particular, we extended our analysis to the 25 tasks of the experimental

protocol presented in [15], on a larger version of the dataset analyzed in [7]. To further

assess the e↵ectiveness of our approach, we compared its results with those achieved

by a standard feature engineering approach [6] and a deep learning based approach

that shares with our system the automatic feature extraction ability [16]. In the first

case, we compared our results with those achieved by nine well-known and widely-

used classifiers, whereas in the second case, the comparison was made with the results

achieved by four deep neural networks. Finally, we also investigated the behavior of

VE GP during the evolution, considering both the complexity (in terms of the number

of functions), and the interpretability of the models evolved.

In summary, the primary objective of the research discussed in this article is to for-

mulate a novel methodology for discerning alterations in the handwriting of individ-

uals a↵ected by Alzheimer’s Disease (AD). This is achieved by leveraging the ability

of VE GP to autonomously extract features from raw time series data. To fulfill this

objective, we enhanced the conventional vectorial functions of VE GP by incorporat-

ing a suite of functions tailored to the specific challenges of the problem. The resulting

system demonstrates the capability to generate insightful and distinctive models from

raw data, that incorporate several vectorial functions.

The paper is organized as follows. After a brief overview of the research activ-

ities related to our study (Section 2), Section 3 introduces VE GP, whereas Section

4 describes the handwriting data analysed; Section 5 details the experimental setup,

whereas Section 6 reports the experimental results; finally, Section 7 concludes the

paper and proposes ideas for future research.
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2. Related Work

Thanks to their search-ability, Evolutionary Algorithms [17] have often been em-

ployed in health applications, particularly Genetic Algorithms (GAs) and GP. GP has

been used in a wide range of applications. For example, [18] proposed a constrained-

syntax GP-based algorithm for discovering classification rules in medical data. The

authors tested their approach on five datasets and achieved better results than deci-

sion trees. In [19], the authors presented a novel approach based on Geometric Se-

mantic GP (GSGP) to solve a problem related to the physio-chemical properties of

proteins, involving the prediction of these properties in tertiary structure. GSGP uses

specific genetic operators that induce a unimodal error surface for any supervised learn-

ing problem, independently from the complexity and size of the underlying data set.

The authors demonstrated that the proposed approach was more e↵ective than a set of

state-of-the-art Machine Learning algorithms, such as Artificial Neural Networks and

Support Vector Machines. GP has also been used as a tool to support medical decisions

for treating rare diseases. In particular, in [20], the authors developed and tested six

predictive data models using GP. The models were integrated into a web-based appli-

cation to be used by therapists to support them in their patient’s care and treatment

activities. More recently, Parziale et al used a Cartesian GP to automatically identify

people a↵ected by Parkinson’s disease (PD) by analyzing their handwriting and draw-

ings [21]. The proposed approach allowed them to support the diagnosis of PD through

explicit classification models, which provided results that physicians could interpret.

GAs have been widely used in medical applications, in most of the medical spe-

cialties, among which medical imaging, rehabilitation medicine, and health care man-

agement [22]. Regarding neurodegenerative diseases, in [23], the authors used a multi-

objective GA to find the relevant volumes of the brain related to Alzheimer’s disease.

In [24], a GA was used to search for the optimal set of neuropsychological tests for

building a predictive model of Alzheimer’s disease. More recently, in [2], a GA-based

system was presented to improve the system’s performance that had previously been

proposed for cognitive impairments through handwriting analysis.

An important focus of our work is the use of GP for feature extraction. The use
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of GP for this purpose is not new, and it finds its most active application area in image

processing. For instance, in [25], a feature extraction method using multi-objective

GP (MOGP) was presented. This method was applied to the well-known edge de-

tection problem in image processing, outperforming the studied baseline algorithms.

The authors claimed that the success of the proposed method was mainly due to its

e↵ective feature extraction. Two years later, in [26], the use of GP for constructing

vision systems was explored. A two-stage approach was proposed, with a separate

evolution of the feature extraction and classification stages. A GP-based strategy for

feature construction for 2D images, called Genetic Program Feature Learner (GPFL),

was proposed in [27]. GPFL executes multiple GP runs. Each run generates a model

that focuses on a particular high-level feature of the training images. Then, it com-

bines the models generated by each run into a function that reconstructs the observed

images. The presented results indicated that when considering smaller training sets,

GPFL achieves comparable/slightly better classification accuracy than state-of-the-art

methods such as LeNet5. Also, GPFL was shown to drastically outperform LeNet5

when considering noisy images as test sets. Recently, in [28], the success of GP in

image classification was discussed. In particular, the authors presented a GP approach

that can conduct feature extraction, feature construction, and classification automat-

ically and simultaneously. It can extract and construct informative image features,

select a suitable classification algorithm instead of relying on a predefined classifier,

and perform classification for binary and multi-class image classification tasks.

GP was also used for feature extraction in the medical field. For instance, in [29] the

authors presented an electroencephalogram (EEG) classification system for detecting

mental states. The system integrated a GP-based enhanced feature extraction algo-

rithm (called Augmented Feature Extraction with Genetic Programming, or +FEGP),

to search for non-linear transformations able to build new features. +FEGP can be

paired with any classification method, outperforming previously existing results in the

studied application. M. Zhang and his colleagues are among the most productive con-

tributors in the use of GP for feature extraction, and their work is particularly signif-

icant for us because, in several cases, they applied their methods to the medical area.

For instance, in [30] they developed a classification system that combines feature con-
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struction and ensemble learning using GP. The proposed method was employed for

skin cancer detection, using two di↵erent skin image datasets. The experimental re-

sults indicated that the proposed algorithm significantly outperforms two existing GP

approaches, two state-of-the-art convolutional neural network methods, and ten com-

monly used machine learning algorithms. Many of the contributions of this group of

researchers in the area of feature extraction with GP have recently been gathered in the

book [31]. Also, recently these authors have proposed a novel diagnosis approach inte-

grating an automatic feature extraction and construction performed by GP (the method

was called AFECGP) [32]. AFECGP was shown to automatically generate informa-

tive and discriminative features from original vibration signals for identifying di↵erent

fault types of rotating machinery. In [33], di↵erent approaches to constructing mul-

tiple features using GP were investigated. The results indicated that multiple-feature

construction achieves significantly better performance than single-feature construction.

In multiple-feature construction, using multi-tree GP representation was shown to be

more e↵ective than using the single-tree GP, thanks to the ability to consider the in-

teraction of the newly constructed features during the construction process. Also, the

authors showed that class-dependent constructed features achieve better performance

than class-independent ones and contribute to generating interpretable models.

Another area in which the ability of GP to construct new features was recently ex-

ploited was land cover classification. In [34], the M3GP variant of GP (specialized

for multi-class classification) was used on several sets of satellite images over di↵er-

ent countries to create hyperfeatures from satellite bands to improve the classification

of land cover types. Hyperfeatures were evolved to the reference datasets and a sig-

nificant performance improvement was observed compared to a set of state-of-the-art

algorithms. Detection of malware is another area in which GP was successfully used

for feature extraction. In [35], a system was developed in which the One Side Class

Perceptron algorithm was coupled with GP, and GP acted as a feature extraction tech-

nique. The proposed method was demonstrated successful. In particular, it was shown

that the features produced by GP are better than the best ones obtained by other meth-

ods, allowing for an increase in the detection rate.

If we extend our analysis to the wider field of Artificial Intelligence (AI), several
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expert opinions seem to indicate the appropriateness of investing in AI research for the

early diagnosis of AD [36], and a survey of AI studies for the early diagnosis of AD

can be found in [37].

The brief literature review outlined above shows that most GP-based approaches

for feature extraction work with images. On the other hand, those working with other

types of data typically take input data di↵erent from time series, like executable files

[35] or gene expression datasets [33]. The only approach working with time series is

the AFECGP method for fault detection in rotating machines [32]. However, AFECGP

works with fixed-length times series, whereas, as explained in the following section,

VE GP can work with time series whose length is not apriori fixed length. Therefore,

to the best of our knowledge, this is the first study in which a GP-based approach is

used on raw data consisting of variable length time series.

3. Vectorial Genetic Programming

Vectorial genetic programming (VE GP) is a variant of GP that allows us to deal

with time series as predictors or targets. VE GP enables the use of vectors as termi-

nals, providing a suitable representation for time series, and supplies a set of primi-

tive functions to operate on vectors. In the continuation of this section, we describe

these parametrizable primitives, first presenting the functions of arity 1 and 2 previ-

ously defined and then the problem-specific functions implemented. Next, we discuss

other peculiar characteristics of VE GP that distinguish it from traditional GP, such as

the population initialization and the parameter mutation, which allows us to change

the parametrization of the primitive functions. Finally, we discuss how we employed

VE GP for classification in this work. Further details about the primitive functions

implemented in VE GP to manage vectors can be found in [7].

3.1. Functions of arity 1

VE GP’s primitive functions, when applied to vectors, typically return a scalar

value that, informally speaking, ”represents” the elements of the vector, or ”aggre-

gates” them into one single value, able to capture some characteristics of the vector.

For this reason, in some cases, they will be referred to as aggregating functions. VE GP
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provides several aggregating functions, along with their parameters. Parameters define

the part of the vector (or ”window”) where the function will be applied. The window

can slide all the vector. Let [v1, v2, ..., vp, ..., vq, ..., vn] be a vector and let p and q be

two indexes, with p < q; then fp,q(v) = f ([vp, . . . , vq]). In case the window extends

to not existing elements of the vector, these elements are not included in the calcu-

lation. To provide a numerical example let us consider v = [1, 2.5, 4.3, 0.7, 1.6] and

(p, q) = (2, 3). The function V sum2,3 applied to v returns 6.8.

Here we used the following functions of arity 1:

– V maxpq, V minpq: returns the maximum/minimum of the sub-vector defined

by the range [p, q];

– V sumpq: returns the sum of the elements of the sub-vector defined by the

range [p, q];

– V meanpq: returns the mean of the elements of the sub-vector defined by the

range [p, q];

3.2. Functions of arity 2

Regarding functions of arity 2, they are simply the extension to vectors of the arity

2 functions between scalars often used by traditional GP. In particular, when the inputs

of a function are two vectors of length greater than 1, the shortest is completed with the

null element of the function up to the length of the longest before applying the function

itself. Di↵erently, when a scalar and a vector of a length greater than 1 are the inputs,

the scalar is initially replicated up to the length of the other vector input.

To provide a numerical example, let us consider two vectors: v = [1, 2.5, 4.3, 0.7, 1.6]

and w = [0.8, 3.6, 1.9]. The function VSUMW applied to v and w returns VSUMW(v,w) =

[1.8, 6.1, 6.2, 0.7, 1.6].

Here we used the following functions of arity 2:

– VSUMW: computes the element-wise sum between two vectors;

– V W: computes the element-wise di↵erence between two vectors;

– VprW: computes the element-wise product between two vectors;
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– VdivW: computes the element-wise division between two vectors; in case of di-

vision by 0 a value of 1 is returned.

3.3. Problem-specific functions

Exploiting the advantage of VE GP to easily include new terminal functions, in

order to simulate some of the features extracted by the standard classification approach,

we included innovative terminal functions in VE GP. In particular, with the help of

domain experts, we have defined the following functions:

– V normpq: computes the 2-norm of the sub-vector defined by the range [p, q];

This function extracts spatial information since it calculates the distance from

the border (left or bottom, depending on the feature involved) of the handwriting

trait defined by [p, q]. In the case of the pressure (Z coordinate), it computes the

amount of pressure exerted in that trait;

– V distpq: computes the one-dimension Euclidean distance between the ele-

ment of position p and the element of position q of the input vector; This function

extracts spatial information since it computes the horizontal/vertical (depending

of the feature involved) extension of the handwriting trait by [p, q];

– V length: computes the length of the vector (the number of elements mak-

ing it). This function extracts temporal information since it allows us to gain

knowledge about the duration of the task;

– V duration0: computes the total duration of the task in-air traits.

The above-defined functions show that VE GP can be straightforwardly adapted to

a specific application domain (they are simple and easy to implement). Even more

importantly, these problem-specific functions provide useful information, making the

models using them easy to interpret. Furthermore, it is important to remark that all

the functions detailed above (also those of arity one and two described in the previous

subsections) take in input vectors (time series in our case) whose length must not be

apriori defined.
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Finally, it is worth highlighting that, in general, problem-specific functions can be

defined by asking the domain experts what information (of interest for that specific

problem) to extract directly from the vectors containing the problem’s raw data.

3.4. Initialization

VE GP proposes a peculiar initialization method with the objective of using in a

correct way the aggregating functions included in the primitive set. A portion of n1 in-

dividuals are forced to apply aggregating functions only to vectorial variables. This

feature ensures a pool of individuals that properly use aggregating functions. The

remaining n2 individuals are generated with one of the classical initialization tech-

niques [9]. Both n1 and n2 are parameters of VE GP that must be set by the user.

3.5. Parameter mutation

The genetic operator of parameter mutation (PM) is developed in VE GP to let the

evolution find the most informative time windows. PM simply looks in an individ-

ual for parametric aggregating functions, randomly selects one of them, and randomly

changes one of its parameters. The parameter is mutated without violating the rule

that p < q.

3.6. VE GP for classification and fitness evaluation

VE GP was originally introduced to deal with time series forecasting. However, it

can be easily extended to classification. Classification, in fact, can be performed using

the individuals as discriminating functions at threshold 0, as for instance in [38]. In

this way, evaluations � 0 correspond to class 0, while the others correspond to class 1.

Given that we need a scalar output to apply this threshold function, in this work, if an

individual returns a vector, a mean is applied to it in order to obtain a scalar.

4. Dataset

Our handwriting data were collected according to the acquisition protocol described

in [15]. The protocol includes 25 tasks, belonging to the following categories (see Ta-

ble 1): (i) graphic (tasks 2-5, 21, 24); (ii) Copy (tasks 6-13, 15-17, 18); (iii) Memory
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and dictation (tasks 1, 14, 18, 20, 23). The dataset contains data from 174 participants:

89 AD patients and 85 healthy people.

The participants in the study were recruited with the support of the geriatric ward,

Alzheimer unit, of the ”Federico II” hospital in Naples (Italy). The cognitive abilities of

the participants were evaluated using standard clinical tests, namely, Mini-Mental State

Examination (MMSE), Frontal Assessment Battery (FAB), and Montreal Cognitive

Assessment (MoCA). These tests use questionnaires to assess cognitive skills covering

many areas, ranging from orientation in time and place to registration recall.

The handwriting movements of the participants while performing the 25 tasks were

collected by using a Wacom’s Bamboo tablet equipped with a pen that allowed par-

ticipants to write in normal ink on A4 white paper sheets. The tablet sampled three

values (X, Y, and Z) for each point at a constant sampling rate equal to 200Hz. The

first two coordinates (X and Y) are the pen tip position in the two-dimensional space

representing the surface where the writing is produced, whereas the third one (Z) is

the pressure exerted by the pen tip at that point. Pressure values are positive when the

pen tip touches the sheet and are null when the pen tip is lifted from the sheet. In the

following, we will refer to the first points as ”on-paper” and to the second as ”in-air”.

Note that the tablet recorded in-air movements of the pen tip up to a maximum distance

of 3 cm from the sheet.

5. Experimental Setup

For each task separately, we evolved a VE GP classifier through the following pro-

cess.

1. We randomly partitioned the available data into 5 folds of identical size, each

containing the same proportion of AD and healthy samples as the original dataset

(five-fold stratified sampling). One random fold was selected as the test set,

3 out of the remaining folds were randomly selected as the training set, while the

4th was used as the validation set.

2. We run a VE GP algorithm based on training set data with parameters set accord-

ing to Table 2. The accuracy of the evolving individuals was used as the fitness

12



Table 1: The tasks involved in the analysis.
Task# Description

1 Signature drawing
2 Join two points with a horizontal line, continuously for four times
3 Join two points with a vertical line, continuously for four times
4 Retrace a circle (6 cm in diameter) continuously for four times
5 Retrace a circle (3 cm in diameter) continuously for four times
6 Copy the letters ’l’, ’m’ and ’p’
7 Copy the letters on the adjacent rows
8 Write in cursive a sequence of four lowercase letters ’l’, in a single smooth

movement
9 Write in cursive a sequence of four lowercase cursive bigrams ’le’, in a single

smooth movement
10 Copy the word ”foglio”
11 Copy the word ”foglio” above a line
12 Copy the word ”mamma”
13 Copy the word ”mamma” above a line
14 Memorize the words ”telefono”, ”cane”, and ”negozio” and rewrite them
15 Copy in reverse the word ”bottiglia”
16 Copy in reverse the word ”casa”
17 Copy six words (regular, non-regular, non-words) in the appropriate boxes
18 Write the name of the object shown in a picture (a chair)
19 Copy the fields of a postal order
20 Write a simple sentence under dictation
21 Retrace a complex form
22 Copy a telephone number
23 Write a telephone number under dictation
24 Draw a clock with all hours and put hands at 11:05 (Clock Drawing Test)
25 Copy a paragraph

function during this training. Accuracy is defined as the percentage of correctly

classified samples; therefore, each problem was turned into a maximization one.

3. We evaluated the accuracy of each individual of the final population on the val-

idation set. The individual with the best accuracy was selected as the classifier

(best individual), and its performance was measured as the accuracy on the test

set.

4. We repeated the previous steps for 30 independent runs (stochastic cross-validation).

All results reported in the following section have been averaged over the 30 runs per-

formed.
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Table 2: Parameters setting of the algorithm of VE GP.
Parameter Value
maximum numb. of generations 100
population size 200
genetic operators subtree crossover, subtree mutation, pa-

rameter mutation
genetic operators probabilities 0.5, 0.1, 0.4
initialization n1 = 30%, n2 = 70% Ramped Half-and-

Half
functions set VSUMW, V W, VprW, VdivW,

V maxpq, V minpq, V meanpq,
V sumpq, V normpq, V distpq,
V length, V duration0

terminals input variables + randomly generated
numbers (as constants)

fitness accuracy
parents selection Lexicographic Parsimony Pressure
elitism keep best
maximum depth of the individuals 17

On average, the training step took approximately 1940 seconds (32 minutes and 24

seconds) for each run. A run of Task 4 required the most time, i.e., 9430 seconds (157

minutes and 20 seconds) for each run, whereas a run of Task 13 required the least time,

i.e., 576 seconds (9 minutes and 36 seconds).

6. Experimental Results

To implement VE GP we used GPLab, a Genetic Programming toolbox for Matlab

[39]. We performed the experiments detailed below on an Intel Xeon CPU E7-8880 v4

@2.20GHz equipped with 256 GB of RAM. As a software framework, we used Matlab

R2021a (Update 1) and Red Hat Enterprise Linux (release 8.9).

To assess the e↵ectiveness of our system and investigate its behavior, we carried out

several experiments. In the first set of experiments, we tested the generalization ability

of VE GP and its performance in terms of specificity and sensitivity. In the second set

of experiments, we investigated the behavior of VE GP during the evolution. In the

third set, we analyzed the complexity of the solutions found, whereas, in the fourth, we
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compared our results with those presented in [6] and those achieved by using a deep

learning approach [16]. Finally, we analyzed the features extracted by VE GP. The

experiments are detailed in the following subsections.

6.1. Testing the generalization ability of VE GP

To test the generalization ability of VE GP we plotted a histogram where, for each

task, a couple of bars show the accuracy achieved on the learning set (made of the

training and validation sets) and on the test set for that task. This histogram is shown

in Figure 1. The aim of this histogram is twofold. On the one hand, it provides an

overview of the performance achieved by VE GP on the 25 tasks of the protocol. On

the other hand, it allows the detection of possible overfitting visually.

Looking at the histogram, we can observe that, as expected, VE GP performed

di↵erently on the 25 tasks. On tasks 18 and 23 (writing the name of an object and

copying a telephone number, respectively) VE GP achieved an accuracy greater than

0.80. It is worth noting that these tasks require writing non-long sequences: five letters

for task 18 (the Italian word ”sedia” for the chair in the figure) and seven figures for the

telephone number. The other tasks on which VE GP achieved a good performance (ac-

curacy approximately equal or greater than 0.75) are 7 (copying the letters ’n’, ’l’, ’o’

and ’g’), 9 (writing four times the bigram ’le’), 10 (copy the word ”foglio”), 11 (copy

the word ”mamma”), and 12 (copy the word ”mamma” above a line). These results

confirm the ability of VE GP to achieve a good performance on non-long sequences.

Regarding the tasks on which VE GP achieved the worst performance (accuracy ap-

proximately equal or less than 0.65), they are 4 (retrace a 6 cm circle for four times),

14 (memorize and rewrite the words ”telefono”, ”cane”, and ”negozio”), and 21 (re-

trace a complex form). These tasks require writing longer sequences, and the related

results confirm that VE GP performs better with non-long sequences. To statistically

validate our findings, we compared the length of the worst-performing tasks (4, 14,

and 21) with the remaining ones considered in our analysis. To this aim, we computed

the average length for each task by averaging the number of time series points of all

participants. To statistically validate the comparison, we used the Wilcoxon rank-sum

test (↵ = 0.05), a non-parametric statistical test. Table 3 shows the comparison be-
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Figure 1: Learning and test accuracy achieved on each task.

tween each couple of tasks: the cell [i, j] of the table contains the symbols ’+’, ’-’,

and ’⇡’, if the average length of the task i is respectively longer, equivalent, or shorter

than the task j according to the Wilcoxon test. From the table, we can observe that the

worst-performing tasks are longer than the remaining ones and the length di↵erences

are statistically significant.

To study overfitting, we analyzed the histogram from two perspectives. First, we in-

vestigated the test accuracy of the tasks with the highest and lowest di↵erences between

the learning and test accuracy. From the second perspective, we analyzed this di↵er-

ence for the best and worst tasks. The histogram shows that the di↵erence between

learning and test accuracy ranges from values equal to or greater than 0.10 (tasks 6, 19,

and 21) to less than 0.04 (tasks 2, 7, 9, and 11). As for the highest values, we can see

that test accuracy values vary in the range [⇡ 0.65,⇡ 0.68], which do not correspond

to the worst results, whereas the lowest di↵erence values vary in a much wider range:

[⇡ 0.68,⇡ 0.77]. On the other hand, from the histogram, we can also observe that the
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Table 3: Length comparison.
Task # 7 9 10 11 12 18 23

length 1940±320 2050±380 1390±300 1290±230 1390±220 1020±250 2270±330
4 5830±660 + + + + + + +

14 3070±480 + + + + + + +
21 8400±1150 + + + + + + +

learning-test accuracy di↵erences for the best-performing tasks (18 and 23, see above)

are 0.05 and 0.08, whereas those for the worst ones (4, 14, and 21, see above) ranges

from ⇡ 0.06 to ⇡ 0.11. Overall, these results suggest that: (i) the low performance

of VE GP is not due to overfitting (e.g., task 4); (ii) also the best-performing tasks

may exhibit a significant di↵erence between learning and test accuracy. Then, we can

conclude that overfitting did not compromise the performance of VE GP.

To further assess the e↵ectiveness of VE GP in discriminating the handwriting of

people a↵ected by AD, we also evaluated its performance in terms of sensitivity and

specificity. In a diagnostic test, the first measures how well the test identifies positive

cases (people a↵ected by AD in our case), whereas the second measures how well the

test classifies negative cases (healthy people in our case). We computed those measures

as follows:

S ensitivity = T P
T P+FN ; S peci f icity = T N

T N+FP ;

where:

TP (true positive) is the number of instances belonging to the AD class correctly clas-

sified;

FN (false negative) is the number of instances belonging to the AD class erroneously

classified as healthy;

FP (false positive) is the number of instances belonging to the healthy class erroneously

classified as AD patients;

TN (true negative) is the number of instances belonging to the healthy class correctly

classified.

Those results are shown in Table 4. From the table, we can see that, on average
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Table 4: Accuracy, sensitivity, and specificity results.

Task # Accuracy Sensitivity Specificity
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

1 0.67 0.03 0.76 0.10 0.73 0.09
2 0.68 0.04 0.72 0.17 0.81 0.09
3 0.67 0.03 0.86 0.11 0.68 0.14
4 0.63 0.04 0.78 0.11 0.66 0.12
5 0.67 0.03 0.79 0.10 0.68 0.10
6 0.68 0.03 0.67 0.15 0.84 0.09
7 0.77 0.01 0.78 0.09 0.86 0.08
8 0.74 0.03 0.74 0.14 0.83 0.08
9 0.77 0.04 0.83 0.08 0.85 0.08

10 0.78 0.03 0.96 0.03 0.58 0.13
11 0.77 0.04 0.60 0.11 0.91 0.05
12 0.75 0.03 0.93 0.05 0.58 0.14
13 0.73 0.03 0.62 0.23 0.91 0.07
14 0.65 0.04 0.83 0.13 0.61 0.13
15 0.74 0.05 0.84 0.11 0.77 0.11
16 0.70 0.04 0.83 0.06 0.65 0.11
17 0.73 0.03 0.82 0.08 0.73 0.09
18 0.81 0.01 0.93 0.03 0.67 0.10
19 0.67 0.05 0.83 0.13 0.57 0.15
20 0.67 0.05 0.85 0.11 0.66 0.16
21 0.65 0.03 0.91 0.08 0.41 0.15
22 0.73 0.07 0.90 0.05 0.67 0.17
23 0.80 0.03 0.87 0.06 0.78 0.07
24 0.71 0.04 0.91 0.07 0.62 0.14
25 0.69 0.05 0.84 0.10 0.67 0.14

Average 0.71 0.04 0.82 0.10 0.71 0.11

(last row), VE GP achieved a sensitivity (0.82) higher than specificity (0.71), with

similar standard deviations, higher than that of accuracy. This last result depends on

the fact that accuracy is a weighted sum of sensitivity and specificity with respect to the

fraction of positive cases. From the table, we can also observe that VE GP achieved

a good sensitivity and specificity performance (� 0.90) on 6 and 2 tasks, respectively.

Looking at the best-performing tasks in terms of accuracy (> 0.75), namely 7 and 9

(0.77), 10 (0.78), 18 (0.81), and 23 (0.80), we can note that also in this case, on average,

we achieved a sensitivity higher than specificity. From the table, we can see that in task

10 we achieved a sensitivity equal to 0.96. Overall, the above results are good for a

diagnostic test: typically, the costs of not identifying sick people are much higher than
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those of misclassifying healthy people as sick.

6.2. Investigating the behaviour of VE GP

In the second set of experiments, we investigated the behavior of VE GP during the

evolution. To this aim, for each task, we plotted the average and best fitness values as

a function of the generation number, averaged over the thirty runs performed. Twelve

out of the twenty-five plots drawn are shown in Figure 2 (the other ones showed similar

trends). From the figure, we can observe that for some plots, there was a slow and

steady convergence of the average fitness towards a sort of ”target value” (e.g., tasks 1,

6, 22, and 25). Looking at these plots, we can see that the best fitness also follows this

trend. This behavior confirms the exploration ability of VE GP, excluding a premature

convergence of the best individual toward a local optimum. It is also worth noting that

this ability was maintained when the average fitness increased rapidly from the first

generations (e.g., tasks 6, 9, 11, and 13). Indeed, also in these cases, the best fitness

keeps the same slow trend seen above. Even more importantly, from all plots, we can

see a wide distance between the average and best fitness until the last generations. This

wide distance confirms that, on average, the individuals in the population are quite

di↵erent from the best one. Therefore, we can state that VE GP is not subjected to any

genetic drift phenomena. Overall, we can conclude that VE GP has a good exploration

ability in the solution space made of the tree-based models used to distinguish the

handwriting of people a↵ected by AD.

6.3. Comparison findings

To test the e↵ectiveness of our approach, we compared its accuracy performance

with a standard feature engineering approach [6] and a deep learning-based approach,

which shares with our system the automatic feature extraction ability [16]. In [6],

the authors extracted features suggested by clinicians (e.g., velocity, acceleration, and

pressure), whereas in [16], the authors used a deep learning-based approach to classify

images generated from online handwriting data. It is worth noticing that both studies

used our own dataset, described in Section 4.
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(a) Task 1 (b) Task 3 (c) Task 6

(d) Task 9 (e) Task 10 (f) Task 11

(g) Task 12 (h) Task 13 (i) Task 17

(j) Task 20 (k) Task 22 (l) Task 25

Figure 2: Evolution of the average and best fitness.
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6.3.1. Standard feature engineering approach

From the data described in Section 4, the authors of [6] extracted 18 features, in-

cluding total time, velocity, acceleration, jerk, and pressure 1. For a more detailed

explanation of these features, see Section 3 of [6].

Once the feature had been extracted, the related data was used to train seven classi-

fiers: Decision Tree (DT), Gaussian Naive Bayes (GNB), Linear Discriminant Analy-

sis (LDA), Logistic Regression (LR), Learning Vector Quantization (LVQ), Multilayer

Perceptron (MLP), and Support Vector Machine (SVM). In the training phase, for each

classifier, the authors optimized the related hyperparameters. To statistically validate

the results, we used the Wilcoxon rank-sum test (↵ = 0.05). Comparison results are

shown in Table 6. Whenever VE GP’s performance was found to be statistically supe-

rior, worse, or equivalent to any other classifier (after the Wilcoxon rank-sum test), the

symbols ’+’, ’-’, and ’⇡’ were used, respectively. To provide a ”task-based” overview

of the comparison results, the second column also shows how many times VE GP per-

formed better/equivalently/worse (w/t/l) than the compared approaches.

From Table 6, we can observe that in terms of win/tie/loss (see last row), VE GP

outperformed all classifiers used for the comparison. As for the task-based point of

view, from the table we can see that VE GP:

– outperformed the seven compared approaches on five tasks (from 10 to 13, and

18). It is interesting to note that although VE GP did not achieve its better perfor-

mance (except for task 18) on those tasks, it achieved an accuracy much higher

than all the compared methods. This result confirms the ability of VE GP to find

well-performing models (accuracy � 0.70) on data where the state-of-the-art al-

gorithms have performed poorly.

– achieved superior or equivalent performance on nine tasks (1, from 7 to 9, 15,

22, 23, 24);

– achieved equivalent performance on the seven compared approaches on four

1The dataset is publicly available on the following page: https://archive.ics.uci.edu/dataset/
732/darwin
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tasks (3, 17, 20, and 25);

– achieved equivalent or worse performance on five tasks (2, from 4 to 6, and 16);

– was never outperformed by all the compared approaches.

6.3.2. Deep learning based approach

To further investigate the e↵ectiveness of our approach, we compared its results

with those achieved by three Convolutional Neural Networks (CNNs). We trained

those CNNs on synthetic RGB images built from the same online handwriting data

used for our approach. In practice, from those data, we built a synthetic image for each

task performed by a given participant by interpolating consecutive points of the time

series representing the movements performed by that participant to accomplish that

task. Furthermore, to exploit the dynamics information in the time series, each image

color channel contains information about the handwriting movements, i.e., velocity,

jerk, and pressure. We built two types of images. The images of the first type were built

by interpolating only the on-paper points (those produced when the pen tip touched the

sheet). In contrast, the images of the second category were built by interpolating both

on-paper and in-air points (the pen tip was lifted from the sheet). Further details about

the image construction process can be found in [16, 40].

Those images were used to re-train (fine-tuning approach) three widely-used and

publicly available CNNs, namely InceptionV3 (IV3), ResNet50 (R50), and VGG19

(V19), which were trained on Imagenet, a database containing millions of annotated

images. The obtained results are shown in Table 7. From the table, we can observe that

VE GP outperformed the three CNNs, on both types of images. In the best case (R50

on on-paper data) VE GP achieved better results on 23 out of 25 tasks and tied on the

remaining two tasks. On the other hand, in the worst case (V19 on in-air & on-paper)

VE GP achieved better results on 15 out of 25 tasks, two ties, and eight worse results.

From the table, we can also observe that VE GP was the best-performing method on

14 tasks (1, 3, 7, 9, 10-13, 15, 17, 18, 22-24).
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Figure 3: Number of occurrences of the functions in the best individuals for the 25 tasks, averaged over
the thirty runs. White bars represent the general-purpose functions (GEN), whereas the grey bars represent
the problem-specific functions (SPE). The acronyms are the following: V sumpq (spq), V meanpq (mpq),
V sumw (sum), V maxpq (max), V distpq (dst), V normpq (nrm), V minpq (min), V divw (div), V prw
(prw), V length (len), V duration0 (dur).

6.4. Models Evolved by VE GP and extracted Features

As the last experiment, we analyzed the features automatically extracted by VE GP,

using the set of functions used (see Table 2). We first investigated the use of those

functions. To this aim, we counted the number of occurrences in the best individuals for

each function and averaged it over the thirty runs carried out. We plotted the histogram

shown in Figure 3 with those values. We used white and grey bars to distinguish

the general-purpose functions (GEN) from the problem-specific ones (SPE). To avoid

flattening the remaining bars, we did not plot the bar of the highest value, i.e., 76.3

achieved by the V W function. As detailed in Subsection 3.2, V W is a function of arity

2, which computes the element-wise di↵erence between the two input vectors. As

concerns the other three general purpose element-wise functions of arity 2, namely

V sumw (summation), V prw (product), and V divw (protected division), their number

of occurrences are 13.5, 10.4, and 11.7, respectively. Those values can be considered

comparable and confirm that the element-wise di↵erence function is more important
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for the automatic feature extraction process implemented by VE GP. From the plot,

we can also observe that the number of occurrences of V distpq and V normpq is

comparable with that of the GEN functions. This result confirms the importance of

those functions, used on most tasks, whereas the other two functions (V length and

V duration0) were used on a limited number of tasks. It is also interesting to note

that the first two functions extract information from the part of the input vector (time

series) represented by the subvector defined by the range [p, q]. In practice, that result

confirms that, on most tasks, it is important to extract the features from specific parts

of the task.

We also investigated the importance of the three coordinates used, namely the cou-

ple (X,Y) representing the position of the pen tip on the surface of the paper sheet,

and Z, which is the pressure of the pen tip on the sheet. To this aim, we computed the

number of occurrences of those coordinates on the thirty runs carried out for each task.

We achieved the following average values and standard deviations:

X: 21.1 (3.8)

Y: 19.9 (3.5)

Z: 18.0 (3.8)

This result confirms that the three coordinates were equally used by the automatic fea-

ture extraction process implemented by VE GP.

As mentioned in the Introduction, one of the most interesting characteristics of VE GP

is the ability to generate simple, readable models. This ability is crucial to any machine-

learning algorithm, especially in medicine. To investigate VE GP’s ability to generate

simple and readable models, we analyzed the models evolved by the best run for each

task. The analysis of the learned classifiers provides hints about the most discrimi-

nating time series ranges and features. In practice, this allows us to characterize the

fine movements of AD patients with respect to those of healthy people. For example,

some models suggest that for the related tasks the most important feature to consider is

the pressure, whereas others highlight the importance of the vertical position, which is

related to the spatial organization ability.

For the sake of conciseness, in the following, we report the analysis of some of

them. These models are shown in Table 5. For the sake of readability, the operators ’+’,
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’-’, and ’/’ represent the element-wise functions VSUMW, V W, and VdivW respectively.

Furthermore, as detailed in Subsection 3.6, if an individual returns a vector, a mean is

applied to it in order to obtain a scalar (evaluations � 0 correspond to class 0, while the

others correspond to class 1).

Overall, from the table we can see that some models are very simple and give

precise indications of which task parts or features have been paid attention to by the

VE GP. For example, from the table we can see that for tasks 2 and 21 (Join two points

with a horizontal line and retrace a complex form, respectively), the most important

quantity to consider is the pressure; these models also suggest that pressure di↵erences

(task 21) or the duration of the in-air traits (task 2) are important. These models suggest

that, in this case, both on-paper (pressure) and in-air traits (their duration) are discrim-

inant for distinguishing the handwriting of AD patients. The hint provided by these

models is that AD patients lose fine motor control abilities both for on-paper and in-air

traits. From the table we can also observe that the models evolved for the copy tasks

9 and 17 (writing four times the bigram ”le” and copying six words, respectively) use

all three coordinates (task 9) or the vertical position of some traits (identified by the

related ranges). In particular, the model of task 9 uses temporal (function V length)

and spatial information (function v sumpq on the X coordinate) whereas the model of

task 17 uses only spatial information (function v normpq on the X and Y coordinates).

The hint provided by these models is that copy tasks highlight the spatial-temporal

coordination problems of AD patients.

7. Conclusions and Future Work

In this article, we have proposed using vectorial genetic programming (VE GP) to

solve the classification problem of recognizing the handwriting of people a↵ected by

Alzheimer’s (AD). More specifically, we have used data extracted from the handwriting

of AD patients and a control group while performing 25 tasks. Thanks to its ability

to deal with time series directly into the evolved model, VE GP has revealed a very

appropriate method for this type of problem, paving the way for its practical use to

support the early diagnosis of AD.
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Table 5: best models according to the test accuracy.
Task # Best model

2 Z/0.7595 � V duration0(Z) � V min2219,8389(V duration0(Z) + Z) +
Z � V length(Z)

3 V max1952,6786

✓
V sum6183,6309

⇣
V sum5037,6816(Y)

⌘
� X
◆

6 Y � V norm1439,2375(Y) � Z

9 V sum1208,8223

✓
V sum1388,3126

⇣
Z + 1 � V length(Z)

⌘
�

V length
⇣
V length(X) � X � Y

⌘
� 0.88526 + Y � V sum4936,7055(X �

0.11474)
◆

10 V sum1141,1165

"
Z � V sum1976,2986(Y) �

V length
✓
V sum2124,3061

⇣
V sum264,4844

�
V sum1976,5528(X)

�⌘◆
#

15 X
Z � V norm2744,11842(Z)

16 V max1076,1414
�
X � Y � V length(Z � Y)

�

17 V norm1979,6693(Y) + V norm8258,10818
⇣
V norm1979,7259(Y) + 2X

⌘
+

V norm1979,9757(Y) + V norm1979,13190
⇣
V norm1979,7259(Y)

⌘
�

V sum5887,12482(Y)
21 V dist1226,14806(Z) � Z

The experimental results confirmed that VE GP: (i) did not produce overfitted mod-

els; (ii) achieved good performance in accuracy, specificity, and sensitivity; (iii) did

not su↵er any genetic drift phenomena. As for the comparison findings, VE GP out-

performed the seven standard feature engineering approaches and the six deep learning

approaches in terms of win/tie/loss over the 25 handwriting tasks analyzed. Finally,

VE GP has generated small and simple predictive models that can be understood by

domain experts and provide them with useful insights.

Future work will focus on investigating several aspects. First, we will explore

the possibility of selecting only some of the 25 tasks used and then combining the

responses provided by the models trained on the selected tasks. Second, we will assess

the performance of VE GP models trained on several tasks at the same time. Third, we

will extend the function set with problem-specific functions considering handwriting

dynamics, e.g., velocity. Fourth, we will use regularization techniques such as soft

26



Table 6: Comparison results with feature engineering-based approaches.
Task # VE GP DT GNB LDA LR LVQ MLP SVM

1 0.67 0.58 + 0.63 ⇡ 0.61 + 0.63 + 0.62 + 0.62 + 0.62 +
2 0.68 0.67 ⇡ 0.70 ⇡ 0.71 ⇡ 0.72 - 0.67 ⇡ 0.69 ⇡ 0.73 -
3 0.67 0.70 ⇡ 0.69 ⇡ 0.70 ⇡ 0.70 ⇡ 0.67 ⇡ 0.66 ⇡ 0.69 ⇡
4 0.63 0.64 ⇡ 0.70 - 0.65 ⇡ 0.68 - 0.67 - 0.63 ⇡ 0.70 -
5 0.67 0.66 ⇡ 0.73 - 0.68 ⇡ 0.69 ⇡ 0.66 ⇡ 0.66 ⇡ 0.66 ⇡
6 0.68 0.71 ⇡ 0.71 ⇡ 0.68 ⇡ 0.73 - 0.69 ⇡ 0.69 ⇡ 0.70 ⇡
7 0.77 0.69 + 0.72 + 0.75 ⇡ 0.75 ⇡ 0.71 + 0.73 + 0.76 ⇡
8 0.74 0.67 + 0.72 ⇡ 0.73 ⇡ 0.75 ⇡ 0.74 ⇡ 0.70 ⇡ 0.76 ⇡
9 0.77 0.68 + 0.73 + 0.72 + 0.72 ⇡ 0.69 + 0.70 + 0.74 ⇡

10 0.78 0.60 + 0.67 + 0.66 + 0.69 + 0.65 + 0.64 + 0.68 +
11 0.77 0.62 + 0.62 + 0.62 + 0.65 + 0.61 + 0.63 + 0.63 +
12 0.75 0.63 + 0.59 + 0.65 + 0.63 + 0.62 + 0.60 + 0.61 +
13 0.73 0.63 + 0.66 + 0.67 + 0.68 + 0.65 + 0.66 + 0.68 +
14 0.65 0.67 ⇡ 0.59 + 0.62 + 0.64 ⇡ 0.68 ⇡ 0.72 - 0.61 ⇡
15 0.74 0.74 ⇡ 0.71 ⇡ 0.68 + 0.74 ⇡ 0.71 ⇡ 0.69 ⇡ 0.71 ⇡
16 0.70 0.75 - 0.73 ⇡ 0.69 ⇡ 0.74 ⇡ 0.73 ⇡ 0.73 ⇡ 0.75 -
17 0.73 0.71 ⇡ 0.70 ⇡ 0.71 ⇡ 0.72 ⇡ 0.73 ⇡ 0.72 ⇡ 0.71 ⇡
18 0.81 0.61 + 0.57 + 0.69 + 0.69 + 0.68 + 0.72 + 0.70 +
19 0.67 0.69 ⇡ 0.55 + 0.72 - 0.71 - 0.72 - 0.69 ⇡ 0.72 -
20 0.67 0.66 ⇡ 0.65 ⇡ 0.68 ⇡ 0.66 ⇡ 0.68 ⇡ 0.66 ⇡ 0.67 ⇡
21 0.65 0.66 ⇡ 0.67 ⇡ 0.72 - 0.73 - 0.70 ⇡ 0.72 - 0.71 -
22 0.73 0.69 ⇡ 0.67 + 0.70 ⇡ 0.67 ⇡ 0.70 ⇡ 0.67 ⇡ 0.69 ⇡
23 0.80 0.82 ⇡ 0.69 + 0.70 + 0.74 + 0.73 + 0.71 + 0.74 +
24 0.71 0.67 ⇡ 0.67 + 0.68 ⇡ 0.71 ⇡ 0.73 ⇡ 0.69 ⇡ 0.69 ⇡
25 0.69 0.69 ⇡ 0.68 ⇡ 0.71 ⇡ 0.72 ⇡ 0.68 ⇡ 0.69 ⇡ 0.70 ⇡

win/tie/loss – 9/15/1 12/11/2 10/13/2 7/13/5 9/14/2 9/14/2 7/13/5

target and functional complexity reduction [41] to improve the generalization ability

of the trees generated by VE GP. Finally, we will test the e↵ectiveness of VE GP in

dealing with di↵erent types of time series data, e.g., those from wearable sensors. This

data type is currently largely available and needs e↵ective machine learning techniques

to be processed.
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Table 7: Comparison results with deep learning approaches.

Task # VE GP On-paper In-air & on-paper
IV3 R50 V19 IV3 R50 V19

1 0.67 0.52 + 0.59 + 0.56 + 0.55 + 0.55 + 0.55 +
2 0.68 0.61 + 0.59 + 0.68 + 0.66 ⇡ 0.64 + 0.70 -
3 0.67 0.55 + 0.61 + 0.58 + 0.62 + 0.63 + 0.62 +
4 0.63 0.73 - 0.70 - 0.69 - 0.71 - 0.66 - 0.72 -
5 0.67 0.68 ⇡ 0.64 + 0.67 ⇡ 0.67 ⇡ 0.65 ⇡ 0.71 -
6 0.68 0.63 + 0.57 + 0.62 + 0.70 - 0.66 ⇡ 0.73 -
7 0.77 0.65 + 0.58 + 0.59 + 0.65 + 0.64 + 0.72 +
8 0.74 0.65 + 0.67 + 0.68 + 0.67 + 0.72 ⇡ 0.68 +
9 0.77 0.62 + 0.62 + 0.69 + 0.71 + 0.62 + 0.67 +
10 0.78 0.65 + 0.60 + 0.68 + 0.62 + 0.72 + 0.65 +
11 0.77 0.60 + 0.65 + 0.60 + 0.67 + 0.70 + 0.61 +
12 0.75 0.61 + 0.63 + 0.60 + 0.61 + 0.55 + 0.57 +
13 0.73 0.63 + 0.59 + 0.63 + 0.60 + 0.56 + 0.65 +
14 0.65 0.66 ⇡ 0.58 + 0.64 ⇡ 0.64 ⇡ 0.66 ⇡ 0.65 ⇡
15 0.74 0.62 + 0.58 + 0.61 + 0.64 + 0.59 + 0.67 +
16 0.70 0.59 + 0.60 + 0.64 + 0.67 + 0.64 + 0.72 -
17 0.73 0.58 + 0.53 + 0.67 + 0.65 + 0.63 + 0.70 +
18 0.81 0.62 + 0.56 + 0.59 + 0.57 + 0.53 + 0.62 +
19 0.67 0.68 ⇡ 0.61 + 0.70 - 0.68 ⇡ 0.61 + 0.69 -
20 0.67 0.55 + 0.57 + 0.70 - 0.70 - 0.60 + 0.68 ⇡
21 0.65 0.68 - 0.66 - 0.65 ⇡ 0.67 - 0.59 + 0.67 -
22 0.73 0.49 + 0.53 + 0.57 + 0.62 + 0.61 + 0.73 +
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