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ABSTRACT: Iron is a fundamental metal involved in many cellular and biological processes in all organisms, humans 

included. Iron homeostasis is finely regulated both systemically and at the level of the Central Nervous System (CNS) 

to avoid its imbalance; indeed, iron excess is extremely toxic for cells and triggers detrimental oxidative stress increase. 

Nevertheless, factors such as genetics, environment, and aging can alter the normal iron metabolism leading to 

diseases, including neurodegenerative disorders such as Alzheimer's disease (AD). AD is the most widespread 

neurodegenerative disorder of the CNS. Although the precise pathogenesis of AD is not clarified yet, different studies 

conducted both in mouse models and in patients reported brain iron accumulation, resulting in cognitive, memory, 

and motor decline. Moreover, the expression of many proteins involved in iron metabolism appears to be altered in 

the brain, leading to iron deposition and promoting AD progression. In the context of AD, amyloid beta (Aβ) and tau 

hyperphosphorylation, the two hallmarks of the disease, can promote brain iron deposition and subsequent neuronal 

death. Indeed, although the mechanism of neuronal loss is not fully understood, several evidence demonstrated the 

involvement of the iron-dependent form of cell death defined as “ferroptosis”. In this review, we deepened about the 

role of iron and iron deregulation in the CNS with a particular focus on its involvement in the pathogenesis of AD. 

We also discussed the potential role of ferroptosis as a new pathological mechanism related to dementia. Finally, we 

reviewed recent strategies for treating AD based on the use of iron chelators, antioxidants and ferroptosis inhibitors, 

paying close attention to iron disorders and the development of new drugs capable of preventing AD. 
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1. Introduction 

 

The relevance of iron to nearly all living organisms is 

indisputable. Iron is the most physiologically copious 

transition metal, and it is required in various fundamental 

biological processes essential for life. Indeed, iron is 

critical to physiological cellular homeostasis since it 

works as a cofactor for proteins involved in essential 

(ATP production, DNA biosynthesis/repair, cell division) 

and specialized (oxygen transport, neurotransmission) 

cellular functions. A commonly shared property among 

transition metals, including iron, is their ability of 

interconversion between the divalent cation or ferrous 

(Fe2+) and trivalent cation or ferric (Fe3+) states [1]. The 

ability to accept and donate electrons makes iron an 

essential component of oxygen-binding molecules 

(Hemoglobin and Myoglobin), cytochrome, in the 

electron transport chain and as a cofactor in a variety of 

enzymes. However, this property turns iron also into an 

extremely potentially harmful metal. Indeed, under 

aerobic conditions iron can readily catalyze the generation 

of toxic radicals through the Fenton reaction, in which 

hydrogen peroxide (H2O2) is converted into the highly 

reactive hydroxyl radical (·OH), which can damage 

membrane lipids, proteins, and DNA, and cause cell death 

and tissue damage [2]. This Janus-faced effect is related 
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to disorders characterized by either iron excess or 

deficiency and altered distribution. 

Iron balance is controlled on the one hand by dietary 

uptake and absorption, on the other hand by iron release 

from recycling macrophages and hepatocytes; however, 

the physiological mechanism of iron excretion is not 

regulated [3]. Therefore, iron can be deposited in specific 

tissues with age.  

In the aging brain, iron accumulates in regions which 

are involved in neurodegenerative disorders, such as the 

cerebral cortex, hippocampus, and striatum [4-6]. In the 

Central Nervous System (CNS), the maintenance of 

balanced iron levels is crucial, since its dyshomeostasis 

leads to oxidative stress, inflammatory response with 

consequent damage, cell death, and, finally, neurological 

diseases [7]. Recently, it has been described a new type of 

iron-dependent cell death caused by iron overload: 

“ferroptosis” [8]. This process could be a new plausible 

mechanism inducing neuronal death in neurodegenerative 

diseases, such as Alzheimer’s disease (AD) [9].  

In this review, we discuss the mechanisms of iron 

regulation/deregulation during healthy aging and 

neurodegeneration, with a particular focus on AD. 

Moreover, the hypothesis of ferroptosis driving 

neurodegeneration and the targeting of ferroptosis as a 

potential therapeutic target, are elaborated.  

 

2. Iron metabolism  

 

2.1 Iron absorption, storage and excretion 

 

Iron intake, in the form of heme and non-heme iron, 

occurs through the diet. Only 1-2 mg of iron is assimilated 

daily in the gut and the same amount is lost in the urine, 

feces, sweat and sloughed cells. Macrophages store iron 

and recycle it from the destruction of senescent red blood 

cells. The reuse of iron by macrophages is essential in the 

process of erythropoiesis as it provides approximately 20-

25 mg of iron per day [10]. Heme iron is introduced into 

the enterocytes via a Heme carrier protein 1 (HCP1), a 

heme receptor localized on the brush border of intestinal 

cells. Heme is broken up into free iron and biliverdin by 

heme oxygenase (HMOX). Once released, iron then 

enters the low-molecular weight pool and is transferred 

outside from the enterocyte in the same way as inorganic 

non-heme iron. HCP1 and the major transport facilitator 

for feline leukemia virus, subgroup C (FLVCR), have 

been shown to export cytoplasmic heme in human 

erythroid cells, suggesting that intact heme may also be 

conducted out of the enterocyte [11]. Inorganic iron is 

absorbed by duodenal enterocytes via the Divalent Metal 

Transporter 1 (DMT1) [12] after reduction of iron from 

ferric (Fe3+) to ferrous (Fe2+) by duodenal cytochrome b 

(DcytB) localized in the apical membrane of enterocytes 

[13]. The fundamental role of DMT1 in intestinal iron 

intake has been proven by using animal models with 

intestine deletion of DMT1 that provoke postnatal anemia 

and systemic iron reduction [14].  

Depending on the body needs, in enterocytes, non-

used iron can be kept by ferritin, a major iron storage 

protein, or exported to bloodstream by Ferroportin1 

(Fpn1), the only iron exporter [15]. The exported ferrous 

iron is then oxidated to ferric iron by Hephaestin (HEPH), 

a membrane ferroperoxidase [16] and binds to circulating 

plasma Transferrin (Tf) [17]. 

Holo-transferrin (Tf-Fe2+) binds to Transferrin 

Receptor 1 (TfR1) on the cell surface and is internalized 

through a receptor-mediated endocytosis. Iron in the 

endosome is released from Tf and reduced by 

metalloreductase, Six transmembrane epithelial antigen of 

the prostate 3 (Steap3) [18]. After reduction, Fe2+ is 

transported into the cytosol by DMT1 or ZRT, IRT-like 

protein  (ZIP14) [19]. Both apo-Tf and TfR1 return to the 

cell surface, where the iron-depleted Tf is released 

allowing TfR1 to bind other iron-loaded Tf for another 

round of internalization. 

 

2.2 Systemic iron homeostasis: Hepcidin-Ferroportin1 

(Hepc-Fpn1) axis 

 

The key regulator of systemic iron homeostasis is 

Hepcidin (Hepc) a small peptide of 25 amino acids, 

secreted by liver hepatocytes. Hepc secretion is regulated 

at the transcriptional level by different stimuli including 

systemic iron availability, liver iron stores, hypoxia, 

erythropoietic activity, and inflammatory/infectious states 

[20]. Physiologically, in iron overload conditions Hepc is 

upregulated, displaying a regulatory response to iron 

overload, while during iron deficiency condition the Hepc 

synthesis is reduced. Hepc regulates iron export to the 

plasma via lysosomal degradation of the iron exporter 

Ferroportin1 (Fpn1) in enterocytes, macrophages and 

hepatocytes [21]. The mechanism of action of Hepc-Fpn1 

pathway implies that when Hepc levels are low (iron-

deficiency states), Fpn1 levels and iron release by 

macrophages and duodenal crypt cells are up-regulated. 

In contrast, when Hepc levels are high, Fpn1 is 

downregulated resulting in iron retention within these 

cells.  

Different hemochromatosis proteins are involved in 

Hepc regulation: hereditary hemochromatosis protein 

(HFE), Transferrin receptor type 1 and 2 (TfR1 and 

TfR2), Hemojuvelin (Hjv), bone morphogenetic protein 

(BMP). These proteins coordinate the SMAD pathway 

signaling through the binding of Bone morphogenetic 

proteins to their receptors [22].  

In particular, Bone morphogenetic protein 2 (BMP2), 

BMP6 and two types of BMP receptors, type I (BMPRI) 



 Mezzanotte M., et al.                                                                          Brain iron and ferroptosis in AD 

   

Aging and Disease • Volume 16, Number 3, June 2025                                                                              3 

 

and type II (BMPRII) are involved in this pathway 

activation. BMP2 and BMP6, the iron dependent proteins, 

work as a heterodimer activating Hepc in vivo [23].  

When iron levels are high, the BMP6 expression 

increases and binds to BMP receptors, BMPR1-2, on the 

surface of hepatocytes in presence of the co-receptor 

Hemojuvelin (HJV). BMP6 activates the signal 

transduction through SMAD1/5/8 phosphorylation 

(pSMADs), the formation of a complex with SMAD4 

(pSMADs/SMAD4) that translocates into the nucleus 

where it activates HEPC gene transcription [24]. On the 

other hand, in conditions of low iron levels, Hepc 

expression is inhibited. Transmembrane serine protease 

matriptase 2, codified by TMPRSS6 gene [25] is the key 

protein involved in this mechanism. It downregulates 

BMP/SMAD signaling to Hepc since it cleaves and forms 

a soluble form of Hjv, one of the Hepc positive regulators, 

inactivating it [26]. 

Serum iron level can stimulate Hepc in a BMP6 

independent way that involves saturated Tf, marker of 

increased iron availability. HFE, TfR1 and TfR2 are 

involved in this signal transduction too. 

When Transferrin saturation increases, the SMAD 

1/5/8 phosphorylation is induced by a mechanism 

involving HFE protein [27]. Since HFE competes with Tf 

for binding to TfR1, when circulating holo-transferrin 

raises, HFE dissociates from TfR1 and it is able to 

interacts with TfR2 and HJV in order to induce BMP-

SMAD signaling to Hepc [28].   

In addition to iron, Hepc expression is induced by 

inflammatory/infection state. Indeed, interleukin-6 

(IL6)/Janus Kinase 2 (JAK2) pathway is the main 

pathway that takes place in induction of Hepc promoter in 

inflammatory conditions [24]. Moreover, Hepc is 

controlled by negative regulators: Erythroferrone (ERFE) 

and Platelet-derived growth factor-BB (PDGF-BB) are 

candidate factors of Hepc inhibition exerted when 

erythropoiesis is compromised or in hypoxic conditions, 

respectively [29-31]. Focusing on ERFE, which is 

produced by erythroblasts in response to erythropoietin, it 

has been demonstrated that its deletion in an animal model 

of thalassemia intermedia (Th3/+) restored Hepc levels 

and, as consequence, iron levels in the liver and spleen of 

Th3/+ animals [31]. 

 

2.3 Intracellular iron metabolism: the IRE/IRP system 

 

Cellular iron homeostasis is highly regulated by post-

transcriptional mechanisms which control the expression 

of proteins involved in iron intake, release and storage, 

which are mainly regulated by the iron response element–

iron regulatory protein (IRE–IRP) system. Several 

mRNAs that regulate iron homeostasis contain iron-

responsive elements (IREs), a stem-loop structures 

located at the 5’- or 3’- untranslated regions (UTRs) 

flanking their coding sequence (CDS). IRE elements are 

bound by two functionally similar iron regulatory 

proteins, IRP1 and IRP2 [32]. Depending upon whether 

the IRE elements are located in the 5’-UTR or in the 3’-

UTR, and if the levels of iron are low or high, the IRE–

IRP interaction has opposite effects on the target gene 

expression. IRE/IRP complexes within the 5′UTR of an 

mRNA e.g. Ferritin H and L (Ft-H and L),  Aconitase 2 

(ACO2), FPN1 and Amyloid Precursor Protein (APP) 

inhibit translation, whereas IRP binding to IREs in the 

3′UTR of TFR1 mRNA prevents its degradation [29]. 

In low iron states, IRP1 and 2 increase iron uptakes by 

stabilizing TfR1 mRNA and blocking iron storage and 

export by suppressing Ferritin and Fpn1. This homeostatic 

response mediates raised cellular iron intake from Tf and 

prevents the formation of Ferritin, useless in iron 

deficiency. On the contrary, in condition of iron overload, 

the lack of bind IRP-IREs induces iron storage (Ferritin) 

and export (FPN1) [33].  

 

3. Brain Iron  

 

The brain presents several peculiarities that make it 

unique, also regarding iron metabolism. Indeed, brain iron 

is involved in a variety of neurological processes such as 

myelination of axons, neuronal cells division and 

dopaminergic neurotransmitters synthesis, especially in 

the synthesis and signaling of monoamines [34]. It acts as 

a cofactor for proteins such as phenylalanine hydroxylase, 

tyrosine hydroxylase, and tryptophan hydroxylase [35]. 

Iron is present in different cells types and areas, from 

neurons to astrocytes and oligodendrocytes, in the 

interstitial space, in the soma and in the processes of nerve 

cells [36]. As in peripheral organs, increased brain iron 

levels work as a potent neurotoxin; indeed, iron produces 

toxic radicals which cause damage [37] and can lead to 

Neuro Degenerative Diseases (NDDs) [36]. The brain, 

and in general the CNS, is highly susceptible to free 

radicals for two main reasons: i) the brain is not 

particularly rich in antioxidants, ii) it uses high oxygen 

levels and it contains a high concentration of oxidizable 

polyunsaturated fatty acids [38].  

 

3.1 Iron import/transport across the BBB 

 

The blood-brain barrier (BBB) represents an efficient 

protective filter for the brain, which protects it against the 

passage of potentially harmful molecules. The BBB 

separates also brain iron homeostasis from the systemic 

one. Indeed, in condition of systemic iron accumulation, 

like hemochromatosis, the cellular damage related to iron 

is not reflected at the level of the CNS [39], since BBB 

regulates iron entry inside the brain. 
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Iron uptake in the brain occurs through Transferrin 

Receptor 1 (TfR1) that is expressed on the luminal side of 

brain capillaries. TfR1 binds circulating transferrin (Tf-

Fe2) to favor iron internalization into brain microvascular 

endothelial cells (BMVECs) through TfR1-mediated 

endocytosis mechanism [6]. Iron is released into the 

cytoplasmic space and exported at the abluminal 

membrane level by unknown pathways that could involve 

Fpn1 [40]. Fpn1 can export Fe2+ out of the capillary 

endothelial cells where, by the action of Cerulosplamin 

(CP), Fe2+ is oxidized to Fe3+ [41]. Into intracellular and 

cerebrospinal fluids, the Tf-Fe complex can bind TfR1 

receptor on the surface of nerve cell membranes, as 

consequence iron is released and the resulting apo-TF can 

enter into the blood circulation through arachnoid villi 

[36]. Also in the brain  Fpn1 is regulated by the Hepc 

expressed in mature astrocytes, oligodendrocyte [42] and 

neurons both in human [43] and in mouse [44], where it 

covers a role in controlling of iron amount  [45]. Recently, 

we and other demonstrated that there is an endogenous 

cerebral Hepc expression and that it is regulated by the 

levels of iron in the brain itself  [4-6, 46]. However, it 

could also be that the brain Hepc comes from liver [42] 

since the peptide size [47] and its amphipathic cationic 

chemical structure [48] would allow it to cross the BBB. 

 

 
 

Figure 1. Iron homeostasis and dyshomeostasis. (A) Normal state: circulating iron can cross the BBB through its binding 

to transferrin and through the mechanism of endocytosis it is absorbed by endothelial cells that express the Transferrin 

Receptor 1 (TfR1). Once in the brain, iron is absorbed by Divalent metal transporter 1 (DMT1) and continually moves 

between astrocytes, neurons, oligodendrocytes, and microglia. The mechanism of iron uptake in neurons and microglia is 

mediated via transferrin receptors. Ferric iron can be stored in a safe way inside the ferritin shell or can be exported from 

cells involved in the iron exporter, Ferroportin1 (Fpn1), present in all cell types. (B) Aging and neurodegeneration: during 

aging and neurodegeneration the BBB damage can induce an increase of iron entry with a consequence alteration of iron 

metabolism in the brain with the accumulation of redox-active ferrous iron in all brain cells. This is accompanied by microglia 

activation, astrogliosis and neuron degeneration. This could be attributed to alterations both at the level of expression and 

functions of important regulatory proteins such as Ferritin and Ferroportin1, which, being unable to export iron from cells, 

increases its accumulation and consequently the labile iron content. At the microglial level, it can cause a release of pro-

inflammatory Cytokines with an increase of microglia activation. Overall, brain iron deposition can promote oxidative stress 

that induces neurodegeneration. Color legend: Astrocytes in green; Microglia in orange and neurons in blue. Inkscape 

software (Free vector graphics editors) was used to create the image. 

3.2 Brain iron accumulation  

 

Brain iron homeostasis should be carefully protected to 

avoid neurotoxicity. Despite this, conditions closely 

related to aging, such as inflammation and BBB damage 

[49], can be the cause of misdistribution and imbalance of 

iron in this organ [50, 51]. Therefore, the process of aging 

is a suitable model to study iron metabolism alteration 
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also found in NDDs [52]. Indeed, aging is the leading 

cause of neurodegeneration and aged-dependent brain 

iron accumulation could result from a change in iron 

proteins levels that impair its homeostasis (Fig. 1). In this 

context, various researchers have confirmed that iron, 

Transferrin and Ferritin levels are altered during   aging in 

human astrocytes and oligodendrocytes [53]. 

Ferritin, the “saving protein” is successfully related to 

iron overload: if on one hand, under conditions of cellular 

iron demand, ferritins can release iron to be used for 

metabolic processes, on the other hand it can store iron in 

the cell to reduce cell damage and oxidative stress [54]. In 

humans three isoforms of ferritin are present encoded by 

three different genes: FTL gene which encodes the 

cytosolic Light chain (FtL), FTH gene coding for the 

cytosolic Heavy chain (FtH) and the intron-free gene 

FTMT involved in the encoding of mitochondrial ferritin 

(FtMt) [55]. Cytosolic ferritin composition is made of 24 

chains of Heavy (H), with ferroxidase activity, and Light 

(L) isoforms able to facilitate iron hydrolysis and 

mineralization [56]. The two chains co-assemble to form 

heteropolymers with a specific ratio depending on the 

organ/tissue type [57]. It has been demonstrated that there 

is a quite high level of FtH chain compared to FtL chain 

in younger individuals, while ferritins heteropolymers 

increase with age in the frontal cortex, caudate, putamen, 

substantia nigra and globus pallidus [58]. The same ratio 

were observed in rats’ brains [59]. Instead, the 

mitochondrial ferritin subunit precursors are channeled 

inside the mitochondria, where after cleavage of the N-

terminal leader sequence, the mature subunits assemble to 

form a homopolymers composed by 24 subunits of FtMt 

[60]. In spite of this difference, from a functional and 

structural point of view, mitochondrial ferritin is similar 

to cytosolic ferritin; once iron is internalized in 

mitochondria, it can be stored in mitochondrial ferritin 

(FtMt), to avoid ROS production through Fenton reaction 

[61, 62]. FtMt expression depends on the tissue, and it is 

mostly expressed in testis and brain [61, 63]. FtMt 

homopolymers can incorporate mitochondrial iron. The 

increase of FtMt determines a passage of iron from 

cytosol to the mitochondria that induces mitochondrial 

iron accumulation with a consequent reduction of 

cytosolic iron availability [61]. Therefore, FtMt increased 

expression is indicative of disruption of cellular iron 

homeostasis, but at the same time it suggests that FtMt can 

cover an important role in controlling systemic iron levels.  

 

3.3 Iron metabolism in the nervous tissue  

 

The mechanism of iron uptake in the brain follows the 

same route as the systemic one. The exact mechanism of 

iron import from blood to brain parenchyma via Blood 

Brain Barrier (BBB) is not fully understood but there are 

two plausible hypotheses. The first predicts that iron can 

be transported into the brain interstitium through a process 

of receptor-mediated transcytosis of iron-loaded 

transferrin (holo-Tf). In this model holo-Tf can cross the 

cytosol of brain capillary endothelial cells (BCECs) of the 

BBB to be directly released into the brain [64]. The 

second hypothesis provides the endocytosis mechanism of 

the holo-Tf-TfR1 complex. After endosome acidification, 

iron is dissociated from Tf and only after its reduction in 

Fe2+, it can be transfer from endosomal membrane into the 

cytosol via DMT1 [65] which will be used for normal 

neuronal metabolism and partly stored in ferritin in order 

to protects neurons to excess of iron [66]. In condition of 

neuronal iron deficiency, the lysosomal ferritin 

degradation allows the release of iron to compensate its 

deficiency to the physiological needs of the neurons [67, 

68]. 

The iron export from neurons is mediated by Fpn1 

through Fpn1/Hephaestin (Heph) and Fpn1/ 

Ceruloplasmin (Cp) pathway [69, 70]. It has been 

demonstrated that alterations in this pathway can induce 

iron retention and, consequently, memory damage [71, 

72].  

Neuronal iron homeostasis is maintained and 

supported by glial cells, astrocytes and microglia. Both 

astrocytes and microglia express TfR1 and DMT1 which 

mediate iron influx from BMECs and the brain 

interstitium controlling iron amount in neurons [70, 73]. 

In particular, astrocytes are able to resist metal-induced 

toxicity [74], and they act as a support for the maintenance 

of optimal neuronal functions [75]. However, even though 

the astrocytes are more resistant to iron toxicity than 

neurons and oligodendrocytes, in an environment with 

high iron levels, the increase of glial fibrillary acidic 

protein (GFAP) was found [74]. In condition of iron 

overload, astrocytes activation induces the release 

antioxidant factors [76] and inflammatory mediators, that 

for example, in the context of AD can induced an 

oxidative state which enhances the Aβ and tau formation 

[77]. Moreover, in condition of iron deficiency, astrocytes 

and microglia are able to release iron bound to ferritin and 

to support oligodendrocytes, where TfR1 is absent [78], 

in the myelination processes [79]. On the other hand, in 

condition of iron overload the oligodendrocytes, can 

overexpress ferritin providing an important antioxidant 

defense for neurons [80]. 

Microglia is the major iron-responsive cell in the 

CNS; in condition of iron overload microglia is activated 

[81] with evident increase of the soma volume and the 

reduction of the processes’ length [82]. Microglia 

activation is induced by iron through the release of 

proinflammatory cytokines mediated by the nuclear 

factor-κB (NF-κB) [81], which by induction of ferritin-

light chain (FtL) upregulation, causes iron retention. This 
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mechanism has been observed also in AD, where in 

condition of iron overload, microglia is activated and is 

able to sequester iron [83].  

Interestingly, microglia activation can promote also 

the release of lactoferrin (Lf) which is able to bind APP 

[84] promoting the increase of IL-1β expression in 

microglia in condition of iron overload, intensifying the 

proinflammatory effects [85]. 

Exposure of microglia to interferon (IFN) γ and Aβ 

promote an inflammatory phenotype accompanied by iron 

retention and reduction of both phagocytic and 

chemotactic ability. In the same study, microglia isolated 

from APP/PS1 mice also show an iron-retentive 

phenotype with a reduction of Aβ phagocytosis [86]. 

 

3.4   Iron accumulation within the cell: focus on the 

role of mitochondria 

 

Nervous tissue is particularly rich in mitochondria, 

fundamental organelles for the production of energy, 

devoted to neuronal communication/circuits. Indeed, the 

normal physiological processes of the cells in general and 

of the nervous tissue, in particular, depend on 

mitochondrial functions.  

Interestingly, iron is an essential element for the 

maintenance of the latter, and an incorrect functioning of 

iron metabolism in mitochondria can lead to disease [87]. 

Mitochondria are the main organelles in which iron is 

used and accumulated. In mitochondria, iron is needed i) 

for heme synthesis and ii) Fe-S cluster biogenesis [88], iii) 

as essential cofactor for enzymes involved in the 

respiratory chain and Tricarboxylic Acid Cycle (TCA), or 

iv) it is exported by the heme-carrier feline leukemia virus 

subgroup C receptor 1 (FVLCR1b) and ISC-carrier ATP 

binding cassette subfamily B member 7 (ABCB7) for the 

activity of cytosolic enzymes [89].  

The mechanism of iron uptake in the mitochondria is 

still controversial and a possible hypothesis has been 

proposed. One of these if the “kiss and run” model, 

studied in erythroid cells, in which iron (Fe2+) bypass the 

cytosol and after the fusion of transferrin (Tf)-endosomes 

with the mitochondrial membranes, iron can be 

internalized [90]. Authors demonstrated by time lapse 

confocal microscopy the co-localization of Tf vesicles and 

mitochondria [90].  

Another study suggests that, after Fe2+ release by 

endosomes, iron is complexed to cytosolic chaperones 

which act as iron chelators, until the complex is 

transported to mitochondria. This theory came from 

Shvartsman and colleagues, who studied mouse 

cardiomyocytes treated with non-Tf-bound iron showing, 

through the use of specific iron chelators, that 

mitochondrial iron absorption is not obstructed [91]. It 

cannot be excluded that the mitochondrial iron release 

mechanisms are specific to the cell type. Related to this, 

it was be demonstrated that Transferrin receptor 2, the 

homologous of TfR1 [92], mainly expressed in 

hepatocytes, it is also expressed in nigral dopamine 

neurons. Interestingly, the complex transferrin/transferrin 

receptor 2 (Tf/TfR2), mediates iron import inside 

mitochondria of nigral dopamine neurons [93]. This 

because it has been identified in the TfR2 gene a 

mitochondrial targeting sequence that explained the TfR2 

localization in both the plasma membrane and 

mitochondrial inner membrane of nigral dopamine 

neurons in vivo.  

Furthermore, in vitro experiments demonstrated that 

TfR2 can deliver iron into the mitochondria since the lack 

of TfR2 reduced iron uptake into these organelles [93]. 

Noteworthy is the presence of transporters, 

mitoferrins (Mfrn 1/2), located in the inner mitochondrial 

membrane of mammalian cells which transport iron (Fe2+) 

from the intermembrane space to the matrix. While the 

Mfrn 1 is more expressed in hematopoietic tissues such as 

bone marrow, spleen, and liver on the other hand the 

expression of Mfrn 2 appears to be ubiquitous [94]. 

However, it has been shown that overexpression of both 

Mfrn 1/2 does not lead to an increase in mitochondrial 

iron content assuming that regulatory mechanisms may 

bypass mitoferrins to avoid excessive mitochondrial iron 

content [95]. Both regulatory mechanisms and the 

proteins involved need further investigation. Once it has 

penetrated into the matrix, iron can be used for the iron-

sulfur cluster and heme synthesis, or it can be stored in the 

mitochondria. It is interesting to note that mitochondria, 

following the loss of electrons during oxidative 

phosphorylation, constitutes a cellular site of ROS 

production which can damage key lipids, proteins, and 

nucleic acids. In addition, since the mitochondria require 

a constant influx of iron for the iron-sulfur (Fe-S) cluster 

and heme synthesis, it is possible that further ROS are 

produced through the Fenton reaction. Mitochondria carry 

out two strategies to avoid oxidative stress: they can either 

use iron directly or they can incorporate it into the main 

storage protein, mitochondrial ferritin (FtMt) [60]. As 

described in the paragraph 3.2, the nuclear coding 

sequence of this protein is quite similar to that of the 

cytosolic form of ferritin, FtH. As well as FtH, FtMt 

oligomerizes to form a shell with ferroxidase activity 

involved in the oxidation of iron (from Fe2+ to Fe3+) and 

in order to sequester iron from reactive molecules within 

the matrix [60]. 

Moreover, mitochondria are dynamic organelles in 

constant transition between fission and fusion processes 

at the level of the outer (OMM) and inner (IMM) 

mitochondria membranes. Dynamin-Related Protein 1 

(DRP1) allows mitochondria to divide and generate small 

mitochondria (fission); while they undergo fusion 
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forming a large mitochondrion mediated by Mitofusin 1 

and 2 (MFN 1 and 2), located in the outer mitochondrial 

membrane and the dynamin-like GTPase protein Optic 

Atrophy 1 (OPA1), localized to the intermembrane space 

[96]. These processes are important to maintain both 

mitochondria functionality and morphology [97]. 

In cells, in physiological conditions, a balance 

between fission and fusion can be compromised in 

different pathologies including NDDs [98, 99]. Related to 

neurodegenerative disease, it is known that iron 

accumulation occurs in caudate nucleus, putamen, 

nucleus accumbens, globus pallidus, and substantia nigra, 

located within the brain and while the transport of iron 

into the mitochondrion is increased, its storage and release 

are limited. This inevitably causes an increase in the 

production of ROS in neurons accompanied by a 

reduction in the synthesis of both heme and Fe-S clusters, 

leading to neuronal death and therefore neurodegenerative 

diseases [100]. 

Indeed, since iron covers a predominant role in 

mitochondrial oxidative functions, the imbalance of 

fission and fusion is linked to dyshomeostasis of iron. In 

particular, in iron overload condition ROS production can 

stimulate the process of fission by upregulating DRP1 

[101, 102]. In mouse hippocampal neurons, it was shown 

that mitochondrial fission can be induced by iron 

overload, and it is associated with calcium signaling, 

which in turns can regulate DRP1 activity.  

In particular, iron levels can accelerate the activity of 

calcineurin with a consequent increase of intracellular 

calcium levels that can enhance mitochondrial fission 

process and influence neurodegeneration [103]. 

Moreover, the increase in Fe3+ provokes the reduction of 

OPA1 expression causing an increased mitochondrial 

fragmentation [104-106]. Within neurons, mitochondrial 

concentration is higher in presynaptic regions and the 

ability of mitochondria to modulate Ca2+ flux is 

fundamental for the release of neurotransmitters, 

neurogenesis, and neuronal plasticity [107]. Neurons 

depend on mitochondrial oxidative phosphorylation 

(OXPHOS) to cover their energy demands. Interestingly, 

a recent work demonstrated that when young and healthy 

liver mitochondria are injected in the hippocampus of 

aged mice, where it is know that iron level are high [4], 

there is the improvement of mitochondrial functions 

through the upregulation of the mitochondrial complex II 

protein subunit SDHB demonstrating a key role of 

mitochondrial complex II in the aging process [108]. 

Mitochondrial dysfunctions with the consequent 

energy failure and production of reactive oxygen species 

(ROS), are two events inducing neurons loss in brain 

disease [97, 107, 109]. Data in literature demonstrate that 

increased mitochondrial iron plays a key role in both the 

initiation and progression of NDDs [110]. Indeed, 

mitochondrial bioenergetics is on the one hand directly 

influenced by the deregulation of iron through the 

inhibition of the electron transport chain (ETC) while on 

the other it distributes through the increase of the 

generation of ROS. In NDDs mitochondrial dysfunction 

is detected by increased ROS content, calcium and lipid 

peroxidation such as by a morphological alteration of the 

mitochondria [111]. 

As widely debated, mitochondria have a key role in 

the regulation of cellular iron metabolism, and they appear 

to be compromised in neurodegenerative diseases. This 

increases the possibility that their dysfunction may induce 

iron dyshomeostasis causing further mitochondrial 

dysfunction. 

 

4. Iron dyshomeostasis: a new pathogenic mechanism 

in Alzheimer’s disease? 

 

AD is the most widespread age-related neurodegenerative 

disorder that induces to dementia, characterized by 

impairment in cognitive, learning functions and memory 

loss [112, 113]. The majority of AD cases are sporadic, 

and aging is considered the most important risk factor; but 

genetically speaking AD is divided into familial and 

sporadic cases with a strong prevalence in female. If on 

the one hand the familial form of AD is caused by 

mutations in three important genes APP, Presenilin1 and 

2 (PSEN1 and PSEN2) gene, on the other hand in the 

sporadic form of AD both hereditary and environmental 

factors can contribute to its onset [114, 115]. The main 

pathological features of AD in the brain are intracellular 

fibrillary tangles (NFTs) formed by hyperphosphorylated 

tau which lead to hippocampal and cortical neurons’ death 

and the extracellular accumulation of senile plaques 

derived from the aggregation of amyloid beta peptide 

(Aβ), the proteolytic product of APP  [113].  

Tau is a microtubule associated protein codified by 

the MAPT gene located on chromosome 17 [116]. 

Mutations in this gene are responsible for the familial 

form of tauopathies (e.g  Frontotemporal dementia and 

parkinsonism linked to chromosome 17, FTDP-17)[117], 

while the causes for the sporadic form (e.g AD) are 

unknown. Interestingly, metabolism alterations in 

transition metals, as iron, are known to be involved in the 

pathogenesis of tauopathies. It has been demonstrated that 

iron resides in tau tangles in postmortem brains of AD 

patients [118]. Moreover, the binding of iron to tau 

induces its conformational changes facilitating tau 

aggregation [119]. It has also been reported that iron can 

influence the pathways linked to tau 

hyperphosphorylation by regulating the activity of 

GSK3β and CDK5 [120]. If on the one hand not much is 

known about the causes of iron accumulation in 

tauopathies, on the other hand it has been demonstrated 
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that alterations in tau functions can impact on ferroportin-

mediated iron export pathway. Indeed, Ferroportin 1 is 

stabilized at the cellular membrane by APP, which itself 

is transported to the neuronal surface by tau [121]. 

Furthermore, genetic inactivation of tau in mice (tau-/-) 

blocks the trafficking of APP leading to brain iron 

accumulation [122]. Consequently, the increase of iron in 

a dysregulated system, can cause an increase of labile iron 

pool (LIP) leading to the generation of reactive oxygen 

species (ROS) which, inevitably, lead to oxidative 

damage and neuronal death. Indeed, a high incidence of 

oxidative damage has been demonstrated in AD [123], 

and the interaction between iron and tau has been shown 

to act as a source of ROS in neurons [124]. 

APP is a transmembrane protein expressed in the 

CNS involved in important brain function including 

development, memory and synaptic plasticity [125, 126]. 

The sequential cleavage of APP by secretory enzymes, β 

secretase (BACE) and γ secretase composed of 

Presenilins (PSs), generate Aβ peptide [127]. Firstly, the 

β-secretase cleave APP at the N terminus of the Aβ 

domain to produce the membrane-bound fragment C99 

and the secreted APP ectodomain APPsβ. C99 is in turn 

cleaved by γ-secretase to generate the intracellular domain 

of APP (AICD) and Aβ. The cut made by y-secretase 

produces a different Aβ isoform of 38–43 amino acids 

[128].  After its release as a monomer, Aβ and especially 

the Aβ42 isoform self-assembles to form the Aβ oligomers 

and amyloid fibrils, which aggregate in the senile plaques 

into the brain contributing to the neuronal loss and 

neurodegeneration [128, 129].  

The pathological mechanism of AD is complex and 

accumulating evidence has proved that extracellular Aβ 

deposition and intracellular accumulation of 

hyperphosphorylated tau remain the primary 

neuropathologic hallmarks for AD. However, a huge 

amount of discoveries show important pathological roles 

for other cellular and molecular processes including 

neuroinflammation [130], oxidative stress [131], 

apoptosis [132], autophagy defects [133] mitochondrial 

dysfunction [134] and metal dysregulation [135, 136]. 

Some of these events take place during Aβ deposition and 

tau hyperphosphorylation [135].  

 

4.1 Brain Iron dyshomeostasis in early, symptomatic 

AD patients and post-mortem brains 

 

It dates back to 1953 the description of increased iron 

levels in AD patients’ brains [137]. Since, the link 

between both Aβ plaques and tau tangles formation with 

iron accumulation has been studied [138, 139]. However, 

the mechanism which triggers iron accumulation in the 

brain is not yet clear. In the paragraph below we report an 

updated collection of the preclinical studies which attempt 

to decipher it. Focusing on human studies, different trials 

conducted in patients with early cognitive decline i.e. mild 

cognitive impairment (MCI) and AD patients clearly 

show that iron dyshomeostasis is a phenomenon 

associated to neurodegeneration.  

A study involving a total of 90 participants including 

30 MCI, 30 AD and 30 controls showed by susceptibility 

weighted imaging (SWI) an increase in brain iron content 

already in MCI subjects compared to controls [140]. 

Indeed, in the pre-symptomatic phase of the disease, 

accumulations of iron have been detected in the same 

regions affected by amyloid pathology: hippocampus and 

cerebral cortex [118]. Moreover, in a recent retrospective 

study were enrolled 73 subjects with normal cognition, 

158 MCI and 48 AD patients, by using QSM it has been 

shown the presence of iron in the cortex, in the cingulate 

and insular cortex of MCI and AD patients compared to 

controls [141]. With the same approach, other studies also 

showed the increase of iron levels in the putamen of MCI 

subjects [142]. Moreover, a study using Quantitative 

Susceptibility Mapping (QSM) MRI at 7 Tesla and 11-

Carbon Pittsburgh-Compound-B PET showed a strong 

association between high brain iron levels and Aβ plaques 

in MCI subjects, associating this effect with an increased 

risk for AD-dementia [143, 144]. It has been suggested 

that iron accumulation combined with Aβ plaques 

deposition can accelerate the clinical progression of the 

disease and could be used as a marker for diagnosis [144]. 

These data clearly indicate that alterations of brain iron 

levels occur in the initial phase of neurodegeneration and 

could represent an early indicator of cognitive decline 

associated with dementia. 

If on one hand soluble Aβ can bind the ferric form 

(Fe3+) of iron to avoid iron overload, this interaction is so 

strong that once it occurs, it cannot be dissociated and it 

could contribute to the production of ferrous (Fe2+) iron 

leading to the production of potent oxidant (ROS), that 

accelerates Aß deposition [145]. A study conducted in AD 

patients compared with healthy controls revealed by 

quantitative susceptibility mapping-MRI higher iron 

amount in the deep grey matter and neocortical region of 

AD patients  [146]. A meta analysis study of 300 AD 

cases [147] showed iron accumulation in cortical areas; in 

post-mortem AD brains iron accumulation was found in 

the inferior temporal cortex [148]. 

Indeed, in post-mortem AD brains there is plenty of 

evidence of increased iron levels and association to 

amyloid and tau aggregation; the use of Synchrotron X-

ray spectromicroscopy technology localized the presence 

of ferrous iron within amyloid plaques’ cores [149, 150], 

and also in association with cortical tau aggregation [151].  

All together, we can conclude that high levels of iron in 

all these brain regions are detected already in MCI 

subjects and that are associated with the motor and 
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cognitive decline typical of AD pathology, suggesting 

iron dyshomeostasis as a pathological feature of AD.  

 

4.2 Molecular mechanisms behind iron dyshomeostais 

in AD 

 

Iron dyshomeostasis described in human patients is 

largely studied in preclinical models of AD [138, 152] in 

order to decipher the mechanisms behind iron 

accumulation.  

In physiological condition APP is processed by α 

secretory enzyme to produce non-toxic forms of P3, Aβ16 

and Aβ17–40/42; on the downside, the increase of iron 

levels in cells activate the amyloidogenic pathway 

promoting APP cleavage by β and γ secretases to form 

Aβ1–40 and Aβ1–42 fragments, inducing cells damage 

and death [149]. Indeed , the presence of the iron-

responsive element (IRE) in 5’UTR of APP mRNA, 

closely linked to intracellular iron amount [153, 154], 

adds important mechanistic insights suggesting a role for 

iron in the regulation of AD-related genes transcription 

and in AD pathology. Interestingly, iron levels can 

modulate also the translation of APP through the 

regulation of the IRP binding to IRE in the 5′-UTR of APP 

mRNA, following the same mechanism of iron regulatory 

genes [153]. 

Because of this iron-mediated regulation of APP, 

when in condition of brain iron deficiency IRP1 can bind 

APP-IRE with high affinity repressing APP translation; 

the opposite occurs in iron overload conditions where 

APP translation is upregulated by virtue of IREs in the 

5’UTR mRNA with the consequent increase in Aß 

deposits generated by enhanced APP processing [153].  

Moreover, another direct link between APP and iron 

is the presence on the APP protein of a target sequence (or 

motif) that interacts with Fpn1 [155], and this can 

facilitate intracellular iron export stabilizing Fpn1 on 

human brain microvascular endothelial cells [156]. 

Furthermore, in a knockout mouse model of APP [157] 

and in patients with the Italian mutation on APP (A673V) 

[158] the silencing/mutation of APP leads to abnormal 

Fpn1 function resulting in inefficiency of neurons to 

export iron, with consequent iron accumulation, revealing 

that APP/Fpn1 plays an important role in the modulation 

of iron homeostasis in the brain [157]. In parallel, it is 

widely accepted that in the context of aging, the age-

dependent Fpn1 is downregulated [4], and also in the 

APPswe/PS1dE9 mouse model and in brain tissues of AD 

patients [72]. Moreover, in the cohort of AD patients, the 

decrease in Fpn1 levels is accompanied by cognitive 

impairment [72]. To corroborate this hypothesis Bao and 

colleagues demonstrated that deficiency of Fpn1 induce 

brain atrophy, a distinctive pathological sign in AD. 

A recent study showed that the binding of APP to β-

secretase is induced by iron accumulation promoting Aβ 

accumulation and reducing the affinity of APP/Fpn1 and 

the consequence iron export from microglia cells [159]. 

This is also closely related to what has been described in 

both AD patients and animal models in which Fpn1 is 

downregulated, resulting in intracellular iron retention 

[160]. Since Cp is fundamental for iron oxidation before 

export, functional alterations in Cp have been found in 

AD as the event leading to iron retention [161, 162]. It is 

also noteworthy that the export of iron from neurons is 

closely related to the presence on the cell membrane of the 

metalloprotein APP, which by stabilizing Ferroportin 1 

facilitates the export of iron contrary to what happens in 

APP knockdown models and in neuroblastoma SH-SY5Y 

cells, resulting in neuronal iron overload [163, 164].  

Related to Fpn1 and to the regulation of brain iron 

metabolism, the hormone Hepcidin (Hepc) covers an 

important role being expressed in cortical neurons, glial 

cells and in the brain microvascular endothelial cells 

(BMECs) [44]; moreover, Hepc can bind Fpn1 in the cell 

membrane of BMECs promoting Fpn1 internalization and 

degradation blocking the iron passage through the BBB 

into the brain [165]. In the context of AD different studies 

have demonstrated that Hepc expression levels decrease 

in AD human and in the APP-transgenic mouse [160], 

while the Hepc treatment on cultured microvascular 

endothelial cells and neurons generated a reduction of iron 

import (TfR1 and DMT1) and export (Fpn1) proteins with 

a consequence reduction of iron intake in neurons [166]. 

Moreover, in a recent study conducted on APP/PS1 mice 

model it has been demonstrated the Hepc overexpression 

in astrocytes provokes a reduction in iron levels in cortical 

and hippocampal neurons with a significant improvement 

in terms of cognitive decline and Aβ plaques aggregation. 

These lead to a reduction of oxidative stress and 

neuroinflammation and more importantly, a decreased 

neurons death [167]. Although studies of Hepc in brain 

iron regulation need to be further developed, Hepc 

potential protective role in brain iron regulation is 

becoming more evident and starts to be recognized by the 

scientific community. 

 

4.3 Molecular mechanisms of Ferroptosis 

 

The balance of physiological processes is finely tuned by 

programmed cell death, but its deregulation contributes to 

the onset of various disorders. The main process of 

controlled cell death is apoptosis together with necrosis 

and autophagy [168]. However, in AD new kind of neuron 

loss have been described: necroptosis [169] and 

ferroptosis [170]. The latter is an iron-dependent, non-

apoptotic and oxidative cell death type that was first 

described in 2012 by Dixon.  
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When iron levels increase, there is enhanced 

susceptibility to cellular death because of increased 

toxicity due to the accumulation of the metal within the 

nervous tissue. Indeed, since iron is an essential element 

of the catalytic subunit of lipoxygenase (LOX), involved 

in the oxygenation of polyunsaturated fatty acid [171], 

iron accumulation represents a crucial event in the 

generation of ROS promoting cellular death [172]. As the 

name suggests: “ferroptosis” from the Greek “ptosis”, 

meaning “fall” and Ferrum or iron, iron is involved as a 

distinctive peculiarity of this phenomenon of cell death. 

Ferroptosis gets involved in the onset and progression of 

lung, pancreas and gastrointestinal tumors, nervous 

system diseases (including NDDs, stroke and traumatic 

brain injury), ischemia-reperfusion in the liver, spleen and 

kidney injury [8, 173]. Biochemically, lipid peroxides 

cannot be metabolized, due to reduction of glutathione 

peroxidase 4 (GPX4) activity and intracellular glutathione 

depletion (GSH). Consequently, iron (Fe2+) can oxidize 

lipids resulting in reactive oxygen species (ROS) 

accumulation, accompanied by a dysregulation of 

mitochondrial structure/function, triggering ferroptosis 

[174].            

Indeed, the morphological changes at the cellular 

level due to ferroptosis are: i) cell swelling, ii) reduced or 

absent mitochondrial cristae, iii) decreased mitochondrial 

membrane density that leads mitochondrial and cellular 

membrane rupture [175]. 

By the Fenton reaction, the increase of iron in the cell 

supports lipid peroxidation and ROS production which 

triggers ferroptosis. The association between iron 

gene/metabolism and ferroptosis activation has been 

amply demonstrated. As matter of fact, TFRC silencing 

can inhibit erastin-induced ferroptosis, preventing labile 

iron pool (LIP) accumulation [176]. Moreover, silencing 

of iron-responsive element-binding protein2 (IREB2) 

through shRNA causes the alteration of FtH, FtL and      

TfR1 expression, modifying iron intake and storage [170]. 

Inside the cells, ferritin, the main iron storage protein, 

can be degraded through different ways: in the lysosome 

under iron chelation stimulus (Deferasirox) [177], in the 

proteosomal pathway induced by overexpression of Fpn1 

[178], or through an evolutionarily conserved degradation 

pathway named “ferritinophagy” that involves the protein 

Nuclear receptor Coactivator 4 (NCOA4) [67, 177]. This 

represents an important trigger in ferroptosis. 

Since the interaction between NCOA4 and ferritin is 

FtH specific during ferritinophagy [67], NCOA4 favors 

FtH-rich ferritin heteropolymers degradation over FtL 

polymers as demonstrated the rate of iron release in 

different tissues and organs. Moreover, data on transgenic 

mice expressing FtH from a tetracycline-inducible 

promoter showed that FtH expression can change 

according to iron amount, inducing an iron deficiency 

phenotype. This means that FtH regulates tissue iron 

balance.  

 

4.4 Ferroptosis in AD  

 

In the context of neurological diseases, ferroptosis covers 

an important role [179] in NDDs including Parkinson’s 

and Alzheimer’s diseases related to a potential mechanism 

of neuronal loss [72, 180]. The main markers of 

ferroptosis, iron dyshomeostasis, lipid peroxidation and 

ROS production have long been identified both in the 

brain of AD patients and in animal models [181]. 

Regarding iron metabolism pathway, even though the 

specific mechanism of iron in ferroptosis is not clear yet, 

its involvement in terms of iron dyshomeostasis is 

certainly proven. Moreover, the main features related to 

ferroptosis observed were the expression of ferroptosis’ 

markers, ACSF2 and IREB2 upregulation accompanied 

by a downregulation of GPX4 [72]. Moreover, Fpn1 

restoration and in vitro inhibition of ferroptosis 

ameliorated the neuronal death and memory impairment 

induced by Aβ1–42 [72]. This could mean that Fpn1 

downregulation not only plays a role in the induction of 

AD but also of ferroptosis in the pathogenesis of AD (Fig. 

2).  

It has been accepted that lipid peroxidation products 

drive ferroptosis and occurs preferential on 

polyunsaturated fatty acids (PUFAs) [182] present at high 

levels in the brain where it ameliorate the fluidity and 

plasticity of the membrane in order to allow the release of 

neurotransmitters and neuronal network development 

[183, 184]. The process of lipid peroxidation results to be 

high in the brain of AD and beyond is considered an early 

event in the pathogenesis of AD [185]. The co-

localization of lipid peroxidation products with Aβ it was 

discovered by Butterfield and colleagues; they 

demonstrated that Aβ peptides led to lipid peroxidation 

(indexed by HNE) in AD brains [186] with a consequence 

enhancer of APP processing [187]. 

Moreover, it was found in AD a change in several 

classes of lipid peroxidation involved in PUFA 

deoxygenation [188, 189]. In particular, it was found an 

increase of the enzymatic activity of 12/15-lipoxygenase 

(12/15-LOX) in AD patients, and it is accompanied by an 

increase of its protein amount in Triple transgenic (3xTg) 

that has negative effects on memory and learning 

capacity.  

In vivo treatment with PD146176, inhibitor of 12/15-

LOX, reverse the phenotype with a strongly decrease of 

Aβ and tau levels and aggregation and an increase of 

synaptic integrity [190]. Moreover, in a study conducted 

on APP/PS1 double mutant transgenic mice, dietary 

deuterated PUFAs, which can reduce membrane lipid 

peroxidation, reduced the concentration of lipid 
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peroxidation products as well as Aβ without shown any 

sign of spatial learning and memory impairment [191]. 

Many others fatty acid inhibitors, as well as Sphk1 and 2 

[192], CMS121 [193] exert mechanisms aimed at the 

protection from ferroptosis alleviating or improving AD-

like pathology both in patients and mice. 

 
Figure 2. Mitochondrial Iron dysregulation in Alzheimer’s disease. (A) Normal state: physiologically, the amyloid 

precursor protein (APP) can stabilize Ferroportin-1 (Fpn1) to promote iron export and Tau protein supports APP transport to 

the cell surface. Aβ is produced in soluble form during normal cellular metabolism [263]. (B) In AD: Tau is hyper 

phosphorylated and aggregated resulting in a decrease in Tau, needed for APP transport. This leads to APP cleavage and Aβ 

generation, with a consequence alteration of iron efflux through Fpn1, generating iron accumulation in cells. Moreover, the 

binding of iron to Aβ accelerates its aggregation, leading to alteration in mitochondrial membrane permeability and reactive 

oxygen species (ROS) production inside the mitochondria and iron accumulation in mitochondrial ferritin. Related to this, Aβ 

overproduction damages mitochondria causing dysfunction of mitochondrial complexes activity, leading to ROS production 

and adenosine triphosphate (ATP) depletion. ROS overproduction also induces membrane damage due to lipid peroxidation 

and triggers cell death. Inkscape software (Free vector graphics editors) was used to create the image. 

Another vulnerability factor associated to ferroptosis 

in AD is the inhibition of Gpx4, an antioxidant enzyme 

expressed in the brain. Studies have proven that Gpx4 is a 

crucial regulatory enzyme in ferroptosis-related to AD 

[194, 195].  

In particular, in a Gpx4BIKO conditional knockout 

mice model, the deletion of Gpx4 in hippocampal and 

cortical neurons, caused cognitive impairment in terms of 

memory and learning, with a marked hippocampal 

neurodegeneration, increase of lipid peroxidation and 

neuroinflammation [195] all markers associated with 

ferroptosis. In the same study, while the Gpx4BIKO fed 

with a Vitamin E deficiency diet increased hippocampal 

neurodegeneration and cognitive impairment, the 

treatment with a ferroptosis inhibitor seemed to improve 

neurodegeneration [195]. 

Therefore, the significant dysregulation of iron 

metabolism, perturbation of lipid metabolism and redox 

homeostasis suggested an early involvement of this 

pathway in AD pathology.  

Indeed, it is interesting to note that, in the brain of AD 

patients and the in vitro model of IMR-32 cells, the 

expression of mitochondrial ferritin (FtMt) was 

upregulated playing an important antioxidant role [196]. 

Conversely, in FtMt knockout mice injected with Aβ25-

35, the Aβ-induced neurotoxicity was enhanced [197]. 

Indeed, energy alteration is one of the signs of 

neurodegeneration in AD and is mostly attributable to 
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impaired mitochondrial functions. In the context of 

neurodegeneration, such as AD, mitochondrial 

dysfunction occurs with decreased ATP production, 

increased ROS production and neuronal loss. Indeed, the 

alteration of DRP1 activity is correlated to an increase of 

mitochondrial fragmentation implicated in AD [198, 199], 

but it is still unknown the mechanism by which iron 

induces mitochondrial alteration in AD. Since the 

oxidative stress is linked to Aβ production [200, 201], it 

is plausible that there is a correlation with the alterations 

of mitochondria functions and morphology. Indeed, in the 

early stage of AD, it has been identified a decreased ATP 

production in the brain [202]. In mitochondria, the 

presence of an active γ-secretase complex (involved in Aβ 

production), and of APP protein, can affect OMM and, in 

turn, can impair protein shuttle import. Moreover, Aβ is 

able to inhibit complex IV of respiratory chain, and to 

bind Aβ-bound alcohol dehydrogenase, which is involved 

in the production of ROS [203]. In addition, the Aβ-

induced toxicity is a putative cause of both mitochondrial 

dysfunction and apoptosis [204].  

Altogether, mitochondria are in the same time the 

source and target of toxic ROS: therefore, mitochondrial 

dysfunction and oxidative stress are crucial in age-related 

NDDs, as well as AD [134].  

 

5. Iron modulators: targeting iron as a potential 

therapeutic avenue to control AD course  

 

To date, the pharmacological options developed for AD 

are not curative but able to relieve the symptoms of the 

disease (i.e. β-secretase converting enzyme inhibitors) 

[205]. Recently, two anti-amyloid-β monoclonal 

antibodies, the humanized IgG1 monoclonal aducanumab 

and lecanemab have been approved by the FDA [206]. 

Both immunotherapies are promising in reducing brain 

amyloid levels and cognitive decline when applied to 

early AD patients; further studies in terms of safety and 

efficacy are ongoing [206]. However, different evidence 

suggests that the use of anti-amyloid-β therapy in the 

symptomatic phase of AD is a too delayed treatment. 

Other important aspects, not to be underestimated, are 

related to the presence of i) BBB, which can obstruct drug 

passage and can reduce the amount of drug reaching the 

brain, ii) reduction of its bioavailability due to first-pass 

metabolism, iii) the way of drugs administration but also 

iv) extensive side-effects due to site non-specificity and v) 

drugs toxicity [207]. 

It is necessary to investigate new aspects/mechanisms 

of neurodegeneration in AD using new drugs or existing 

compounds approved for other medical indications that 

can modify or prevent the disease. In this context, 

considering the amount of evidence highlighting the role 

of iron dyshomeostasis and accumulation in 

neurodegeneration, iron could represent a new interesting 

target for therapeutic approaches for AD. The process of 

drug repurposing can represent an innovative approach to 

find promising options for AD. In this perspective, 

although in clinical practice iron chelators are used in 

patients with systemic overload disease 

(hemochromatosis), beta thalassemia major, sickle cell 

anemia, myelodysplasia, and aplastic anemia [208], 

several studies showed that many iron chelators 

compounds (Table 1) have potential effect for AD 

treatment. Iron chelators could be used also in 

combination with other treatments that are more canonical 

and already know to potentially have minor but beneficial 

effects such as antioxidants, acetylcholinesterase and 

ferroptosis inhibitors. These compounds are also 

discussed below. 

 

5.1 Iron chelators 

 

Iron chelation is a complex process: a chelator should be 

able to pass the BBB and to trap iron specifically in the 

regions where iron overload occurs, without depleting 

transferrin bound iron from the plasma and to transfer it 

to other proteins such as circulating transferrin.  

Three iron chelators have been approved up to now by 

Federal Drug Administration (FDA) for the symptomatic 

treatment of NDs: Deferoxamine, Deferasirox (Exjade) 

and Deferiprone. But, while Deferoxamine and 

Deferasirox do not easily cross the BBB and bind iron in 

a dose dependent manner, the molecular structure of 

Deferiprone allows to cross the BBB and it is the drug of 

choice in the majority of clinical trials for 

neurodegenerative disorders [209-211]. 

Analyzing the three drugs more closely, the 

therapeutic effects of Deferoxamine are promising in the 

treatment of AD; this compound seems to act especially 

on extracellular iron [212] in a 1:1 ratio [213, 214] and 

can modulate the expression of different genes (hypoxia-

inducing factor, IRP-1, and APP) with a blocking effect 

on ROS production [215]. 

Indeed, an in vivo study using APP/PS1 transgenic 

mice fed with iron-enriched diet showed that after 

Deferoxamine injection, iron-dependent tau 

phosphorylation is inhibited via the CDK5 and GSK-3β 

pathways [216]. More in details, CDK5 activity is 

decreased by Deferoxamine and, as consequence, GSK-

3β is phosphorylated and inactivated, resulting in a 

decrease of tau phosphorylation. Moreover, 

Deferoxamine injection in APP/PS1 transgenic mice 

inhibits the formation of amyloid-β and it improves 

memory deficits [215]. 

Crapper and colleagues reported in a phase II clinical 

trials where intramuscular Deferoxamine administration 

reduces the cognitive decline in AD patients [217]. It was 
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also demonstrated that Deferoxamine, as well as 

Deferiprone, ameliorates BBB integrity, reducing brain 

iron overload and brain mitochondrial alterations [211]. 

However, although Deferoxamine has been approved by 

FDA, the clinical application is still tricky due to i) its 

poor bioavailability; ii) low ability to cross the BBB; iii) 

and its way of administration through injection; it 

represents one of the few clinical studies of drug 

repositioning which is potentially capable of modifying 

AD disease in terms of cognitive improvement. 

 
Table 1. List of preclinical and clinical trials testing iron chelators compounds as potential treatments for AD. 

Compounds are grouped based on the therapeutic function. The drug/molecule is indicated together with the route of 

administration, the capability or not to pass the BBB and references to preclinical or clinical trials. N/A stands for not 

available. 

 
Therapeutic 

Function 

Drug/Molecule Administration BBB 

passage 

Preclinical 

Studies 

Preclinical Results Clinical 

Trials 

Clinical 

Results 

Iron 

chelators 

 

Deferoxamine 

 

Intramuscular/ 

Subcutaneous 

 

Low 

 

In vivo 

 

In vivo: Tau 

phosphorylation, APP 

inhibition; improve 

memory deficits [215, 216]. 

 

Phase II 

[217]. 

 

Reduces the 

cognitive 

decline 

[217]. 

 

 

Deferasirox 

 

 

Oral 

 

 

Limited 

 

 

In 

vitro/vivo 

 

In vitro: apoptosis 

inhibition [219]. 

In vivo: mitigates learning 

and memory deficits 

[219];reduction in tau 

hyperphosphorylation 

[220]. 

 

 

N/A 

 

 

 

 

N/A 

 

 

 

 

Deferiprone 

 

 

Oral 

 

 

Optimal 

 

 

In 

vitro/vivo 

 

In vitro: abrogated neuronal 

cell death [222]. 

In vivo: mitigate BBB 

damage, alteration in 

mitochondrial dynamics, 

the increases of tau-

hyperphosphorylation and 

Aβ accumulation and 

reduction of dendritic spine 

[211]. 

 

 

Phase II 

ClinicalTrials.gov 

ID NCT03234686 

 

 

 

Underway 

 

 

M30 Oral Optimal 
In 

vitro/vivo 

 

In vitro: reduction of β-

amyloid plaques SH-SY5Y 

and APP-CHO cells [225]. 

In vivo: reducing in brain 

iron accompanied by a 

significantly reducing in 

brain deposition of Aβ-40 

and Aβ-42 and Aβ plaques; 

improve improves 

cognitive impairments 

[224] 

N/A N/A 

Hepcidin Intraperitoneal N/A In vivo 

 

In vivo: in APP/PS1 

double-transgenic mice 

injected with pAAV-

gfap:Hamp, induced a 

reduction of cognitive 

decline accompanied, Aβ 

plaques formation, iron 

levels, oxidative stress, 

neuroinflammation and 

neuronal death, [150]. 

N/A 

 

 

N/A 

 

 

 

Regarding the oral iron chelator Deferasirox 

(Exjade), contrary to Deferoxamine, it acts on 

intracellular iron in a 2:1 ratio [213, 218] and its ability to 

pass the BBB is improved if in combination with 

lactoferrin (Lf) [219]. The use of Lt conjugates with 

Deferasirox displayed a neuroprotective effect both in 

vitro model of PC12 neuronal cell in term of apoptosis 

inhibition but also in vivo rat model of AD [219]. 

Interestingly, the intraperitoneal administration of the 

conjugates in vivo mitigates learning and memory deficits 
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induced by amyloid pathology [219]. In a recent work the 

comparison between three different AD mice model, APP 

(Tg2576), Tau/Tau (JNPL3) and APP/Tau (Tg2576/ 

JNPL3), after Deferasirox administration showed that 

although the treatment did not affect memory and motor 

functions, but it revealed a reduction in tau 

hyperphosphorylation. The authors hypothesized that the 

drug may act by chelating iron that is the driving force on 

the tau aggregation or it could directly bind tau in order to 

prevent its aggregation [220].  

Deferiprone is another promising oral iron chelator 

able to binds intracellular iron [212] in a 3:1 ratio [213, 

221] and unlike the other two chelators it is able to readily 

cross the BBB [212]. The demonstration that also 

Deferiprone exhibits neuroprotective effect is attributable 

to a study conducted on primary neuronal cultures treated 

with ferric (Fe3+) iron, human Aβ1–40 and Aβ1–42. The 

treatment with the drug at different concentrations 

abrogated neuronal cell death [222], supporting also the 

hypothesis of the central role of iron in Aβ induced 

neurotoxicity [139]. To corroborate this hypothesis an in 

vivo study conducted on rats fed with an iron-rich diet 

demonstrated that iron overload can promote BBB 

damage causing the increase of iron in the brain, alteration 

in mitochondrial dynamics, and the increases of the two 

markers of amyloid pathology: tau-hyperphosphorylation 

and Aβ accumulation and finally the strongly reduction of 

dendritic spine. The treatment with Deferasirox or 

Deferiprone mitigates these damages [211].  

As for Deferiprone, a clinical study appears to be 

underway on the use of this drug in Alzheimer's disease 

(Deferiprone to Delay Dementia (The 3D Study) 

ClinicalTrials.gov ID NCT03234686). This is a phase 2, 

randomized, placebo-controlled, multicenter study 

focused on i) evaluating the safety and efficacy of the drug 

and whether ii) it slows cognitive decline in patients with 

prodromal AD (pAD) and Mild AD (mAD). Some new 

iron chelators, that have been tested both in vivo and in 

vitro in AD models, showed positive effects in terms of 

reduction of APP expression and Aβ deposition. Here we 

reported some crucial information about their mechanism 

of action. M30, an oral iron chelator compound, is able to 

cross the BBB and it is considered a multimodal drugs 

with double function: not only it acts as an iron chelator 

but also as inhibitor of monoamine oxidase (MAO)-A and 

-B [223]. The pharmacological effect of M30 is broad 

spectrum including neurological effects in terms of rescue 

in neuronal death and differentiation. In the context of 

AD, the administration of M30 in APP/PS1 Tg mice 

model showed reducing in brain iron accompanied by a 

significantly reducing in brain deposition of Aβ-40 and 

Aβ-42 and Aβ plaques [224]. Moreover, from a 

behavioural point of view, M30 treatment improves 

cognitive impairments as memory, learning capacity and 

anxiety [224]. All these findings are in line with in vitro 

studies on SH-SY5Y cells line and Chinese hamster ovary 

cells (CHO) transfected with the APP with the human 

Swedish mutation [225]. Interestingly, M30 

administration induced a reduction of β-amyloid plaques 

in the principal areas affected by the pathology probably 

due to a decreasing of APP levels through 5′UTR of the 

APP transcript [226]. An emergent class of new chelators 

2-amido-3-hydroxypyridin-4-one seem to be neuro-

protective against the neurotoxicity induced by β-amyloid 

aggregation. In vitro results on cortical neurons treated 

with iron (FeNTA) or amyloid-β 1–40 (Aβ1–40) shown 

as the iron chelator treatment, in a dose dependent 

manner, reversed the neuronal death induced by iron 

[227]. Last but not least, it is worth considering also the 

use of Hepcidin, the iron regulatory hormone, in AD 

treatment. Indeed, several evidence have demonstrated 

that Hepcidin can reduce iron influx by preventing iron 

overload in the CNS. In particular a study demonstrated 

that APP/PS1 double-transgenic mice injected with 

pAAV-gfap:Hamp, an astrocyte-specific Hepcidin 

expression Adeno-Associated Virus [228], showed a 

reduction of cognitive decline accompanied by a moderate 

reduction of Aβ plaques formation, iron levels, oxidative 

stress, neuroinflammation and neuronal death, in the two 

main regions affected by the pathology, cerebral cortex 

and hippocampus [167]. This protective effect is achieved 

by the fact that Hamp overexpression in astrocytes at the 

level of the BBB influences iron income in the brain and, 

at the cellular level, this impacts also in the astrocytes/ 

neuron’s crosstalk. Indeed, Hamp overexpression in 

astrocytes determines an increase of Hepcidin secretion 

resulting in a reduction of iron export and deposition in 

neurons. Consistently, FPN1 degradation in BMVECs is 

accompanied by a reduction of iron levels in neurons of 

APP/PS1 double-transgenic mice injected with pAAV-

gfap:Hamp [167]. However, it is to note that, the route for 

Hepcidin administration in the brain and its potential side-

effects need in-depth studies and further investigations 

before moving from preclinical to clinical studies.  

 

5.2 Combinatorial/second hand approaches: 

antioxidants, acetylcholinesterase and ferroptosis 

inhibitors 

 

To have an overview of drugs that have been tested in AD, 

we report below a list of compounds classified as 

antioxidants, acetylcholinesterase and ferroptosis 

inhibitors which exert benefits by acting on different 

targets or which combined with other compounds, could 

exert beneficial effects in terms of cytoprotection, 

neuroprotection and promising in the treatment of AD 

(Table 2). 
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Table 2. List of compounds acting as antioxidants, acetylcholinesterase and ferroptosis inhibitors. Compounds are 

grouped based on the therapeutic function. The drug/molecule is indicated together with the route of administration, the 

capability or not to pass the BBB and references to preclinical or clinical trials. N/A stands for not available. 

 
Therapeutic 

Function 

Drug/ 

Molecule 

Adminis

tration 

BBB 

passage 

Preclinical 

Studies 

Preclinical Results Clinical 

Trials 

Clinical 

Results 

Antioxidants  

 

Clioquinol 

(CQ) 

 

Oral 

 

N/A 

 

In 

vitro/vivo 

In vitro: can reduce secreted Aβ 

levels in cell culture by inducing 

metal-dependent activation of 

PI3K and JNK [232]. 

In vivo: reduced cerebral Aβ 

deposition without any adverse 

effects [233]. 

Phase II 

[235]. 

 

Decrease on Aβ42 in CSF 

and an increase on Zinc 

levels in the plasma 

prevented cognition 

deterioration without any 

side effects [235]. 

        

Acetylcholin

esterase 

inhibitors 

 

 

 

HLA20A N/A N/A In vitro 

 

In vitro: reversed the neuronal 

death induced by iron HLA20A 

can inhibits AChE promoting the 

release of the chelator active form, 

HLA20 capable of inducing 

neuroprotection. Reducing the 

expression of both APP and β-

amyloid aggregation [237]. 

N/A N/A 

Coumarin N/A N/A 
In 

vitro/vivo 

 

In vitro: cytoprotective effects in 

glioma cell line (U251) [240]; 

In vivo:improve cognitive 

alteration in scopolamine-induced 

AD mice [240]. 

 

N/A 

 

N/A 

        

Ferroptosis 

Inhibitors 

and 

Antioxidants 

 

 

 

 

 

 

 

Vitamin E 

 

 

 

 

 

 

 

Oral 

 

 

 

 

 

 

N/A 

 

 

 

 

 

 

In vivo 

In vivo: increase in hippocampal 

neurodegeneration and cognitive 

dysfunction in Gpx4BIKO mice 

treated withVitamin E deficient 

diet[195]. 

 

 

 

 

 

 

N/A 

Treatment of patients with 

mild-moderate AD showed 

reduction in cognitive 

decline and caregiver 

burden [241]; 

The treatment in patients 

with mild cognitive 

impairment (MCI) or AD 

prevent dementia 

progression and improve 

cognition [242]. 

 

 

Liproxstati

n1 (Lip-1) 

or 

Ferrostatin

1 (Fer-1) 

 

N/A 

 

N/A 

 

In 

vitro/vivo 

 

In vitro:in primary hippocampal 

neurons of mice induced by Aβ 

aggregation, revealed effectively 

reducing of neuronal death and 

memory impairments [72]. 

 

N/A 

 

N/A 

 

 

 

α-Lipoic 

acid (LA) 

 

 

 

N/A 

 

 

 

Optim

al 

 

 

 

In vivo 

 

In vivo: the LA treatment in 

different in vivo models improved 

cognitive alteration and memory. 

[249, 250] [251]. Moreover, in a 

triple transgenic mice of AD 

restore both glucose metabolism 

and synaptic plasticity [252, 253]. 

 

 

 

Moderate cognitive 

impairment in AD patients 

[247, 248]. 

Selenium 

(Se) 
Oral N/A In vitro 

In vitro:in SH-SY5Y 

neuroblastoma cells line 

expressing Swedish APP mutant 

Se can reduce Aβ production by 

reducing β-secretase and y-

secretase activities preventing the 

toxicity mediated by Aβ [260]. 

 

 

 

Pylot Trial 

 

 

A pilot study of 40 AD 

cases showed that after the 

oral Se revealed the Mini-

Mental Status Examination 

(MMSE) score did not 

deteriorate [261]. 

Mito Q  N/A 

In vitro 

and in 

vivo 

 

In vitro:  in cortical neurons and in 

MitoQ attenuated β-amyloid (Aβ)-

induced neurotoxicity in cortical 

neurons and also prevented 

increased production of reactive 

species and loss of mitochondrial 

membrane potential (Δψ(m). 

In vivo: in a triple transgenic 

mouse model of AD (3xTg-AD), 

N/A N/A 
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MitoQ injection prevents cognitive 

decline, oxidative stress, β-

amyloid accumulation, 

astrogliosis, synaptic loss in the 

animals’ brains [262] 
 

Clioquinol (CQ) is an antibiotic drug with moderate 

ability to chelate iron (Fe), copper (Cu) and zinc (Zn), 

termed [229, 230]. One study showed that CQ can chelate 

ions, leading to the breakdown of Aβ aggregates although 

it has not been shown that it can simultaneously prevents 

the progression of Aβ aggregation [231]. In vitro study on 

APP-transfected Chinese hamster ovary cells (CHO) 

treated with Fe, Cu or Zn showed that the CQ treatment 

can reduce secreted Aβ levels in cell culture through the 

activation of phosphoi-nositol 3-kinase and JNK [232]. In 

addition, in vivo study on Tg2576 APP transgenic mice, 

the oral CQ treatment (20 mg/kg daily for 9 weeks) 

reduced cerebral Aβ deposition without any adverse 

effects [233]. Despite these positive results, the use of the 

CQ was discontinued because it seemed to be involved in 

subacute myelo-optico-neuropathy (SMON), probably 

due to the deficiency of vitamin B12 [234]. However, in a 

pilot study of phase II conducted in AD patients revealed 

that the group of patients treated with CQ showed a 

decrease on Aβ42 in Cerebrospinal fluid (CSF) and an 

increase on zinc levels in the plasma compared to placebo 

one, improving also cognition without any side effects 

[235].  

A combinatorial activity between acetyl-

cholinesterase (AChE) inhibition and iron chelation is 

given by HLA20A. The development of this new drug is 

related to the discovery of the co-localization of AChE 

with beta amyloid which can accelerates its aggregation 

[236]. HLA20A can inhibits AChE promoting the release 

of the chelator active form, HLA20 capable of inducing 

neuroprotection [237]. The capability of the drug to 

induce neuroprotection was correlated with a reduced 

expression of both APP and β-amyloid aggregation 

induced by iron, copper and zinc [238]. 

Finally, Coumarin and its derivatives seem to work as 

potential agents in the treatment of AD [239] acting both 

as acetylcholinesteresis (AChE) inhibition and iron 

chelators [239]. Moreover, a mixed compound composed 

by hydroxypyridinone and Coumarin seems to have a 

double function: iron chelation and MAO-B inhibition. 

This new double target can be promising in AD treatment 

since this novel compound showed cytoprotective effects 

in glioma cell line (U251) and significant improve in 

cognitive alteration in scopolamine-induced AD mice 

[240].  

It is now known that ferroptosis covers an important 

role in the pathological process of AD suggesting that this 

process of programmed death, can be considered a 

potential therapeutic target for AD treatment. Especially, 

the use of ferroptosis inhibitors seems to have beneficial 

effects in clinical trials. Focusing on the ions chelators 

Desferrioxamine (DFE), in a single-blind study, the 

intramuscular injection on 48 patients affected by a 

probable AD compared to oral placebo (lecithin), or no 

treatment revealed that although there were no differences 

in the rate of deterioration or in the measures of 

intelligence, memory, or speech ability the DFE treatment 

reduced the rate of cognitive impairment [217]. This study 

reveals how the use of DFE can reduce the progress of 

dementia in AD patients.  

Also, a promising clinical trial showed that Vitamin 

E, despite its little anti-ferroptotic potential, appears to 

have beneficial effects in the treatment of patients with 

mild-moderate AD in term of reduction in cognitive 

decline and caregiver burden [241]. In another 

randomized clinical trial Vitamin E administration gave 

positive results in terms of preventing the progression of 

dementia and, in the same time, by improving cognition 

in patients with mild cognitive impairment (MCI) or AD 

compared to placebo, without any signs of severe side 

effects [242]. 

Moreover, since Glutathione peroxidase 4 (Gpx4) is 

a key regulator of ferroptosis, in vivo study on forebrain 

neuron specific Gpx4 knockout mice (Gpx4BIKO) it was 

demonstrated that the treatment with Vitamin E deficient 

diet caused an increase in hippocampal neurodegeneration 

and cognitive dysfunction [195]. 

In order to understand if ferroptosis takes place in 

neuronal death and cognitive decline in AD, recently two 

ferroptosis inhibitors, Liproxstatin1 (Lip-1) or 

Ferrostatin1 (Fer-1), have been tested. The administration 

of these two ferroptosis inhibitors in primary hippocampal 

neurons of mice induced by Aβ aggregation, revealed 

effectively reducing of neuronal death [72]. 

Even though these studies proved the efficiency of 

Fer-1 in improving oxidative stress and preventing 

ferroptosis not only in AD but also in Huntington’s, 

Periventriculae leukomalacia, kidney dysfunction [243, 

244], there are no clinical trials available.  

Moreover, α-Lipoic acid (LA), an antioxidant and 

iron chelators compound, [245, 246] exhibit 

neuroprotective properties against AD and it can be 

effective in BBB crossing. The therapeutic effect of LA 

was demonstrated in clinical trials where it has been 

shown that it may moderate cognitive impairment in AD 

patients [247, 248]. LA treatment in different in vivo 

models such as Senescence Accelerated Mice (SAMP8), 

aged rats [249, 250] and in Tg2576 model of AD 
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improved cognitive alteration and memory [251]. 

Moreover, in a triple transgenic mice of AD restore both 

glucose metabolism and synaptic plasticity [252, 253]. 

Based on these findings, it has been proposed that 

these mechanisms are related to anti-inflammatory [254], 

antioxidant [255] and antiamyloidogenic features of LA 

[256]. Although LA is considered a potential therapeutic 

compound for AD, the mechanism of action remains 

unknown especially in terms of its capacity in controlling 

tauopathy and neuronal death. In this context a recent 

study revealed that LA supplementation on P301S Tau 

transgenic mice can inhibit Tau hyperphosphorylation 

induced by iron overload and improvement in cognitive 

impairment. In the same study, the main markers of 

ferroptosis, such as inflammation and lipid peroxidation, 

are inhibited by LA supplementation [246]. All together 

these results are promising for the use of this compound 

in the tauopathies treatment since LA exhibited an 

important role in inhibiting Tau hyperphosphorylation, 

neuronal loss and ferroptosis. 

Selenium (Se), is a trace element with antioxidant 

property able to modulate important brain functions [257], 

to reduce activity in the brain [258]. In fact, a decrease of 

Se amount in the brain altered the activity of the 

selenoenzyme as Glutathione Peroxidase (GPx) 

decreasing at the same time the antioxidant protection in 

the brain [259]. In vivo, in vitro and clinical trials studies 

in AD animal models and patients, revealed a protective 

role of Se in the pathology progression. In particular, 

Gwon et al demonstrated that in SH-SY5Y neuroblastoma 

cells line expressing Swedish APP mutant and on primary 

hippocampal and cortical neurons treatment of Se for 12 

h can reduce Aβ production by reducing β-secretase and 

y-secretase activities preventing the toxicity mediated by 

Aβ [260]. A pilot study of 40 AD cases showed that after 

the oral Se administration the supranutritional selenium 

integration it was well tolerated and the responsive 

groups, in which the selenium concentration in CSF was 

increased, revealed that the Mini-Mental Status 

Examination (MMSE) score did not deteriorated [261]. Of 

course, more clinical and experimental studies are needed 

in order to provide a correct answer of the beneficial role 

of Selenium in the treatment of AD.  

To conclude the overview of the use of antioxidants 

in AD treatment, it is important to mention a novel 

mitochondria-targeted antioxidant MitoQ (mitoquinone 

mesylate). An in vivo study demonstrated that MitoQ 

treatment in 3xTg-AD mice ameliorates cognition and 

prevents oxidative stress, β-amyloid accumulation, 

astrogliosis, synaptic loss in the animals’ brains [262]. 

 

Conclusions and Perspectives 

 

The mechanism driving iron dyshomeostasis and overload 

in neurodegenerative disorders is far from being 

described. However, it is evident from the data collected 

in the literature on human brains from MCI subjects, AD 

patients and post-mortem AD brains that brain iron 

dyshomeostasis and accumulation correlates with 

progressive neurodegeneration and cognitive decline.  

Also, the studies conducted in vitro and in vivo 

highlight a clear role for iron dyshomeostasis and 

ferroptosis in models of neurodegenerative diseases, 

especially AD and attempt to decipher the molecular 

mechanisms behind iron accumulation. Finally, clinical 

studies in which iron is targeted, showed a potential 

beneficial effect in the control of amyloid and tau 

pathology.  

Altogether, the data reported from the literature show 

that brain iron dyshomeostasis and ferroptosis represent 

important features of the neurodegenerative process going 

on in AD and could represent new targets for potential 

treatments to be reproposed for AD, but also for other 

neurodegenerative disorders characterized by iron 

dyshomeostasis. 
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