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Abstract

The aim of this thesis is a comprehensive investigation of the possible improvements in modelling beef farm

performance, in order to subsequently integrate it with information systems.

Using the Piemontese breed as a case study, the assessment of beef farm performance was investigated, as

well as the attributes influencing the corresponding parameters. Critical points were identified in the mea-

surement of breeding production efficiency, that revolves around cows’ fertility and production, i.e., the calf

quota generated yearly. With a particular focus on the weaning period, approximately two months after

birth, it emerged that losses related to calf management are consistent, as viable calves go through a very

delicate phase, conditioned by multiple factors. The need for a methodology towards the construction of a

more appropriate model was outlined. In order to adequately address the issue, two main points needed to

be handled. First, the necessity to cope with the management of Big Data and, second, the need for the

identification of patterns among the variables, without introducing a priori knowledge or bias into the model.

The approach that responds suitably to this complex issue is the popular Machine Learning, hence proposed

and investigated as a flexible tool that, rather than making a priori assumptions, allows the system to learn

directly from data. This approach uses indeed the data to continuously build and refine a model for making

predictions. An introduction to the problem is given in details over the first three chapters, where a suffi-

ciently thorough description of the scenario within which the research study sets is carried out. Similarly,

the Chapter 4 is entirely dedicated to the description of Machine Learning principles, starting from the basic

concepts behind its use, to then move on to the illustration of all the approaches applied in this research,

their strengths, and their conceptual differences.

The research involved an initial pool of 725 representative farms, among which different subsets were ex-

tracted thereafter. Information about the farms was elicited from the National Herd-Book, managed by

ANABORAPI, and preprocessed in order to apply different techniques. Additionally, information was col-

lected through on field questionnaire, regarding also production systems, farm size, animal density, environ-

mental conditions, and diet. Among the different sets of farms, distinct Machine Learning methods were

applied. As the main purpose of this research was the identification of a technique able to exploit at the

same time feature extraction and simple, intelligible models, the choice of applying Genetic Programming

1



seemed straightforward. It resulted appropriate for the development of the analysis, as it allowed also to

exploit all the information contained in the dataset: for each breeding, it was possible to make a comparison

using all the data recorded over several years, refining the prediction. Comparative studies with other usually

enrolled prediction methods were investigated with promising results in the context of modeling the breeding

performance of Piemontese cattle farms.
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Chapter 1

Outline of the Study

The Piemontese breed is a cosmopolitan breed with prevailing meat characteristics which, until a few years

ago, was limited within the boundaries of the region from which the name derives, i.e., Piemonte, in the

north-west of Italy. Today it has crossed the boundaries of its primitive settlement area and is spreading in

various foreign countries. The environment in which it is raised does not present the extensiveness condi-

tions for the breeding of traditional beef breeds. It is an early and long-lived breed, suitable for being raised

in the most diverse climates. Being an excellent food processor adaptable to more diverse environmental

conditions, it can be advantageously bred on both flat and hilly pastures, as well as on the poorest mountain

ones. Indeed, it is widespread in the plains stable breeding, sometimes integrated with the exit to grazes

near the farm, but, for some farms, the practice of mountain grazing it is also common during the summer

months, when the herd migrates to mountain pastures, remaining there until autumn. The feeding of the

Piemontese cow is very simple and consists mainly of green, dried, or ensiled farm fodder, supplemented by

cereals or legumes grown in the area. Calves are generally sold as soon as they are weaned. Weaning usually

takes place on average within 2 months of age, rarely beyond. When they are not sold, they remain in the

farm, implementing what goes by the name of the cow-calf type of breeding.

The peculiar characteristic of the Piemontese is the muscular hypertrophy, that appeared over the ′900 and

it progressively spread among almost all animals registered in the Herd-Book. Caused by a genetic mutation

of the gene of the myostatin, it entails a significant increase in muscle mass, due to an increase in the number

of muscle fibres. The increased muscularity is also accompanied by a decrease in intramuscular fat and in

connective tissue as well as, resulting in greater tenderness of the meat. Among the adverse effects originally

associated with muscle hypertrophy, there is the reduction in reproductive efficiency, lower vitality, and the

appearance of calf birth defects such as arthrogryposis and macroglossia. However, subjects that are poorly

efficient from a reproductive point of view or not very viable generate a limited progeny. Artificial selection
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performed by ANABORAPI (National Association of Piemontese Cattle Breeders) and natural selection have

resulted in a strong reduction in the incidence of such problems. The Association keeps the Herd-book, runs

a Genetic Station, where performance tests and progeny tests are carried out, and an Artificial Insemination

(A.I.) Station where semen from A.I. bulls is produced. Therefore, it establishes the selection criteria.

1.1 Definition of Beef Farm Performance

If well managed, the current Piemontese cow is able to produce and raise almost one calf per year. The

direction towards which modern Piemontese breeding aims is the production of calves for fattening. To

maximize revenues, it is therefore essential that each mare produces as many calves as possible during her

productive career, in full respect of her physiology. The indicator parameter of a cow’s reproductive efficiency

is represented by the "calf quota" per cow, derived form the calving interval. The latter parameter expresses

the number of days between two deliveries. It includes two time intervals, i.e., the time span between birth

and conception, and the time span of the actual gestation duration. Among these two time intervals, the

period between birth and conception is the one that has the predominant importance for the purpose of

reducing the length of the birth, while the duration of pregnancy is a limited and incompressible natural

variable of 290 days. The calf quota can be either lower or higher than the unit. When smaller, the more

it deviates from the unit, the lower the fertility of the mare was. Among particularly efficient cows, it is

also possible to produce more than one calf in the same year, as cases of twin births are common. The two

parameters can be considered as the meters of breeding production efficiency, in order to raise its technical

and economic competitiveness. Therefore, by making the calf quota converge to 1, considering the calving

interval to be 360 days long, the farm is economically profitable. The reproductive capacity of the cows that

lodge on the farm significantly affects the farmer’s income. Damage derives from the loss of income from the

failure to give birth to calves and from the cost of feeding the cows. An accurate diagnosis of pregnancy is

crucial to achieve and maintain the optimal reproductive performance of the farm. If a fertilized cow is not

pregnant, it can be fertilized again. The minimum delay in this case is of fundamental importance. Birth

is the moment in which the attention paid to the cows is harvested for at least a year. Normally the time

between a delivery and a new conception counts around two and three months, after which a healthy and

well-fed cow is able to face a new pregnancy. If the first insemination was successful, after nine months or a

little later, a calf is born. But things do not always go as desired, and then insemination must be repeated

perhaps several times and this inevitably extends the length of the birth, to the detriment of profitability.

The Piemontese bovine, in the past, was characterized by considerable difficulties calving, also accepted by

breeders as a necessary evil to obtain quality calves. Currently, the work of the ANABORAPI made it

possible to implement a selection plan for calving ease and delivery. In this direction, great strides have
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been made, above all, as regards the selection of animals capable of giving birth well and calves that are

not excessively large, but able to develop excellent growth. These are the aspects that improve the breed’s

aptitude for giving birth. Since the process to improve calving ease is slow, it is also necessary to take

advantage of all the technical and managerial factors of the herd, that can affect the trend of births on the

farm. Cow management, in terms of feed and type of housing, a correct choice of mating, the possibility

of having a suitable environment where to give birth, knowledge about birth event, allow one to set the

conditions necessary for the optimal performance of this event. It is obvious that, among other things, the

calving depends strictly on the fertility of the cow. Among the possible causes of a herd’s fertility reduction,

those intrinsic to feeding system, infectious, hygienic-sanitary, or endocrine-gynecological ones, and those of

environmental nature are of major importance. Not to forget that all stressful conditions, such as uncom-

fortable housing, insufficient lighting, and crumbling shelters can negatively affect fertility and therefore the

calving. Indeed, the free housing allows a greater mobility and a greater exposure to light with a positive

influence on biological activity and consequently recovery after birth.

Calving and mortality detected on the farm at birth are combined through a model that provides the calf

quota as performance measure. However, it is reductive to measure breeding performance by observing only

fertility and maternal condition. The calf, on its side, goes through evolutionary stages that depend on its

own condition. The phases immediately following birth, i.e., the intake of colostrum and the healthiness of

the environment in which it lives, are of utmost importance. After the initial colostrum and milky feeding

phase, weaning begins which, unlike the first period common to all and all young calves, differs considerably

from one company to another. The velocity with which a calf is weaned varies according to the type of

farming. As for the mother, during the weaning months it needs specific food and a favorable environment

for growth. The physiological development process of the animal reaches completion in 60 days after birth.

Calf mortality is also an important cause of economic damages in Piemontese cattle farms: for the farmer it

represents the loss of the economic value of the calf, and the reduction of both the herd’s genetic potential and

the size of the breeding. It is straightforward that the gestational phase alone is not exhaustive. The breeding

performance should be modelled considering also neonatal mortality, outlining the calf’s ability to survive,

and the sources of stress such as congenital calf’s defects, compromising eventually the immune response and

the growth rate, as well as environmental and food conditions, that affect the quality of life of the newborn.

Zootechnical influential variables must be identified among the numerous parameters. Furthermore, the

applied model is based on a priori zootechnical knowledge. It consists in a classic statistical model that

provides a value for the parameter, deriving an argument from obvious propositions. Traditional statistical

forecast analysis is preprogrammed, based on past data being a good forecasting indicator for the future.
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This makes it necessary to formulate, among the data, a proper prediction measure for the yield of the farm,

i.e., the number of calves weaned per cow per year.

1.2 Improving Beef Farm Performance with Machine Learning

The digitization of data collection made it possible to streamline and accelerate the procedures of data col-

lection and processing over time, permitting the registration and consequent processing of many additional

data. Moreover, the management of livestock is also increasingly handled by continuous automated real-time

monitoring, contributing to the increase of the amount of information and complexity among databases. This

surveillance, going under the name of Precision Livestock Farming, allows the enhance production, reproduc-

tion, health and welfare of the herd, and its environmental impact. It supplements the skills of the farmer,

the veterinarian, and the technician by a continuous collection of livestock information, with the support

of information technologies. It can play a crucial role in the early detection of diseases and it objectively

assesses animal condition and welfare in modern livestock production, representing a tool that supports

many farmers as decision-makers. Each animal is monitored, contributing to a better definition of the whole

breeding performance. The resulting increased knowledge, elaborated through mathematical models, may

provide the offset of overall incurred costs of the farm, as these issues are identified in advance, allowing

decisions to be made in time.

The major consequence of continuous monitoring of animals is a huge amount of data, the so-called “Big

Data”. Around big data there are various interconnected protagonists, starting from the source of infor-

mation, in this case productive animals, and from whom (or what) it records the data, i.e., the farmer,

the technicians, or the sensors installed. Beside this, the farmer not only records the data, but formalizes

a specific need among a problem emerging within the breeding, for which he makes a request. Through

the introspection of the acquired data, it is possible, by means of techniques and analyses, to provide an

adequate answer. On the other hand, it is necessary to actively involve the breeder, as requiring information

and precision are necessary to offer an answer as adequate as possible answer. It is not just a matter of

exchanging useful services. Awareness and continuous active involvement of both parts are required. In

particular, involving the farmer in an inclusive manner by requesting training and direct participation in the

registration places the activity in the citizen science field.
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If, on the one side, Precision Livestock Farming approach aims at a greater "accuracy" on the quantity and

quality of information, entailing the development of monitoring systems, on the other side it must deal with

the transformation of big data into meaningful information. New data is available, as well as increasingly

cheaper and faster computing power. However, visual inspection is not adequate. The increase in the

amount of data requires the introduction of new data management and prediction techniques, i.e., new tools

that allow one to deal with a large amount of data offer the possibility of processing intrinsic information.

Machine Learning is based on the availability of large amounts of data and on computing power. Rather

than making a priori assumptions and following preprogrammed algorithms, Machine Learning allows the

system to learn from data. It uses data to continuously build and refine a model for making predictions.

It helps one to understand patterns between the attributes, detecting and modeling the variables along

with the defined target. For this reason, the use of Machine Learning techniques is becoming increasingly

common. Machine Learning, big data, knowledge, mathematics and statistical methods can be all combined

powerfully, as all methods contribute to the inter-disciplinary field of Data Science. By means of scientific

methods, algorithms, systems to extract knowledge, it is possible to investigate data. Machine Learning

offers a wide range of techniques. There are many methods that can produce excellent results, by building

accurate prediction models. Depending on intrinsic characteristics, they differ from each other and they can

better address different tasks.
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1.3 Aim and Outline

While working at ANABORAPI, after a first period spent training on the information systems implemented

by the Association’s technicians, I studied and acquired the notions of animal husbandry and Piemontese

main characteristics. ANABORAPI provides a web service, accessible to registered users, which supplies

the situation of the farm. Data entered by farmers and technicians by mean of PC and other devices are

sent in real time to the servers, stored and processed, to return the updated situation at last. Data and

statistics are finally provided to the farmers, that can consult them on their own. Thereafter, in order to

investigate the production of Piemontese calves and to understand the mechanisms of breeding performance,

I inspected the corresponding data and model. For an optimal management, besides the current situation

of the farm, it is relevant for the breeder to know the prediction of the future trend, as well as relevant

attributes. The main objective of this work was to perform a comprehensive investigation of the possibilities

for the improvement of modelling farm performance, in order to be subsequently integrated with information

systems. In order to manage the amount of data and use data to build predictive models, without introducing

a priori knowledge, it is necessary to exploit the potential of Machine Learning techniques. Taking advantage

of Machine Learning means entrusting the analysis of the available data to complex algorithms. Not only

that: the potential of this type of approach is not limited to facilitating the analysis process, but is also

linked to the possibility of recognizing complex patterns and of adapting easily to new data acquired over

time. A broad variety of research studies is available in the dairy cattle sector, based on the application of
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Machine Learning techniques in farm management, also due to the consistent use of sensor-based technology.

On the other hand, the literature regarding beef cattle is not as large, in particular regarding Piemontese

farm. Indeed, this work offers a novel line of investigation in the field of prediction modeling in the beef

Piemontese breeding. Since the task and the data are full of zootechnical meaningful features, I explored the

potential of different algorithms. Each of them adapts differently to the data and, above all, processes them

according to different algorithms. The result may be better, worse, or similar to others in terms of accuracy

of the result. However, they carry with them characteristics that make Machine Learning more interesting

and appropriate, with respect to the objective to be pursued. Thanks to their structure, the algorithm can

automatically create models “learning” from the data and produce accurate results. It was in fact possible

to build prediction models starting from the data recorded during a specific historical period, i.e., one year,

isolating the target for the same subsequent time period, i.e., the next year. The structure of the database

allowed me to distinguish two types of analysis. As the dataset is a historical archive, it was possible to

build models on the data extracted for a certain moment. On the other hand, it was also possible to fully

exploit all the sequential information, contained in data varying over time. Indeed, a Genetic Programming

approach was adopted, as generated models are resumed in simple and interpretable expressions, and they

extract critical information, i.e., informative attributes. Why are such models sought? Mainly because the

result should be available for further analysis, in an attempt to understand which link has been detected

independently by the algorithm. Furthermore, if the expression turns out to be simple and legible, it can

also be simple for the farmer to interpret the result. Genetic Programming also offers the possibility to

handle vectorial variables representing time series, exploiting all the available information. Among other

Machine Learning methods, some common methods were selected to compare the results obtained with

Genetic Programming, that is known to be able to capture the strong non-linearity underlying data. I

applied the methodology to different benchmark problems. Several datasets were isolated, first investigating

the performance of Genetic Programming on the data contained in the Herd-Book, by selecting different

subsets of variables. The results were compared with other techniques, first on "instant" data extracted at

specific points in the timeline, referred to with the expression of standard Genetic Programming along the

thesis. Subsequently, I investigated the behavior on vectorial variables, increasing the amount of information

available as input for the different techniques, referred to as vectorial Genetic Programming. The preliminary

results obtained with standard Genetic Programming (Chapter 6, A GP approach for precision farming) were

presented at the 2020 international virtual conference WCCI, appearing in the conference proceedings [2].

Additional investigations among standard Genetic Programming including the corresponding comparative

methods results (Chapter 7, Towards modelling beef cattle management with Genetic Programming) were

published thereafter in Livestock Science journal [1]. Since the promising results were positively received by
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the scientific community, while exploring the vectorial approach (Chapter 8), I conducted a parallel research

on an enriched dataset, built by adding to the Herd-Book dataset a series of very informative zootechnical

information. It was necessary to draw up a specific questionnaire (Chapter 9), to be filled in through

farm visits in order to acquire the additional data on a set of representative breedings. In this regard,

after planning the methodology to be pursued, I was assisted in learning the necessary notions to fill the

questionnaire directly on the farm, and elicit the useful information.
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Chapter 2

The Piemontese Cattle Breeding Outline

2.1 The Origin of the Piemontese Breed

The Piemontese is an Italian bovine breed native of Piedmont, a region in Northwestern Italy, highly special-

ized for beef production. This breed recalls distant roots, having its origins in two ancestors: a Pleistocene

bovine of the Aurochs type and the Zebu. In a period between the Middle and Upper Palaeolithic, due

to a massive migration, the Zebuin population originating in the Indian subcontinent, specifically western

Pakistan, occupied various sectors of the European continent. After reaching Piedmont, the migratory wave

halted, finding its path blocked by the Alps. Gradually, the Aurochs and Zebuin populations merged, cre-

ating a new one showing the current characteristics of the Piemontese breed. The first Piemontese farms

appeared at the end of the 1800s when the population became uniform, fulfilling the criteria for being clas-

sified as a breed. Mainly spread between the Piedmontese hilly areas, i.e., Langhe and Canavese, and the

plains on the right side of the Po river, the animals had a triple aptitude, that is, they were suitable for the

production of both milk and meat, and for working purposes [10].

The history of the Piemontese reached then a turning point. In 1886, in the municipality of Guarene d’Alba,

in the province of Cuneo, a bull appeared with considerable muscle mass, much more pronounced on thighs

and buttocks. Not compliant with the breed standard of the time, the individuals showing this characteristic

were seen with distrust and initially considered as pathological. The anomaly, which later attracted the

interest of breeders, consumers, and scientists, was due to a genetic mutation causing muscle hypertrophy,

which gave the animals pronounced shapes at the rump and thigh. However, the trait became soon the

peculiarity, outlining a third category defined as the double muscling (DM), i.e., "doppia coscia" or "doppia

groppa". The selection of DM individuals increased over time, allowing the specialization of the breed in this

direction. A well-bred Piemontese head of cattle can nowadays exceed the 70% yield at the slaughterhouse,

an exceptional result favoured also by the light bone and thin skin of the animal, reducing the waste to the

11



minimum amount. Besides carcass conformation and dressing percentage, DM exerts positive effects also on

nutritional and palatability qualities, appreciated by both consumers and butchers, as the meat shows low

intramuscular connective tissue and low-fat content [10, 21, 76]. The work provided in the past by these

bovines has been replaced by agricultural mechanization, while milk production has been addressed with

other specific cattle breeds. Milk yield of Piemontese cows is nevertheless more than sufficient for the main-

tenance needs of the calf, and some breeders use the additional milk to produce typical cheese. According

to the data provided by the other breed associations, nowadays the Piemontese is the second breed in Italy,

with around 300.000 cattle registered in the National Herd-Book, following only the Italian Holstein-Friesian

cattle (Table 2.1).

Breed n. of cows cows/farm

Italian Holstein-Friesian 1.079.338 110

Piemontese 133.425 31

Italian Brown Swiss 71.333 14

Italian Simmental 64.554 12

Table 2.1: Cows registered in Herd-Books.

Data sources: A.N.A. National Associations of the corresponding Breed

Being the latter a dairy breed, the Piemontese is, therefore, the most raised among beef cattle, mainly bred

in the provinces of Asti, Cuneo and Turin. However, many cattle farms are also present in other Italian

regions and foreign countries, denoting its spread all over the world [10].

2.2 The Traits Determine the Type of Management

The hypertrophy characterizing the breed is due to a mutation of the gene located on chromosome 2, encoding

for myostatin, a protein responsible of the balance between the muscular mass and the skeleton, that interacts

by limiting growth. A lower production of myostatin entails indeed an increase in the number of muscular

fibres, most prominently, but not their diameter [27, 33, 54]. There are several known gene mutations among

beef cattle showing the hypertrophy trait. In the case of the Piemontese, the transition of a single Guanine

nucleotide into Adenine is responsible for the genetic alteration, generating the inactive form of myostatin

protein [42]. Homozygous individuals, i.e., possessing two copies of the mutated gene, exhibit a higher

development of muscle mass than individuals in which the mutation is absent. Since the 1970s, all the bulls

enabled for artificial insemination are homozygous for the gene mutation, entailing the establishment of the
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character in the breed. Animals showing the mutated gene in heterozygosity, i.e., with one copy, exhibit

instead rather intermediate characteristics [10].

The cattle is usually bred in beef intensive farms, which are therefore provided with the installation of stables

to control the animals. The breeding of Piemontese cows is traditional with free-stall housing, currently

much more common than fixed housing. The diet consists mainly of farm forages, green, dried or ensiled,

supplemented by a feed based on cereals or legumes grown in the area. Also concerning fattening calves,

the traditional fixed-post rearing systems are now frequently replaced by free-housing systems in boxes on

permanent litter and their diet consists of feed produced on the farm, based on cereals and a fibrous source,

i.e., hay or straw. However, the physical conformation determined by the genetic mutation permits also

easy grazing management. The cows can be bred not only on flat and hilly pastures but also on the poorest

mountain ones. The Piemontese bovine is thereby an excellent food processor, adaptable to the most diverse

environmental conditions. Indeed, if stable breeding is widespread in the plain land, sometimes integrated

with the grazing exploitation near the farm, it is also common for some farmers to use mountain pastures

during summer, when the herd migrates to mountain even over 2,000 meters of altitude and remains there

until autumn. It is a long-lived breed, well adaptable to the most diverse climates, responding well both in

shed breeding and in wild or semi-wild breeding. Alongside the organoleptic qualities, the bovines exhibit

remarkable zootechnical traits.

The number of registered farms is in constant growth, exceeding the threshold of 4300 breedings in 2019.

Figure 2.1 shows the trend for the decade 2010-2020, showing the total number of heads of cattle and cows.

Figure 2.1: Trends in the overall population size during the 10-year period between 2010 and 2020. For each year, the

graph shows the total number of bovines and cows.
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It is clear from the graph (Figure 2.2) that 33% of breedings has very low cows consistencies, with less than

11 cows per farm. This represents only 5% of the whole cow population. On the contrary, almost 60% of

the total cows are concentrated in 20% of the largest farms, counting more than 50 per farm.

Figure 2.2: Distribution of breedings per size class and percentage of total cows per breeding size

2.3 The Enhancement of the Piemontese Cattle

The preservation of the Piemontese breed is guaranteed by the National Association of Piemontese Cattle

Breeders, ANABORAPI in brief. ANABORAPI is responsible for promoting the breed through the study

of the productive, reproductive, and management processes of the Piemontese breeding. One of the main

activities includes the management of the Herd-Book of the Race. It is a complex database that preserves the

pedigrees (i.e., 2.919.877 total pedigrees) of all the registered animals and a series of additional information,

such as validation of breed characters, reproductive career, morphological studies, and genetic values. In

this way, the farmers have access to the constant monitoring of the average situation of the cattle, receiving

regular updates on fertility and productive cattle parameters. The values are also supported by a brief

economic summary, which compares the gross revenue with the mortality losses, providing the farmer with

an indicator of breeding performance.

Since DM can cause various degrees of subfertility, calving difficulty, lower calf viability and increased stress

susceptibility, the breeding goal of the Piemontese population includes traits related to quantitative beef

production (e.g. growth potential and muscularity) and reproduction, i.e., direct and maternal calving per-

formance of animals [4, 6, 20, 53]. Genetic models take into account factors that influence the traits, such
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as relationships between subjects and environmental factors. Regarding beef production traits, young bulls

are tested on their performance. To this purpose, the Association avails a Genetic Station, in which 45

days old calves are monthly introduced based on their pedigree and morphology and reared in homogeneous

conditions. The selected animals are then progeny tested for direct and maternal calving ease.

The selection contributes to the increase of genetic potential, by choosing the animals with the best gene

combination of the different traits of interest. The goal is determined by the breeding structure, that in the

beef cattle sector consists in a two-level system, i.e., suckler cows production and fattening production. For

this reason, the selection indices are considered. A Selection Index is a linear combination of the values of

the different traits, weighed appropriately according to the genetic correlations with the other ones, as well

as its economic importance [5]. ANABORAPI provides regularly updated estimates so that the breeder can

manage the breeding, plan the matings, check the progress constantly [10].
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Chapter 3

The Role of Calf Weaning in Breeding

Performance Measure

3.1 The Weaning of the Piemontese Calf: Aspects not to Underestimate

The breeding of the Piemontese does not provide a specialized orientation in the production. Compared to

other beef breeds, which implement a cow-calf line with the calf sale after weaning to specialized fattening

stations, three different farming systems emerge. The first one involves the 35-50 days-old veal sale, whereas

the second one aims at purchasing the weaned calf when it is about 5-6 months old, between 180 and

220 kg heavy. In the third breeding type, the young animals, be it males or females, are fattened within

the farm, implementing the so-called closed-cycle breeding. Genetic selection largely contributes to calf

definition, as, depending on traits, the additive genetic component is more or less heritable. However, during

the gestation, postpartum, and weaning phases the contribution is determined also by other factors, partly

genetic (i.e., congenital defects), but mainly environmental, attitudinal, nutritional, and healthcare related.

Different breeding aspects related to the cow itself and the calf but not associated with genetics influence the

production. In particular, the calves rearing represents a very delicate stage among the entire production

cycle, both for replacement and slaughter: any mistake committed in this phase affects future production

performance. Immediately after birth, the foods ingested are exclusively liquid, i.e., colostrum and milk.

The immunoglobulins contained in the colostrum are large protein molecules with an antibody effect that

are transferred from the cow to the calf. The absorption by the intestinal mucosa, considerably permeable in

the newborn, guarantees the calf protection from environmental pathogens, particularly aggressive towards

young cattle. The concentration of antibodies in colostrum reduces over time, and the absorption decreases,

disappearing 24-36 hours after birth. The amount of colostrum, between 4 and 6 litres, to be administered

in this period and its distribution are relevant. In the case of controlled breastfeeding, the dose should be

16



administered over two to three meals. One-third of the total quantity is provided with the first meal, within

2-3 hours of birth. In the case of primiparous cows, a reduced or total unavailability of maternal colostrum.

To compensate the lack, a reserve of colostrum to draw from can be stored and renewed at least every six

months. The provision is usually collected from multiparous mares on the farm, as they are immunized

against more pathogens.

The transition from a liquid-based diet to solid food, including also concentrates and fodder, appears later

in the diet. After the initial colostral and milky feeding phase, identical for all calves, the weaning period

begins and differs considerably among breedings. This stage determines relevant anatomical, histological, and

physiological changes in the digestive system of a ruminant. When assuming only liquid food, the ingested

milk reaches the glandular stomach directly (abomasum), i.e., the calf acts as a "functional" monogastric,

as the pre-stomaches are not mature yet. A subject is weaned when its diet includes exclusively fibrous and

concentrate food. The earliness with which a calf is weaned varies according to the type of farming. If the

veal is raised with the mother, free to suckle, weaning ends when milk production stops. If the calf stays

with the mother temporarily, i.e., in certain moments under the breeder’s control, weaning can end earlier,

regardless of breast milk production. In this case, it is up to the farmer to decide when to suspend liquid

feeding, earlier or later, considering, however, that feeding with mother’s milk can not continue later than

six months: the quantity of secreted milk is very small and the calf is not easy to manage afterwards.

In the past, the Piemontese breeders claimed the young calf’s inability to use foods other than mother’s

milk in the first 2-3 months of life. The weaning calf has then always traditionally been late. Over the last

few years, as for other intensively reared breeds, earlier weaning techniques have been adopted, to contain

the costs of labour, feeding and, in general, episodes of enteric disorders. Intentional ingestion of solid food

begins at 2-3 weeks of age, favoured by the coexistence with other older individuals. To stimulate the intake,

highly palatable and qualitatively flawless products should be supplied, remembering to always remove

leftovers, to avoid the onset of abnormal fermentations that reduce the palatability of the available foods.

Early ingestion of solid foods supports the rapid growth of the rumen and its physiological microbiological

activation. The development of the ruminal papillae, responsible for the absorption of the products derived

from fermentation occurring inside it, is physiologically stimulated by the starchy substances fermentation.

It is necessary to start weaning with cereals, as rumen development can then absorb also products derived

from fodder fermentation. Weaning begun with only hay entails a morphological development of rumen,

but not physiological, delaying the ability to absorb the nutrients. An early ruminal activation also means

protection from some pathogenic germs of the digestive system, against which the ruminal microflora exerts a

strong competition. A suitable concentrate for weaning must contain adequate and balanced protein, energy

supplies, and vitamin-mineral supplements. The hay should be neither too fibrous nor excessively leafy, to
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maintain palatability and mechanical stimulus. Unbalanced intakes can compromise the adequate skeletal,

muscular, and physiological development of the calf. Suitable feed for weaning can be composed exclusively

of raw materials, such as cereals added to protein flours, like soybeans, or of raw materials suitably mixed

with complementary feed for weaning.

3.2 How is the Breeding Farm Performance Modeled?

Among the several statistical analyses, a detailed farm monitoring is available on ANABORAPI’s website,

where the registered breeder can check and examine the breeding performance. Indeed, summary data are

provided, partly representing the trend developed during the 365 days previous to the consultation day

and in part depicting the trend of certain variables among several past years. The tool allows the farmer to

measure the effectiveness of the management strategies. As shown in Figure 3.1, many details highlighting the

progress are proposed: from the top left to right, some general information about consistencies, primiparous

and pluriparous deliveries,and percentages of use of Artificial Insemination are accessible; the trend of the

average inbreeding among the farm over the last seven years ensues the average genetic value of the animals

on the farm, highlighting the breeding goal. Finally, reproductive efficiency data are provided, transposed

and explained with corresponding economic values, in order to compare the gross revenue with the losses

due to mortality.

The main information that represents the yield of a Piemontese cattle farm is given by the count of calves

per cow per year [10, 18]. The quantity is modelled as follows:

𝑌𝑝 = 365
𝑖𝑛𝑡𝑝

(︁
1 − 𝑚

100
)︁

(3.1)

The model estimates the number of calves born alive produced per cow per year. It is a classic statistical

model, formulated based on zootechnical hypotheses, and it incorporates two variables extracted from the

information of the single farm: the average calving interval (intp), that is the time span measured in days

between a birth and the previous one, and the average calves mortality at birth, i.e., perinatal mortality.

In particular, in order to forecast an estimation for the following year, the same model is applied, taking

into account the calving interval calculated among the currently pregnant cows instead. Calf mortality is

an important cause of economic damages in Piemontese cattle farms: for the farmer, it represents the loss

of the economic value of the calf, and the reduction of both the herd’s genetic potential and the size of

the breeding. It should be noted, however, that breeding gains and losses are not exclusively related with

the calving, but are often deeply influenced by the calf development after the first 24 hours following birth.

Clearly the gestational phase alone is not exhaustive.
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Figure 3.1: Example of a summary breeding report. Top-left section: current consistencies based on most recent data

upload. Central-right section, i.e., reproductive efficiency: the alive calves per cow produced in the last 365 days

and those predicted for the following year, both obtained with (3.1), are highlighted in red. On the left side, the

calving interval used is the overall calving interval recorded among the farm during the last year; on the right side it

is calculated upon the currently pregnant cows. Furthermore, in the final section, revenues and losses concerning the

economic objective are shown.
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It is crucial to consider neonatal mortality, outlining the calf’s ability to survive, and the source of possible

stress, induced for example by congenital calf’s defects (i.e., arthrogryposis and macroglossia [39, 47, 48]).

Besides, food and environmental conditions can eventually compromise the immune response and the growth

rate [51, 63, 72]. The mortality parameter refers to on-farm deaths, thus excluding any other type of death,

such as slaughter, referred to as culling. It is necessary to focus on important aspects, as hygienic-sanitary

standards that can reduce the risk of respiratory diseases and compromising enteritis contraction, the need

for immediate colostrum administration, the presence of fresh straw in the stall, and good ventilation.

In general, it should be considered that the variables involved in performance evaluation are many, often

complex to identify. Indicator 3.1 includes a couple of parameters, neglecting the traits describing the wean-

ing period.

Among the farms considered in the study (description in Chapters 5 and 6), we compared the reported

number of calves that died at birth and by the sixtieth day after birth. As it is straightforward to notice

from Figure 3.2, during birth almost all farms did not report any deaths, while at the end of weaning the

number of farms with zero deaths dropped drastically.

Figure 3.2: Distribution of the number of dead calves at birth and during the weaning period in 2017. Mean values

are represented with the dashed line at the two different time reference. The data derive from the dataset described in

Chapters 5 and 6. All the breedings (725) show extremely different values between the dead calves at birth (in blue)

and (in red) 60 days after it (Kruskal-Wallis test: p-value « 0.001).

20



It is discernible that the breeders reported a large number of dead calves at 60 days. For the farmer, the

loss of the calf means the loss of economic value. The high mortality rate then also reduces then the number

of young animals to be used to increase the farm size and the genetic potential of the herd. This makes it

necessary to formulate a model predicting the number of calves weaned per cow per year, based on data.

Similarly to equation 3.1, it should incorporate the influential variables affecting the output and, at the same

time, provide a simply interpretable expression, in order to be able to understand and explain zootechnically

the link with the output afterwards.

3.3 Towards the Search of a Prediction Model for the Farm Performance

To describe the breeding performance, it would be more appropriate to obtain an estimate of the number

of weaned calves produced per cow in a year. However, an estimate obtained with a classical statistical

model such as 3.1 is not predictive: it is a model formulated on a priori knowledge in the field, statically

receiving in input the annual data and returning the estimate for that same year as output. An estimate

for the immediate future should be provided, to supply the farmer with a more informative indicator, i.e., a

suitable tool to evaluate what to expect as a result of the choices made, and how much they are influential.

Indeed, the latter are mostly evident over a few years, showing their effects with a certain delay from their

introduction. The identification of influential variables within big databases is extremely difficult. Given the

huge size of databases, recognizing many of the substantial factors and being able to hypothesize a prediction

model can become a complex task. To investigate the production of Piemontese calves and its modelling,

it is necessary to examine which variables available in the dataset impact the performance of a breeding

farm. Besides, a priori assumptions about data or the relationship between the response and independent

variables should be limited only to the preparation of the dataset and the analyses of produced models, i.e.,

an a posteriori interpretation.

The issue consists of handling an enormous amount of data, without imposing substantial hypotheses on

the model to be extracted, which must be predictive. A large amount of data is nowadays collected in the

livestock sector, even through the use of sensors, ear tags, collars, images and video recordings in many

fields [14, 16, 23, 50]. It is increasingly common to monitor animals, for greater accuracy on the quantity

and quality of information, to achieve the economic and environmental sustainability of farms. The breeder

must generally deal with animals’ problems, like their health conditions and social behaviour, that affect the

quality of the product, the life of the animal, and the performance of the farm. The management of livestock

by continuous automated real-time monitoring of production, reproduction, health and welfare of the herd,

and its environmental impact is defined as Precision Livestock Farming (PLF) [15, 16]. PLF supplements
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the skills of the farmer, the veterinarian, and the technician by a continuous collection of livestock informa-

tion, with the support of data transfer technologies [35]. It can play a crucial role in the early detection of

diseases and it objectively assesses animal condition and welfare in modern livestock production, representing

a tool that supports many farmers as decision-makers. Despite the biological process being too complex to

replace farmers by technology, it still offers more possibilities to save money and to change farmers’ lives, as

a more accurate management system can be achieved, leading to a better approach to the genetic potential

of today’s livestock species [14, 49, 58].

The creation of prediction models on a specific result in the zootechnical field is increasingly addressed with

the use of Machine Learning (ML) techniques [24, 49]. ML is a subfield of Artificial Intelligence (AI),

originally intended to mimic human intelligence [55], addressed to the study of algorithms for prediction and

inference [79]. Learning from data is at the core of ML, and hence this field of research is suitable for the

management of large data sets, without assuming specific hypotheses among data [30]. As in animal science

a growing amount of data is being gathered, ML is used to predict livestock issues, such as time of disease

events, risk factors for health conditions, failure to complete a production cycle, as well as the genome of

complex traits [32, 58]. Studies have been conducted, based on the application of ML techniques, to model

the individual intake of cow feed [80] optimizing health and fertility, to predict the rumen fermentation pat-

tern from milk fatty acids [24] which influence the quantity and composition of the milk produced but also

the sensorial and technological characteristics of the meat. The use of ML techniques is also often exploited

to identify potential disease predictors, e.g. Bovine Viral Diarrhoea Virus (BVDV), Infectious Bovines

Rhinotracheitis (IBR), Bovine Tuberculosis (TB), lameness, and mastitis [28, 34, 43, 68, 77]. Beside these,

successful results were achieved for traits prediction as methane production and milk production [31, 81], as

well as predicting individual survival [75], classifying grazing and social behaviour [8, 52, 59], and predicting

carcass conformation [9], an important component of price negotiations between beef producers and market

operators. These works are mostly carried out on dairy cattle, which are more critical to manage from a

health point of view. Dairy and beef cattle generally have a different average lifespan, as they are intended

for different production. Clearly, the difference between the two types of cattle is determined by distinct pro-

duction purposes [17, 60]. Dairy cows are thin and lean. Their angular shape can make them look underfed,

but it is just their build, like marathon runners. They are milked for about 300 days over the year, two to

three times a day, and then they take a break or rest for two months to restore body conditions for another

calving. They are also fed a balanced diet, but their energy goes into producing milk, rather than producing

mass, i.e., building muscle and storing fat. The two characteristics are indeed usually mutually exclusive.

As bulls can not produce milk, they are sometimes used in beef production, albeit with lower yields than

specialized beef cattle. In contrast to dairy herd, beef cattle can be compared to weight lifters. They are
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characterized by rounded stocky bodies with muscular shoulders and rumps, short necks, and thick backs.

Bullocks and steers are intended to produce lean meat with marbling for texture and flavour. Their energy

is invested toward building muscle. Beef cows produce milk, but only a little more than enough to feed

their calves. In particular for Piemontese cattle, heifers and cows are mainly raised to produce calves, but

they are also fattened to produce meat. Consequently, different issues arise among their lifespan and health

conditions. In dairy, diseases and metabolic problems affect the cows, and they only survive on average up

to three or four lactations [25]. Exceeding this average is rather a feat. For a better performance and a

higher yield, they are hence usually crossed with beef cattle [37, 64] and above all a wide range of devices is

available to expressively monitor the delicate health conditions.

In beef cattle, the use of devices is still moderate. Mostly concentrated in the Italian region of Piedmont, the

Piemontese is a beef cattle raised in intensive breedings, mainly because available pastures are not sufficient

for the total number of animals [18, 66]. Furthermore, lifetime is quite short among fattening calves, heifers,

and steers, as the animals are slaughtered as soon as they reach the necessary characteristics. Cows and

heifers destined for reproduction require instead to be monitored, as raised to give birth several times over a

longer lifespan. Consequently, in order to optimize their management, it is necessary to constantly monitor

the animals, introducing and adapting to beef cattle the necessary tools implemented for the dairy sector.

Moreover, the breeding cycle is reduced compared to other income-producing species, and there is no daily

movement of the animals (e.g. milking). The aspects of greatest interest are the composition of the ration

and the consumption of food and water, behavioral remarks, the quality of the structures that host the cattle

(temperatures, humidity, lighting), growth rate, slaughter yield, and carcass quality. The lower impact of

critical points onto the meat sector entails that the adoption of sensors, not yet specific for this type of

animal and with a high cost, is probably not worth the economic investment.

As illustrated throughout this chapter, for an optimal farm management, besides the contemporary situation,

it is relevant for the breeder to predict future trend. Precisely, the proper parameter to model Piemontese

breeding performance is the number of viable calves after the weaning phase, which each cow will produce

over the next 365 days. The conditions that permit the survival of the calf are related with its genetic

characters and those of its ancestors. However, the calf itself and its aptitude are in large part accountable

for good or bad performance, as well as the farmer’s managerial choices, and hence the multitude of envi-

ronmental conditions. In order to investigate the production of Piemontese calves and its modelling, the

goal, transversal to all investigations performed during the project, was the identification of the variables

influencing the performance of a breeding. Since the goal is to build a predictive model, based on hidden

relationships intrinsic to the dataset and possibly readable a posteriori, ML techniques were applied. In con-
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trast with previous studies conducted by ANABORAPI, in which models are based on traditional statistical

identification approaches, a priori assumptions on the relationship between the response and independent

variables were not imposed to construct the best patterns. The appropriate features to predict the defined

target were selected among the variables listed in Table 5.1. After the data were filtered, a general simple

scheme was pursued in all the stages defined along the study. The dataset was divided into learning and

test sets, according to the different study cases. The instances were processed by the different chosen algo-

rithms, to learn relations and to find the hidden patterns between the input variables (i.e., consistencies, CI,

mortality, EBVs, consanguinity, etc.) and the specific output variable (i.e., the number of calves weaned per

cow per year). The effectiveness of the implemented models was finally assessed. To do so, a test set was

used, as its purpose is to determine the validity of the models when it is applied to unseen instances .

The choice of the most appropriate ML approach depends on the goal to be achieved. There are many meth-

ods that can produce excellent results by building accurate prediction models [36]. What differentiate them

are the distinct algorithms structures and the characteristics intrinsic to the techniques, addressing more or

less properly the issue. A simple classical technique as linear regression is often chosen to model the data.

However, it can not be the best choice to catch the non-linearity of data. Beside this, a wide range of ML

methods is available, properly designed to exploit the underlying non-linearity. If animal husbandry data,

particularly in the dairy cattle sector, are widely addressed with simple linear regression and the application

of black-box ML methods, the same cannot be affirmed about the use of Evolutionary Algorithms (EA),

a family of population-based algorithms, mimicking the process of natural evolution (Chapter 4). Such

techniques are seldom applied, especially considering the beef cattle sector, regarding which the literature

review did not produce relevant results for EAs exploitation. In this regard, this project results in being

quite innovative, considering that the adopted approach, based on a particular category of EA, i.e., Genetic

Programming (GP), for the first time exploited to deal with the Piemontese cattle. Models arising from GP

are resumed as intelligible expressions [3]. The produced models can be completely accessed and analytically

investigated, qualifying the technique as a white-box method. The algorithm can automatically create fea-

ture selecting models, i.e., composed with the most influential variables, delivering accurate results through

clear and intelligible expressions. More details are given in Section 4.4. On the contrary, when the internal

logic is not accessible, the methods fall into the black-box category. Black-box models generally outperform

the others, since their structure is able to capture the high non-linearity underlying data. However, as their

definition suggests, the internal processes can be very unclear and do not provide the pursued logic and

mechanisms between input and output variables leading to the results. Differently from GP, these methods

do not carry out an automatic feature selection, as they encapsulate all the input features within the final

model.
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Chapter 4

Introduction to Machine Learning

4.1 What is Machine Learning Purpose

Although the terms Artificial Intelligence and Machine Learning are nowadays "the talk of the town", to the

point of making them appear very innovative concepts, their roots lie around the mid-1900s. In 1936 Alan

Turing firstly provided a mathematical description of a very simple device capable of arbitrary computations.

He proposed an abstract computing machine, provided with a scanner reading and writing symbols while

moving along a limitless memory, guided by a program made up of instructions stored in the memory itself.

The basic concept behind the abstract machine lies in its ability to operate by modifing and improving its own

program. Considered the founder of AI, with his ’Turing Machine’ he became highly influential in the devel-

opment of theoretical computer science, providing a formalization of computation. Turing indeed supplied

the general properties of computation that are at the core of modern computer programming [73]. Turing

stated later that computers would one day play very good chess, laying the foundations of AI as a broad con-

cept according to which machines can perform certain tasks intelligently, emulating human decision-making

behaviour. In [74], Turing introduced this concept based on the imitation game, also known as Turing test,

wondering about a machine’s ability to behave intelligently, taking decisions that are indistinguishable from

those of a human. Originally, Turing hypothesized a game involving three players, one of them (the inter-

rogator) was unable to see the others, a man and a woman. By asking questions to the two hidden players

by means of notes, he tries to guess their sex. The man’s role is to assist the interrogator in making the right

decision, whereas the woman attempts to trick the interrogator into making the wrong decision. In the 1950

paper, the only difference introduced in the game was the woman’s role, performed by a computer. Provided

with an appropriate program, the computer is supposed to play the part imitating the human in the game,

as the interrogator attempts to guess who is the human being and who is the computer. Based on these

fundamental principles, many efforts were made by different scientists to create successful programs, capable
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of replicating in some way human behaviour, trying to incorporate learning instructions. The earliest AI

programs capable of playing draughts searching the space were written by Christopher Strachey [71] and

Arthur Samuel between 1951 and 1952. In the following years, Samuel improved his work, giving the main

definition of ML: "A computer can be programmed so that it will learn to play a better checkers game than

can be played by the person who wrote the program. [...]. Programming computers to learn from experience

should eventually eliminate the need for much of this detailed programming effort." [65]. These two concepts

expressed by Samuel condense ML definition into a "Field of study that gives computers the ability to learn

without being explicitly programmed". In particular, Samuel dealt with the short available memory supplied

with the computers at that time. Indeed he provided the program with a function able to analyze the

position of the drought in every moment of the game, calculating then the chances of victory for each side

and acting accordingly. Further developments conducted the program towards the progressive incorporation

of past experience and "memory" of already encountered positions. Samuel’s program was refined over time,

becoming such a powerful learner after playing hundreds of times, even against itself, that it was able to

challenge medium and high-level professional amateurs. ML is a category of computer programs based on

the idea that machines learn to perform specific tasks without being programmed to do so, thanks to the

recognition of patterns in data, thus settling as a branch of AI. Algorithms are implemented in order to learn

from data and even unknown information is recognized, without explicitly indicating where to look for it.

Computers are able to learn by processing data, producing results that are reliable and possibly replicable.

One of the most relevant aspects of the process lies indeed in the repetition of instances, as the more the

models are exposed to the data, the better they are able to adapt. Thanks to new processing technologies,

ML has undergone a significant evolution. This science is not new, but has been developed more recently in

order to hone the skills in applying complex mathematical calculations to bigger data. The renewed interest

in ML is due to certain factors, namely the growth in the volume and variety of data, as well as the cheaper

and more powerful processors. Nowadays, it is possible to automatically build models for analyzing larger

and more complex data, and to quickly produce more accurate results even on a large scale. Building precise

models entails the identification of new profit opportunities, as well as to avoid unforeseen risks.

The basic premise of ML is to build programs relying on input data to predict an output of interest, handling

statistical analysis, and updating outputs as a new input becomes available. The algorithm is selected and

set by a human. Thereafter, the computer program learns from data about the underlying relationships,

fitting data with mathematical models for making predictions. A dataset is used to train the mathematical

model so that it knows what to do when dealing with similar data. ML is most simply the application

of statistical models to data using computers. Techniques are constantly evolving, improving structurally,
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to handle more complex datasets and hence making fewer assumptions about the underlying data. Recent

progress in ML attained an exceptional level of information extraction and semantic understanding, as the

ability to detect abstract patterns entails greater accuracy than human experts. A wide variety of ML algo-

rithms is nowadays handled. The characteristics of the data and the type of the desired outcome determine

the choice of a model instead of another. The required skill lies in the machine’s generalization ability, that

is the ability to accurately accomplish new tasks, never tackled before. To develop this skill, it must first

gain experience on a set of learning data. The training examples come from a probability distribution, which

is generally unknown, but representative of the occurrence space. The machine builds a general probabilistic

model of the space of occurrences, learning how to recognize cases, and thereafter producing sufficiently

accurate predictions among new cases, i.e., test instances (Figure 4.1).

Learning
data

Learning
process

Models
creation

Test
data

Generalization
ability evaluation

Step 1: Learning Step 2: Testing

Figure 4.1: ML process flowchart

Depending on the data and the task, machines learn in different ways with various amount of supervision [44].

For this reason, there are several sub-categories of learning, i.e supervised, unsupervised, and semi-supervised.

In unsupervised learning, the machine learns from data for which the outcomes are not known, while only

input samples are given. However, machines often learn from sample data providing both an example

input and an example output. This class of ML is called supervised learning and it is the most deployed

form of ML, since the desired predicted outcome is given. In semi-supervised learning, also referred to as

weak learning, the two previous categories are combined. As the dataset is not fully provided with output

samples, a model uses unlabeled data to gain insight into the data structure, then handles labelled data

to learn how to organize the whole information. A further aspect of supervised learning is the type of

task to perform [44]. The definition of what group a given input belongs to is the goal of a classification

problem, for instance the determination of the presence or absence of a disease, or the categorization of

animal pictures into groups. Outputs for classification are typically discrete. Continuous output variables

characterize regression predictive modeling instead: the algorithms attempt to estimate the mapping function

to continuous numerical quantities, i.e., a size or an amount.
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4.2 Preliminary Settings for Good Prediction Models

One of the common key-problems in supervised ML tasks is the phenomenon of over- and under-fitting [40].

In the first case, a model fits the data so well that even the noise is memorized while learning, whereas its

performance drops when the model is tested on unknown instances, as the underlying relationships were not

detected. The overfitting issue leads to the deterioration of generalization properties of the model, whose

performance is unreliable. High variance and low bias estimators usually characterize overfitting patterns

(Figure 4.2). On the contrary, when the bias is high and the variance is low underfitting effect occurs, i.e.,

the opposite of overfitting. The model is unable to map data and to capture the variability, with weak

predictive power, failing to generalize on both the learning set and the test set (Figure 4.3). Over- and

under-fitting are the result of the attempts to use respectively too complex and too simple models, far from

being well-balanced. Pursuing a good configuration can be challenging. Good models arise from optimal

parameter settings defining the algorithms, a proper measure to evaluate its error, i.e., a fitness function,

and representative datasets (Figure 4.4).

Figure 4.2: Overfitting Figure 4.3: Underfitting Figure 4.4: Balance

Setting correctly the regularization hyperparameters with which the technique learns and adding complexity

to the model are crucial steps. Once the parameters are set and the model is obtained, its fitness is measured,

to indicate quantitatively how fit a given solution is in solving the problem. To determine how close the

prediction models came to represent the desired solution, they are awarded a score generated by evaluating

the fitness function computed on the test. Each problem requires its fitness measure, and hence its proper

score. When it comes to formulating a problem, defining the objective function can result as one of the most

complex parts, as some requirements should be satisfied. The fitness function should be clearly defined,

generating intuitive results. The user should be able to intuitively understand how the fitness score is

calculated as well. Besides, it should be efficiently implemented, as it could become the bottleneck of the

algorithm. When dealing with a regression problem, the choice usually falls onto the Root Mean Square
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Error (RMSE):

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷∑︁
𝑖

(𝑦𝑖 − 𝜙 (𝑥𝑖))2

𝑛
, (4.1)

where 𝑖 = 1, . . . , 𝑛 and 𝑛 is the number of instances (which may differ in the learning and in the test set). The

predictor 𝜙 is evaluated at 𝑋𝑖, i.e., the input variables values, and 𝑌𝑖 are the target values. A good fitness

value means a small RMSE, and viceversa. RMSE is expressed in the response variable’s unit and it is an

absolute measure of accuracy. The choice of this fitness function is further determined by the application of

different ML techniques, that build mostly non-linear models. This issue can exclude a discussion based on

the coefficient of determination 𝑅2, as its definition assumes linearly distributed data. When the assumption

is violated, 𝑅2 can lead to misleading values [70].

It is common to use a k random sampling to split the data into k pairs of training and test sets. The

performance is estimated as the average over all k test sets. Any pair of training and test set is disjoint,

i.e., does not have any cases in common, whereas any given two training sets or two test sets may overlap.

Thus, all the data are considered as learning instances and generalization ability can not be investigated,

requiring external additional data. Cross validation is a basic approach consisting in extracting a second

set from the learning dataset, involving a training set and a validation set. The use of three different sets is

advisable to exploit all the available data, as the training set can be used to fit the models, the validation

set to the evaluate the predictive performance for model selection, and finally the test set to assess the

generalization ability of the final selected model. Thereby, the training and validation sets are considered

part of the learning phase, as both participate in the construction of the models. The validation set is used

to select the trained model to be tested later. The test gets in the process only at the end of it, to simulate

the behaviour of the model on new data, i.e., instances never seen before, and to evaluate its generalization

ability. However, it is advisable to dispose of many models to choose from, built with different combinations

of the parameters that define the algorithm. Indeed, it can be more or less efficient while learning, depending

on the dataset structure. The different values assigned to the parameters require hence to be investigated

on different subsets of the learning set. Thus, after the definition of the test set, k random validation sets

should be randomly sampled (k random sampling), obtaining then k pairs of training-validation sets among

the learning set. The key is represented by the multiple training-validation cycles. In each one of the k cycles,

a different fold is used for evaluation. In the end, the overall performance of a given model is determined

by mean of average scores for each of the folds. An optimization of this technique is k-fold cross-validation.

It is a better implementation of the k random sampling concept: the learning set is divided into k disjoint

folds, i.e., k non-overlapping subsets of equal size (Figure 4.5).
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Dataset 100 %

Learning set 75 % Test set 25 %

1
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3 ...
𝑘

k TRAINING SETS
+

k VALIDATION SETS

Figure 4.5: Example of k-fold cross validation: for each fold, validation set is highlighted in gray, whereas the remaining

data is the training portion

4.3 Adopted Techniques to Model the Farm Performance

As illustrated throughout Chapter 3, starting from the breeding data available in the Herd-Book, the pursued

goal consists in investigating the Piemontese zootechnical field, in order to find a prediction model for the

performance of the farm. Defined as the number of weaned calves per cow produced in a year, the target is

predicted based on the data describing the breeding aspects recorded during a defined year and extracted at

a precise moment (within this case study, at the end of 2017 and 2018, according to the specific investigated

benchmark problem). Correspondingly, the target is drawn at the end of the following year (2018 and 2019),

in order to measure the fitness, as the RMSE between the real value and the predicted one, and minimize it.

In the vectorial approach, the input data is extracted at the end of all the years between 2014 and 2017, and

the target from 2018. The task belongs to the supervised learning category, as the structure of the available

dataset consists in input and output variables. More specifically it is a regression task, since the given output

variable (the yearly number of weaned calves per cow) is continuous. As the data are rich in zootechnical

meaningful features, a GP approach was adopted (Section 4.4), compared also to classic ML approaches,

used for regression tasks. GP was explored through a public user-friendly Matlab implementation of GP, i.e.,

GPLab [69]. In particular, for what concerns the vectorial approach, a recently introduced version handling

vectorial variables representing time series was used [11]. On the other hand, comparisons with standard GP

were performed using the R software library "caret" [46], while the vectorial approach was compared with

the available deep learning toolbox, implemented in Matlab.
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4.3.1 Linear Regression

Linear regression (LM) is the simplest form of ML, as the technique consists in a model that assumes a linear

relationship between the input and the single output variables, and fits them using ordinary least squares

regression, assuming normally distributed error terms in the model. More specifically, given a vector X of

𝑛 input features, the representation is a linear function 𝑓(𝑋, 𝜗) = 𝛽 · X + 𝑞 with parameter set 𝜗 = (𝛽, 𝑞),

representing respectively the slope and the intercept of the line. The parameters 𝛽 and 𝑞 are estimated

during the training process. Input values are combined to produce the expected output as solution by mean

of a simple calculation, i.e., linear least-squares, whose result minimises the sum of squares of the difference

(y − ŷ)2, where y is output variable and ŷ the predicted value.

4.3.2 k-Nearest Neighbors

Characterized by a very simple implementation and low computational cost, the k-Nearest Neighbors algo-

rithm (kNN) is known as "lazy learning", as it does not build a model, but it is an instance-based method,

exploited for both classification and regression tasks. The input consists of the k closest instances (i.e.,

neighbours) in the features space, and the corresponding output is the most frequent label (classification)

or the mean of the output values (regression) of k nearest neighbours. Otherwise stated, in the latter case

the k nearest points are computed to predict the value of any new data point, and the values of their output

is averaged, to be assigned as the prediction to the given point. The distance used is usually the Euclidean

function, defined as:

(P𝑖, P𝑗) =

⎯⎸⎸⎸⎸⎷
𝑛∑︁

𝑖,𝑗=1
𝑖 ̸=𝑗

(P𝑖 − P𝑗)2 (4.2)

where P𝑖 are the instances composed of 𝑚 entries (features), i.e., P𝑖 = (𝑥𝑖,1, ..., 𝑥𝑖,𝑚)), and 𝑛 is the total

number of instances. However, also other distance metrics are used, depending on the particular dataset [78]

The number of k nearest neighbors should be chosen properly, since the predictive power can be strongly

affected afterwards. A small value of k leads to overfitting and results can be highly influenced by noise. On

the contrary, a large value results in very biased models and can be computationally expensive.

4.3.3 Random Forest

Random forest (RF) is an ensemble learning method, which operates by constructing a multitude of decision

trees during the learning phase, i.e., a forest. The output results in a class obtained with a majority vote

(classification) or the mean prediction (regression) of the individual trees. The decision tree, referred to as a

regression tree when the target is continuous, is incrementally developed by splitting the dataset into smaller
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and smaller subsets.

The process makes a prediction simply through a sequence of queries about the available data, until a pre-

diction is available. The final result is a tree composed of decision nodes and leaf nodes. Figure 4.6 shows

visually the basic principle of a regression tree. A decision node is labelled by one of the available attributes

and splits into two (or more) branches, each representing interval of values for the tested feature. A leaf

node represents a decision on the numerical target. The topmost decision node is called the root node.

Predictor 1

Prediction 1 Predictor 2

Prediction 2 Prediction 3

< 𝑝1 ≥ 𝑝1

< 𝑝2 ≥ 𝑝2

Figure 4.6: A regression tree, i.e., a decision tree whose output is continuous, builds a regression in the form of a tree

structure. The scheme shows the basic principle of a regression tree. The decision nodes contain a predictor, and each

branch leaving the node represents values for the attribute tested. A leaf node contains the decision on the numerical

target. The topmost decision node is called the root node.

Why is it better to create a forest of decision trees, instead of a single tree? Decision trees are prone to

overfitting. Indeed, when their maximum depth is not limited, they can keep growing until exactly one leaf

node for every single observation is produced. Exact prediction outcomes for all instances in the learning set

are available, but the trees fail to develop generalization ability. As an alternative, instead of limiting the

depth of the tree, which would reduce variance while increasing bias, many decision trees can be combined

into a single ensemble model, i.e., a forest, whose output is the average of all the prediction models outcomes.

The adjective random is given by two key concepts: each tree in the forest learns from a random sample of

the data points and only a random subset of all the features is considered for splitting each node in each

decision tree. It is possible to grow the trees by splitting nodes at fully randomly chosen cut-points. In this

case the algorithm uses the whole learning sample and all the variables are selected at each split. However,

a bootstrapping is usually first performed by the algorithm to extract the random sample of the learning

observations. The samples are drawn with replacement, in order to process samples of the same size. This

means that some samples are used multiple times while constructing a single tree. Training every learner
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on many samples could produce models with higher variance with respect to a single set. However, as the

final output depends on the overall trend among the forest, both bias and variance can be maintained low.

The procedure of training each individual learner on different bootstrapped subsets of the data and then

averaging the predictions is known as bagging (Bootstrap Aggregating). Figure 4.7, describes the process

to obtain a prediction with RF.

Training Data

Sample and feature bagging

Tree 1 Tree 2 Tree N

decision criterion computation

prediction

. . .

Figure 4.7: Scheme of the Random Forest algorithm process. After the dataset is subsampled, i.e., bootstrapping is

performed, a forest of 𝑁 trees is grown. All the trees contribute to the final prediction, whatever decision criterion is

set: whether it is a classification or regression problem, the majority vote or the mean value of all 𝑁 predictions is the

final outcome. In other words, instances to be tested are given in input to all the trees, and the obtained predictions

(highlighted in red) are finally .

A consequence of bootstrapping is the possibility to deal with Out-of-Bag instances, i.e., data that were not

sampled. As the OOB dataset was not used to create the trees, the algorithm runs them through and checks
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the prediction ability of the models. The OOB error is similar to the cross-validation error, i.e., after many

iterations, OOB error stabilizes converging to the cross-validation error. OOB error has the advantage of

requiring less computation. However, OOB can overestimate the generalization error to a greater extent

than cross-validation [19, 41, 57].

4.3.4 Extreme Gradient Boosting

Gradient Boosting (GB) is a technique producing ensembles of models, usually small decision trees. Boosting

is a procedure that combines the outputs of different "weak" models to produce a powerful upgraded one.

From this perspective boosting recalls a resemblance to the bagging approach used by RF. However, it is

fundamentally different. First of all, while RF does not set boundaries on tree dimension, boosting technique

usually implements trees composed of few nodes and leaves. In other words, RF grows forests of big trees,

whereas boosting algorithms build forests of very small trees, stumps if composed of one node and two leaves.

Clearly, stumps and very small trees are not good at making accurate predictions, as they can use only one

or few variable at a time, and are indeed called "weak learners". Nonetheless, it is frequently reported that

boosting methods outperform RF.

The first algorithm proposed to exploit the boosting problem was introduced among classification tasks by

Shapire [67] in 1990, based on the idea that a set of weak learners could form a single strong one. Accordingly

to this hypothesis, the algorithm worked by weighting the samples observations at each iteration and by

forcing one stump to adapt to the incorrectly predicted samples. During the first step, the weak learner

is simply trained on the original data. Thereafter, at each iteration, the weights are individually modified

and examples that are difficult to predict receive ever-increasing influence. However, the technique could

not take full advantage of the weak learners, as the process was not adaptive, consisting only of one weak

learner, trained to become stronger. It took no time for the technique to be developed as an Adaptive

Boosting algorithm (AdaBoost), adapted also for regression tasks [26, 29] . Unlike previous algorithms,

AdaBoost makes use of many weak learners, usually decision trees, added subsequently. At each iteration,

samples are still re-weighted, and weak learners that are added sequentially are forced to concentrate on the

examples that are missed by the previous ones in the sequence. The final prediction consists of a median

of all the weak learners; more accurate learners contribute with larger weights. AdaBoost is regarded as

a special case of Gradient Boosting, to which it was later generalized. As a generalization, GB inherits

the main characteristic from AdaBoost, that is the idea of building a single strong learner, by training a

set of weak learners added sequentially. The trees that GB grows are larger than stumps, but their size is

still restricted, usually limited to four leaves. Differently from AdaBoost, that works basically assigning the

weights to the samples, GB trains learners based upon minimising the loss function of the learner, by setting
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optimal parameters. Instead of receiving weighted samples, at each iteration the algorithm directly fits the

added learner on the residuals errors committed by the previous learner. In GB, the order of construction

of stumps is crucial: the prediction error committed by the first iteration learner influences the construction

of the second iteration learner, and so forth. The final ensemble model takes into consideration the average

of all learners, with the possibility of emphasising the most accurate ones with a larger weight (particularly

with AdaBoost). On the contrary, RF grows large trees independently and the final prediction ensemble

takes into account the average of all the models, with no importance given to the order of construction.

In order to find the parameters used to minimize the loss function, usually convex1, the algorithm applies

Gradient Descent. It is a powerful optimization algorithm used in many methods in order to find the loss

function minimum. Given an 𝑛-dimensional vector 𝑋 and a set of parameters 𝜗, the algorithm operates by

computing the gradient2 of the loss function 𝑓(𝑥, 𝜗) with respect to 𝜗. The value of the gradient at a point

is a tangent vector, that indicates the direction and rate of the increase of the function in that point. When

this rate is equal to zero at a given point, i.e., the gradient vector has null values, the function is stationary

in that point. Convex functions have a key-role in this point. Indeed, if the function is strictly convex the

stationary point is a minimum, and furthermore a convex function has no more than one minimum. Even in

infinite-dimensional spaces, under suitable additional hypotheses, convex functions continue to satisfy such

a property. The descent is an iterative process, in which, step by step, the parameters are tweaked in the

opposite direction of the gradient, i.e., in the direction of steepest descent (steps in the direction of the

gradient are performed when the focus is a maximum search). This process is repeated for different points

in the space of inputs until a minimum of 𝑓 is found.

𝜗

Loss function

Random

initial value
𝜗

Figure 4.8: Gradient descent is the process of gradually decreasing the loss function by nudging the parameters 𝜗

iteratively until a minimum is reached. In figure: a representation in a two-dimensional space.
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Extreme gradient boosting (XGBoost) is one of the most popular variants of gradient boosting [22]. It is a

better and more efficient performing implementation of gradient boosted regression trees. Indeed, the process

is way faster as parallel computation on a single machine is performed and it can handle also sparse data

sets. However, these are not the only "tricks" that make gradient boosting extreme. One of the main features

of XGBoost is the provision of more regularization options among the loss function (both 𝐿1 and 𝐿2 are

available3), in order to avoid increasing complexity and overfitting, improving the generalization performance.

Furthermore, the algorithm computes the second-order gradients, i.e., the second partial derivatives of the

loss function. Regular GB uses generally a convex loss function. When descending the gradient, it is possible

to take smaller or bigger steps. In the first case, growing the number of steps clearly increases the number

of approximations to be computed, even if they lead towards the minimum. In the second case, bigger steps

could reduce the number of iterations, but would include the possibility to jump too far in the opposite

direction of the gradient, increasing the computational costs. The second-order derivative would provide

more information about the direction of gradients and how to get to the local minimum of the loss function,

when dealing with any kind of function. Moreover, the principle of gradient descent can be extended to

any kind of loss function by computing the second-order derivative. Indeed, dealing with any function, the

minima are searched by computing the second order derivative. If a function 𝑓 that is twice differentiable

at a stationary point 𝑥0 has 𝑓
′′(𝑥0) > 0, then 𝑓 has a local minimum at 𝑥0. After all, a twice-differentiable

function is convex if and only if its second derivative is non-negative over its entire domain. XGBoost exploits

the second-order derivative, taking more time to compute the direction where to go, in order to take fewer

steps to get there and avoiding unnecessary computations.

4.3.5 Neural Networks

A Neural Network (NN), usually denoted with the term of Artificial Neural Network (ANN) emulates the

complex functions of the brain. An ANN is a simplified model of the structure of a biological neural network

and consists of interconnected processing units organized according to a specific topology. The behavior

1A function 𝑓 : 𝐼 ⊆ R𝑛 → R is convex if its domain is a convex set and for all 𝑥, 𝑦 in its domain and all 𝜆 ∈ [0, 1]:

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦). Stated otherwise, a function is convex for all the points of the graph if the line segment

between any two points on the graph of the function lies above the graph of the function between the two points.
2Given a scalar-valued differentiable function 𝑓 of several variables, the gradient of 𝑓 is the vector ∇𝑓 , whose value at a

point 𝑝 are the partial derivatives of 𝑓 at 𝑝. The ∇ symbol denotes the vector differential operator. Stepping in the direction of

the gradient leads to a local maximum (gradient ascent) or minimum (gradient descent) of that function.
3The regularization 𝐿1 and 𝐿2, also known respectively as Lasso (least absolute shrinkage and selection operator) and Ridge

regularizations, are based on shrinkage parameters introduced into the loss function. The two kinds of shrinking penalties are

defined based on the considered norms: 𝐿1 norm is calculated as the sum of the absolute values of a vector, whereas 𝐿2 norm

is calculated as the square root of the sum of the squared vector values.
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of the nodes recalls that of biological neurons. A neuron integrates the signals received from various other

neurons via synaptic connections. If the resulting activation exceeds a certain threshold, an action potential

is generated and is propagated through the axon to one or more neurons. The "neuronal units", i.e., nodes,

that compose a NN are arranged in successive layers. Each neuron is connected to all the neurons in the

next layer via weighted connections. The connection is nothing more than a numerical value, i.e., a weight,

that is multiplied by the value contained in the neuron. All the neurons connected to a next layer node con-

tribute to its output value, by mean of a weighted sum. An activation function, i.e., a (generally non-linear)

mathematical transformation, is applied to the result before passing it to the next layer. In this way, the

input values are propagated through the network, until the output node is reached. The gist of it consists

in regulating weights and bias, to obtain the desired result.

As shown in Figure 4.9, a NN is formed by a set of nodes arranged in at least three layers. The network is fed

with features values through an input layer. Thereafter, the learning takes place among one or more hidden

layer, composing the internal network. Finally, the network includes an output layer, where the prediction

is given. Learning occurs by changing connections weights, based on the error affecting the output. At

each update, the weights of the connection between nodes are multiplied by a factor in order to prevent the

weights from growing too large and the model from getting too complex.

Input #1

Input #2

Input #3

Input #4

Output

Hidden

layer

Input

layer

Output

layer

Input # Output
Hidden

layer

Input

layer

Output

layer

Figure 4.9: Representation of a single hidden layer Artificial Neural Network, with four input features. In the lower

part of the figure, the folded representation is depicted.
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ANNs are popularly known as universal function approximators, as they are capable of learning any non-

linear function. They can learn weights that map any input to the output. One of the main reasons behind

this ability is the activation function. Indeed, it introduces non-linear properties to the network, helping

the network learn any complex relationship between input and output. Without an activation function, the

network can only learn a linear function and can not do complex relationships.

Bias is rather a constant that is added to the linear combination of inputs and weights. It is applied before

the activation function, and has the effect of shifting by a constant amount the activation function. In

Figure 4.10 the steps pursued to assign the value to each node in the hidden and output layers.

𝑥2 𝑤2 Σ 𝜑(·)
Activation

Function

𝜑(∑︀𝑛
𝑖=1(𝑤𝑖 · 𝑥𝑖) + 𝑏)

𝑥1 𝑤1

𝑥3 𝑤3

Weights

Bias

𝑏

Figure 4.10: Representation of the steps exploited to process information among the single nodes of a Neural Network.

A nonlinear activation function 𝜑 is applied to the weighted sum of the input values and the bias term 𝑏 in order to

compute the value for the next node.

Networks provided with this structure are also known as Feed-Forward Neural Networks, as inputs are pro-

cessed only in the forward direction. In order to minimize the error, the gradient descent algorithm can

also be applied to an ANN. The task is performed by through a backpropagation algorithm , that works, by

computing one layer at a time, the gradient of the loss function with respect to each weight. Iterations are

computed backwards starting from the last layer.

One of the disadvantages of an ANN, is that it cannot capture sequential information in the input data. An

ANN can deal with fixed-size input data, that is all the item features feed the network at the same time,

such that there is no time interval between the data features. Even if there were a time interval between

two input data, a basic ANN simply could not detect it. When dealing with sequential data, in which there

are strong dependencies between the data features, i.e., in text or speech signals, a basic ANN is not able

to address properly the task. In this regard, basic ANNs were developed to make way for a more efficient

algorithm, particularly useful for time series. RNN is a type of ANN, that has a recurring connection to
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Figure 4.11: Scheme of a RNN and the unfolding in time of the forward computation. On the left side, the neural

network is fed with input 𝑋(𝑡), and outputs a value 𝑌(𝑡). A loop among the hidden layer 𝐻 allows information to be

passed from one step of the network to the next. A RNN can be seen as multiple copies of the same network, where

each copy passes sequentially information to the next one (right side).

itself. While predicting the output 𝑦 at time 𝑡, the algorithm maintains an “internal state” that is used to

store the context of the data being fed into the network. This functionality makes it possible to exploit the

previous input 𝑥(𝑡−1) along with the current input 𝑥(𝑡), as the hidden layer activations calculated at time

𝑡 − 1 are fed in as an input at time 𝑡. This gives RNN a sense of time context.

Depending on the issue, to perform the task it is sometimes sufficient to look at recent information. Some-

times, more context is rather needed. The gap between information may become very large and the amount

of sequential information can be complex to retain. As that gap grows, RNNs lose their ability to learn

connections. Besides, when the RNNs are trained, the gradient calculation becomes quite a feat, as it is

performed throughout many layers, including time. To overcome the short-term memory weakness, Long

Short-Term Memory (LSTM) architecture was designed to solve this problem with RNNs. By mean of

internal mechanisms, they keep track of the dependencies between the input sequences, storing and remov-

ing unnecessary information. The LSTM introduces the concept of cell states. By using special neurons

called “gates” placed in the cell state, LSTMs can remember or forget information. Three kinds of gates are

available inside the cell, in order to filter information from previous inputs (forget gate), to decide what new

information to remember (input gate), and to decide which part of the cell state to output (output gate).

These gates are a sort of highway for the gradient to flow backwards through time.

4.4 Genetic Programming

Since GP is the technique adopted as a baseline and major investigations are conducted, the entire section is

dedicated to its description. GP is a family of population-based Evolutionary Algorithms (EA), mimicking

the process of natural evolution. In other words, the principles of Darwin’s theory of evolution were expressed
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algorithmically, in order to evolve models and obtain a strong predictor. Indeed, individuals that represent

one candidate solution in the population are phenotypes, characterized by chromosomes (or alternatively

genome), i.e., sets of parameters outlining a proposed solution to the problem to be solved. Finding a suitable

representation for a chromosome limits the search space, making the search easier. A poor representation, on

the contrary, entails a larger search space. Each characteristic of the individuals’ chromosomes is referred to

as a gene, and all its possible values are referred to as alleles. A genetic representation can encode physical

qualities of individuals, its appearance, and behavior. Modelling the genotype is a branch of Evolutionary

Computation (EC), referred to as Genetic Algorithm (GA). Similarly to GA, GP models the genetic mate-

rial. Their difference lies in the representation of individuals [45, 62]: while GA processes binary strings, GP

accomplishes a tree-based representation. The nodes contain operators, whereas the leaves (terminal nodes)

are fed with operands, i.e., the features’ values. (Figure 4.12).
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Figure 4.12: GP programs examples: functions are represented as a tree structure, making mathematical expressions

easy to evolve and evaluate. Every tree node contains an operator function, whereas every terminal node has an

operand.

As in an evolutionary biological process, the initial population evolves through the course of generations,

exploiting the mechanisms of selection, mutation, and recombination of individuals. For each generation, in-

dividuals compete to reproduce offsprings. Individuals may undergo culling or survive to the next generation.

As the individuals showing the best survival capabilities have the best chance to reproduce, they form elites

of valuable candidates contributing to the creation of new individuals for the next generation. Offsprings are

generated by a crossover mechanism, i.e., the recombination of parts of the parents, and by mutation, that

is the alteration of some of the alleles. The survival strength of an individual is measured using a fitness

function. The population is transformed iteratively based on the training set, inside the main generational

loop of a GP run. An initial population of individual computer programs is randomly generated (generation
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0), consisting in simple trees, composed of the available functions and terminals. If greater complexity is

necessary, during the process their size can grow. Thereafter, sub-steps are iteratively performed within each

generation, until the termination criterion is satisfied. Termination consists in a limit imposed upon the

number of generations, or the number of fitness function evaluations, or even a convergence criterion for the

population. At that point, the population is evaluated on the validation set, to pick the best model.

Population

Initialisation Termination

Parents Offspring

Parents

selection

Reproduction,

Crossover, Mutation

Survivor

selection

Figure 4.13: A flowchart representing the main generational loop among a run of GP. The run starts with an initial

randomly generated population. Parents are selected from the initial population for mating: the genotype is altered

to generate new offsprings. Finally these offsprings replace the existing individuals in the population and the process

is repeated, until a terminal criterion is satisfied.

At every generation, each program in the population is executed and its fitness ascertained on the training

set using the proper fitness measure. One or more individuals are selected to participate in the genetic

operations. The selection probability is based on the measured fitness. New programs are created by

applying the following genetic operations:

• reproduction, that is the copy of the selected individual to the new population,

• crossover, consisting in the recombination of randomly chosen parts from two selected programs,

• mutation, a random mutation of a randomly chosen part of one selected program.

When a the termination criterion is satisfied, the whole final population is evaluated on the validation set

and the single best program produced during the learning phase is designated as the result of the run. If

the run is successful, the result may be a solution to the problem. Generalization is finally evaluated on the

test dataset.
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By selecting, recombining, and mutating the best individuals, at each evolutionary step (i.e., each new gener-

ation) the members of the new population are, on average, fitter than the previously generated ones, i.e., they

show a smaller error. Trees are built assuming different sizes and shapes. Among the parameters defining

the technique, the preservation of the best individual at each run is feasible, and fitness can be treated as

the primary objective, whereas tree size is a secondary parameter, when ranking models. This peculiarity

leads to the conservation of the most influential variables over generations. The algorithm performs, hence,

an implicit feature selection and, among all the input variables, only the most relevant are encapsulated in

the solutions.
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Figure 4.14: Mutation and crossover operations in GP

Standard GP (ST-GP) is a powerful algorithm, suitable to perform symbolic regression on any dataset.

However, as many other standard techniques do, instances are treated independently. showing a potential
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disadvantage when dealing with sequential data. This may result in a loss of knowledge in pattern recog-

nition of the temporal information. Besides RNNs, whose structure is suitable for managing a collection

of observations at different equally spaced time intervals, Vectorial Genetic Programming (VE-GP) can

manage vectorial variables representing time series [7, 11–13, 38]. Indeed, the development of ST-GP led to

techniques exploiting terminals in the form of a vector. With this representation, all the past information

associated to an entity is aggregated into a vector, giving a sense of memory and helping keeping track of

what happened earlier in the sequential data (see Figure 4.15). VE-GP comes with enhanced characteristics

of ST-GP exploiting a proper data representation processed with suitable operators to handle vectors, rein-

forcing the identification ability of correlations and patterns. The target can be scalar, as well as vectorial.

The technique can indeed treat both vectors, even of different lengths, and scalars together, performing both

vectorial and element-wise operations.
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Figure 4.15: VE-GP programs examples: like ST-GP representation, functions are embodied as a tree structure.

Terminals are exploited in the form of vector and processed through suitable operators
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Chapter 5

The Dataset and Data Preparation

5.1 The Available Data

This chapter describes the available dataset and all its variables, the scheme with which the farms were

selected, and the definition of the target variable. As previously mentioned in Chapters 2 and 3, ANABO-

RAPI designed a web service, accessible to registered users, which provides summary breeding reports. The

data are entered from PCs and other devices, i.e., smartphones and specific devices, sent in real-time to the

servers, stored and processed. The available database provided by ANABORAPI is an event history for all

farms registered in the Herd-Book of the Race. For every farm, current data and average statistics recorded

by technicians during routine controls, veterinarians, and directly by farmers, are elaborated. There are

several records for each farm since the track of every visit are kept. The content of the database is processed

by the system on the elaboration date. The average statistical values are calculated over the previous 365

days, starting from the last visit date or last data entry. Statistics are finally provided (Figure 3.1). In

addition to ID data of the breeding farms, all information on the consistencies, the deliveries and births,

the type of inseminations carried out (natural or artificial), visits dates, Estimated Breeding Values (EBV),

Selection Indices, consanguinity of all registered bovines, perinatal mortality rates are kept. Globally, the

database contains the last twenty years of data, including farms that are no longer active, for total of 219

descriptive variables reported in Table 5.1. Among them there is the number of calves alive per cow obtained

with equation 3.1 (line 102 in Table 5.1).

Field Name Type Width Description
1 DATA_ELAB* Date 8 Data elaboration date
2 PROPRIETAR Char 7 Farm code, i.e., Farmer ID
3 CAPI* Num 6 Cattle size
4 VACCHE* Num 6 Consistency for cows, i.e., number of cows

Continued on next page
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Table 5.1 – continued from previous page
Field Name Type Width Description

5 MANZE* Num 6 Consistency for heifers, i.e., number of heifers
6 VITELLE* Num 6 Consistency for heifers, i.e., number of heifers
7 TORI* Num 4 Consistency for bulls, i.e., number of bulls
8 VITELLI* Num 6 Consistency for male calves, i.e., number of male calves
9 PUNTEGGIAT* Num 6 N. of morphologically evaluated animals
10 PUNT_MEDIO Num 4 Morphological evaluation
11 PERCENT_FA Num 3 Percentage of Artificial Insemination
12 PERC_PROG* Num 3 Percentage of calves selected for progeny test
13 SALTI_TOT* Num 6 N. of total inseminations
14 ETA_VACCHE Num 5 Cows age expressed in days
15 C_ETA_VAC Char 7 Cows age expressed in years
16 ORD_PARTO Num 4 Average parity
17 N_PARTI* Num 6 Total n. of occurred deliveries
18 PERC_VIVI* Num 3 Percentage of calves born alive
19 ETA_SALT_1 Num 4 First insemination age
20 ETA_PART_1 Num 4 First calving age

21 INTERPARTO Num 4
Calving interval in days, based on currently pregnant

cows
22 PAR_SALT Num 4 Avarage interval between calving and insemination
23 PAR_CONCEP Num 4 Average interval between calving and conception
24 SALXGRAV Num 4 Insemination order on pregnant cows
25 N_SALT_1* Num 6 N. of heifers at the first insemination
26 N_PART_1* Num 6 N. of primiparous

27 N_INTERPAR* Num 6
N. of bovines on which INTERPARTO is calculated, i.e.,

n. of cows with at least 2 deliveries currently pregnant

28 N_PAR_SALT* Num 6
N. of cows with a calving before insemination (as last

event)

29 N_PAR_CONC* Num 6
N. of cows with a calving before impregnation (as last

event)
30 N_SALXGRAV* Num 6 N. of pregnant cows
31 ETA_RIFORM* Num 5 Cows age in days at cull
32 C_ETA_RIF* Char 7 Cows age in years at cull
33 PERC_RIFOR Num 3 Percentage of culled cows
34 PRIM_RIFOR Num 3 Percentage of culled primiparous

35 CORRETTI Num 3
Percentage of calves born without defects(e.g. Macroglos-

sia, Arthrogryposis)
36 COGNOME Char 56 Farmer’s surname
37 COMUNE Char 25 Municipality
38 COD_CONTR Char 5 Visiting technician ID code
39 QUALIFICA Char 35

Continued on next page
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Table 5.1 – continued from previous page
Field Name Type Width Description

40 VIA Char 30 Address
41 FRAZIONE Char 30 Borough, village
42 FAC_MANZE Num 3 N. of primiparae that delivered with easy calving
43 DIF_MANZE Num 3 N. of primiparae that delivered with difficult calving

44 TAG_MANZE Num 3
N. of primiparae that delivered through a caesarean sec-

tion
45 FAC_VACCHE Num 3 N. of cows that delivered with easy calving
46 DIF_VACCHE Num 3 N. of cows that delivered with difficult calving
47 TAG_VACCHE Num 3 N. of cows that delivered through a caesarean section
48 VACC_N_IND Num 3 Birth ease (EBV for cows)
49 VACC_PARTO Num 3 Calving ease (EBV for cows)
50 VACC_ACCR Num 3 Growing (EBV for cows)
51 VACC_MUSC Num 3 Muscularity (EBV for cows)
52 VACC_CARNE Num 3 Meat Index (cows)
53 VACC_ALLEV Num 3 Breeding Index (cows)
54 CONS5 Num 5 Consanguinity during the 5th previous year
55 CONS4 Num 5 Consanguinity during the 4th previous year
56 CONS3 Num 5 Consanguinity during the 3rd previous year
57 CONS2 Num 5 Consanguinity during the 2nd previous year
58 CONS1 Num 5 Consanguinity during the previous year

59 CONS0 Num 5
Actual Consanguinity (Empty field, until the end of the

year)
60 NASCITUR Num 5 Consanguinity calculated on future calves
61 N_CONS5* Num 4 N. of animals born during the 5th previous year
62 N_CONS4* Num 4 N. of animals born during the 4th previous year
63 N_CONS3* Num 4 N. of animals born during the 3rd previous year
64 N_CONS2* Num 4 N. of animals born during the 2nd previous year
65 N_CONS1* Num 4 N. of animals born during the previous year

66 N_CONS0 Num 4
N. of animals born during the current year (Empty field,

until the end of the year)
67 N_NASCITUR* Num 4 N. of future calves, i.e., ongoing pregnancies
68 I_CONTR_LG* Date 8 First visit date
69 ULT_CONTR* Date 8 Last visit date
70 NUM_CONTR* Num 6 Overall n. of visits
71 ABORTI Num 3 Percentage of abortions
72 N_ABORTI Num 6 N. of abortions
73 PNASC_M Num 2 Males weight at birth
74 PNASC_F Num 2 Females weight at birth
75 N_PNASC_M Num 6 N. of males with PNASC_M
76 N_PNASC_F Num 6 N. of females with PNASC_M
77 N_PART_VAC Num 6 N. of pluriparae with a calving as last event

Continued on next page
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Table 5.1 – continued from previous page
Field Name Type Width Description

78 N_PART_MAN Num 6 N. of primiparae with a calving as last event
79 ULT_ELAB Char 1 Previous elaboration date
80 MANZ_N_IND Num 3 Birth ease (EBV for heifers)
81 MANZ_PARTO Num 3 Calving ease (EBV for primiparae)
82 MANZ_ACCR Num 3 Growing (EBV for heifers)
83 MANZ_MUSC Num 3 Muscularity (EBV for heifers)
84 MANZ_CARNE Num 3 Meat Index (heifers)
85 MANZ_ALLEV Num 3 Breeding Index (heifer)
86 CODICE_ASL Char 8 Farm ID code for ASL, Azienda Sanitaria Locale

87 TFA_N_IND Num 4
N. of TFA bulls used to calculate EBVs and Selection

Indices
88 TFA_ALLEV Num 3 Breeding Index (A.I. bulls)
89 TFA_CARNE Num 3 Meat Index (A.I. bulls)
90 TFA_MUSC Num 3 Muscularity (EBV for A.I. bulls)
91 TFA_ACCR Num 3 Growing (EBV for A.I. bulls)
92 TFA_NASC Num 3 Birth ease (EBV for A.I. bulls)
93 TFA_PARTO Num 3 Calving ease (EBV for A.I. bulls)
94 TFN_ALLEV Num 3 Breeding Index (N.I. bulls)
95 TFN_CARNE Num 3 Meat Index (N.I. bulls)
96 TFN_MUSC Num 3 Muscularity (EBV for N.I. bulls)
97 TFN_ACCR Num 3 Growing (EBV for heifers)
98 TFN_NASC Num 3 Birth ease (EBV for N.I. bulls)
99 TFN_PARTO Num 3 Calving ease (EBV for N.I. bulls)

100 TFN_N_IND Num 4
N. of TFN bulls used to calculate EBVs and Selection

Indices
101 MORTALITA Num 5 Perinatal mortality
102 VIT_X_VACC Num 4 N. of viable calves per cow per year predicted with 3.1

103 INS1 Num 3
N. of females inseminated between [1-50] days after calv-

ing

104 INS2 Num 3
N. of females inseminated between [50-70] days after calv-

ing

105 INS3 Num 3
N. of females inseminated between [70-100] days after

calving

106 INS4 Num 3
N. of females inseminated between >100 days after calv-

ing
107 CONC1 Num 3 N. of females pregnant between [1-80] days after calving
108 CONC2 Num 3 N. of females pregnant between [80-110] days after calving

109 CONC3 Num 3
N. of females pregnant between [110-140] days after calv-

ing
110 CONC4 Num 3 N. of females pregnant between >140 days after calving

Continued on next page
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Field Name Type Width Description

111 INTP1 Num 3 Contains CONC1
112 INTP2 Num 3 Contains CONC2
113 INTP3 Num 3 Contains CONC3
114 INTP4 Num 3 Contains CONC4
115 SAL1 Num 3 N. of pregnant females with one insemination
116 SAL2 Num 3 N. of pregnant females with two insemination
117 SAL3 Num 3 N. of pregnant females with three insemination
118 SAL4 Num 3 N. of pregnant females with four insemination
119 VAC1* Num 3 Percentage of currently pregnant cows
120 VAC2* Num 3 Percentage of currently inseminated cows

121 VAC3* Num 3
Percentage of cows currently ready for insemination or

which insemination failed
122 VAC4* Num 3 Percentage of currently post-partum cows

123 INTP_EST1 Num 3
Calving interval based on the season of calving (mid

spring-mid summer)

124 INTP_EST2 Num 3
Calving interval based on the season of calving (mid

summer-mid fall)

125 INTP_INV1 Num 3
Calving interval based on the season of calving (mid fall-

mid winter)

126 INTP_INV2 Num 3
Calving interval based on the season of calving (mid

winter-mid spring)
127 PRIMIPARE Num 4 N. of primiparae
128 PLURIPARE Num 4 N. of pluriparae
129 CAPI_ALTRI Num 8 N. of non-Piedmontese cattle
130 VACC_ALTRE Num 8 N. of non-Piedmontese cows
131 UBA Num 8 Unità Bovino Adulto - LIVESTOCK UNIT
132 UBA1 Num 8 UBA referred to bovines elder than 2 years
133 UBA06 Num 8 UBA referred to bovines 6 months-2 years old
134 UBA04 Num 8 UBA referred to bovines 4-6 months old
135 SP1 Char 1 Blank Field

136 INTPS_6* Num 8
Sum of Calvin Intervals days on cows that delivered dur-

ing the 6th previous year
137 N_INTPS_6* Num 3 N. deliveries occurred during the 6th previous year

138 INTPS_5* Num 8
Sum of Calvin Intervals days on cows that delivered dur-

ing the 5th previous year
139 N_INTPS_5* Num 3 N. deliveries occurred during the 5th previous year

140 INTPS_4* Num 8
Sum of Calvin Intervals days on cows that delivered dur-

ing the 4th previous year
141 N_INTPS_4* Num 3 N. deliveries occurred during the 4th previous year

Continued on next page

48



Table 5.1 – continued from previous page
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142 INTPS_3* Num 8
Sum of Calvin Intervals days on cows that delivered dur-

ing the 3rd previous year
143 N_INTPS_3* Num 3 N. deliveries occurred during the 3rd previous year

144 INTPS_2* Num 8
Sum of Calvin Intervals days on cows that delivered dur-

ing the 2nd previous year
145 N_INTPS_2* Num 3 N. deliveries occurred during the 2nd previous year

146 INTPS_1* Num 8
Sum of Calvin Intervals days on cows that delivered dur-

ing the previous year
147 N_INTPS_1* Num 3 N. deliveries occurred during the previous year

148 TOT_M_4* Num 3
N. of total primiparous deliveries occurred during the 4th

previous year

149 DIFF_M_4* Num 3
N. of difficult primiparous deliveries occurred during the

4th previous year

150 CESA_M_4* Num 3
N. of cesarean primiparous deliveries occurred during the

4th previous year

151 TOT_M_3* Num 3
N. of total primiparous deliveries occurred during the 3rd

previous year

152 DIFF_M_3* Num 3
N. of difficult primiparous deliveries occurred during the

3rd previous year

153 CESA_M_3* Num 3
N. of cesarean primiparous deliveries occurred during the

3rd previous year

154 TOT_M_2* Num 3
N. of total primiparous deliveries occurred during the 2nd

previous year

155 DIFF_M_2* Num 3
N. of difficult primiparous deliveries occurred during the

2nd previous year

156 CESA_M_2* Num 3
N. of cesarean primiparous deliveries occurred during the

2nd previous year

157 TOT_M_1* Num 3
N. of total primiparous deliveries occurred during the pre-

vious year

158 DIFF_M_1* Num 3
N. of difficult primiparous deliveries occurred during the

previous year

159 CESA_M_1* Num 3
N. of cesarean primiparous deliveries occurred during the

previous year

160 TOT_V_4* Num 3
N. of total pluriparous deliveries occurred during the 4th

previous year
Continued on next page
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161 DIFF_V_4* Num 3
N. of difficult pluriparous deliveries occurred during the

4th previous year

162 CESA_V_4* Num 3
N. of cesareans pluriparous deliveries occurred during the

4th previous year

163 TOT_V_3* Num 3
N. of total pluriparous deliveries occurred during the 3rd

previous year

164 DIFF_V_3* Num 3
N. of difficult pluriparous deliveries occurred during the

3rd previous year

165 CESA_V_3* Num 3
N. of cesareans pluriparous deliveries occurred during the

3rd previous year

166 TOT_V_2* Num 3
N. of total pluriparous deliveries occurred during the 2nd

previous year

167 DIFF_V_2* Num 3
N. of difficult pluriparous deliveries occurred during the

2nd previous year

168 CESA_V_2* Num 3
N. of cesareans pluriparous deliveries occurred during the

2nd previous year

169 TOT_V_1* Num 3
N. of total pluriparous deliveries occurred during the pre-

vious year

170 DIFF_V_1* Num 3
N. of difficult pluriparous deliveries occurred during the

previous year

171 CESA_V_1* Num 3
N. of cesareans pluriparous deliveries occurred during the

previous year

172 ALLEVF_6* Num 8
Sum of breeding index on females currently alive grouped

by age (6 years-old) with breeding index

173 N_ALLEVF_6* Num 3
N. of females currently alive grouped by age (5 years-old)

with breeding index

174 ALLEVF_5* Num 8
Sum of breeding index on females currently alive grouped

by age (5 years-old) with breeding index

175 N_ALLEVF_5* Num 3
N. of females currently alive grouped by age (5 years-old)

with breeding index

176 ALLEVF_4* Num 8
Sum of breeding index on females currently alive grouped

by age (4 years-old) with breeding index

177 N_ALLEVF_4* Num 3
N. of females currently alive grouped by age (4 years-old)

with breeding index
Continued on next page
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178 ALLEVF_3* Num 8
Sum of breeding index on females currently alive grouped

by age (3 years-old) with breeding index

179 N_ALLEVF_3* Num 3
N. of females currently alive grouped by age (3 years-old)

with breeding index

180 ALLEVF_2* Num 8
Sum of breeding index on females currently alive grouped

by age (2 years-old) with breeding index

181 N_ALLEVF_2* Num 3
N. of females currently alive grouped by age (2 years-old)

with breeding index

182 ALLEVF_1* Num 8
Sum of breeding index on females currently alive grouped

by age (1 year-old) with breeding index

183 N_ALLEVF_1* Num 3
N. of females currently alive grouped by age (1 year-old)

with breeding index

184 CARNEF_6* Num 8
Sum of meat index on females currently alive grouped by

age (6 years-old) with meat index

185 N_CARNEF_6* Num 3
N. of females currently alive grouped by age (6 years-old)

with meat index

186 CARNEF_5* Num 8
Sum of meat index on females currently alive grouped by

age (5 years-old) with meat index

187 N_CARNEF_5* Num 3
N. of females currently alive grouped by age (5 years-old)

with meat index

188 CARNEF_4* Num 8
Sum of meat index on females currently alive grouped by

age (4 years-old) with meat index

189 N_CARNEF_4* Num 3
N. of females currently alive grouped by age (4 years-old)

with meat index

190 CARNEF_3* Num 8
Sum of meat index on females currently alive grouped by

age (3 years-old) with meat index

191 N_CARNEF_3* Num 3
N. of females currently alive grouped by age (3 years-old)

with meat index

192 CARNEF_2* Num 8
Sum of meat index on females currently alive grouped by

age (2 years-old) with meat index

193 N_CARNEF_2* Num 3
N. of females currently alive grouped by age (2 years-old)

with meat index

194 CARNEF_1* Num 8
Sum of meat index on females currently alive grouped by

age (1 year-old) with meat index
Continued on next page
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195 N_CARNEF_1* Num 3
N. of females currently alive grouped by age (1 year-old)

with meat index

196 PARTOF_6* Num 8
Sum of Calving Ease EBVs on females currently alive

grouped by age (6 years-old) with Calving Ease

197 N_PARTOF_6* Num 3
N. of females currently alive grouped by age (6 years-old)

with Calving ease

198 PARTOF_5* Num 8
Sum of Calving Ease EBVs on females currently alive

grouped by age (5 years-old) with Calving Ease

199 N_PARTOF_5* Num 3
N. of females currently alive grouped by age (5 years-old)

with Calving ease

200 PARTOF_4* Num 8
Sum of Calving Ease EBVs on females currently alive

grouped by age (4 years-old) with Calving Ease

201 N_PARTOF_4* Num 3
N. of females currently alive grouped by age (4 years-old)

with Calving ease

202 PARTOF_3* Num 8
Sum of Calving Ease EBVs on females currently alive

grouped by age (3 years-old) with Calving Ease

203 N_PARTOF_3* Num 3
N. of females currently alive grouped by age (3 years-old)

with Calving ease

204 PARTOF_2* Num 8
Sum of Calving Ease EBVs on females currently alive

grouped by age (2 years-old) with Calving Ease

205 N_PARTOF_2* Num 3
N. of females currently alive grouped by age (2 years-old)

with Calving ease

206 PARTOF_1* Num 8
Sum of Calving Ease EBVs on females currently alive

grouped by age (1 year-old) with Calving Ease

207 N_PARTOF_1* Num 3
N. of females currently alive grouped by age (1 year-old)

with Calving ease
208 ETA_ELIM_M* Num 8 Age in days of culled males, between 12-24 months-old
209 N_ELIM_M* Num 3 N. of culled males, between 12-24 months-old
210 N_ELIM_NN* Num 3 N. of dead calves in the first 60 days after birth
211 NATI_TOT* Num 3 Total number of calves born
212 N_ELIM_M_1* Num 3 N. of culled males, between 12-15 months-old
213 N_ELIM_M_2* Num 3 N. of culled males, between 15-24 months-old
214 NATI_FA* Num 3 Total number of calves born from Artificial Insemination
215 NATI_FN* Num 3 Total number of calves born from Natural Impregnation
216 NATI_GM* Num 3 Total number of calves born from one multiple-sire group
217 NATI_VIVI* Num 3 Total number of calves born alive

Continued on next page

52



Table 5.1 – continued from previous page
Field Name Type Width Description

218 RGV* Num 8
Total number of cows registered in the corresponding

Herd-Book section

219 RGT* Num 8
Total number of bulls registered in the corresponding

Herd-Book section

Table 5.1: Raw variables contained in the available original data set. Variables refers to mean values among periods

of 365 days. Punctual values referred to the last data-load or cumulative ones (among the past 365 days) are denoted

with * instead.

5.2 Data Selection and Editing

As already mentioned in Chapter 2, the highest concentration of farms is established in Piedmont. Moreover,

the most representative ones are the breedings counting more than 26 cows (Figure 2.1). To work with a

descriptive data set, breedings located in Piedmont with at least 30 cows and a percentage of artificial

insemination between 90% and 100% were selected. In a first study (Chapter 6), farms exhibiting updated

visits during 2017 and 2018 were selected. However, as later the possible investigation involving also vectorial

approach was considered, only farms exhibiting continuous visits over a reasonable period, e.g. five years,

were acquired (Chapters 7 and 8). Constant recordings between 2014-2019 were then considered. As a result,

most recent farms were discarded from the study, as their management still could not be completely defined.

Similarly, breedings closed between ’14 and ’19 were excluded, to maintain a pool of contemporary farms

with comparable data. In brief, the main filters commonly imposed to select farms to work with include the

following criteria:

• location in Piedmont,

• consistencies for cows greater than or equal to 30,

• percentage of artificial insemination between 90% and 100%,

The herds were extracted differently for the analysis described in Chapter 9, as illustrated in the correspond-

ing chapter. Once these farms were selected, it was possible to extract the reports referred to any period in

the time window, e.g. 2017-2018 (Chapter 6), 2018-2019 (Chapter 9), or to use all the five-years information

(Chapter 7 and 8). Along with the research project, various selections were performed, based on the different

pursued goals. In each chapter that follows, the reference data sets are described, focusing on the extraction
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carried out in individual cases. Similarly, the variables were filtered differently according to the cases under

analysis. The parameters considered are described in each chapter.

Finally, for all the cases under analysis, the variable used by the ML methods as the target variable was

constructed, as it was not directly available in the original data set. As illustrated in Section 4.3, the ad-

dressed issue falls into the category of supervised learning. In other words, the algorithms exploit real values

to calibrate the prediction models. Since the aim is the prediction of the number of weaned calves per cow

produced annually (Chapter 3), the actual amount was extracted for the years 2018 and 2019. Depending

on the time frame involved, the appropriate target was isolated. In other words, working on data referred

to the year 2017 implied the target extraction from 2018, since the goal is the prediction for the following

year. The target was originated from 2019 when managing the data recorded in 2018. Operating on the

2014-2017 vectors, described in Chapter 8, the target was extrapolated from 2018. For each farm and all

years, the target attribute 𝑌 was obtained with the formula below, including the values of the number of the

calves born alive, those unable to survive during weaning period, and the number of cows (i.e., NATI_VIVI,

N_ELIM_NN, VACCHE), in the corresponding year:

𝑌 = 𝑁𝐴𝑇𝐼_𝑉 𝐼𝑉 𝐼 − 𝑁_𝐸𝐿𝐼𝑀_𝑁𝑁

𝑉 𝐴𝐶𝐶𝐻𝐸
. (5.1)

As for Calving Interval, it is necessary to highlight that variable 20 (𝐼𝑁𝑇𝐸𝑅𝑃𝐴𝑅𝑇𝑂) in Table 5.1 is a

quantity based on currently pregnant cows, hence contributing to the prediction for the number of viable

calves for the next year. It is not a representative variable for the herd Calving Interval since it does not

consider the information on the total number of cows in the herd. In order to give the ML algorithms the

possibility to process all the available information, it is more appropriate to provide both the total calving

interval and the number of cows currently pregnant, so that the two variables can eventually be combined

with other features, in the most appropriate way according to the algorithm to predict the target. The

Calving Interval 𝐼𝑁𝑇𝑃 used throughout the research study is hence derived from the division of variables

146 and 147, i.e., between the sum of Calving Intervals days and the overall number of deliveries occurred,

both referring to the previous year:

𝑖𝑛𝑡𝑝 = 𝐼𝑁𝑇𝑃𝑆_1
𝑁_𝐼𝑁𝑇𝑃𝑆_1 . (5.2)

Many variables contain sensitive data (e.g. farm ID, owner name, address, visiting technician code) and were

immediately removed. Others are redundant information, divided by years, or incomplete over years and
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AZIENDA ANNO_CONTR PRIMIPARE PLURIPARE MANZE VITELLE VITELLI INTP
Farm 1 2014 22 36 7 35 30 365
Farm 1 2015 10 46 13 43 31 375
Farm 1 2016 16 47 12 41 34 381
Farm 1 2017 14 46 11 49 41 375
Farm 1 2018 16 47 12 43 30 374
Farm 1 2019 15 43 10 41 36 378
Farm 2 2014 11 90 9 33 25 396
Farm 2 2015 10 93 9 40 24 391
Farm 2 2016 9 95 7 33 33 380
Farm 2 2017 7 97 10 28 25 387
Farm 2 2018 9 92 11 35 29 385
Farm 2 2019 13 85 13 30 35 380
Farm 3 2014 7 42 3 21 17 414
Farm 3 2015 4 43 4 27 6 439
Farm 3 2016 4 44 10 25 12 452
Farm 3 2017 10 44 11 14 10 425
Farm 3 2018 9 60 4 33 30 473
Farm 3 2019 12 58 7 31 34 465

Table 5.2: Standard Data Panel. Structure of the data set. The farms are listed horizontally, as well as the reference

year, the variables from Table 5.1 vertically.

breedings. Therefore they were not considered. Anyway, the involved ones were renamed, for an immediate

reference to their meaning, but the original names are listed in the Table 5.1. After renaming the farms,

sorting by breeding and increasing year, the general data set has the structure shown in Table 5.2:

5.3 Dataset Configuration for ML Process

The study carried out took shape from the analysis of the summary data from 2017, to build the best pre-

dictive model for the number of weaned calves per cow produced in 2018. Setting this goal, it was, therefore,

necessary to manage a data set containing input variables for each farm. Given 𝑛 instances and 𝑚 variables,

the dataset configuration among 2017-2018 (shown in Table 5.3) consisted in 𝑚 input scalar attributes 𝑋17,𝑖

where 𝑖 = 1, ..., 𝑚 for each of the 𝑛 farms. The number of weaned calves produced per cow in 2018 was

obtained with 5.1, which was named 𝑌18 in this case.

Different breedings were selected among the two-year period 2018-2019. However, the structure of the data

set is similar, i.e., a series of 𝑚 variables for 𝑛 breedings collected as input among 2018, i.e., 𝑋18,𝑗,𝑖 where
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2017 2018
𝑋17,𝑗,1

VACCHE

𝑋17,𝑗,2

ETA_VACCHE

𝑋17,𝑗,3

INTERPARTO

𝑋17,𝑗,4

N_PARTI
𝑌18,𝑗

FARM 1 - 104 3020 387 60 0,95
FARM 2 - 54 3112 425 54 0,9
FARM 3 - 63 2824 515 48 0,69
. . . 49 3131 466 49 0,67

108 2766 407 50 0,85
74 3448 459 62 0,84

Table 5.3: Dataset configuration among 2017-2018. On the left side the input scalar variables 𝑋17,1, 𝑋17,2, ..., 𝑋17,𝑚.

On the right side the scalar target 𝑌18

𝑖 = 1, ..., 𝑚 and 𝑗 = 1, ..., 𝑛, and the target 𝑌19 was extracted from 2019.

Concerning a time series approach, the standard panel data set (Table 5.2) is not suitable. Such structured

records do not show a temporal dependency to the ’eyes’ of the algorithm, which could not handle the infor-

mation properly. The data were then arranged in order to manage the temporal information from 2014 to

2017 for each farm. Variables were adapted to a vectorial structure, as each attribute assumes different values

over time for each instance. Their values were hence collapsed neatly, starting from the farthest value in time

(y. 2014) to the most recent value (y. 2017). In such a case, each of the 𝑚 variable is represented as a vector

𝑋𝑡,𝑗,𝑖 where 𝑡 varies between the years 2014 and 2017, 𝑖 = 1, ..., 𝑚, and 𝑗 = 1, ..., 𝑛. The result is configured as

𝑋𝑡,𝑗,𝑖 = [𝑋14,𝑗,𝑖, 𝑋15,𝑗,𝑖, 𝑋16,𝑗,𝑖, 𝑋17,𝑗,𝑖],

where 𝑡 ∈ {14, ..., 17}, 𝑖 = 1, ..., 𝑚, and 𝑗 = 1, ..., 𝑛, and one scalar target 𝑌18 is assigned for each breeding.

A graphical representation is given in Table 5.4.

Finally, the division of the dataset into a learning and a test set was performed. For each benchmark problem,

illustrated in the following chapters, the splitting is described, as it was performed differently for each of the

pursued investigations. In general, once the corresponding training, validation, and test sets are obtained,

the same mechanism is applied in order to build predictive models. The test is "kept hidden", i.e., it is not

shown to any of the techniques involved in the learning phase. Only the training and the validation sets are

initially involved. The test set is only used in the final step, when, once the predictive models specifically

set up by administering the learning instances are available, it is necessary to test their generalization skills.

The hard core of the process consists above all in this. Setting the parameters so that the techniques can
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2014-2017 2018
𝑋𝑡,1,𝑗

VACCHE

𝑋𝑡,2,𝑗

ETA_VACCHE

𝑋𝑡,3,𝑗

INTERPARTO
𝑌18,𝑗

FARM 1 - [98,101,107,104] [2999,3001,2998,3020] [391,391,380,387] 0,95
FARM 2 - [61,49,53,54] [3076,3002,3056,3112] [408,376,402,425] 0,9
FARM 3 - [53,55,64,63] [2799,2813,2802,2824] [367,376,406,515] 0,69
. . . [31,36,47,49] [3102,3075,3009,3131] [434,480,461,466] 0,67

[102,99,105,108] [2704,2795,2789,2766] [404,371,395,407] 0,85
[69,71,75,74] [3401,3388,3406,3448] [387,367,373,459] 0,84

Table 5.4: Vectorial panel data set configuration for 2014-2018. On the left side the input vectorial variables 𝑋𝑡,𝑗,𝑖 =

[𝑋14,𝑗,𝑖, 𝑋15,𝑗,𝑖, 𝑋16,𝑗,𝑖, 𝑋17,𝑗,𝑖], with 𝑡 ∈ {14, ..., 17}, 𝑖 = 1, ..., 𝑚, and 𝑗 = 1, ..., 𝑛. On the right side the scalar target

variable 𝑌18

properly learn can be complex. Finding the right combination so that a trained model is able to generalize

the concepts is not taken for granted. Different parameters tunings are needed, as well as multiple runs of the

algorithms, to analyze the general behavior of the algorithm on the provided data, and different subdivisions

of the dataset, to keep a balanced distribution of instances when assigning them to the learning and the

testing set.
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Chapter 6

A GP Approach to Precision Farming

6.1 Introduction

In this Chapter the first approach adopted with ML techniques is presented. In particular, GP was adopted

among the different techniques. Thanks to its structural characteristics, presented in Chapter 4, GP is suit-

able for addressing the search towards simple and intelligible predictive models. The yearly number of calves

produced per cow (Model 3.1) is the current method to estimate the ongoing farm performance, exploiting

the calving interval and perinatal mortality. Differently from this model, the estimate of the future trend

is more propaedeutic to evaluate the breeding performance. By appropriately processing the data through

techniques capable of finding patterns that link the representative variables and the actual number of calves

weaned per cow recorded in the following year, it is possible to propose a literally predictive measure. With-

out making a priori assumptions about the relationship between the response and the independent variables,

ML techniques may provide interesting feature selection characteristics, representing a flexible and robust

alternative in predictors identification. Specifically, the potential of GP is investigated, to create and to ana-

lyze predictive models for the number of weaned calves in Piemontese cattle breedings, which could improve

the analysis of Piemontese breeding performance. Inside the ML arena, GP has a set of interesting character-

istics that distinguish it from many other methods. Other than assuming no hypotheses about the shape of

the final model, characteristic that is intrinsic to all ML methods, after setting appropriate parameters, GP

can generate readable and interpretable models, which is crucial for our application. Moreover, GP is able

to perform an automatic feature selection, thus relieving us from any pre-processing task. To investigate the

efficiency of GP, a dataset composed by observations on representative Piemontese breedings was used. The

results show that the algorithm is appropriate and can perform an implicit feature selection, highlighting

important variables and leading to simple and interpretable models. Considering that the algorithm can

address all the defined objectives, GP represents the research baseline.
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6.2 Matherials and Methods

6.2.1 Propaedeutic Preparation of the Dataset

The restrictions listed in Section 5.2 were applied to the main dataset, that originally consisted of 633063

records, each corresponding to a visit performed by technicians in each farm. At this stage, multiple records

corresponded to each farm. Filters listed in Section 5.2 were imposed to obtain a solid representative subset:

breeding located in Piemonte with at least 30 cows and percentage of artificial insemination between 90%

and 100% were selected, with updated visits during 2017 and 2018. Thereby, a total of 725 breedings were

taken into account and the most recent visit was extracted for all farms for both years, i.e., the visits oc-

curring performed between November and December. Each breeding was then represented with 6 instances.

Among them, the instances referring to 2018 were used to derive the target through Equation 5.1. The

dataset obtained make it possible to perform two types of analysis: a first one in which, for each breeding,

the subset referred to 2017 can be used to predict the target in 2018, and a second one in which the whole

available series recorded previously to the target can be analyzed. As a first general approach performed to

test the effectiveness of ML techniques, the first outlined benchmark was therefore initially inspected. The

second kind of approach, presented in Chapter 8, that is the vectorial one, required data editing to apply

techniques specific to manage vectors representing time series. Since the performance of the farm mainly

focuses on fertility, the data concerning multiparae cows were considered to elaborate the number of deliv-

eries and the calving intervals. In the same way, data referred to bulls used for artificial insemination were

maintained (i.e., selection indices, representing namely estimations of the additive genetic effect of a subject

for specific traits). Information referred to inbreeding levels between animals were not incorporated into the

study at this stage, since they required more investigations. However, they were included in the subsequent

development of the study, for a more accurate inspection on the consanguinity of unborn calves. Among the

filtered farms, two main groups were identified: a smaller one, containing 330 unique breedings, and a larger

one, consisting of 395 breedings, that differs from the first group in being characterized by the use of many

different bulls, pursuing natural impregnations. In the first group, instead, there were farms in which only

artificial insemination is performed, in some cases combined for impregnation with the single owned bull.

The main difference between the two sets results in a wider use of owned bulls: this means that, instead of

recording the date on which the insemination took place, breedings belonging to the second group usually

set a period of several days, followed by the diagnosis of the pregnancy. As both datasets are representative

for the Piemontese breeding reality, where the second dataset features a more diffused situation and the first

one depicts the most accurate one, both groups were incorporated in this first study, as propaedeutic to the

objective. Since the aim is the inference of the target by means of models obtained with ML techniques,
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the first set of farms was designated as a learning set, since the algorithm can learn from precise recordings,

while the second set was designated as a test set. After all, each record of the final datasets stood for a single

farm with variables 1 – 19 referred to year 2017, whereas 𝑌 represents the actual number for weaned calves

recorded in 2018 (Table 6.1). All variables can only assume positive values and the target variable assumed

values in the range [0.26; 1.24].

Reference Year Variable Name Reference to Table 5.1

1 2017 𝐶𝑂𝑊𝑆 4
2 2017 𝐶𝐴𝐺𝐸 14
3 2017 𝐼𝑁𝑇𝑃 obtained with 5.2
4 2017 𝐶𝑃 𝐴𝑅 16
5 2017 𝑁𝑃 𝐴𝑅 17
6 2017 𝐶𝐸𝐴𝑆𝐸 45
7 2017 𝐶𝐺𝑅𝐴𝑉 𝐼𝐷 119
8 2017 𝐶𝐼𝑁𝑆 120
9 2017 𝐵𝐼𝑅𝑇𝐻𝑊𝑀 73
10 2017 𝐵𝐼𝑅𝑇𝐻𝑊𝐹 74
11 2017 𝐼𝑁𝐷𝑃 𝐴𝑅 49
12 2017 𝑇𝐹𝐴𝐵𝐼𝑅𝑇 𝐻 92
13 2017 𝑇𝐹𝐴𝑃 𝐴𝑅 93
14 2017 𝑁𝐸𝐿𝐼𝑀 210
15 2017 𝑁𝑇 𝑂𝑇 211
16 2017 𝑁𝐵𝐴𝐿𝐼𝑉 𝐸 217
17 2017 𝑁𝐶𝑂𝑅𝑅𝐸𝐶𝑇 35
18 2017 𝐴𝐵𝑂𝑅𝑇 71
19 2017 𝑀𝑂𝑅𝑇 101
20 2018 𝑌 Target Variable 5.1

Table 6.1: Final set of variables used for the first benchmarked problem. The bottom line represent the dependent

variable 𝑌 , i.e., the target for the predicted models generated by GP based on the set of independent variables.

6.2.2 Application of GP

As mentioned in the previous section, the first group of farms (size 330) was used as a learning set, while

the second one (size 395) as a test set. To obtain the best performance from the algorithm, it is necessary to

identify two parts of the learning set, namely the training and the validation set (Section 4.2). Several runs

of GP are performed. Therefore, for each of them, the dataset is split again, in order to work on different

portions of the dataset each time. We considered the possibility of dividing the learning set through a k-fold

cross validation approach, in order to obtain the training and validation subsets. However, the reduced set

of data did not allow the identification of a suitable value for 𝑘: for instance, if we had chosen k smaller than
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10, we would have obtained a small number of subsets, leading to a small number of runs (i.e., fewer than

10). On the contrary, with k greater than 10, we would have had a restrained number of records within the

test sets (i.e., less than 33 validation instances for each run). Indicatively, it is advisable to have a number

of runs that allow one to obtain statistically significant results, i.e., at least 30. Hence, the learning set was

split into 30 different subsets, with constant training-validation partitioning (75%-25%), in order to perform

30 runs of GP. At each run, divisions were carried out with a random choice of records without repetition,

keeping training and validation separate. In other words, among the total 330 learning records, 83 records

were chosen to form the validation set, and the remaining 247 were labeled as training ones, reiterating the

process with different sets for all 30 runs. A final check on the selected instances was performed in order

to ensure that all instances had been included, that is the union of all the training sets had to be equal to

the whole learning set. The population of individual obtained for each run on the training set was evaluated

on the validation set, in order to select the best ones (i.e., models with the lowest error on the validation

set). Finally, the generalization ability of the latter was checked, by analyzing the respective error achieved

on the test set. Individuals were generated with GP using a tree-based representation, where the trees

were built using a set of terminal symbols 𝑇 and a set of primitive functional symbols 𝐹 . The set 𝑇 was

composed by the previously described variables (Table 6.1). The set 𝐹 was equal to {plus; minus; times;

mydivide}, where plus, minus and times indicate the usual operators of binary addition, subtraction and

multiplication, respectively, while mydivide represents the protected division, that returns the numerator

when the denominator is equal to zero. In order to limit overfitting and maintain the models as simple as

possible, besides crossover and mutation, operators such as shrinkmutation and swapmutation (predefined

in GPLab) were used. These two operators, respectively, exchange a subtree with a terminal node and

permutate non-commutative functions’ elements. Table 6.2 reports the experimental settings.

Parameter Description

ST-GP
Maximum number of generations 20
Population size 500
Selection Method Lexicographic Parsimony Pressure
Elitism Keepbest
Initialization Method Ramped half and half
Tournament Size 2
Subtree Crossover Rate 0.8
Subtree Mutation Rate 0.1
Subtree Shrinkmutation Rate 0.05
Subtree Swapmutation Rate 0.05

Table 6.2: Parameters used for GP in the former experimental study
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6.3 Results

6.3.1 Fitness of Models and Overall GP Performance

The performance resulting from the simulations is reported in Figure 6.1, where the fitness among the 30

runs on the training, the validation and the test sets are presented. The Lilliefors test, performed with

significance level 𝛼=0.05, showed that a normal distribution can be assumed only on the training set. Hence,

we applied a Kruskal-Wallis test (𝛼=0.05), under the alternative hypothesis that, at the end of the runs, the

RMSEs do not have equal medians. Results entailed that there is no significant difference between the three

distributions: given a p-value p=0.17, the null hypothesis was not rejected, that is the median values of the

errors committed on the three sets are not different. The median value obtained on the test set allows us to

affirm that the obtained models are able to generalize well on unseen data.

Figure 6.1: Performance of the best 30 selected models, respectively, on the training, validation and test sets. There

is no significant difference between the results (Kruskal-Wallis test: p = 0.17, with 𝛼=0.05), i.e., the median values of

the errors committed on the three phases are not different.

The frequency with which the variables appear across the different models indicates the possible key features

and the negligible ones. Otherwise stated, considering the presence and absence of a feature within the

model, it is possible to deduce its overall importance by analyzing the median of the feature presence, i.e.,

a binary variable. Predictors included by at least half of the best solutions on all the runs result in non-
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null median frequencies, whereas negligible correspond to null median frequencies: values greater than zero

suggest that the corresponding variables were used in over 50% of the final solutions, namely the number of

cows (𝐶𝑂𝑊𝑆), the number of occurred deliveries in the farm during the year (𝑁𝑃 𝐴𝑅), and the number of

calves that were born alive (𝑁𝐵𝐴𝐿𝐼𝑉 𝐸). The information was confirmed also by the equivalent percentage,

reported in Table 6.3.

Variable % of use on 30 run

X1 – 𝐶𝑂𝑊𝑆 73%
X2 – 𝐶𝐴𝐺𝐸 27%
X3 – 𝐼𝑁𝑇𝑃 43%
X4 – 𝐶𝑃 𝐴𝑅 27%
X5 – 𝑁𝑃 𝐴𝑅 53%
X6 – 𝐶𝐸𝐴𝑆𝐸 40%
X7 – 𝐶𝐺𝑅𝐴𝑉 𝐼𝐷 23%
X8 – 𝐶𝐼𝑁𝑆 17%
X9 – 𝐵𝐼𝑅𝑇𝐻𝑊𝑀 13%
X10 – 𝐵𝐼𝑅𝑇𝐻𝑊𝐹 10%
X11 – 𝐼𝑁𝐷𝑃 𝐴𝑅 37%
X12 – 𝑇𝐹𝐴𝐵𝐼𝑅𝑇 𝐻 13%
X13 – 𝑇𝐹𝐴𝑃 𝐴𝑅 23%
X14 – 𝑁𝐸𝐿𝐼𝑀 37%
X15 – 𝑁𝑇 𝑂𝑇 43%
X16 – 𝑁𝐵𝐴𝐿𝐼𝑉 𝐸 50%
X17 – 𝑁𝐶𝑂𝑅𝑅𝐸𝐶𝑇 37%
X18 – 𝐴𝐵𝑂𝑅𝑇 23%
X19 – 𝑀𝑂𝑅𝑇 13%

Table 6.3: Median frequencies (percentage) of each variable among the best 30 individuals found by GP

Finally, the interpretability of the expressions was investigated, considering the number of variables involved

in each of the best final models and the corresponding fitness. In order to compare the performance of GP

models, the number of parameters encapsulated in each one was examined, paying attention to the corre-

sponding fitness obtained on the test set (Table 6.4). Observing Table 6.4, a general trend can be identified:

models that use fewer variables tend to have a worse fitness (i.e., a larger error) on the test set than those

that use more variables. Among the 19 variables in the dataset, the obtained models include from a min-

imum of 3 to a maximum of 10 variables. An intermediate situation is represented by models involving 4

variables, since, in this case, the error is small and, as shown later, the expression is more interpretable. Two

models were selected in order to make comparisons: the one showing the best fitness among all the evolved
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expressions (𝐺𝑃3 in Figure 6.2), and the one with the best fitness among the models that use 4 variables

(𝐺𝑃8 in Figure 6.2), chosen as straightforward interpretable.

Figure 6.2: Comparisons between GP models on the test set. Distributions of the differences between predicted and

real values are plotted. Both GP predicted values are not significantly different (Kruskal-Wallis: p - value = 0.2372).

𝐺𝑃3 shows a median value equal to -0.0005928782, smaller than the median value obtained with 𝐺𝑃8 (-0.0146762341)

For both Models 𝐺𝑃3 and 𝐺𝑃8, the distance values between predictions based on 2017 and target values 𝑌𝑖

recorded in 2018 are represented through boxplots, that is:

Δ𝑚𝑜𝑑𝑒𝑙,𝑖 = 𝑌𝑚𝑜𝑑𝑒𝑙,𝑖 − 𝑌𝑖 (6.1)

for each record 𝑖 = 1, . . . , 395 in the test set. Predictions obtained with the two models 𝐺𝑃3 and 𝐺𝑃8 are

not significantly different (Kruskal Wallis: p-value = 0.2372).
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Prediction model Fitness on test N. of variables % of used variables

model 1
model 2
model 3
model 4
model 5
model 6
model 7
model 8
model 9
model 10
model 11
model 12
model 13
model 14
model 15
model 16
model 17
model 18
model 19
model 20
model 21
model 22
model 23
model 24
model 25
model 26
model 27
model 28
model 29
model 30

0.1379
0.1418
0.1218
0.1354
0.1660
0.1290
0.1370
0.1321
0.1258
0.1357
0.2422
0.1461
0.1286
0.1548
0.1320
0.1261
0.1285
0.1371
0.1610
0.1571
0.1355
0.1450
0.1291
0.1426
0.1935
0.1330
0.1305
0.1543
0.1308
0.1361

5
3
9
8
3
8
4
4
8
3
9
3
7
4
9
7
8
9
3
4
9
3
7
4
5
10
6
3
7
9

26%
16%
47%
42%
16%
42%
21%
21%
42%
16%
47%
16%
37%
21%
47%
37%
42%
47%
16%
21%
47%
16%
37%
21%
26%
53%
32%
16%
37%
47%

Table 6.4: Fitness on the test set, number of involved variables and corresponding percentage are reported for each

model evolved by GP in each of the 30 performed runs

6.3.2 Models Expression

The two selected models, whose expression is provided in Equations 6.2 and 6.3, perform likewise, incor-

porating different variables with respect to 𝑌𝑝 (see Equation 3.1). Parameters such as 𝑀𝑂𝑅𝑇 and 𝑁𝐸𝐿𝐼𝑀

used in Equation 3.1 were included also in GP expressions, i.e., mortality at 60 days in 𝐺𝑃8, and number
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of calves born alive in both 𝐺𝑃3 and 𝐺𝑃8. Regarding 𝐺𝑃3, the expression in infix notation to obtain the

predictions is:

𝑌𝐺𝑃3 = 𝑋11

𝑋17 + 𝑋3
𝑋16

+ 𝑋3
𝑋6· 2·𝑋18+𝑋16

𝑋9
𝑋19

+𝑋1

, (6.2)

where

1- 𝐶𝑂𝑊𝑆,
3- 𝐼𝑁𝑇𝑃 ,
6- 𝐶𝐸𝐴𝑆𝐸 ,
9- 𝐵𝐼𝑅𝑇𝐻𝑊𝑀 ,
11- 𝐼𝑁𝐷𝑃 𝐴𝑅,
16- 𝑁𝐵𝐴𝐿𝐼𝑉 𝐸,
17- 𝑁𝐶𝑂𝑅𝑅𝐸𝐶𝑇 ,
18- 𝐴𝐵𝑂𝑅𝑇 ,
19 – 𝑀𝑂𝑅𝑇 .

In model 𝐺𝑃3 , the denominators of 𝑚𝑦𝑑𝑖𝑣𝑖𝑑𝑒 operator do not meet existence conditions, that is they can

assume null values (e.g. perinatal mortality 𝑋19 is null for some records). It is not possible to assert that

the 𝑚𝑦𝑑𝑖𝑣𝑖𝑑𝑒 operator is actually a division and the previous expression 6.2 cannot be further simplified.

Contrary to 𝐺𝑃3 , the model for 𝐺𝑃8 is comprehensible:

𝑌𝐺𝑃8 = 𝑋5
(𝑋5·𝑋14+𝑋16)

𝑋1
+ 𝑋1

. (6.3)

Since we previously set the constraint in the dataset on farms with more than 30 cows, and the other variables

can also assume only positive values, the denominators of 𝑚𝑦𝑑𝑖𝑣𝑖𝑑𝑒 in the latter model (6.3) are also positive.

Indeed, the denominator cannot reach null levels, since the number of cows is added to a quantity greater

than zero. Existence conditions are in this case always verified, and therefore the function 𝑚𝑦𝑑𝑖𝑣𝑖𝑑𝑒 is a

division, leading to a simplified version of Model 6.3:

𝑌𝐺𝑃8 = 𝑋1·𝑋5
𝑋2

1 + 𝑋5 · 𝑋14 + 𝑋16
(6.4)
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where

X1 – 𝐶𝑂𝑊𝑆

X5 – 𝑁𝑃 𝐴𝑅

X14 – 𝑁𝐸𝐿𝐼𝑀

X16 – 𝑁𝐵𝐴𝐿𝐼𝑉 𝐸

Model 6.3 can further be rewritten as

𝑌𝐺𝑃8 =
(︃(︂

𝑁𝑃 𝐴𝑅

𝐶𝑂𝑊𝑆

)︂−1
+ 𝑁𝐸𝐿𝐼𝑀

𝐶𝑂𝑊𝑆
+
(︂

𝑁𝐵𝐴𝐿𝐼𝑉 𝐸

𝐶𝑂𝑊𝑆
· 1

𝑁𝑃 𝐴𝑅

)︂)︃−1

. (6.5)

The first term can be expressed as the inverse of the mean number of the yearly deliveries occurred in the

farm, since the number of all deliveries is divided by the total number of cows (𝑁𝑃 𝐴𝑅). Likewise, the second

and third terms contain, respectively, the yearly number of calves per cow that did not survive during the

weaning period (𝑁𝐸𝐿𝐼𝑀 ) and the yearly number per cow of calves born alive (𝑁𝐵𝐴𝐿𝐼𝑉 𝐸), that is:

𝑌𝐺𝑃8 =
(︃

1
𝑁𝑃 𝐴𝑅

+ 𝑁𝐸𝐿𝐼𝑀 + 𝑁𝐵𝐴𝐿𝐼𝑉 𝐸

𝑁𝑃 𝐴𝑅

)︃−1

. (6.6)

Stated otherwise, by renaming the terms and performing basic operations, we obtained the following:

1 = 𝑛𝑗𝑣1,𝑗 + 𝑛𝑗𝑣2,𝑗 + 𝑛𝑗𝑣3,𝑗 (6.7)

for 𝑗 = 1, . . . , 725, since we considered the complete dataset with all the selected farms (see Section 5), where:

𝑛𝑗=𝑌𝐺𝑃 8,𝑗

𝑣1,𝑗 =
(︁
𝑁𝑃 𝐴𝑅𝑗

)︁−1

𝑣2,𝑗 = 𝑁𝐸𝐿𝐼𝑀𝑗

𝑣3,𝑗 = 𝑁𝐵𝐴𝐿𝐼𝑉 𝐸𝑗

𝑁𝑃 𝐴𝑅𝑗

It is straightforward that Equation 6.7 can be formulated as the sum of rescaled variables

1 = ̃︀𝑣1,𝑗 + ̃︀𝑣2,𝑗 + ̃︀𝑣3,𝑗 (6.8)
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where ̃︀𝑣𝑖,𝑗 = 𝑛𝑗𝑣𝑖,𝑗 for 𝑖 = 1, 2, 3. Thereby, it was possible to measure the contribution of each term in

the sum expressed in Equation 6.8. The distributions of each ̃︀𝑣𝑖,𝑗 was statistically analyzed and the three

boxplots were displayed (Figure 6.3). An extremely significant difference is verified to exist between all

variables (Wilcoxon test with Bonferroni correction: 𝛼 = 0.017, p ≪ 0.001). Moreover, we inspected how

far the mean value of each variable is from the unit. We compared, one by one, the three distributions

via a single sample Wilcoxon test. We set the alternative hypothesis that the distribution shows a mean

value 𝜇 ̸= 1, with 𝛼 = 0.05. Once again, we found an extremely significant difference between the mean

value of ̃︀𝑣𝑖,𝑗 from the value 1. Similarly, we compared the distributions with respect to 0. The results of

the test were analogous to the previous ones: with extremely significant p-values (p ≪ 0.001), we could

deduce that ̃︀𝑣2,𝑗 and ̃︀𝑣3,𝑗 remain relevant parameters, even assuming values close to zero, providing hence a

minimal contribute in Equation 6.7. In other words, we could assert that all the variables in Equation 6.8

are influent: in particular, ̃︀𝑣1,𝑗 is the most important one, since its mean value was 𝜇1 = 0.951, whereas

̃︀𝑣2,𝑗 and ̃︀𝑣3,𝑗 respectively showed 𝜇2 = 0.032 and 𝜇3 = 0.021. Model 6.6 can be simplified, to the point of

being expressed as the sum of three parameters. We verified that these three parameters are the average

number of parts occurred during the year in the herd
(︂(︁

𝑁𝑃 𝐴𝑅

)︁−1
)︂

, the number of calves per cow that have

not passed the weaning phase (𝑁𝐸𝐿𝐼𝑀 ) and finally the number of calves per cow live births compared to

the total number of parts of the herd during the year (𝑁𝐵𝐴𝐿𝐼𝑉 𝐸/𝑁𝑃 𝐴𝑅). From a zootechical point of view,

these are actually the main parameters that intuitively can give an idea of the economic performance of the

farm. All of them play a significant role with respect to the response variable: more importance is given to

the parameter
(︁
𝑁𝑃 𝐴𝑅

)︁−1
, that can be associated to the inverse of the mean calving interval (days between

two deliveries) of the farm, whereas 𝑁𝐸𝐿𝐼𝑀 and 𝑁𝐵𝐴𝐿𝐼𝑉 𝐸/𝑁𝑃 𝐴𝑅 give a smaller contribute.

Summing up, the most frequent variables in the models, obtained with GP, are the number of cows in the

farm (𝐶𝑂𝑊𝑆), the number of deliveries occurred in the breeding (𝑁𝑃 𝐴𝑅) and the number of calves born

alive (𝑁𝐵𝐴𝐿𝐼𝑉 𝐸). The calving interval (𝐼𝑁𝑇𝑃 ) and the number of dead calves at 60 days (𝑁𝐸𝐿𝐼𝑀 ) are

slightly less frequent. Perinatal mortality is not so frequent, meaning that it could play a minor role in the

prediction. The most frequent variables included in the expression 6.2 are 𝐶𝑂𝑊𝑆 and 𝑁𝐵𝐴𝐿𝐼𝑉 𝐸 , followed by

𝐼𝑁𝑇𝑃 and 𝑀𝑂𝑅𝑇 . Then there are 5 less frequent additional parameters that could, therefore, be relevant

in the refinement of the prediction. The median error of predictions obtained with model 𝐺𝑃3 is slightly

smaller than the one obtained with model 𝐺𝑃8. The latter, however, processes fewer variables, exploiting

exactly the three most frequent ones, listed in Table 6.3.
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Figure 6.3: Boxplots of the distributions of the variables in Equation 6.8. Wilcoxon test with Bonferroni correction

at 𝛼=0.017 reported p ≪ 0.001. Hence, the variables are significantly different. The single sample Wilcoxon test,

with 𝛼=0.05, showed for each distribution a mean value 𝜇 ̸= 1(p ≪ 0.001). Therefore, all the variables are extremely

significant in Equation 6.8. Mean values are respectively 𝜇1=0.951, 𝜇2=0.032 and 𝜇3=0.021 (red dots).

6.4 Conclusions

In this study, we investigated the performance of medium to large Piemontese cattle farms located in

Piemonte. The currently used model (reported in Equation 3.1, Chapter 3) is employed to evaluate the

current breeding performance, by rescaling the average calving interval referred to all the cows in the farm

among the previous year, and to predict the number of calves per cow for the next year. The model is

not completely suitable for representing the performance of the farms. Indeed, during the weaning period,

many calves do not survive, entailing great losses to the economic revenues of the breedings (see Section 3).

The reasons for those deaths are various and difficult to identify objectively, as they can be traced back to

environmental conditions, to factors intrinsic to the animal itself, or connected to the feeding and breeding

management. It is necessary to take into account crucial parameters, that encompass the calf’s weaning in

the output, as the number of calves born alive and those dead during the weaning period, i.e., among the 60

days following the birth. Variables featuring these aspects become very informative, but are not combined

in the formulation of the previous model. The pursued goal is the construction of a predictive model that

can exhaustively incorporate the mentioned information. Therefore, in light of these premises, an automatic

learning method was applied, which can meet the requirements of pattern identification and informative
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variables encapsulation. In addition, it is necessary to research and propose a simple model, which can be

easily interpreted by the breeder. The expression to target should be a simplification and an added value to

the management of the farm. The breeder should be able to easily read the information, in order to identify

the critical points and strengths in production.

Given its ability to perform an automatic feature selection, a GP approach was applied to build predictive

models, trained, validated and tested on data recorded in 2017 and 2018. Accurate models were achieved,

and this means that GP can learn from a smaller dataset composed by representative farms and predict good

results on the selected test set. Moreover, the algorithm was able to select and process important variables,

without previous assumptions on the zootechnical aspect. The variety of expressions obtained by GP is

composed of well-performing models that involve more parameters, resulting in a more complex expression,

hardly reducible to a simpler one. However, other predictive models that encapsulate fewer variables were

also achieved. Although these expressions have a slightly larger error, their formula can be extremely simple

and possibly easier to interpret from the zootechnical point of view. The preliminary results obtained were

presented at the 2020 international virtual conference WCCI, appearing in the conference proceedings [2].

It is therefore worth investigating further the application of GP to a larger dataset. In this first study,

we focused on data directly referred to parturitions and artificial insemination, in order to process sound and

solid data. The dataset was filtered and resized, and 19 variables were kept out of the whole 210 available:

many were duplicate fields, aggregates of several variables, and even incomplete ones, as they were introduced

later in the database of ANABORAPI. Parameters such as those related to heifers, i.e., bovines that did

not give birth yet, were not considered, since we focused on data directly referred to cows, i.e., bovines that

gave birth at least once. In breeding farms, heifers are mostly intended to the production of calves and are

going to contribute to the restock of the herd. It appears necessary to investigate the behavior of GP and its

features selection ability among these variables, as well as parameters referred to the bulls used for natural

impregnation. To this purpose, their genetic indexes will be added to the analysis, as well as the levels of

consanguinity of calves that will be born from ongoing pregnancies. The main intent consists however in

the comparisons with other ML methods, to inspect better the potential of GP in the zootechnical field,

and to explore possibly better models. Another aspect that emerges from the analysis of the model and,

above all, the dataset is the need to represent information related to the management of environmental and

feeding conditions on the farm. Such data are not available and hence require an appropriate collection

of information such as for example the size of the boxes and the surface available to the animals, air and

water quality and the composition of the food ration. These factors are usually considered as marginal. It is

common to think that cow-calf problems are almost exclusively induced by genetic and pathological factors

associated to pregnancy and childbirth. Indeed, not enough importance is given to the period after birth, in
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which the cow and the calf need feeding and environmental conditions suitable for the respective postpartum

and weaning phases. In this context, once again, the ability of GP to automatically select features could be

very important to understand if and which of these variables are influential.

71



Chapter 7

Inside The Machine Learning Arena:

Genetic Programming vs Other ML

Methods

7.1 Introduction

The effectiveness of the type of management of a farm, i.e., the overall performance of the breeding, allows

the breeder to consolidate the ongoing processes or, on the contrary, to adopt new management strategies.

Among the Italian Piemontese Beef Breedings such a measure was identified as the yearly production of

calves weaned per cow (Chapter 3). Modelling farm dynamics in order to predict the value of this parameter

is a possible solution to investigate and highlight breeding strengths, and to find alternatives to penalizing

factors. To solve this problem, a GP approach was proposed and described in Chapter 6 and presented

in [2], consisting in a white-box technique suitable for big data management and with an intrinsic ability to

select important variables, providing simple models. In the preliminary study, the dataset was investigated

and a GP approach applied, in order to explore the possibility to address this task with GP. The method

performed well, entailing that the ML horizon should be investigated further and that comparisons with

other techniques should be carried out, even on larger datasets containing more features. In the previous

experiment we extracted and processed 19 variables and we kept stricter filters on data: to perform GP, we

selected the farms, based on the date of visit recorded between 2017 and 2018.

Considering the promising results, we further investigate the effectiveness of GP by including a greater

number of variables, and evaluate its performance comparing the results with other ML techniques, usually

applied to this kind of tasks. The dataset, besides being expanded vertically by including other variables

that may be useful in predicting the target, is filtered by breedings presenting data updated over all years
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between 2014 and 2019. In this way, breedings with a consolidated management are processed. Besides this,

the creation of a solid pool of farms will make it possible to manage vectorial variables referred to the same

breedings (Chapter 8). Emphasis is placed on the division of the dataset into different partitions, illustrating

the need for the techniques to learn on a portion of the dataset and to test the prediction models on new

instances. Afterwards, the GP baseline and other ML methods are applied. Once again the most frequent

variables included in the models built by GP are highlighted, and their zootechnical significance is investigated

a posteriori, evaluating the performance of the prediction models. The expressions are analyzed in order

to propose a zootechnical interpretation of the equations. Comparisons with other common techniques,

including also black-box methods, are performed in order to evaluate the performance of different type

of methods in terms of accuracy and generalization ability. Among other ML techniques, some common

methods were selected, including black-box ones as NN and RF to compare their results with those obtained

with GP. Black-box models generally perform better, since their structure is able to capture the high non-

linearity underlying data. However, as their definition suggests, they can be very unclear and do not explain

the links between input and output variables, as well as the internal mechanisms leading to the results. The

approach entailed constructive and helpful considerations on the addressed task, confirming its keyrole in

the zootechnical field, especially in the beef breeding management.

7.2 Matherials and Methods

7.2.1 The Dataset

In this study, only the farms that show constant visits between 2014 and 2019 were considered. In this way,

the effects related to farm management are solid and only the breedings with substantial data were kept.

Indeed, even if the investigation is based on farms with data from 2017 as input and from 2018 as target,

as a change in the type of management stabilizes over time, we considered breedings with historical records

updated between 2014-2019, in order to focus on farms with a solid management. A newly started company

does not have completely representative data. Moreover, the summary produced by ANABORAPI elaborates

the average values of recordings related to the 365 days previous to the reference date. To avoid data from

farms not yet fully operational, with gaps in registrations or close to resigning at the end of 2018, we set the

restriction to companies active in the previous 5 years. As in our pilot study (Chapter 6, [2]), filters were

imposed on breedings located in Piedmont with at least 30 cows and a percentage of artificial insemination

between 90% and 100%. For each breeding, data recorded in 2017 and 2018 were considered and the record

for the last check in the corresponding year was considered. Subsequently, for each farm, input and target

variables were extracted, respectively from 2017 to 2018. However, two further conditions were added for
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this research. As already stated, in order to keep in the pool of currently active breedings those with stable

and consolidated situations, inspections had to be constantly carried out for at least more than two years.

Moreover, the fact that breeders carry out between 90% and 100% of artificial insemination means that a part

of the considered farms own bulls and carry out also natural impregnations. Most often, instead of recording

the date on which the insemination took place, a period of several days followed by the pregnancy diagnosis is

set. These farms were therefore excluded from the analysis. A main group of 304 representative Piemontese

cattle farms results from the selection. Since the performance of the farm mainly focuses on fertility, data

concerning multiparae cows were considered to elaborate the number of deliveries and the calving intervals.

In the same way, data on bulls used for artificial insemination were maintained (i.e., EBVs, that represent

namely estimations of the additive genetic effect of a subject). Parameters on heifers were included in the

dataset, since these are bovines that did not give birth but, in breeding farms, are mostly intended for the

production of calves. Moreover, since many breeders carry out also natural impregnation besides artificial

insemination, data related to the bulls used for natural insemination were added to the analysis, as well

as the levels of consanguinity of calves that would be born from ongoing pregnancies. The only strictly

environmental measure available in the dataset, that was hence kept, is the Livestock Unit (LU or LSU):

it has the purpose of synthetically expressing the zootechnical load, to easily compare the environmental

impact of different farms. Based on the age of the animals, appropriate coefficients are applied to the number

of animals for each age category in the breeding: cattle over 2 years old (1 * LSU), cattle aged between 6

months and 2 years (0.6 * LSU) and cattle less than 4 months old (0.4 * LSU) [61]. The final dataset counts

304 records, each standing for a single farm, and a total of 48 input attributes (referring to year 2017) and

one target variable, that is the actual number for weaned calves recorded in 2018. All variables represent

positive quantities and are described in Table 7.1.

Attribute Reference in Table 5.1
1 𝐶𝐴𝑇𝑇𝐿𝐸_𝑆𝐼𝑍𝐸 3
2 𝐶𝑂𝑊𝑆 4
3 𝐻𝐸𝐼𝐹𝐸𝑅𝑆 5
4 𝐹𝐶𝐴𝐿𝑉 𝐸𝑆 6
5 𝐵𝑈𝐿𝐿𝑆 7
6 𝑀𝐶𝐴𝐿𝑉 𝐸𝑆 8
7 𝑃𝐸𝑅𝐶𝐸𝑁𝑇_𝐹𝐴 11
8 𝐶𝐴𝐺𝐸 14
9 𝐶𝑃 𝐴𝑅 16
10 𝑁𝑃 𝐴𝑅 17
11 𝑆𝐴𝐿𝑋𝐺𝑅𝐴𝑉 24
12 𝑁𝐶𝑂𝑅𝑅𝐸𝐶𝑇 35

Continued on next page
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Table 7.1 – continued from previous page
Attribute Reference in Table 5.1

13 𝐻𝐸𝐴𝑆𝐸 42
14 𝐻𝐷𝐼𝐹 𝐹 𝐼𝐶𝑈𝐿𝑇 43
15 𝐻𝐶𝐸𝑆𝐴𝑅𝐸𝐴𝑁 44
16 𝐶𝐸𝐴𝑆𝐸 45
17 𝐶𝐷𝐼𝐹 𝐹 𝐼𝐶𝑈𝐿𝑇 46
18 𝐶𝐶𝐸𝑆𝐴𝑅𝐸𝐴𝑁 47
19 𝐶𝑁 _𝐼𝑁𝐷 48
20 𝐶𝑃 𝐴𝑅𝑇 _𝐼𝑁𝐷 49
21 𝐻𝑃 𝐴𝑅𝑇 _𝐼𝑁𝐷 80
22 𝑁𝑇 𝐹 𝐴 87
23 𝑇𝐹𝐴𝐵𝐼𝑅𝑇 𝐻 92
24 𝑇𝐹𝐴𝑃 𝐴𝑅 93
25 𝑁𝑇 𝐹 𝑁 100
26 𝑇𝐹𝑁𝐵𝐼𝑅𝑇 𝐻 98
27 𝑇𝐹𝑁𝑃 𝐴𝑅 99
28 𝐶𝐺𝑅𝐴𝑉 𝐼𝐷 119
29 𝐶𝐼𝑁𝑆 120
30 𝐶𝑃 𝑂𝑆𝑇 𝑃 𝐴𝑅𝑇 𝑈𝑀 121
31 𝐶𝐸𝑀𝑃 𝑇 𝑌 122
32 𝐿𝑆𝑈 131
33 𝐿𝑆𝑈1 132
34 𝐿𝑆𝑈06 133
35 𝐿𝑆𝑈04 134
36 𝐼𝑁𝑇𝑃 obtained with 5.2
37 𝐶𝑂𝑁𝑆𝐴𝑁𝐺_𝑁𝐸𝑊 60
38 𝑁_𝐶𝑂𝑁𝑆𝐴𝑁𝐺𝑁𝐸𝑊 67
39 𝐵𝐼𝑅𝑇𝐻𝑊𝑀 73
40 𝐵𝐼𝑅𝑇𝐻𝑊𝐹 74
41 𝑀𝑂𝑅𝑇 101
42 𝐴𝐵𝑂𝑅𝑇 71
43 𝑁𝐴𝐵𝑂𝑅𝑇 72
44 𝑁𝐸𝐿𝐼𝑀 210
45 𝑁𝑇 𝑂𝑇 211
46 𝑁𝐵𝐴𝐿𝐼𝑉 𝐸 217
47 𝐵𝑂𝑅𝑁𝐹 𝐴 214
48 𝐵𝑂𝑅𝑁𝐹 𝑁 215
49 𝑌 Target Variable 5.1

Table 7.1: Final attributes used in the studied dataset. The last line (variable Y) represents the dependent variable,

target attribute for the predictive models generated by ML techniques.
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Among the new set of breedings, we compared the reported number of calves that died at birth and the

sixtieth day after, as we previously did with the first inspected dataset. (Section 3.2, Figure 3.2).

Figure 7.1: Distribution of reported deaths for 304 farms during 2017, respectively at birth and after 60 days. All the

breedings show extremely different values between the dead calves at birth (left) and after 60 days (right) (Kruskal-

Wallis test: p-value ≪ 0.001).

As straighforward from Figure 7.1, during birth almost all the farms did not report any deaths, while at the

end of weaning the number of farms with zero deaths drops drastically. Data show a high number of dead

calves at 60 days, confirming the outcome already observed for all 725 farms inspected in Section 3.2.

7.2.2 The Dataset Preparation and Methods Enrolled in the Study

As previously described, one of the basic steps for applying ML techniques is the subdivision of the dataset

into two disjoint parts: the learning set and the test set. Therefore, we split 30 times the dataset in order

to obtain 30 different sets, each with constant learning-test partitioning (75%-25%) and randomly selected

instances, so as to cover the entire main dataset and avoid retrieving the same instances many times. The

learning set was further split, in a way exactly similar to the division into a learning and test set. Each of

the 30 learning sets was randomly divided, with a constant partitioning (75% -25%), into a training set and

a validation set. The choice of this methodology, i.e., a 75%-25% split repeated for both partitions, is due

to the size of the dataset. The division between learning and test entailed a learning set of size equal to

228 instances. We initially considered partitioning the learning set in training-validation through a k-fold

cross validation, but the reduced size did not allow us to find a suitable value of k: for example, k smaller

than 10 led to a restrained number of training-validation subsets. On the contrary, a value of k greater
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than 10, led to a restrained number of records within the validation sets (i.e., fewer than 21 farms). Using

a 30-fold cross-validation would imply a validation of size 7, not representative at all. For this reason, we

repeated further the subdivision 75%-25% to obtain disjoint training and validation sets, finally checking

that the union of all the training sets was equal to the initial learning set (i.e., that no instance had been

excluded). Finally, the sizes for testing and learning were respectively 76 and 228, of which 171 and 57 for

training and validation. The GPLab package written in Matlab was used. GP is a stochastic algorithm,

so the evolved population needs to be evaluated over a portion of the learning set, i.e., a validation set, in

order to extract one model. The parameters available in GPLab were set depending on the median error

produced by the 30 best models over the validation set. Comparisons with other techniques, listed below,

were made on the benchmark problem with the R library caret (Table 7.2). According with the tuning

performed for GP, optimal parameters were chosen also in this case by tuning different values specified in

a grid for each algorithm. Although differently, all techniques produce one model for each experimental

phase on the corresponding training dataset. The solution must thereafter undergo the testing phase to be

evaluated for its generalization capabilities. Through the subdivision undertaken, 30 prediction models were

obtained for each technique. Parameters were set according to Table 7.3 and 7.4 and, once the models were

obtained, the error was evaluated.

Method Description Package

‘GP’ Genetic Programming based algoritm (GP) GPLab library built in Matlab
‘knn’ k-Nearest Neighbour algorithm (kNN) R library caret
‘nnet’ Neural Network algorithm (NN) R library caret
‘lm’ Linear regression algorithm (LM) R library caret
‘ranger’ Random Forest Tree-based algorithm (RF) R library caret

Table 7.2: ML techniques adopted and the respective used package.

Application of ML techniques: Genetic Programming

The parameters set for GP in our study are summarized in Table 7.3. The initial population was generated

with the Ramped half and half method: half the initial population is constructed using the full method,

that generates trees where all the leaves, i.e., the variables, are placed at the same depth. The second

half is constructed using the grow method, by creating trees of different sizes and shapes. Among other

parameters, it is possible to guarantee the survival of the best individual at each run (Elitism) and set the

selection method: we decided to set the lexicographic parsimony pressure, since this strategy optimizes both

fitness and tree size, as fitness is treated as the primary objective and tree size as a secondary objective in

a lexicographic ordering. This peculiarity leads to the conservation of the most influential variables over
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generations. The algorithm performs, hence, an implicit feature selection and, among all the input variables,

only the most relevant are encapsulated in the solutions. In this study, at the end of the evolution process

on the training set the population size consisted of 500 members (population size), whereas a single model

was then extracted at the end of the run on the validation set. It is necessary to evaluate on the validation

dataset the 500 individuals obtained on the training set, and finally evaluate the models on the test set, in

order to measure their generalization ability on unseen data. The set 𝐹 was equal to {plus; minus; times;

mydivide}.

Parameter Description

ST-GP
Maximum number of generations 40
Population size 500
Selection Method Lexicographic Parsimony Pressure
Elitism Keepbest
Initialization Method Ramped half and half
Tournament Size 2
Subtree Crossover Rate 0.8
Subtree Mutation Rate 0.1
Subtree Shrinkmutation Rate 0.05
Subtree Swapmutation Rate 0.05

Table 7.3: Parameters used to perform GP.

Application of ML techniques: Linear Model, k-Nearest Neighbour, Neural Network and

Random Forest

We compared GP performance with other classical ML approaches used for regression tasks: kNN, NN, LM,

and RF. Differently from GP, these methods do not carry out an automatic feature selection and, by the

end of the learning process for each run, the final solution already consists of one model (Chapter 4). The

corresponding main parameters for all ML approaches are listed in Table 7.4. The unmentioned parameters

were kept as default values, since during tuning no tangible improvements in terms of loss function were

achieved.

kNN (Subsection 4.3.2) requires a proper value of k: if too small, it could lead to results highly influenced by

noise, whereas a large value could be computationally expensive. We used the knn package and configured k

equal to 15. Greater values generated overfitting models. Concerning NN (Subsection 4.3.5) we set a size of

15 hidden units, fitting a single hidden layer, using the nnet package. RF (Subsection 4.3.3) was exploited

in its implementation in the ranger package, as it disposes of additional useful hyper-parameters. When

dealing with a large number of features, it is common to reach greater bias. For each node, the standard
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algorithm selects a subset of features as candidates and thereafter splits optimally the nodes and the one

yielding the highest score is chosen. The number of features (mtry) can be set by the user, whereas the split

on the nodes is automatically performed by the algorithm. Due to multiple testing, the standard method

rather tends to choose strongly influential variables, masking the effects of moderately influential ones, espe-

cially if mtry is set to small values. However, irrelevant variables could be selected instead by the algorithm

for very small values of mtry, resulting in a forest of poorly performing trees. If the dataset contains many

relevant predictors, mtry should hence be set to larger values. By setting larger values, however, the forest

could be weaker, as the single decision trees are more likely to be similar, as the set of candidates could not

vary much. Moreover, the splitting rule computes the optimal cut with respect to the variables. If the same

variables are constantly chosen, it is possible with high probability that also the cut is performed mostly

similarly, leading to overfitting trees. In order to include all variables as candidates for the forest at each

node, we set mtry equal to the number of variables, whereas the chosen cut-points were fully randomized

by setting extraTrees parameter. The latter, available in the ranger package, drops the attempt to find

an optimal cut-point at each node, by determining its value completely randomly. Among all the randomly

generated splits, the one yielding the highest score is chosen to split the node. Injecting a higher degree

of randomness has the effect of providing the tree with a more efficient generalization ability. To take full

advantage of extremely randomized trees, the number of random splits (num.random.splits) was kept at the

default value, i.e., 1. Besides this, instead of learning on bootstrap copies, it is possible to directly grow the

trees using the whole training samples, specifying sample.fraction = 1. This option was chosen in order

to use all instances of the training set (that are already repeated in different training sets, due to the dataset

splitting rule illustrated in 7.2.2), and to avoid a decrease in the performance of the model by learning on a

lower number of samples. Furthermore, the performance is evaluated over the validation sets, equally for all

the applied ML methods, instead of using the OOB error.

ML technique Parameters

knn k = 15
nnet size = 15; decay = 0.2
lm Intercept = TRUE
ranger mtry = 48; splitrule = extratrees; sample.fraction = 1

Table 7.4: Parameters used to perform ML techniques with caret package in R.
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7.3 Results

7.3.1 Interpretability of GP models

The section is dedicated to the discussion of the models obtained with GP. As done in Chapter 6, we analyzed

the features selected and the obtained expressions, by considering their interpretability. By repeating the

steps exposed in Section 6.3.1, the frequency with which the variables are used by the 30 best models, that

is those that have the best fitness on the validation set and that have been evaluated on the test set, were

examined. Results are reported in Table 7.5.

Variable % of use on 30 runs Variable % of use on 30 runs

X1 𝐶𝐴𝑇𝑇𝐿𝐸_𝑆𝐼𝑍𝐸

X2 𝐶𝑂𝑊𝑆

X3 𝐻𝐸𝐼𝐹𝐸𝑅𝑆

X4 𝐹𝐶𝐴𝐿𝑉 𝐸𝑆

X5 𝐵𝑈𝐿𝐿𝑆

X6 𝑀𝐶𝐴𝐿𝑉 𝐸𝑆

X7 𝑃𝐸𝑅𝐶𝐸𝑁𝑇_𝐹𝐴

X8 𝐶𝐴𝐺𝐸

X9 𝐶𝑃 𝐴𝑅

X10 𝑁𝑃 𝐴𝑅

X11 𝑆𝐴𝐿𝑋𝐺𝑅𝐴𝑉

X12 𝑁𝐶𝑂𝑅𝑅𝐸𝐶𝑇

X13 𝐻𝐸𝐴𝑆𝐸

X14 𝐻𝐷𝐼𝐹 𝐹 𝐼𝐶𝑈𝐿𝑇

X15 𝐻𝐶𝐸𝑆𝐴𝑅𝐸𝐴𝑁

X16 𝐶𝐸𝐴𝑆𝐸

X17 𝐶𝐷𝐼𝐹 𝐹 𝐼𝐶𝑈𝐿𝑇

X18 𝐶𝐶𝐸𝑆𝐴𝑅𝐸𝐴𝑁

X19 𝐶𝑁 _𝐼𝑁𝐷

X20 𝐶𝑃 𝐴𝑅𝑇 _𝐼𝑁𝐷

X21 𝐻𝑃 𝐴𝑅𝑇 _𝐼𝑁𝐷

X22 𝑁𝑇 𝐹 𝐴

X23 𝑇𝐹𝐴𝐵𝐼𝑅𝑇 𝐻

X24 𝑇𝐹𝐴𝑃 𝐴𝑅

27%
57%
7%
3%
17%
13%
23%
10%
7%
43%
13%
33%
10%
7%
7%
33%
7%
0%
40%
40%
50%
30%
0%
17%

X25 𝑁𝑇 𝐹 𝑁

X26 𝑇𝐹𝑁𝐵𝐼𝑅𝑇 𝐻

X27 𝑇𝐹𝑁𝑃 𝐴𝑅

X28 𝐶𝐺𝑅𝐴𝑉 𝐼𝐷

X29𝐶𝐼𝑁𝑆

X30 𝐶𝑃 𝑂𝑆𝑇 𝑃 𝐴𝑅𝑇 𝑈𝑀

X31 𝐶𝐸𝑀𝑃 𝑇 𝑌

X32 𝐿𝑆𝑈

X33 𝐿𝑆𝑈1
X34 𝐿𝑆𝑈06
X35 𝐿𝑆𝑈04
X36 𝐼𝑁𝑇𝑃

X37 𝐶𝑂𝑁𝑆𝐴𝑁𝐺_𝑁𝐸𝑊

X38 𝑁_𝐶𝑂𝑁𝑆𝐴𝑁𝐺𝑁𝐸𝑊

X39 𝐵𝐼𝑅𝑇𝐻𝑊𝑀

X40 𝐵𝐼𝑅𝑇𝐻𝑊𝐹

X41𝑀𝑂𝑅𝑇

X42 𝐴𝐵𝑂𝑅𝑇

X43 𝑁𝐴𝐵𝑂𝑅𝑇

X44 𝑁𝐸𝐿𝐼𝑀

X45 𝑁𝑇 𝑂𝑇

X46 𝑁𝐵𝐴𝐿𝐼𝑉 𝐸

X47 𝐵𝑂𝑅𝑁𝐹 𝐴

X48 𝐵𝑂𝑅𝑁𝐹 𝑁

17%
13%
20%
3%
10%
20%
17%
7%
20%
7%
23%
13%
27%
17%
7%
27%
17%
7%
10%
57%
57%
20%
17%
60%

Table 7.5: Percentage of use of each variable among the best 30 individuals found by GP.

Namely, the most frequent variable is the number of calves born from natural inseminations (𝐵𝑂𝑅𝑁𝐹 𝑁 ),

followed by the number of cows (𝐶𝑂𝑊𝑆), the total number of born calves (𝑁𝑇 𝑂𝑇 ) and the number of

calves dead in the first 60 days after birth (𝑁𝐸𝐿𝐼𝑀 ). In exactly half of the models the EBV referred to

calving ease of the heifers was used (𝐻𝑃 𝐴𝑅𝑇 _𝐼𝑁𝐷). It is straightforward that GP models detected the
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majority of information in the aforementioned features. On the contrary, it should be noted that none of

the final prediction models included the number of deliveries that required caesarean section for multiparae

(𝐶𝐶𝐸𝑆𝐴𝑅𝐸𝐴𝑁 ) and the mean value of EBV referred to ease of birth of the bulls, which semen has been used

on artificial inseminations (𝑇𝐹𝐴𝐵𝐼𝑅𝑇 𝐻). The emphasis placed by GP on the listed features entails that the

prediction of yearly weaned calves per cow for 2018 depends above all on the quantity of natural inseminations

in the farm that is accomplished. It is also dependent on the total number of newborns and calves not weaned

during 2017. The result suggests that these variables could be the main features involved in this task. It

does not imply, however, that the other parameters are not important in the management of the farm. We

thereafter investigated the interpretability of the expressions, considering the fitness obtained in each of the

best final models, and taking into account also the number of variables involved in the formula. Considering

the results reported in Table 7.6, it is possible to deduce that the model entailing the best predictions on

the test set included only three variables (Model 13 in Table 7.6). The expression in infix notation is:

𝑌 =
𝑋10 + 𝑋2

𝑋45

𝑋2 + 𝑋45
𝑋2

+ 𝑋10
𝑋2

+ 𝑋45
𝑋2+ 𝑋10

𝑋2
𝑋45

+𝑋
10

, (7.1)

where X2 is the number of cows (𝐶𝑂𝑊𝑆), X10 is the total number of deliveries occurred during the year

in the farm (𝑁𝑃 𝐴𝑅) and X45 is the total number of born calves (𝑁𝑇 𝑂𝑇 ). Since these quantities are always

summed to and divided by positive quantities in Equation 7.1, the denominators are never null. The 𝑚𝑦𝑑𝑖𝑣𝑖𝑑𝑒

operator is actually a division and the model can be reformulated as

𝑌 =

⎛⎝ 𝑋2 + 𝑋45
𝑋2

𝑋10 + 𝑋2
𝑋45

+
𝑋10
𝑋2

𝑋10 + 𝑋2
𝑋45

+
𝑋45(𝑋2+𝑋45·𝑋10)

𝑋2(𝑋2+𝑋45·𝑋10)+𝑋10·𝑋45

𝑋10 + 𝑋2
𝑋45

⎞⎠−1

. (7.2)

In Equation 7.2 it is possible to notice that the simplification led to an expression containing a sum of three

terms. Whenever such a result is reached, the following considerations can be made:

• the obtained expression is given by

𝑦 = (𝑥1 + 𝑥2 + · · · + 𝑥𝑛)−1 (7.3)

where 𝑦 is the result (i.e., the prediction) obtained for the values 𝑥𝑖, 𝑖 = 1, . . . , 𝑛 of the input variables,

that is equivalent to 1
𝑦 = 𝑥1 + 𝑥2 + · · · + 𝑥𝑛.
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• By multiplying each term on both sides in the previous expression by 𝑦, we complete the standardiza-

tion process and reach the final expression

1 = (𝑦 · · · 𝑥1 + 𝑦 · · · 𝑥2 + · · · + 𝑦 · · · 𝑥𝑛) (7.4)

or, equivalently, the more compact expression

1 = (̃︀𝑥1 + ̃︀𝑥2 + · · · + ̃︀𝑥𝑛). (7.5)

• The previous standardization process allows an analysis of the contribution of each component of

the linear combination. The boxplots of each component for 𝑖 = 1, . . . , 𝑛 give a visual idea of the

distribution of data in the interval [0;1] and statistical tests highlight any difference between them and

with respect to the range boundaries.

We hence standardized Equation 7.2, in order to evaluate the contribution of each of the three components

isolated in the expression. Following the previous step and renaming 𝑛𝑗 the predictions 𝑌 obtained for all

the instances 𝑗 = 1, . . . , 304, and 𝑣𝑖,𝑗 the three components in parenthesis (𝑖 = 1, 2, 3), Equation 7.2 can be

expressed as

1 = 𝑛𝑗𝑣1,𝑗 + 𝑛𝑗𝑣2,𝑗 + 𝑛𝑗𝑣3,𝑗 , (7.6)

or equivalently

1 = ̃︀𝑣1,𝑗 + ̃︀𝑣2,𝑗 + ̃︀𝑣3,𝑗 . (7.7)

referring to the rescaled values 𝑛𝑗 · 𝑣𝑖,𝑗 as ̃︀𝑣𝑖,𝑗 .

Since the distributions of ̃︀𝑣𝑖,𝑗 are not normal (Lilliefors test: p < 0.05), the statistical significance was

checked with the non-parametric Wilcoxon test with Bonferroni correction (𝛼=0.017) for paired data: all

components are significantly different (p < 0.001), that is the difference of the mean values is not zero, in

particular comparing ̃︀𝑣2,𝑗 and ̃︀𝑣3,𝑗 . The boxplots for each of them (Figure 7.2) show that the predictions

obtained with Equation 7.7 are mainly due to the first addend, that is most of the information is contained

in ̃︀𝑣1,𝑗 . Stated otherwise, in Equation 7.2 the corresponding value

𝑋2 + 𝑋45
𝑋2

𝑋10 + 𝑋2
𝑋45

(7.8)

is the part of the individual almost completely defining the value of the prediction. The remaining compo-

nents play a minor role, with a minimal effect on the performance of the individual obtained, corresponding
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to a refinement of the value gained with the main component 7.8.

Figure 7.2: Boxplots of the distributions of the variables in Equation 7.7. Wilcoxon test with Bonferroni correction at

𝛼=0.017 reported significant differences between the median of the three distributions (p < 0.001). The single sample

Wilcoxon test, with 𝛼 =0.05, finally showed for each distribution mean values 𝜇 ̸=1 and 𝜇 ̸=0 (p < 0.001). Mean

values are, respectively, 𝜇1 =0.9671, 𝜇2 =0.0166 and 𝜇3 =0.0163 (red dots).

In order to further investigate the mentioned concept and the interpretability of GP models, we focused on

a second individual, namely Model 20 in Table 7.6. The model included 3 variables, showing a larger error

than equation 7.2. Despite this, the model gains a great interpretability, since the expression released at the

end of the run is given by

𝑌 = 𝑋45
𝑋2 + 𝑋44

, (7.9)

where X44 is the number of calves that did not survive during the weaning period.

Because of the same reasons entailing the simplification of Equation 7.1 into 7.2, the previous expression

leads to the following:

𝑌 =
(︃

1
𝑋45
𝑋2

+ 𝑋44
𝑋45

)︃−1

, (7.10)

otherwise stated as
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𝑌 =
(︁
𝐶𝑎𝑙𝑣𝑒𝑠−1 + 𝐷𝑒𝑎𝑑𝐶𝑎𝑙𝑣𝑒𝑠

)︁−1
, (7.11)

where 𝐶𝑎𝑙𝑣𝑒𝑠 is the yearly number of calves per cow and the number of calves per cow that do not survive

during the weaning period is labelled as 𝐷𝑒𝑎𝑑𝐶𝑎𝑙𝑣𝑒𝑠. As in the previous case, we investigated how the

prediction is distributed between the two variables 𝐶𝑎𝑙𝑣𝑒𝑠 and 𝐷𝑒𝑎𝑑𝐶𝑎𝑙𝑣𝑒𝑠. We performed again the

standardization procedure, supporting the analysis with an expression equivalent to 7.10:

1 = ̃︀𝑢1,𝑗 + ̃︀𝑢2,𝑗 , (7.12)

where, for 𝑘 = 1, 2, ̃︀𝑢𝑘,𝑗 are the rescaled quantities ̃︀𝑢𝑘,𝑗 = 𝑚𝑗 · 𝑢𝑘,𝑗 and the prediction 𝑌 obtained with

Model 7.9 are renamed as 𝑚𝑗 , whereas the variables 𝑢𝑘,𝑗 are respectively 𝐶𝑎𝑙𝑣𝑒𝑠−1 and 𝐷𝑒𝑎𝑑𝐶𝑎𝑙𝑣𝑒𝑠.

Performing once again the non-parametric single sample Wilcoxon test, we obtained extremely significant

p-values, supporting the hypothesis that the two components 𝐶𝑎𝑙𝑣𝑒𝑠 and 𝐷𝑒𝑎𝑑𝐶𝑎𝑙𝑣𝑒𝑠 mean values are

different respectively from the range boundaries 0 and 1. Both variables are crucial in predicting the output,

with more relevance given by 𝐶𝑎𝑙𝑣𝑒𝑠 (Figure 7.3). As we could entail for the first inspected model, the first

component of the Expression 7.10 is the most crucial one in predicting the output, since it assumes values

close to the result. However, this second model is also interesting, as the two plotted distributions assume

the same complementary behavior. The boxplots in Figure 7.3 visually express the concept.

Figure 7.3: Boxplots of the distributions of the variables in Equation 7.12. The single sample Wilcoxon test, with

𝛼=0.05, showed for each variable mean values 𝜇 ̸=1 and 𝜇 ̸=0 (p < 0.001).
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The lower outliers of the first distribution correspond to farms where cows produce a smaller number of

calves. It seems reasonable that a higher portion of calves will not even survive during the weaning period;

such cases correspond hence to the upper outliers of the second distribution.

Model RMSE

on test

N. of

variables

% of

variables

Model Fitness

on test

N. of

variables

% of

variables

model 1
model 2
model 3
model 4
model 5
model 6
model 7
model 8
model 9
model 10
model 11
model 12
model 13
model 14
model 15

0,1274
0,1361
0,1480
0,0999
0,1262
0,1263
0,1088
0,1309
0,1330
0,1617
0,1325
0,1370
0,0974
0,1025
0,1328

9
7
9
13
9
7
6
11
8
12
10
12
3
7
20

19%
15%
19%
27%
19%
15%
13%
23%
17%
25%
21%
25%
6%
15%
42%

model 16
model 17
model 18
model 19
model 20
model 21
model 22
model 23
model 24
model 25
model 26
model 27
model 28
model 29
model 30

0,1946
0,1097
0,1238
0,1373
0,1263
0,1404
0,1242
0,1130
0,1390
0,1385
0,1391
0,1177
0,1222
0,1075
0,1502

18
10
8
6
3
9
4
8
7
10
6
5
13
10
10

38%
21%
17%
13%
6%
19%
8%
17%
15%
21%
13%
10%
27%
21%
21%

Table 7.6: RMSE on the test set, number of involved variables and corresponding percentages are reported for each

model evolved by GP in each of the 30 performed runs.

7.3.2 Comparison with other ML techniques

In this section, we compare the performance achieved with the five approaches to prediction taken into

consideration. The 30 models obtained by each ML technique were first evaluated on the test set to measure

capacity of generalization of each method, analyzing the median fitness. Finally, the best model (i.e., the

one that presents the best fitness) was extracted for each technique. We analyzed the fitness distribution

over the thirty models, to assess the ability of the models to learn and generalize. In particular, we first

commented the results obtained on the learning set and, thereafter, on the test set. Figure 7.4 displays the

boxplots of the fitness distribution for each technique. For all statistical tests the significance level was set

at 𝛼 = 0.05. The normality of the distributions among all sets was analyzed and Lilliefors test showed a

significant deviation from the normal distribution for the results of the LM method (p = 0.006). Therefore,

in order to compare the performance of the achieved models on the learning sets, a non-parametric test was

performed, to asses wheter there is a significant difference between the samples’ performace medians. The

median values were compared with Kruskal-Wallis test and the null hypothesis that all median values are
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equal was rejected (p < 0.001). Indeed, all the distributions resulted significantly different according to the

Wilcoxon signed-rank test with Bonferroni correction (𝛼 = 0.005, since there are 10 comparisons), meaning

that all performance distributions differ from one another on the learning set (p-values for all considered

couples showed p < 0.001). Among all the considered methods, as is straightforward from Figure 7.4, the

models obtained with RF are indeed the best performing ones in the learning phase, whereas GP produced

the least accurate models.

Figure 7.4: RMSE distribution for all the method applied to the 30 subsets. Respectively for each technique, the

RMSE among learning set (in yellow) and test set (in blue) sets are shown in boxplots.

The results on the test set were therefore investigated. Predicted values were plotted against the observed

data to check their dispersion over the 30 test sets (Figure 7.5(a)). In a supervised learning problem, a

predictive model is more accurate as the predicted values are close to the observed ones. In order for the

model to be very accurate, the regression line of the scatterplot should tend to overlap the bisector of the

plane. For each technique we hence plotted the regression line of all the predicted values versus the observed

values on the test sets and compared the coefficients of the line: intercepts and slopes are reported in

Figure 7.5(a). All the techniques overestimated target values smaller than ∼0.85 (i.e., the coordinate value

of the intersection between the bisector and the regression lines). For values larger than ∼0.85, the models

underestimated the target. That means that, indicating with 𝑥 the abscissa of the intersection, the observed

values 𝑥 < 𝑥 were estimated with greater prediction values. On the contrary, for 𝑥 > 𝑥 the predicted
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values are lower than the observed data. The slope of the fitting line obtained with LM is the closest to 1

(𝛽1=0.613): the predictions follow a linear distribution on each test set by construction and therefore the

this results could be expected. Among the other techniques, NNET, GP and kNN, reported slopes 𝛽1=0.417,

𝛽1 = 0.391 and 𝛽1 = 0.248 respectively. Finally RF showed a slope equal to 0.002 (𝛽1) and a corresponding

larger value for the intercept (𝛽0 = 0.856). Although the latter showed a lower median RMSE compared to

the other techniques, two almost symmetrical regions with respect to the bisector were identified, entailing

that predictions vary within a fixed interval (0.63;1), also for values outside the previous range. It is clear

that the models are not able to generalize. Regarding the corresponding achieved errors, all fitness samples

showed normal distributions of the variables (conclusion supported also by the representation of q-q plot in

Figure 7.5(b)), and parametric tests were performed.

Figure 7.5: (a)Scatterplots for predictions over the test sets. Predicted values over the test set are plotted against the

corresponding observed data, for each method on all the 30 test sets. The blue line represents the linear regression

fitting line, whereas the red line is the bisector. Corresponding slopes and intercepts are reported for each plot, as well

as the corresponding 𝑥 coordinate (red dot on the abscissa axis).

(b)Q-Q plots for the fitness among the test set. Normality of the of the RMSEs obtained is visually inspected. The

quantiles obtained with all the performed techniques of the fitness on the test versus the theoretical ones are plotted.

The joint distribution in each case follows the diagonal and is almost entirely contained in the 95% confidence bands.
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Since the Levène test did not show any difference between the variance of the distributions (p = 0.139), we

carried out the one-way ANOVA test: the result was extremely significant, entailing that at least one sample

had performace different from the others on average. Finally, the Tukey test with Bonferroni correction was

performed, in order to highlight which samples’ average performance is actually significantly differentfrom

the others. As tangible from the previous boxplots, similar results were achieved on the test set (p > 0.005),

that is the techniques that showed a lower median fitness on the learning set, revealed a lower median error

also on the test set, compared to the other techniques. Moreover, the following pairs of techniques did not

show significantly different fitness distributions over the 30 runs: GP-kNN, kNN-NNet and kNN-LM, NNet-

LM, stating that the pairs of considered methods performed likewise among the test. What is clear is that,

once again, models obtained with RF are the best performing models also on the test, with respect to all

other techniques. It is crucial to assess the robustness of the model with respect to its ability to generalize

over unseen data. To this purpose, we finally compared the RMSE of each technique on the learning and test

sets. Apart from LM results, analyzed with the non-parametric Kruskal-Wallis and Wilcoxon signed-rank

tests, all pairs of results for each technique were tested with the Student’s t-test. All techniques showed a

significant difference between the learning and test results, extremely remarkable for kNN, NNet, LM, and

RF (p < 0.001). Regarding the results achieved with GP, high significance was also detected comparing the

learning and test results (p = 0.006).

The statistical tests entail that all the models can achieve good results on unseen instances, in particular the

RF algorithm, since it outperformed all other techniques on both the learning and test sets. It is followed

by LM, NNet, kNN, with similar results as stated in the previous paragraph, and finally by GP. However,

by analyzing the results on the test sets, their ability to generalize tends not to be as accurate as that

obtained during the learning phase. In fact, only the application of RF led to significantly better results. It

must be considered that, among all methods, GP is the technique that actually produced models that show

a median error on the test set that is not too different from the one obtained on the learning set. kNN,

NNet, LM and RF can easily perform better and show a lower RMSE (Figure 7.4), since the predictions

receive the contributions of all variables. Feature selection is not an intrinsic operation performed by the

latter algorithms, unrelated to their structure, and is usually carried out in advance in ML approaches. GP

however accomplishes this task. Considering the best model obtained with GP, i.e., the one showing the

lowest RMSE analyzed in the previous section (Model 13 in Table 7.6, i.e., Expression 7.2), its performance

is comparable to the median behavior obtained with RF models, even incorporating only three variables

among the 48 in input, without imposing a priori hypotheses. We also managed to provide a zootechnical

interpretation, which would not be possible with black-box techniques. This fact outlines that the different

architecture of the evolutionary algorithm can be a good alternative, balancing overfitting issues, whereas
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other techniques could slightly be affected. The characteristics of GP outline models that combine few

variables, leading to a great interpretability of the formula and allowing further speculations on influential

parameters to be made.

7.4 Conclusions

In this study, we investigated more deeply the performance of Piemontese cattle breedings, namely the

number of weaned calves per cow produced per year. The sought prediction model had to include relevant

factors that describe the weaning period, that is the 60 days after birth. Medium to large farms located

in Piedmont were considered. The dataset provided by the ANABORAPI was accurately filtered, imposing

some conditions: since the number of involved variables was much greater (we processed 19 variable in the

previous study), we extracted records from the biennium 2017-2018, among the most representative farms,

i.e., with solid data during all the time lapse between 2014 and 2019. The final dataset consisted of 304

farms and 48 variables, referring to information on cows and artificial inseminations, as well as heifers, natural

inseminations and levels of consanguinity of calves resulting from ongoing pregnancies. ML techniques can

provide prediction models without making any kind of a priori assumptions. To this purpose, the dataset was

divided into a learning and a test set, and the GP approach was inspected further. The GP characteristic,

i.e., the provision of well-performing models, that automatically select significant features, let us confirm the

considerations exposed in Chapter 6 about the achieved expressions. Whenever a GP model can be expressed

as a sum of terms, it is possible to perform an analysis of the standardized equation. We could reconfirm that

the first term of the considered sum is the most important one, assuming values close to the output, whereas

the other components concurred minimally in the prediction. GP models detected the majority of information

in five features, outlining their possibly crucial role in the prediction of the performance of the breeding farm.

The number of calves born from natural inseminations is the most significant variable, followed by the number

of cows, the total number of born calves, and the number of calves dead in the first 60 days after birth. In

exactly half of the models the EBV referred to the calving ease for the primiparae. Comparisons with other

classic methods, such as k-Nearest Neighbor, Neural Network, Linear Regression, and Random Forest were

made. Compared to other techniques, GP is not the best performing one, considering the median RMSE

among 30 runs. On the contrary, RF produces models with the best fitness on the test set. This could be

mainly due to the different architecture of the algorithms. On the one side, we handle with classic techniques,

producing models that, on average, outperform GP, showing better fitness but complex expressions. On the

other side, only GP led to less accurate models in terms of performance, since their error was slightly greater,

even if easy to read and interpret. GP can model straightforward expressions, which combine few variables,

selected during the evolution process. At the end of the procedure, the best models performed as well as those
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obtained with other commonly used techniques, that are however characterized by non-dynamic algorithms

as the evolutionary ones. In conclusion, we could assert that GP could represent the most suitable technique,

considering all the results in relation to the kind of task dealt with, i.e., the provision of a accessible and

interpreatable model, in which variables are automatically selected and combined together. Evolutionary

algorithms can be applied on zootechnical data, achieving well-performing models, able to learn from the

available data. The results, published in [1], encouraged further investigations, in order to explore the role

of other variables in predicting the considered output. In this sector it is common to associate cow-calf

problems to genetic and pathological factors, related to pregnancy and childbirth. However, many factors

usually considered as marginal: difficult to detect and assert as critical points, the quality of water and air,

illumination, the available space and surface, the composition of the food ration could influence the weaning

period, being key information about the environment of the farms. Furthermore, comparisons over other

time frames are requested. The management of the farm and the choices made by the farmer drag on over

time and have delayed effects. It is necessary to analyze the problem, taking into account the data over

several years as the learning set, to investigate whether ML techniques could detect crucial factors that did

not emerge in this study.
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Chapter 8

Towards A Vectorial Approach to predict

Beef Farm Performance

8.1 Introduction to Standard vs Vectorial Approaches

In the previous chapters, two general approaches were assumed, in order to test the performance of different

ML approaches in the zootechnical field. Attempting to build predictive models for measuring the breeding

performance (Chapter 3), GP was chosen inside the ML arena for its interesting characteristics, useful to

address the considered problem (Chapter 4). Its behaviour was investigated first among a representative set

of farms (Chapters 6) and thereafter among a subset extracted from the latter (Chapters 7), both partitioned

between training, validation, and test sets. Furthermore, a distinct number of variables was used among the

two performed studies. In both cases, it was possible to simplify the candidate models, to obtain clear and

intelligible expressions and analyse the features extracted by the algorithm. On the other hand, from the

comparisons illustrated in Chapter 7.8, it is straightforward that other applied techniques, structurally dif-

ferent from each other and from GP, performed better among both the learning and test sets. The reported

fitness indicated that a lower error was committed in predicting the target with comparative methods, as

different types of structure define the corresponding algorithms. According to this point of view, RF could be

classified as the most promising technique. However, the major features offered by GP, i.e., implicit selection

of informative predictors and access to the models, do not suggest to discard the method, but to investigate

further. In particular, although RF proved to perform better in terms of RMSE minimization, a discrepancy

between the error distributions recorded over the learning and test sets was detected, entailing that this

method could overfit more easily. On the other hand, GP clearly showed similar fitness distribution for the

learning and test sets, suggesting that the method could be able to adapt better to new data.
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Since we are interested in these aspects of GP, we investigated deeper the scenario offered by this family of

algorithms, to search for possible ways to improve the predictive capacity of the generated models. One of

the factors that might be useful to work on consists in splitting the dataset into partitions as independent as

possible. To this end, the constraints on the number of breedings we focused on could be set on less stringent

thresholds, in order to train models on a larger number of instances. However, this approach would require

new investigations about the possible noise introduced with them into the dataset. Reasonably, it would be

more beneficial to exhaust the available information, left unexploited up to this point of the study, that is

data recorded in the years prior to 2017. These data were only used to determine a pool of representative

farms and remained mostly unused. None of the basic methods investigated in the previous Chapters 6 and 7

takes into account a temporal component. Due to their structures, they could only exploit punctual data

extracted from one year, targeting the following year. To clarify, it is not impossible to deal with past data.

The sequences can be split into different observations, in order to maintain the structure of a panel dataset,

but the algorithms can not detect the temporal patterns, as in this case the observations would be treated

as distinct instances [11, 12]. Of necessity, the strategy entails the loss of valuable information, useful to

predict the corresponding target. So far, data from 2017 was used exclusively with targets on 2018. In order

to tackle properly the prediction, instead of incorporating the data into a standard panel (see Table 5.3), we

encapsulated all the values recorded over the years, for each variable, into vectors (see Table 5.4). Stated

otherwise, we introduced the vectorial variables containing data from 2014 to 2017 as input, while targeting

the same value among 2018. We opted for this approach since GP was recently developed as VE-GP, offering

indeed the possibility to exploit vectors as well as scalars, looking promising as its flexibility allows to tackle

many different tasks [11, 12]. VE-GP approach was hence investigated among the breeding farms used in

Chapter 7. ST-GP and classic techniques were compared once again, as a different splitting strategy among

the dataset was adopted. The outcomes were analysed with respect to VE-GP and LSTM recurrent neural

network results, presented in this chapter.

8.2 Matherials and Methods

8.2.1 The Dataset

In Chapter 5 we exposed the main differences among the structure of the standard and vectorial datasets. In

Section 5.3 the configuration needed to perform the relevant methods to handle vectorial variables, i.e., VE-

GP and LSTM recurrent neural network, was illustrated. Taking into consideration the features that were

selected by GP in the two previous chapters, we made some considerations about the number of variables

to keep in the new benchmark. Since the results by GP did not improve by incorporating more features, it
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was more appropriate to focus on a smaller number of predictors, that can actually be reconducted to the

target. In Table 8.1 the final variables are provided for the benchmark.

Variable Name Reference to Table 5.1

1 𝐶𝑂𝑊𝑆 4
2 𝐻𝐸𝐼𝐹𝐸𝑅𝑆 5
3 𝐼𝑁𝑇𝑃 obtained with 5.2
4 𝐶𝑃 𝐴𝑅 16
5 𝐸𝑇𝐴_𝑃𝐴𝑅𝑇_1 20
6 𝐶𝐸𝐴𝑆𝐸 45
7 𝐻𝐸𝐴𝑆𝐸 42
8 𝐶𝑃 𝐴𝑅𝑇 _𝐼𝑁𝐷 49
9 𝐻𝑃 𝐴𝑅𝑇 _𝐼𝑁𝐷 80
10 𝑇𝐹𝐴𝐵𝐼𝑅𝑇 𝐻 92
11 𝑇𝐹𝐴𝑃 𝐴𝑅 93
12 𝑈𝐵𝐴06 133
13 𝑈𝐵𝐴04 134
14 𝑁𝐸𝐿𝐼𝑀 210
15 𝑁𝑇 𝑂𝑇 211
16 𝑁𝐵𝐴𝐿𝐼𝑉 𝐸 217
17 𝐶𝑂𝑅𝑅𝐸𝐶𝑇 35
18 𝐶𝑂𝑁𝑆𝐴𝑁𝐺_𝑁𝐸𝑊 60
19 𝑌 Target Variable 5.1

Table 8.1: Final set of variables used for the benchmarked problem. The bottom line represents the dependent variable

𝑌 , i.e., the target for the predicted models generated by GP by processing the set of independent variables.

As a greater number of features could become a source of noise, some variables that are actually less infor-

mative in predicting the target from an a posteriori zootechnical point of view were omitted at this stage,

as well as variables partially contained into other similar features. For example, in Chapter 7, both the

total number of calves born and the number of births following natural impregnation were used by most

GP models. The number of calves born from natural impregnation is already contained in the total number

of newborns. Although it was the most frequently used variable, it may be more appropriate to keep only

the total number of newborns, by forcing the algorithm to use the latter variable, as informative over all

the considered farms (natural impregnation is not performed by all the selected breedings). Prediction of

target can be simpler for the algorithms if the useful information is directly provided, resulting easier to

be detected. However, ML methods are able to find the necessary source of information also if it is more
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complex to extract. Clearly, the task can be easily tackled if some patterns are evident over data. If the

information is distributed among other features, the algorithm can detect it anyhow. On the contrary, if

no hint is available, the method can not guess the patterns as by magic. The variables 1-19 were stored

into two datasets: one containing the data referred to 2017-2018 for the standard approach, and the sec-

ond one containing the data referred to 2014-2017 for the vectorial approach. In both cases the different

partitions intended for training, validation and test refers to the same records, sampled equally on both

datasets. A different splitting strategy was adopted with respect to the one previously considered. Indeed,

the main idea was to extract a sufficient number of learning instances, in order to perform a k-fold cross

validation among it, maintaining at the same time a balanced percentage between learning and test sets

(70%-30%). Thereafter, 94 records were extracted to form the test set and the remaining 210 formed the

learning set. Among the latter a 7-fold cross validation was imposed, obtaining 7 pairs of training-validation

sets, consisting respectively in 180-30 instances. In order to perform a sufficient number of runs of GP and

to compare models, the technique was repeated 10 times by selecting the test instances sequentially from

the main dataset, restarting from the beginning each time the last record was reached during the selection

phase. The learning instances was randomly shuffled before performing the 7-fold sampling.

8.2.2 Standard vs Vectorial Approaches: Experimental Settings

We refer to the standard GP approach with the abbreviation ST-GP to distinguish it from VE-GP. ST-GP

and other classic ML approaches, already presented in Chapter 7, were re-performed using the GPLab pack-

age built in Matlab and the R library caret. Correspondingly, besides GP , KNN (4.3.2) and NNET (4.3.5)

were also tuned, based on the average performance over the validation sets. Concerning linear regression

(4.3.1), a generalized linear model with elastic net regularization approach glmnet was preferred over standard

lm (Chapter 7). The algorithm fits generalized linear models by means of penalized maximum likelihood,

combining the Lasso and Ridge regularizations, using the cyclical coordinate descent (Section 4.3.4). These

techniques allow one to accommodate correlation among the predictors, by penalizing less informative vari-

ables: Ridge penalty shrinks the coefficients of correlated predictors towards each other, while Lasso tends

to pick the most informative ones and discard the others. Compared to standard linear regression, more

accurate results are usually expected from its application, as it combines feature elimination from Lasso and

feature coefficient reduction from Ridge. The elastic-net penalty is controlled by the parameter 𝛼: 𝛼 = 0

is pure Ridge, whereas 𝛼 = 1 is pure Lasso. The overall strength of the penalty for both Ridge and Lasso

is controlled by the parameter 𝜆: the coefficients are not regularized if 𝜆 = 0. As 𝜆 increases, variables are

shrinked towards zero and they are discarded by Lasso regularization, whereas Ridge regularization includes

all the variables. Among the vectorial issue, LSTM (4.3.5) was run using the deep learning toolbox imple-
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mented in Matlab, whereas the developed GPLab package was used to implement VE-GP [11]. In Table 8.2

and 8.3 the final optimal parameters are summarized.

Parameter Description

ST-GP
Maximum number of generations 40
Population size 250
Selection Method Lexicographic Parsimony Pressure
Elitism Keepbest
Initialization Method Ramped half and half
Tournament Size 2
Subtree Crossover Rate 0.7
Subtree Mutation Rate 0.1
Subtree Shrinkmutation Rate 0.1
Subtree Swapmutation Rate 0.1
Maxtreedepth 17

VE-GP
Maximum number of generations 40
Population size 250
Selection Method Lexicographic Parsimony Pressure
Elitism Keepbest
Initialization Method Ramped half and half
Tournament Size 2
Subtree Crossover Rate 0.7
Subtree Mutation Rate 0.3
Mutation of aggregate function parameters 0.2
Maxtreedepth 17

Table 8.2: Parameters used to perform GP.

Regarding ST-GP, we provided the algorithm with a set of primitives 𝐹 composed of {plus; minus; times;

mydivide}, as already performed in Chapter 6 and 7. Similarly, we chose proper functions for VE-GP. Differ-

ently from ST-GP, suitable functions are indeed provided to manage scalar and vectors [11]. For the consid-

ered problem we used {VSUMW; V_W; VprW; VdivW; V_mean; V_min; V_meanpq; V_minpq}. The first four

operators represent respectively the elementwise sum, difference, product, and the protected division between
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two vectors or between a scalar and a vector, e.g. VSUMW([2,3.5,4,1],[1,0,1,2.5]=[3,3.5,5,3.5]). The

mean and minimum of a vector return the corresponding value for the whole vector (standard aggregate func-

tions V_mean and V_min), or for a selected range [𝑝, 𝑞] inside the vector, where 𝑝 and 𝑞 are positive integers

with 0 < 𝑝 ≤ 𝑞 (parametric aggregate functions V_meanpq and V_minpq), e.g. V_mean([2,3.5,4,1])=2.6,

V_mean3,4([2,3.5,4,1])=2.5. The fact that standard and parametric aggregate functions collapse respec-

tively the whole vectorial variable or a window defined by the parameters into a single value allows to handle

all the information contained in the vector or part of it. Besides crossover and mutation, the algoritm is

provided with an operator reserved for the mutation of the aggregate function parameters. It allows 𝑝 and 𝑞

to evolve in order to detect the most informative window, where to apply thereafter the aggregate function.

The set of terminals was composed of the predictors in Table 8.1 for both ST- and VE-GP.

ML technique Parameters

knn k = 15
nnet size = 7; decay = 0.2
glmnet 𝛼 = 0.8, 𝜆 = 0.85

LSTM hidden units=200; epochs=50; batchsize=1; learning algorithm=adam

Table 8.3: Parameters used to perform ML techniques with caret package in R and the Deep Learning Toolbox in

Matlab

8.3 Results

8.3.1 ST-GP vs VE-GP

Performance of ST-GP and VE-GP were first compared, in order to analyze the behavior of the two algo-

rithms. In Figure 8.3 the median fitness evolution is plotted, based on the following procedure. For each fold

within the learning set, a model was selected according to its performance over the validation set. Hence,

after 7 runs of GP, 7 models were available, i.e., the ones showing the lowest fitness among the validation.

All the 7 best drawn models were evaluated on the whole learning set and the test set, and the median of

the 7 models was stored. As the 7-fold was repeated 10 times, 10 median trends were available at the end of

the entire evolutionary process. The plot shows the median behaviour of the 10 median fitness achieved for

each generation. We initially decided to run the two algorithms for 100 generations. The choice of stopping

the evolution after 40 generations was dictated by the overfitting trend recorded among ST-GP. On the

contrary, VE-GP proved to be more stable than ST-GP, at least as far as we ran 100 generations. Moreover,

the median fitness was overall lower, showing that GP is affected by a remarkable improvement of such a
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problem, if temporal information is added, together with proper functions. VE-GP models outperformed

the ST-GP ones, stabilizing at lower errors.

Figure 8.1: ST-GP fitness evolution Figure 8.2: VE-GP fitness evolution

Figure 8.3: ST-GP and VE-GP fitness evolution plots. For each generation, the graph plots the median of the 10

median fitness achieved by the best 7 models on the validation sets and correspondingly the performance achieved on

the learning and test sets.

We analyzed the predictors encapsulated in the final models by both ST- and VE-GP, selected with respect

to the performance achieved on the test sets by running the algorithms for 40 generations. Table 8.4 shows

that both methods used 9 variables to tackle the target. However, not the same predictors were used and,

above all, not with the same frequency. The number of 𝐶𝑂𝑊𝑆, for example, was highly exploited by both

GP algorithms, but all the VE-GP models based the prediction on this feature, whereas only the 70% of

ST-GP models found it to be informative. 𝐶𝑃 𝐴𝑅, on the other hand was used only by ST-GP and in the

50% of solutions, as well as 𝑁𝐵𝐴𝐿𝐼𝑉 𝐸 was involved in 60% of them. 𝑁𝑇 𝑂𝑇 was rather exploited only by

VE-GP and in 80% of the models. It is evident that, as long as GP is run to predict the target based on

the information of a single year, patterns are more difficult to be found and the algorithm (ST-GP) tries

to solve the problem by extracting as much information as possible from as many features as possible (7

variables out of 18 were used in more than 20% and at most in 70% of the solutions). When providing

temporal information, the search was easier for GP, whose models achieved better fitness, detecting mainly

the information based on few predictors (4 out of 18 were exploited in more than the 30% of solutions, and

among the four features, one was handled by all the models). Even considering the variables used by each

model (Table 8.5), on average 8.4 predictors were used by ST-GP (from 6 to 15), whereas VE-GP built

models exploiting 5.5 features on average (from 3 to 9).
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Variable % of use on 10 runs of ST-GP % of use on 10 runs of VE-GP

X1 𝐶𝑂𝑊𝑆

X2 𝐻𝐸𝐼𝐹𝐸𝑅𝑆

X3 𝐼𝑁𝑇𝑃

X4 𝐶𝑃 𝐴𝑅

X5 𝐸𝑇𝐴_𝑃𝐴𝑅𝑇_1
X6 𝐶𝐸𝐴𝑆𝐸

X7 𝐻𝐸𝐴𝑆𝐸

X8 𝐶𝑃 𝐴𝑅𝑇 _𝐼𝑁𝐷

X9 𝐻𝑃 𝐴𝑅𝑇 _𝐼𝑁𝐷

X10 𝑇𝐹𝐴𝐵𝐼𝑅𝑇 𝐻

X11 𝑇𝐹𝐴𝑃 𝐴𝑅

X12 𝑈𝐵𝐴06
X13 𝑈𝐵𝐴04
X14 𝑁𝐸𝐿𝐼𝑀

X15 𝑁𝑇 𝑂𝑇

X16 𝑁𝐵𝐴𝐿𝐼𝑉 𝐸

X17 𝐶𝑂𝑅𝑅𝐸𝐶𝑇

X18 𝐶𝑂𝑁𝑆𝐴𝑁𝐺_𝑁𝐸𝑊

70%
10%
0%
50%
0%
0%
0%
0%
0%
10%
0%
0%
20%
70%
0%
60%
30%
20%

100%
10%
10%
0%
10%
10%
10%
0%
0%
0%
0%
0%
0%
40%
80%
0%
0%
30%

Table 8.4: Frequency of use of each variable among the best 10 individuals found by ST-GP (left column) and VE-GP

(right column).
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Prediction model Fitness on test N. of variables % of variables

ST-GP
model 1
model 2
model 3
model 4
model 5
model 6
model 7
model 8
model 9
model 10

0.1335
0.1207
0.1143
0.1383
0.1392
0.1439
0.1395
0.1370
0.1285
0.1184

9
6
11
8
7
7
8
6
15
7

50%
33%
61%
44%
39%
39%
44%
33%
83%
39%

VE-GP
model 1
model 2
model 3
model 4
model 5
model 6
model 7
model 8
model 9
model 10

0.1117
0.1016
0.1044
0.1085
0.1134
0.0998
0.1018
0.1149
0.0999
0.1121

5
3
9
8
3
8
4
4
8
3

26%
16%
47%
42%
16%
42%
21%
21%
42%
16%

Table 8.5: Fitness on the test set, number of involved variables and corresponding percentage for each model evolved

by ST-GP (upper table) and VE-GP (lower table) in each of the 10 runs

8.3.2 General Comparisons With Other ML Methods

We compared GP behavior with the other methods listed in the previous section. As already explained,

besides ST-GP, also KNN, NNET, and GLMNET exploited the information on 2017 with target in 2018,

whereas LSTM was involved as VE-GP to process vectorial variables 2014-2017 and target 2018. Results

reported in 8.3.1 about ST-GP compared to VE-GP are supported also by the corresponding boxplots in

Figure 8.4. The median and mean RMSEs values are reported in Table 8.6.
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Figure 8.4: RMSE on both the learning and test set for the different algorithms. Learning results are plotted in yellow

(left) and test results are plotted in blue (right) for each technique

STGP KNN NNET VEGP GLMNET LSTM

Results among the learning sets
Median 0.1238 0.1074 0.09671 0.10516 0.1025 0.10112
Mean 0.1220 0.1077 0.09666 0.10535 0.1025 0.09884

Results among the test sets
Median 0.1353 0.1151 0.1122 0.1065 0.1057 0.10372
Mean 0.1314 0.1147 0.1128 0.1068 0.1056 0.10337

Table 8.6: Median and mean RMSE of the different techniques among the learning and test sets

The Kruskal-Wallis nonparametric test, performed for all the considered methods with a significance level of

𝛼= 0.05, was applied to investigate the RMSE achieved among the learning set and the test sets separately.

The resulting p-values (p ≪ 0.001) showed extremely significant differences in median performance between

the methods, considering both stages. The pairwise Wilcoxon tests provided with Bonferroni correction 𝛼

= 0.05/15 = 0.0033 was hence performed among all compared techniques. Among the learning set, STGP

was significantly different from all other methods, resulting in a poor performance. Similarly, KNN resulted

significantly different with respect to both NNET and LSTM, as well as the comparison between VEGP

and LSTM. Concerning the RMSE achieved on the test sets, STGP performed poorly with respect to other
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methods, showing greater, significantly different, values for the RMSE on average. On the contrary, GLM-

NET performance was significantly better than KNN and NNET, as well as LSTM compared respectively

to KNN and VEGP. As a consequence, the following pairs of methods did not show significantly different

performance: VEGP-KNN, VEGP-NNET, VEGP-GLMNET, VEGP-LSTM, likewise the pair LSTM and

GLMNET.

In order to discuss the quality of predictions, the quality of learning should also be analyzed for the different

techniques. Indeed, we compared learning and test fitness distributions obtained by the single methods, in

order to determine the occurrence of overfitting. Wilcoxon signed rank test showed that the two distributions

for KNN and the two obtained with NNET were different, since the corresponding p-values were extremely

significant (Wilkoxon: p ≪ 0.001), as well as the median RMSE (Kruskal-Wallis test: p ≪ 0.001). Con-

cerning ST-GP, the two distributions and the median error were slightly different (Wilcoxon and Kruskal

Wallis: p-values equal to 0.048 and 0.034 respectively). GLMNET showed the same learning and test fitness

distributions, but different median RMSE (Wilcoxon: p > 0.05; Kruskal Wallis: p = 0.041), whereas LSTM

achieved different distributions with similar median. VE-GP was the only method that produced the same

fitness distributions with the same median among the learning and test set.

In short, considering all the results from the statistical tests, ST-GP produced less accurate models and all

the other methods outperformed ST-GP. However, among the different techniques, KNN and NNET clearly

overfitted, generating good results while training, but losing their ability to generalize on the test set. On

the contrary, VE-GP, GLMNET, and LSTM produced better and statistically similar results, as the RMSEs

that were achieved in the attempt of predicting the target among the test sets were not significantly different

across the methods. In particular, LSTM produced the best fitness considering both learning and test sets

results. However, VE-GP was the only method showing the same distribution among learning and test sets,

highlighting its ability to generalize better over unseen data. From these outcomes it was possible to recall

the importance of introducing the temporal information in the form of vectors, to improve the accuracy of

predictions among the considered problem.

8.4 Conclusions

Chapter 8 was dedicated to the inspection of GP behaviour when predicting a target starting from datasets

that, in one case, were exclusively formed by scalar values (treated hence with ST-GP) and, in the other,

assumed a vector representation (handled with VE-GP). This representation is quite useful for incorporating

temporal patterns or, in general, successive collections of data for single variables among the same candi-
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date. Indeed, with the common representation through standard data frames such patterns are usually not

recognizable and the performance of the models do not improve. On the contrary, if the data are organized

into a vectorial dataset the algorithm receives temporal information in input. Thereby, by means of proper

functions able to manage vectors, it can produce more accurate predictions. First of all, the dataset was

prepared to deal with the vector-based representation. The datasets, sharing the same scalar target from

2018 (i.e., the quota of weaned calves per cow per year), were prepared extracting the data among 2017 and

among the whole period 2014-2017, based on a previously defined set of farms. In this study, a different

splitting rule was defined among the datasets with respect to previous chapters. Learning and test sets

were selected respecting the proportion 70%-30%, and thereafter learning sets, randomly reshuffled, were

split according to a 7-fold cross validation technique. Prediction models were constructed with different GP

algorithms, ST- and VE-GP first, that were thereafter compared with other ML methods. In particular,

VE-GP was compared with LSTM, that considers the time relationship among the data.

The main goal was hence to inspect the ability of VE-GP with respect to ST-GP in predicting the target.

The developed algorithm could produce better results, by achieving lower RMSEs among both learning and

test sets. We analyzed first the evolution of the median fitness observed on the learning and test sets, and

clearly VE-GP proved to be more stable, evolving a population through more generations without giving sign

of overfitting, whereas ST-GP showed the "symptom" quite soon, considering similar experimental settings.

Besides, VE-GP reached better results by encapsulating fewer variables in each extracted candidate model,

and detecting the information to greater extent mostly from specific features. VE-GP still yelds a good

interpretability of the solutions, by giving access to the formula and to the features implicitly selected, pro-

viding meaningful information about the tackled issue. Being able to extract important features among the

predictors in form of vectors, the algorithm improved the target forecast. VE-GP turned out to outperform

not only ST-GP, but also other techniques used in the field of ML. Although VE-GP performance is similar

to LSTM and GLMNET (the latter exploiting the standard data representation), it was the only method

that did not show a significantly different behaviour on the learning and test sets. The two distributions and

their median are similar, entailing that VE-GP provides a good response in terms of generalization ability

on unseen data. Improvements can be expected by feeding the algorithm with larger datasets, by providing

more candidates and longer vectors.
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Chapter 9

Exploring New Features to Predict Beef

Farm Performance

9.1 Introduction

In Chapter 3 the fact that many factors related to the farm management affect the performance of the

breeding was highlighted, in order to define the performance of the farm, in the context of Piemontese cattle

breedings. The availability of informative tools makes it possible to streamline technical issues and to improve

the economic aspects. All the stages of the productive process can indeed be planned in details at each stage.

By keeping updated data, it is possible to monitor variations that could cause undesired effects or, on the

contrary, that could promote improvements. The summary data used so far in the study provided useful

information to predict the target identified to forecast the breeding performance. The predictors selected,

handled with different ML techniques in order to build the models, were extrapolated from the Herd-Book,

as this is the available source of information. Investigations on the problem were performed exploiting two

representations: in the first, summary data referring to a single year were used, and subsequently, in the

other, the entire data collection from the previous years was incorporated in the benchmark. The approach

produced several promising results, highlighting the potential of ML techniques. However, many aspects of

farming are not yet directly represented by data. Certain aspects such as nutrition, environmental conditions,

animal welfare, are measured indirectly by monitoring the report data in 3.1. Changes in the management

or problems affecting some aspects entail variations which can become evident only after a long time. From

a technical point of view, it is essential to operate in such a way as to ensure maximum health and well-being

to animals, criteria increasingly linked to the commercial and economic aspect. The predictive methods

investigated have a notable strength, namely the possibility of using any type of variable. It may therefore

be appropriate to obtain a more detailed representation of parameters that may negatively or positively
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influence production, in order to be subsequently used for the forecast of the breeding performance. Indeed,

this information is not recorded in the databases. The critical points on which the efficiency of the breeding

depends are mainly the average number of calves per year per cow and mortality. Besides this, the weaning of

calves contribute substantially to these parameters, depending on multiple factors such as the environment,

the quality of air and environment, feeding type, and it is necessary to focus on many issues such as the body

conditions, the supply of essential nutrients, the space available for the animal, which influence the costs.

Therefore we advanced the idea of collecting new data, which could contribute to better results in terms of

prediction, as well as being able to provide a more precise representation of the farm anyway. The chapter

was dedicated to the description of the tools provided to collect the additional data, i.e., with an on field

survey. Thereafter the information was coded and stored into a database, subsequently analyzed, in order

to inspect their role in the prediction of weaned calves per cow per year. Predictors were selected and ML

techniques, already applied in the previous benchmarks, were involved once more, to extrapolate patterns

and considerations were presented.

9.2 Materials and Methods

9.2.1 The Draft of the Questionnaire

The main goal consisted in drawing a survey to collect and codify useful factors, in order to find further

important parameters to model farm management conditions. Indeed visits to farms were planned, in order to

fill on field the questionnaire and collect the additional data. No repeated visits were scheduled, for logistical

and temporal reasons. First of all it was necessary to highlight all the possible aspects to be recorded, trying

not to neglect any useful information. Therefore, we took a cue from a previous version of the questionnaire,

designed for fattening farms of Piemontese cattle [56]. The form had been organized to focus on fattening

breeding farms and corresponding items were related to the size of the farm, the administered ration, and

some technopathies, all referred to fattening calves. Given that the farms we selected for data collection are

breeding farms, and that only part of them fatten, we extended the survey with additional information such

as the type of farm, vaccination plan, and description for litter, feeding type, and ration. Besides this, we

set the codes to describe the type of ventilation, the cleaning of the water trough, the micro-climatic reliefs

(light and presence of ammonia), and the temperament of the animals. The time devoted to understanding

the questionnaire and the involved variables was fundamental to focus on the aspects of breeding to be

acquired. In particular, the visits to farms represented an important training phase, quite a useful step to

better understand the dynamics related to farm management.
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Figure 9.1: On field survey, designed to collect data related to environment, feeding type, ration, litter, vaccination

and technopaties, and temperament.
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Figure 9.2: On field survey, designed to collect data related to environment, feeding type, ration, litter, vaccination

and technopaties, and temperament.
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9.2.2 The Dataset and Experimental Settings

The farms were selected on the basis of their location, the size (i.e., number of cows larger than 30), and

the willingness of the farmer to dedicate the time necessary to provide the information, through interviews

and farm visits. The survey was filled between March and April in 2019. Although collected in 2019, this

information well represents the breeding for the previous year, i.e., 2018, as no changes were made to the

management in any breeding during the first months of 2019. The dataset was hence provided first with

the Herd-Book variables, as already done in the previous chapters. However, the farms were not selected

based on the percentage of performed artificial insemination. The final pool consisted of breedings, showing

heterogeneous situations. All of them were representative in terms of number of heads and constant data

recordings. The corresponding Herd-Book variables are listed in Table 9.1, and were extracted from year

2018. The target was hence drawn from 2019.

Variable Name Reference to Table 5.1

1 𝐶𝐴𝑇𝑇𝐿𝐸_𝑆𝐼𝑍𝐸 3
2 𝐶𝑂𝑊𝑆 4
3 𝐻𝐸𝐼𝐹𝐸𝑅𝑆 5
4 𝐼𝑁𝑇𝑃 obtained with 5.2
5 𝐶𝑃 𝐴𝑅 16
6 𝑆𝐴𝐿𝑋𝐺𝑅𝐴𝑉 24
7 𝐻𝐸𝐴𝑆𝐸 42
8 𝐶𝑃 𝐴𝑅𝑇 _𝐼𝑁𝐷 49
9 𝑈𝐵𝐴04 134
10 𝑁𝐸𝐿𝐼𝑀 210
11 𝑁𝑇 𝑂𝑇 211
12 𝑁𝐵𝐴𝐿𝐼𝑉 𝐸 217
13 𝐶𝑂𝑅𝑅𝐸𝐶𝑇 35
14 𝐶𝑂𝑁𝑆𝐴𝑁𝐺_𝑁𝐸𝑊 60
15 𝑃𝐸𝑅𝐶𝐸𝑁𝑇_𝐹𝐴 11
16 𝑌 Target Variable 5.1

Table 9.1: Final set of variables used for the benchmarked problem. The bottom line represents the dependent variable

𝑌 , i.e., the target for the predicted models generated by GP based on the set of independent variables.

From the questionnaire, a total number of 201 features was defined. Given this high number of variables,

we opted for a preventive corresponding feature selection. To understand their possible link with the target,

taking into account the relevance of the variables contained in the survey from a zootechnical point of view

and the actual correlation with the target (quota of weaned calves per cow recorded for 2019), selected
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22 predictors, in order to contribute additional data to the Herd-Book ones. The correlation between the

variables and the target was considered. Features correlated more than 30%, positively and negatively, were

finally selected (Table 9.2).

Variable Name Correlation with target

Cows temperament after delivery 0.456
Manger front <0.6m 0.454
Grain 0.394
Self-produced flour (cows) 0.387
Slatted floor (cows) 0.368
Maximum number of calves per box 0.362
Slatted floor (calves) 0.358
Multiple groups (calves) 0.338
Number of animals per watering place 0.317
Purchased soy (cows) 0.312
On farm fibrous food (calves) 0.305
Extra fibrous food (calves) -0.305
Number of animals stationing -0.314
On farm fodder (cows) -0.322
On farm fodder (bulls) -0.322
Vertical fanning (cows) -0.337
Permanent meadow -0.368
Single box (calves) -0.392
Finished feed -0.400
Purchased floor (cows) -0.433
Manger front >0.6m -0.463
On farm herbage (bulls) -0.542

Table 9.2: The 22 variables extracted form the questionnaire (total of 201 features), based on their correlation with

the target. Features with positive and negatives correlation lower than 30% were omitted from the study and were not

listed

A splitting strategy similar to the one used in Chapter 8 was adopted. Unfortunately, the lack of time avail-

able to visit a significant number of candidate farms limited the total number of available breedings to 33.

In this way, the study had to deal with a poor number of instances. However, a k-fold cross validation could

be performed among the learning samples, maintaining at the same time a balanced percentage between

learning and test sets (70%-30%). Thereafter, 9 records were extracted to form the test set and the remain-

ing 24 formed the learning set. Among the latter, an 8-fold cross validation was imposed, obtaining 8 pairs

of training-validation sets, consisting respectively in 21-3 instances. In order to perform a sufficient number
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of runs of GP and to compare models, the technique was repeated 10 times by selecting the test instances

sequentially among the main dataset. The learning instances were randomly shuffled before performing the

8-fold sampling.

Two stages were defined within the study: first, a ST-GP approach was performed in order to investigate its

behaviour on three benchmarks, i.e., the Herd-Book data, the survey data, and both sets of data in input,

with respect to the same target. Thereafter, standard ML methods were applied to compare performance on

the data, i.e., KNN (4.3.2), NNET (4.3.5), RF (4.7), and extreme gradient boosting (4.3.4). The algorithms

were tuned based on the average performance on the validation sets. Concerning the latter, the size of trees

was set equal to 1, that is stumps were used as learners. The subsample ratio of features to be selected when

constructing each tree, occurring once for every stump, was set equal to 0.8.

Final parameters are listed in Tables 9.3 and 9.4.

ML technique Parameters

knn k = 9
nnet size = 5; decay = 0.1
ranger mtry = 2; splitrule = extratrees; sample.fraction = 1
xgboost nrounds = 150; max_depth = 1, colsample_bytree=0.8

Table 9.3: Parameters used to run ML techniques with the caret package in R

Parameter Description

ST-GP
Maximum number of generations 100
Population size 500
Selection Method Lexicographic Parsimony Pressure
Elitism Keepbest
Initialization Method Ramped half and half
Tournament Size 2
Subtree Crossover Rate 0.7
Subtree Mutation Rate 0.1
Subtree Shrinkmutation Rate 0.1
Subtree Swapmutation Rate 0.1
Maxtreedepth 17

Table 9.4: Parameters used to perform ST-GP.
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9.3 Results

The first goal was the investigation of GP’s ability to predict the quota of weaned calves per cow in 2019,

based on data collected in 2018. GP was thereafter compared with other methods. Due to the splitting

rule in different subsets previously exposed, 10 models were finally obtained over three different benchmark

problems:

• Benchmark A: variables in Table 9.1 were investigated, 1-15 were set as input, feature 16 as target.

• Benchmark B: variables in Table 9.2 were investigated, with feature 16 from Table 9.1 as target.

• Benchmark C: variable from both Tables 9.1 and 9.2 were investigated, with feature 16 from Table 9.1

as target.

We compared the RMSE between predicted and real valued on the learning and test data, to measure the

accuracy of prediction. In order to compare the performance of the models achieved with GP on the learning

sets, a non-parametric test was performed, to establish whether there is a significant difference between

the RMSEs’ medians. The median values were compared with Kruskal-Wallis test and the null hypothesis

that all values are equal was not rejected (p > 0.05). All the distributions also did not result significantly

different, according to Wilcoxon signed-rank test with Bonferroni correction (𝛼 = 0.05/3 = 0.016), meaning

that the three performance distributions on the learning sets are similar (p-values for all considered couples

showed p > 0.016).

Similar remarks could be made on the test, as the three distributions showed p-values greater than the

previously set significant thresholds. Indeed, Kruskal-Wallis test p-value among the medians was reported

to be larger than 0.05, and Wilcoxon signed-rank test with Bonferroni correction produced p-values larger

than 0.016. The corresponding box-plots are shown in Figure 9.3, the median and mean values in Table 9.5.

ST-GP A B C

Results on the learning sets
Median 0.08495 0.07723 0.07877
Mean 0.09049 0.07955 0.07701

Results on the test sets
Median 0.1519 0.13829 0.14436
Mean 0.1606 0.14075 0.14484

Table 9.5: Median and mean RMSE of the different techniques among the learning and test sets
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Figure 9.3: Boxplots showing RMSEs distribution achieved by ST-GP among the three different benchmaks

Within each benchmark, the distributions were compared to inspect possible overfitting issues. In all cases,

the three pairs of learning and test sets were significantly different, as the corresponding p-values were re-

ported to be ∼0.001.

The reported results were similar for the three benchmarks investigated with GP. As we are mainly in-

terested in the variables extracted through the survey, supported by the fact that GP produced a better

median fitness on the corresponding dataset, we focused on the second benchmark to perform comparisons

with other ML methods. Statistical significance of the null hypothesis of no difference in medians between

the learning fitness between GP and each of the other methods is based on the Kruskal-Wallis test, with 𝛼

set equal to 0.05. The resulting p-value is extremely significant (p = 0.1317·10−4). Indeed, among the five

involved methods, xgbtree performed better with statistically significant smaller fitness values (𝛼 previously

set to 0.005 after Wilcoxon test with Bonferroni correction). The other techniques performed similarly on

the learning set.

Concerning the results among the test sets, RMSEs produced by all the methods show the same distribution,

as the Wilcoxon test reported non-significant outcomes. For further comparison, we measured overfitting as

the difference between test and learning set RMSEs for each of the compared methods: all the learning-test

pairs of distributions overfitted, as p-values obtained with Kruskal-Wallis test were ∼0.001 in all cases. In

Figure 9.4 the corresponding boxplots were plotted.
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Figure 9.4: RMSE on both the learning and test set for the different algorithms. Learning sets results are plotted in

yellow (left) and test results are plotted in blue (right) for each technique

In this study it was not possible to find methods that outperformed the others. First of all, the number of

breeding farms was very small and the models could not actually learn properly. However, the performance

obtained on the new set of variables did not differ from the performance recorded in previous studies,

considering the variables of the Herd-Book. This aspects suggest a possible important role of the new

information in predicting the target. ST-GP did not prove itself as the best performing method, but it

can neither be classified as worse than the other techniques, since the reported fitness was comparable to

that produced by KNN, NNET, and RF. A different behaviour was displayed by extreme gradient boosting.

Thanks to its structure, it was adopted as suitable for dealing with the task. The results proved that the

good predictive models built in the learning phase failed to generalize, as the lower RMSE was not confirmed

in the testing phase, despite proper parameters tuning. This method turned out to be therefore unsuitable

for that type of data, showing overfitting issues and inability to generalize.

9.4 Conclusions

In this chapter, we explored the use of GP in the field of zoothecnical modelling on a different dataset. The

prediction of the number of weaned calves per cow in 2019 in the context of Piemontese cattle breedings was

based on input data referred from 2018. The problem was previously studied using the data extracted from

the Herd-Book. As widely illustrated, there are many aspects that influence the weaning period of the calf,

that are substantially linked to its well-being. Most of them are not available in the archives. Hence, this
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information required to design a new specific questionnaire to collect such information. Designed specifically

on the basis of the characteristics of the breedings of interest, the form was used to describe and gather

data regarding the environment on the farm, the rations and food supplied to the animals, the quality of

air and water, available space, temperament of the animals, and technopathies and vaccination plans. All

the information is related to animal welfare, which can lead to improvements in management, as well as

to malfunctions, highlighting critical points and helping the farmer to evaluate the breeding performance.

We then extracted the variables most correlated with the target under consideration. Three benchmarks

were defined to evaluate ST-GP ability on additional data, not previously investigated, with respect to the

studies carried out using the Herd-Book variables. Detecting a significantly different behavior between the

three benchmarks, we focused on the second benchmark, containing only data extracted from the new form,

as it produced better fitness. We assessed GP performance by means of experimental comparisons with

other ML techniques. Based on the Root Mean Squared Error on the learning and test sets, the analysis

revealed that GP and other common methods performed similarly, showing an analogous response on both

the learning and test sets. Among the chosen algorithms, we concluded that extreme gradient boosting is

not appropriate for the considered problem, as it showed evident overfitting. The preliminary results should

be further investigated, as a very small number of breedings was taken into account, weakening predictive

capabilities and statistical tests. Data collection through an on-field survey is a time consuming process, but

from the first results it appears to bring interesting developments to the problem under analysis. For this

reason, the current work is oriented towards the extension of farm visits, in order to collect data from as

many farms as possible.
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Chapter 10

Conclusion

The work carried out in this thesis aimed to perform investigations on the possible improvements in the

modeling of the performance of beef farms, specifically on the basis of the situation identified within the

Piemontese cattle breedings. Considering it as a case study, the measure of cattle breeding performance

was investigated. The Piemontese breed outlined in Chapter 2 is known as the prevailing beef breed mainly

raised in Piemonte, in the north-west of Italy. Differently from traditional beef breedings, the extensiveness

conditions for the management are not met. Indeed, it is raised in intensive farms. However, it is suitable

for being raised in the most diverse climates, as it is an excellent food processor and adaptable to more

diverse conditions. The National Association of Piemontese Cattle Breeders (ANABORAPI) is responsible

for the enhancement of the breed. The Association keeps the Herd-Book, runs a Genetic Station, where

performance tests and progeny tests are carried out, and an Artificial Insemination Station where semen

from A.I. bulls is produced. Therefore, it establishes the selection criteria. Among the various tools provided

to the breeders, summary records are supplied in order to monitor of the breeding trend. The updated

situation can be kept under control and variation in the overall performance of the farm can be inspected.

Besides, working within the Association gave me the opportunity to investigate the information systems

developed by ANABORAPI, becoming familiar with the zootechnical field and the crucial aspects in animal

husbandry. In particular, I focused on the measure of breeding production efficiency, that revolves around

the cows fertility and production, i.e., the calf quota generated yearly. With a particular focus on the

weaning period, approximately two months after birth, it emerged that losses related to calf management

are consistent, and the need for a methodology towards the construction of a more appropriate model was

outlined.
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10.1 The Definition of the Problem: Modeling Beef Farm Performance

The first aspect to tackle was the comprehension of the aspects that influence the performance of a farm of

the type considered. To maximize revenues, it is essential that each mare produces as many calves as possible

during her productive career, in full respect of her physiology. If well managed, the current Piemontese cow

is able to produce and raise almost one calf per year. Indeed, the "calf quota" that each cow generates is

the indicator of a cow’s reproductive efficiency. Such a measure is derived from the calving interval, that is

the number of days between two deliveries. The smaller the calf quota, the lower the fertility of the mare.

By making the calf quota converge to 1, the breeding can be considered economically profitable. Clearly,

the reproductive capacity affects the farmer’s income, as the failure to give birth to calves and the cost of

feeding the cows can become economically consistent. There can be several causes that lead to losses: one is

represented by the period following the birth of the calf, as the necessary immediate interventions and calf

conditions regulate this phase. In Chapter 3, all the issues related to the calving phase were illustrated and

we concluded that it is reductive to measure breeding performance by observing only fertility and maternal

condition, as it is currently being done. The calf goes through development stages that depend on its own

condition, reaching the physiological development in 60 days after birth. Calf mortality was reported to be

an important cause of economic damages in Piemontese cattle farms. Therefore, the breeding performance

should be modelled considering also other factors such as neonatal mortality, outlining the calf’s ability

to survive, and the source of stress such as congenital calf’s defects, compromising eventually the immune

response and the growth rate, environmental and food conditions, that affect the quality of life of the

newborn.

10.2 Improving Beef Farm Performance with Machine Learning

What are the limits of the model used to estimate farm performance? The estimate obtained with equa-

tion 3.1 is based on a classical statistical approach. It is a model formulated on a priori knowledge of the

field, summarized in two parameters, that receives in input the annual corresponding average values and

returns the estimate for that same year as output. If we consider the predictive aspect of the model, the

estimate for the immediate future is provided considering the average calving interval among the cows preg-

nant at the moment of the query. The main outlined purpose was to supply the farmer with a more accurate

indicator, to highlight effects that becomes evident over a few years from their introduction. Therefore, the

need to identify a methodology that can respond appropriately arose. The identification of influential vari-

ables within big databases can be extremely difficult. The huge digitization of data collections streamlines

procedures, for the registration and consequent processing of many additional data. Livestock is also in-
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creasingly managed by continuous automated real-time monitoring, defining the field of Precision Livestock

Farming, and contributing to the increase of the amount of information and complexity of databases. It

can supplement the skills of the farmer, the veterinarian, and the technician, with the support of informa-

tion technologies. Besides, it requires an active involvement of all subjects, in a Citizen Science perspective,

in order to establish knowledge exchange, contributing to collection of programs and proper data monitoring.

“Big Data” can be introspected, providing an adequate answer to farmers, technicians, veterinarians, and

all the subjects involved. Considering the huge size of data, visual inspection is not adequate. The increase

in the amount of data requires proper data management and prediction techniques, to offer the possibility

to process intrinsic information. To meet the two needs, that is to find an appropriate prediction model and

deal with the available big data, we chose a Machine Learning (ML) approach. Indeed, as it is necessary

to examine which variables available in the dataset impact the performance of a breeding farm, and to

avoid a priori assumptions about model formulation, ML answers with great computing power and flexible

algorithms, able to exploit the intrinsic information. Useful considerations about data should be limited to

the preparation of the dataset and the analyses on the produced models, i.e., a posteriori interpretation.

The model currently applied (Equation 3.1) is formulated on a priori zootechnical knowledge. Traditional

statistical forecast analysis is preprogrammed, based on the hypothesis that past data is a good forecasting

indicator for the future. ML methods are not pure magic for predicting the future. They are based also on

past information, but their structure allow them to search for patterns directly among data. A dataset can

be divided in such a way as to build the models based on a slice of it, by minimizing an error function, and

to test the corresponding predictive model capacity on another slice of the dataset, applying it to data never

seen before. Rather than making a priori assumptions, rather than following preprogrammed algorithms,

ML allows the system to learn from data.

ML Methods respond to many different issues depending on the problem to deal with: in our case it was a

supervised learning task, since the dataset contains the values of the variable we want to predict. Algorithms

are regulated by a series of parameters, which, according to the data and the kind of problem, lead to better

or worse learning and generalization ability among unseen data. Therefore, it is very important to do a

search for the best values of these parameters. Part of this depends on learning, which is evaluated on

the basis of selected functions. In our case we chose to measure the fitness of the algorithms by the Root

Mean Square Error function. Chapter 4 was dedicated to the description of the whole process and to the

architecture of the different applied techniques. The different techniques were selected on the basis of their

widespread use in many different fields and their useful characteristics that are highlighted in the literature.
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Regarding the latter, this type of approaches is lacking in the beef breeding sector and, in particular, in the

Piemontese breed sector. ML is widely applied in the dairy sector, as evidenced by the hundreds of studies,

partially listed in Chapter 3. The absence of direct comparisons with other research in the same sector was

only partially a limiting issue, as the study presented in this thesis adds value to the ML approach, as it lays

the foundation for possible future developments.

10.3 Datasets, Experimental settings, and Comparison of Different Tech-

niques

The main pursued objective was to perform a comprehensive investigation of the possibilities for the im-

provement of modelling farm performance, in order to work in the perspective of subsequently integrate

information systems. So far, each technique adapts differently to the data, producing different results on

different datasets, depending on the prediction task, and on the split rules between training, validation, and

test partitions. The result may be better, worse, or similar to others in terms of accuracy of the result.

However, each of them exhibits characteristics that make a technique more interesting and appropriate than

others.

10.3.1 The Dataset

Prediction models were built starting from a determined dataset. The farms and the variables handled

through the entire study produced different benchmark problems. I inspected the main database, containing

the summary data described in Chapter 6. I analyzed the meaning of all variables, the structure of the

database, and the type of features contained. Globally, the database contains the last twenty years of data,

including farms that are no longer active, for a total of 219 descriptive features reported in Table 5.1, including

the number of calves alive per cow by equation 3.1, i.e., the defined target to predict. The criteria according

to which the farms were thereafter selected were described, in order to define a pool of representative farms.

Data recorded during a specific historical period, i.e., one year, were extracted to form the input set of

predictors, as well as the target for the same subsequent time period, i.e., the next year. The structure of the

database allowed me to distinguish two types of analysis. As the dataset is a historical archive, considering

the target for a determined year, it was possible to isolate the summary data and use scalar predictors from

the previous one in input or, on the other hand, to fully exploit the sequential information contained in

several years. In order to perform the second approach, the multiple values for the predictors were collapsed

into vectors. The editing defined two kinds of data frames, referred to as standard and vectorial.
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10.3.2 Genetic Programming vs Common State-of-the-Art Methods

Different ML methods produce different kind of models that, depending on the architecture, generally are

not available at the end of the whole process, besides resulting quite complex to understand. The sought

models should be available for further analysis, in an attempt to understand which links were detected in-

dependently of the algorithm. Furthermore, a simple and legible expression is usually also simple for the

user to interpret, when available. Genetic Programming (GP) is a method that comes with many desirable

characteristics. First of all, it performs an implicit feature selection, by extracting informative attributes,

and produces models that are resumed in intelligible expressions, potentially reducible to simpler forms.

Besides this, it offers the possibility to handle vectorial predictors. A GP approach was first adopted to

exploit the standard data panel. I applied the methodology, referred to as Standard Genetic Programming

(ST-GP) in the thesis, using the standard data panel to solve different benchmark problems.

Predictive models were trained, validated and tested on a pool of 725 farms, with data recorded in 2017

and 2018, for a total of 19 predictors and one target. Among the supplied instances, 330 were reserved as

a learning set, and 395 as a test set. Accurate models were achieved, showing that GP can learn from a

smaller dataset composed by representative farms and predict good results on the selected test set. The

algorithm was able to select and process important variables, without previous assumptions on the zootech-

nical aspects. The final candidate models performed well, exploiting more predictors and resulting in a more

complex expression, hardly reducible to a simpler one. However, other predictive models encapsulating fewer

variables were also achieved. Considering their expression, extremely simple and possibly easier to interpret

from the zootechnical point of view despite a slightly higher error, GP proved to be flexible, allowing us to

argue that accuracy is not the only criterion to measure the usefulness of the results. Preliminary results

were obtained with ST-GP and were illustrated in Chapter 6.

Additional investigations on ST-GP, including the corresponding comparative methods results, were exposed

in Chapter 7. The datasets was re-formed, based partly on the results of Chapter 6, but mainly considering

the direction we wanted to take in the following, that is to investigate the performances on a vectorial data

panel. For this reasons, a smaller pool was considered, i.e., composed of 304 farms, selected on the basis of

the corresponding data recorded in the period 2014-2017. At the same time the number of predictors was

increased to 48 to test the feature selection ability of the algorithm. The results were compared with other

techniques: some common methods were selected to compare the results obtained with GP, known to be able

to capture the high non-linearity underlying the data. Due to their structures, the methods encapsulated all

the features into the prediction models and, differently from GP, did not perform an implicit feature selection.
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If 48 variables are given in input, methods as Linear Regression, Random Forests, or Neural Networks end

up using all features, with different degrees of importance. GP, on the other hand, begins the evolutionary

process (of the population of models) using all the variables, but it manages to pass on the most informative

ones from one generation to the next. The experimental results confirmed the considerations anticipated

by the preliminary results, enforced by the comparison with other algorithms. On the one side, we handled

classic techniques, producing on average models performing better than GP, showing lower fitness but com-

plex expressions. On the other side, GP led to less accurate models in terms of performance, since the error

was slightly greater, but easy to read and interpret. GP can combine a few variables, selected during the

evolution process, into straightforward expressions. At the end of the procedure, the best models performed

as well as those obtained with other commonly used techniques.

Subsequently, I investigated the results obtained with vectorial variables representing time series, increasing

the amount of information available as input for the different techniques. Exploring the vectorial approach

(Chapter 8) required, as already stated, a different input data structure. However, the target did not change.

To this purpose, the farms considered in the pool of instances were the same as in Chapter 7. However, since

the results showed that GP exploited only certain variables, I reduced the number of predictors to 18. In this

way, possible noise due to extra variables, not very informative, was reduced. The main goal was to inspect

the ability of Vectorial Genetic Programming (VE-GP) with respect to ST-GP, to predict the target. The

recently developed VE-GP algorithm could produce better results, by achieving better fitness on both the

learning and test sets. VE-GP proved to be more stable, evolving a population through more generations

without showing overfitting, while ST-GP, was affected by overfitting already in the early generations, under

similar experimental settings. VE-GP still favored the interpretability of the solutions, by giving access to

the formula and to the features implicitly selected, providing meaningful information about the tackled issue.

Moreover, better results were obtained by encapsulating fewer variables in each extracted candidate model,

detecting almost all the information among specific features. The algorithm improved the target forecast,

proving to outperform not only ST-GP, but also other techniques used in the field of ML. The algorithm,

in particular, was compared to Long Short Term Memory Recurrent Neural Network (LSTM), suitable for

handling vectorial predictors. Although VE-GP performance was similar to LSTM and Generalized Linear

Models (the latter exploiting the standard data panel representation), it was the only method showing similar

learning and test fitness distribution, entailing greater ability in generalization among unseen data.

While performing the vectorial approach, I ran a parallel research on an enriched dataset, built by adding to

the Herd-Book predictors a series of very informative zootechnical information. Indeed, while vectorial pre-
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dictors are very informative and helped to gain more accurate results, we wondered whether other variables,

not present in the original database, could also be. In Chapter 3 it was highlighted that many other factors

influence the performance of the farm. Since they are currently absent in the registries as they are not coded

nor usually collected, it was necessary to design a specific questionnaire (Chapter 9), to be filled in through

farm visits. In this regard, after planning the methodology to be pursued, I was assisted to learn the neces-

sary animal husbandry notions to better understand the problem, and thereafter fill directly the form on the

farms. The survey was organized based on a previous version, supplied for fattening breedings. The farms

that we selected to this purpose are breeding farms. Hence, we enriched the survey with additional infor-

mation about vaccination plan, technopathies, description of animals, focusing on temperament, litter, and

the corresponding feeding type and ration. Besides this, we set the codes to describe the type of ventilation,

the cleaning of the trough, the micro-climatic reliefs (light and presence of ammonia), and the temperament

of the animals. The farms were selected based on location, size, and the availability of farmers to the visit

and the interview. From a total number of 201 variables, I extracted the features mostly correlated to the

target, the latter referred to 2019 as the visits were performed between March and April 2019. The selected

predictors were finally 22, combined with Herd-Book data referred to 2018. GP performance was assessed

by means of three benchmarks to evaluate a possible improvement of ST-GP on additional data, compared

to the basic study carried out on the Herd-Book variables. Thereafter, experimental comparisons with other

ML techniques in the field were made possible. The analysis revealed that GP did not show different behav-

iors between the three benchmarks, that focused respectivly on Herd-Book data, on field survey data, and

on the combination of both sets. Comparisons were hence conducted among the second benchmark, as GP

produced better results. Techniques performed almost all similarly and it was not possible to determine the

presence of the best-performing one. Nevertheless, ST-GP did not produce worse results with respect to the

other techniques, since reported fitness was comparable to that produced by the others.

10.4 Further Considerations

The objective envisaged a first approach to find a methodology to build predictive models for the measurement

of breeding performance. As it is not appropriate to impose a priori assumptions about the variables and

the models, given the size of the datasets and the large number of involved features, ML methods addressed

properly the task. In general it is possible for us to state that ML is suitable for predicting the defined target,

i.e., the number of calves weaned per cow per year. The chosen algorithms proved to be suitable to solve

the issue on different subsets of the main dataset. Above all, they provided interesting comparisons with

GP, that, among all the techniques, offered a wider range of characteristics that responded appropriately

to the problem under analysis. We can assert that GP could represent the baseline along all the study,
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proving to be the most suitable method, considering its usefulness in providing accessible and interpreatable

models. Variables were automatically selected and combined together, offering the possibility of additional

investigations among the features selected by candidate models. Indeed, the models produced by GP are

mathematical expressions in plain text, showing the relationships found between the variables. After all,

the collection of new data, exploited with an on-field survey, provided also some insights that promise good

developments. We saw that, despite having very few reference farms, ML and, in particular, GP produced

encouraging results, entailing the proper usefulness of both the undertaken data collection and the approach.

One of the major issues that arises from this study is the need to apply the methodology to a larger dataset.

Relaxing the thresholds imposed on the selection of breedings samples would determine more instances in

the pool, likely yielding better results. ML is designed to handle thousands of data. Most importantly, by

extending the number of instances, the algorithms could learn from more examples and be tested on more

different cases as well, helping building more accurate predictions. However, not only the size of the dataset

is to be considered useful in achieving performing models. The most interesting aspect about using GP is

rather the vectorial development. The introduction of vectorial variables produced a significant improvement

among the accuracy of the result. Evolution was also much more stable and the fact that the algorithm can

handle any type of variable, both scalar and vectorial, makes it quite a flexible tool. These considerations

open the possibility of providing more complex datasets, containing different types of sequential features.

The possibility of managing vectorial variables, whose values can be of different types and have no fixed

length among the whole dataset, push the analysis beyond the basic research presented in this thesis. On

the one side, both categorical and continuous variables can be treated simultaneously, without specifying

it explixitly to the algorithm: the latter is indeed able to process them during the evolution without hints

given by the user. On the other hand, when dealing with vectors, some data may be not available, i.e.,

the vector variables may not have the same length. Moreover, it is admissible to handle also scalars, which

do not show a temporal trend. VE-GP is suitable to manage all kinds of features dynamically, combining

them in the prediction of the target. Evolutionary algorithms can be applied to zootechnical data, achieving

performing models, able to learn from all the available data. In this case study, the breeding report variables

extracted at the end of the year were used. In one case they were managed for only one year, in the other

four the average values, corresponding to four years, were used, proving to be more suitable for reducing the

prediction and generalization errors. Instead of limiting the analysis to the year-end average, it might be

more useful to incorporate the data collected from each farm visit into a vector representation. As a result,

all variations, even small ones, would be available and the algorithm could identify temporal patterns that

were not visible by directly processing the average value for the whole year.
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